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We estimate the orders of zeros of polynomials f(x) = P (u1(x), u2(x), . . . , un(x)) in the

fundamental system of solutions to a linear Fuchsian differential equation. We intro-

duce the notions of A- and (∞, A)-algebraic independence and prove that the system of

functions xt, u1(x), u2(x), . . . , un(x) is (∞, A)-algebraically independent. Bibliography:

6 titles.

1 Introduction

The study of the algebraic independence of a family of functions and estimation of the orders

of zeros of polynomials in such families play an important role in number theory. Estimates

for the orders of zeros of polynomials in solutions to linear differential equations are intensively

studied in the theory of transcendental numbers (see [1, 2]). Such problems, but over the field

of positive characteristics arise when applying the Stepanov method (see [3]). In this paper, we

obtain an estimate for the order of zero of a polynomial in the fundamental system of solutions

to a linear Fuchsian equation on the Riemann sphere. This estimate is used to prove the (∞, A)-

algebraic independence of the system of functions xt, ln(x− a1), . . . , ln(x− an) over the field C

with sufficiently large natural number t. Such estimates in the case of polynomial in components

of solutions to a regular system were obtained in [4, 5]. In this paper, instead of components of

one solution to a Fuchsian system, we deal with the fundamental system of solutions to a scalar

Fuchsian equation.

We recall some definitions and results (see [6] for details).

1.1. Equations and their singularities. We consider the scalar differential equation

u(n) + q1(x)u
(n−1) + . . .+ qn(x)u = 0, x, u(x) ∈ C, (1.1)
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on the Riemann sphere C = C ∪ {∞}. By singular points a1, . . . , am in C of Equation (1.1)

we mean singular points of its coefficients q1(x), . . . , qn(x) (the points where at least one of the

coefficients has singularity). We say that x = ∞ is a singular point of an equation if the point

ξ = 0 is a singular point of the transformed equation under the change of variables x = 1/ξ.

Solutions to Equation (1.1) form the n-dimensional vector space L . The basis for this space

is called the fundamental system of solutions to Equation (1.1). Let the basis consist of functions

u1(x), . . . , un(x). The solutions to Equation (1.1) can be analytically continued along any path

γ in the punctured Riemann sphere C\{a1, . . . , am} along which the coefficients q1(x), . . . , qn(x)

are holomorphic.

By the representation of monodromy or monodromy of Equation (1.1) we mean the repre-

sentation

χ : π1(C\{a1, . . . , am}, x0) → GL(n,C) (1.2)

given by a mapping [γ] → Gγ of homotopy classes of loops such that the basis (u1(x), . . . ,

un(x)) for the space of solutions to Equation (1.1) in a neighborhood of a nonsingular point

x = x0, under the analytic continuation along the loop γ going out from the point x0 and

lying in C\{a1, . . . , am}, is transformed into another basis (ũ1(x), . . . , ũn(x)). Two bases are

connected by the nonsingular transition matrix Gγ corresponding to the loop γ: (u1, . . . , un) =

(ũ1, . . . , ũn)Gγ .

By the monodromy matrix of an equation at a singular point ak (with respect to the ba-

sis (u1, . . . , un)) we mean the matrix Gk corresponding to a simple loop γk going around ak.

The homotopy classes of loops [γ] are associated with the matrices Gγ , which generates the

monodromy representation (1.2).

A singular point x = a of Equation (1.1) is said to be regular if there exists N ∈ Z such that

for any solution u(x) and any sector S with vertex x = a

|u(x)|
|x− a|N → 0, x→ a, x ∈ S,

and Fuchsian if the coefficient qj(x) has a pole of order at most j at the point x = a, i.e.,

qj(x) =
rj(x)

(x− a)j
, j ∈ {1, . . . , n}, (1.3)

where the functions rj(x) are holomorphic at the point x = a.

We say that an equation is Fuchsian if all its singular points are Fuchsian.

Theorem 1.1 (Fuchs). A singular point of the scalar differential equation (1.1) is a regular

singular point if and only if it is Fuchsian.

1.2. Exponents of solutions and the Fuchsian relation. On the space of solutions L ,

we can define a function ϕa : L → Z ∪ {∞}.
By a valuation ϕa(u) of a function u(x) at a point x = a we mean the integer

ϕa(u(x)) := sup
{

K ∈ Z | ∀λ < K :
u(x)

|x− a|λ → 0, x→ a, x ∈ S
}

, ϕ(0) := ∞,

where S is a sector with vertex x = a.

We consider a valuation ϕa on the space L of solutions to Equation (1.1) at a regular singular

point x = a. The valuation ϕa possesses the following properties:
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(1) ϕa(u+ v) � min(ϕa(u), ϕa(v)) and ϕa(u) �= ϕa(v) implies ϕa(u+ v) = min(ϕa(u), ϕa(v)),

(2) ϕa(c · u) = ϕa(u) for any c ∈ C\{0},
(3) ϕa(u) is preserved under the analytic continuation around the point z = a.

A valuation at a regular singular point z = a determines a filtration on the space L . We

denote by ∞ > ψ1 > . . . > ψq all various finite values ϕa(u), u ∈ L . There are subspaces

L s = {u ∈ L | ϕa(u) � ψs}, s = 1, . . . , q, determining a filtration of the space L of solutions

0 ⊂ L 1 ⊂ . . . ⊂ L q = L , (1.4)

which, by property (3) of a valuation, is invariant under the analytic continuation around the

point z = a.

The basis u(x) = (u1(x), . . . , un(x)) for the space L of solutions to Equation (1.1) is said to

be associated with the filtration (1.4) at a regular singular point z = a if the valuation takes all

its values there (counted according to their multiplicities).

For any associated basis u(x) at a singular point x = ak the Levelt decomposition

u(x) = (h1k(x), . . . , h
n
k(x))(x− ak)

Λk(x− ak)
Ek

holds, where hsk(x) are holomorphic at x = ak, h
s
k(ak) �= 0 for s = 1, . . . , n,

Λk = diag(ϕak(u1), . . . , ϕak(un))

is a diagonal integer matrix, Ek = 1
2π

√−1
lnGk and for the eigenvalues ρjk of the matrix Ek

0 � Re ρjk < 1, j = 1, . . . , n, k = 1, . . . ,m.

If ϕak(u1) � . . . � ϕak(un) and the matrix Ek is upper triangular, then the basis u(x) is called

the Levelt basis.

The numbers βjk = ϕj
k + ρjk, where ϕ

j
k = ϕak(uj), are called exponents of Equation (1.1)

at the point x = ak. The exponents are power asymptotics of solutions and also roots of the

characteristic polynomial

λ(λ− 1) . . . (λ− n+ 1) + . . .+ λ(λ− 1) . . . (λ− n+ j + 1)rj(ak) + . . .+ rn(ak) = 0,

where rj(x) are taken from (1.3).

For the sum of exponents βjk of the Levelt bases of the Fuchsian differential equation (1.1)

at singular points a1, . . . , am the Fuchsian relation holds

m
∑

k=1

n
∑

j=1

βjk =
(m− 2)n(n− 1)

2
, (1.5)

where n is the dimension of the space of solutions and m is the number of singular points of

Equation (1.1).

As known, an element u(x) ∈ L of the space of solutions to Fuchsian differential equation

at x = ak can be represented as

u(x) =
∑

j,l∈σ
fjl(x)(x− ak)

ρjk lnbl(x− ak),
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where fjl(x) is the Laurent series with center x = ak and finite principal part, bl are nonnegative

integers, and σ is a finite set of indices. The real exponent ̂βk of a solution u(x) at the point

x = ak is the minimum of ordak fjl(x) + Re ρjk over all j, l ∈ σ.

Lemma 1.1. Let ˜β1k, . . . ,
˜βnk be real exponents of an arbitrary basis for the space of solutions

to Equation (1.1) at the point z = ak (one for each k). Then

m
∑

k=1

n
∑

j=1

˜βjk � (m− 2)n(n− 1)

2
.

Proof. This assertion is practically obvious since the set of real exponents β1k, . . . , β
n
k of the

associated basis at a given regular singular point x = ak is maximal among the sets of real

exponents of other bases at this point. Thus, the sum of real exponents of associated bases over

all singular points a1, . . . , am is exactly not less than the sum of real exponents over other bases.

Since the real exponents are the real parts of exponents, we have
m
∑

k=1

n
∑

j=1

˜βjk �
m
∑

k=1

n
∑

j=1

βjk =
(m− 2)n(n− 1)

2
,

where βjk are the exponents of the corresponding associated bases at the points z = ak (˜βjk =

Reβjk). The lemma is proved.

Definition 1.1. Functions f1(x), . . . , fn(x) are called

• algebraically dependent over C if there exists a nonzero polynomial P ∈ C[x1, . . . , xn] such

that P (f1(x), . . . , fn(x)) ≡ 0; otherwise, f1(x), . . . , fn(x) are said to be algebraically inde-

pendent over C,

• A-algebraically dependent over C if there exists a nonzero polynomial P ∈ C[x1, . . . , xn] of

degree at most A such that P (f1(x), . . . , fn(x)) ≡ 0; otherwise, f1(x), . . . , fn(x) are said to

be A-algebraically independent over C,

• (∞, A)-algebraically dependent if there exists a nonzero polynomial P ∈ C[x1, . . . , xn] of

the total degree at most A with respect to the variables x2, . . . , xn such that P (f1(x),. . . ,

fn(x)) ≡ 0; otherwise, f1(x), . . . , fn(x) are said to be (∞, A)-algebraically independent

over C.

If functions are algebraically independent over C, then they are A-algebraically independent

for any A.

2 The Main Results

Theorem 2.1. Let u1(x), . . . , un(x) be the fundamental system of solutions to the Fuchsian

equation (1.1) with singular points a1, . . . , am on the Riemann sphere, which is A-algebraically

independent over C, and let P ∈ C[x1, . . . , xn] be an arbitrary nonzero polynomial of degree

at most A. Let the sum of real exponents of u1(x), . . . , un(x) at singular points a1, . . . , am
be equal to S. Then, if x = a is not singular for Equation (1.1), then the function f(x) =

P (u1(x), . . . , un(x)) cannot have zero of order greater than T at the point x = a if

T =
Cn
A+n

2(n+ 1)
((m− 2)(n+ 1)(Cn

A+n − 1)− 2AS + 2(n+ 1)).
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Proposition 2.1. The logarithms

ln(x− a1), . . . , ln(x− an), ak ∈ C, ak �= al, k �= l (2.1)

are algebraically independent over C.

From Theorem 2.1 and Proposition 2.1 we obtain the following assertion.

Corollary 2.1. The functions xt, ln(x− a1), . . . , ln(x− an), where

t > T0 = Cn+1
A+n+1

(1

2
(n− 1)(Cn+1

A+n+1 − 1) + 1
)

are (S = 0) (∞, A)-algebraically independent over C.

Proof. If the functions xt, ln(x−a1), . . . , ln(x−an) are (∞, A)-algebraically dependent over

C, then there exists a finite expression

∑

i0,i1,...,in

Ci0,i1,...,inx
i0t lni1(x− a1) . . . ln

in(x− an) ≡ 0, i1 + . . .+ in,� A,

with nonzero set of complex coefficients {Ci0,i1,...,in}. Let l be the minimal number such that

not all coefficients {Cl,i1,...,in} are zero. Then the above expression can be written as

x(l+1)t
∑

i0>l,i1,...,in

Ci0,i1,...,inx
(i0−l−1)t lni1(x− a1) . . . ln

in(x− an)

+ xlt
∑

i1,...,in

Cl,i1,...,in ln
i1(x− a1) . . . ln

in(x− an) ≡ 0.

We have

xt |
∑

i1,...,in

Cl,i1,...,in ln
i1(x− a1) . . . ln

in(x− an),

which for t > T0 contradicts Theorem 2.1 applied to the fundamental system of solutions 1, ln(x−
a1), . . . , ln(x− an) to the Fuchsian equation of order n+ 1 with m = n+ 1 singular points such

that S � 0. (The general method for constructing such an equation is described in the proof of

Lemma 3.1.)

3 Proof of Theorem 2.1

Since the point x = a is nonsingular for Equation (1.1), it is a holomorphy point of the

function f(x). It remains to estimate the possible order of zero of this function at the point

x = a. Assume the contrary. We assume that f(x) has zero of order t > T at the point x = a.

We denote by Φi(x) the products

Φi(x) = ui11 (x) · ui22 (x) · . . . · uinn (x), (3.1)

where i = (i1, . . . , in) is the multiindex with nonnegative integer components varying in i1 +

. . .+in � A. This set of indices i is denoted by A . It is easy to see that D := #A = Cn
A+n. The
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functions u1(x), . . . , un(x) form the fundamental system of solutions to Equation (1.1). Since

the original system u1(x), . . . , un(x) is A-algebraically independent, the products

Φi(x), i = (i1, . . . , in) ∈ A , (3.2)

are linearly independent over C. It is easy to see that the space generated by the functions (3.2)

is invariant under the operation of analytic continuation around singular points.

Lemma 3.1. The space formed by the functions (3.2) is invariant under the operation of

analytic continuation around singular points.

Proof. Indeed, the monodromy matrix acting on the fundamental system of solutions of

Equation (1.1) sends every solution to a linear combination of solutions. Under the action of

the monodromy operator, the product (3.2) also goes to a linear combination of the products Φi

with indices i in A . Consequently, the analytically extended system yields the same space.

From the linear independence of the products (3.1) and Lemma 3.1 it follows that, based on

these products regarded as solutions, one can construct the scalar differential equation

W (u(x),Φi(x) | i ∈ A ) =

⎛

⎜

⎜

⎜

⎜

⎝

u(x) Φ0,0,...,0(x) . . . Φi1,...,in(x) . . .

u′(x) Φ′
0,0,...,0(x) . . . Φ′

i1,...,in
(x) . . .

...
...

. . .
...

u(D)(x) Φ
(D)
0,0,...,0(x) . . . Φ

(D)
i1,...,in

(x) . . .

⎞

⎟

⎟

⎟

⎟

⎠

≡ 0, (3.3)

where W (u,Φi(x) | i ∈ A ) is the Wronskian constructed from the function u(x), Φi(x), i ∈ A .

Singular points of Equation (3.3) are the singular points a1, . . . , am of the differential equa-

tion (1.1) and the false singular points c1, . . . , cm′ as well, where all solutions are holomorphic

functions, but the coefficient at the higher order derivative in Equation (3.3), i.e., the Wronskian

W (Φi(x) | i ∈ A ) vanishes. If at least one of the solutions to Equation (3.3) has zero of order

t � D at the point x = a, a /∈ {a1, . . . , am}, then a coincides with some singular point ck.

Indeed, since D is the order of the equation, in the case t � D, the Wronskian W (Φi(x) | i ∈ A )

which is a coefficient at the higher order derivative, vanishes. Consequently, x = a is a false

singular point. Let a = c1, ˜β
i
k be the real exponents of the products Φi(x) at points ak, and let

̂βsk be the Levelt exponents of Equation (3.3) at false singular points. The real exponent ˜βik of

the product of solutions ui11 (x) · . . . ·uinn (x) at the point z = ak is the sum ˜βik = i1˜β
1
k + . . .+ in

˜βnk ,

where ˜βjk are the real exponents of uj(x) at the point z = ak.

The sum ˜S of real exponents of Φi(x), i ∈ A , at points a1, . . . , am can be expressed as

˜S =
m
∑

k=1

∑

i∈A

˜βik =
1

n+ 1
DAS.

We calculated the number of exponents ˜βjk in the expression for ˜S and used the fact that they

enter the sum in a symmetric way. By Lemma 1.1,

∑

i∈A

m
∑

k=1

˜βik +
D
∑

s=1

m′
∑

k=1

̂βsk � (M − 2)D(D − 1)

2
,
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where M = m+m′, m is the number of singular points of Equation (1.1) and m′ is the number

of false singular points of Equation (3.3).

Let us estimate the sum of real exponents

D
∑

s=1

m′
∑

k=1

̂βsk � (M − 2)D(D − 1)

2
− 1

n+ 1
DAS.

The sum of Levelt exponents at each false singular point x = ck is not less than

D
∑

s=1

̂βsk � D(D − 1)

2
+ 1.

Then we obtain the following estimate for the maximal exponent ̂β11 at the point x = a = c1:

̂β11 � D +
(M − 2)D(D − 1)

2
− 1

n+ 1
DAS −m′D(D − 1)

2
−m′ = D +

(m− 2)D(D − 1)

2

− 1

n+ 1
DAS −m′ �

Cn
A+n

2(n+ 1)
((m− 2)(n+ 1)(Cn

A+n − 1)− 2AS + 2(n+ 1)) = T.

For t > T we arrive at a contradiction.

Corollary 3.1. Let u1(x), u2(x), . . .un(x) be the fundamental system of solutions to Equa-

tion (1.1) such that x = 0 is a nonsingular point, and let the assumptions of Theorem 2.1 be satis-

fied. Then the functions Φi(x) = xi0tui11 (x) . . . u
in
n (x), t > T , i1+. . .+in � A, i = (i0, i1, . . . , in),

where i0 � 0 runs over a finite set of integers, are linearly independent over C.

Proof. Assume the contrary. Then we can construct the nontrivial linear combination
∑

i∈A

Ci · xi0t · ui11 (x) · ui22 (x) · . . . · uinn (x) ≡ 0

which is written in the form

xt
∑

i0�1

Ci · x(i0−1)t · ui11 (x) · ui22 (x) · . . . · uinn (x) +
∑

i,i0=0

Ci · ui11 (x) · ui22 (x) · . . . · uinn (x) ≡ 0.

Then
∑

i1+...+in�A

Ci · ui11 (x) · ui22 (x) · . . . · uinn (x) is divided by xt. However, by Theorem 2.1, for

t > T this sum cannot be divided by xt, and we arrive at a contradiction.

4 Proof of Proposition 2.1

The assertion that the logarithms (2.1) are algebraically independent over C is equivalent to

the fact that the functions

f ia(x) = f i1,...,ina1,...,an(x) = lni1(x− a1) · . . . · lnin(x− an), i1, . . . , in ∈ Z+, (4.1)

are linearly independent over C. We consider the linear combination of the functions (4.1)

L(x) =
∑

i∈A

Ci · f ia(x), a = (a1, . . . , an), i = (i1, . . . , in), (4.2)
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and prove this assertion by induction. We start with induction on n. For n = 1 from (4.1) we

have

L(x) =

s
∑

i=0

Ci · lni(x− a1).

If s = 0, then L(x) ≡ 0 implies C0 = 0. Let s′ � 0. We assume that for s = s′ from L(x) ≡ 0

it follows that C0 = . . . = Cs′ = 0. Let s = s′ + 1. Denote by σ1f the analytic continuation of

f(x) around the point a1. Then σ1L(x) − L(x) ≡ 0. Since the degree of this expression is at

most s′, all its coefficients vanish by assumption. It is easy to see that from its coefficient it is

possible to recover all the coefficients of L(x), except for C0, and all they turn out to be zero.

Since L(x) ≡ 0, we have C0 = 0.

Let us prove the induction step. Assume that for n = m the functions (4.1) are algebraically

independent. We show that the same is true for n = m + 1. We use induction on l, in � l, of

the last factor of the linear combination (4.2). It is obvious that the case l = 0 corresponds to

the induction hypothesis for n = m.

We assume that the functions (4.1) with in � l are linearly independent over C and show

that the functions (4.1) are also linearly independent for in � l + 1.

We denote by σnf the analytic continuation of f(x) around the point an. We have

σnf
i
a(x) = lni1(x− a1) · . . . · lnin−1(x− an−1) · (ln(x− an) + 2πi)in

= lni1(x− a1) · . . . · lnin−1(x− an−1) ·
(

(

in
0

)

lnin(x− an)

+

(

in
1

)

ln(in−1)(x− an) · (2πi)1 + . . .+

(

in
in

)

(2πi)in

)

.

We note that the expression σnf
i
a − f ia(z) has the form (4.2) and contains the factors ln(x− an)

of degree at most in − 1.

Now, we assume that there exists the linear combination (4.2) with nonzero coefficients that

identically vanishes, L(x) ≡ 0. Let all the terms of L(x) have degrees in � l + 1. We consider

the expression L (x) = σnL(x)− L(x) which is also equal to zero, but the degree of ln(x− an)

does not exceed l. By the induction hypothesis, all the coefficients of L (x) vanish. Then the

coefficients of L(x) also vanish since all the terms of L(x) containing ln(x − an) are uniquely

recovered from L (x). The remaining terms of L(x) also vanish by the induction hypothesis

since they form the sum equal to zero identically. The proposition is proved.
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