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a b s t r a c t 

In this paper we extend the setting of the online prediction with expert advice to function-valued fore- 

casts. At each step of the online game several experts predict a function, and the learner has to efficiently 

aggregate these functional forecasts into a single forecast. We adapt basic mixable (and exponentially 

concave) loss functions to compare functional predictions and prove that these adaptations are also mix- 

able (exp-concave). We call this phenomenon mixability (exp-concavity) of integral loss functions. As an 

application of our main result, we prove that various loss functions used for probabilistic forecasting are 

mixable (exp-concave). The considered losses include Sliced Continuous Ranked Probability Score, Energy- 

Based Distance, Optimal Transport Costs & Sliced Wasserstein-2 distance, Beta-2 & Kullback-Leibler diver- 

gences, Characteristic function and Maximum Mean Discrepancies. 
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. Introduction 

Classic online prediction with expert advice [41] is a competi- 

ion between the learner and the adversary which consists of T 

equential steps. At each step of the game the learner has to ef- 

ciently aggregate the predictions of a given (fixed) pool of ex- 

erts (algorithms, machine learning models, human experts). The 

escribed scenario is formalized in Protocol 1 . 

At the beginning of each step t = 1 , 2 , . . . , T experts

 , 2 , 3 , . . . , N from a given (fixed) pool of experts N = { 1 , 2 , . . . , N}
utput their predictions γ n 

t ∈ � of yet unknown value ω t ∈ �. 

ext, the learner has to combine (merge, mix, average) these 

orecasts into a single forecast γ t ∈ �. 

At the end of the step the true outcome is revealed, and both 

he learner and the experts suffer their losses by using a loss 

unction λ : � × � → R + . The loss of expert n ∈ N is denoted by

 

n 
t = λ(γ n 

t , ω t ) ; the loss of the learner is denoted by h t = λ( γt , ω t ) .

e use H t = 

∑ t 
τ=1 h τ and L N t = 

∑ t 
τ=1 l 

n 
τ to denote the cumulative 

oss of the learner and the expert n ∈ N respectively. 
∗ Corresponding author. 
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The goal of the learner is to perform as efficiently as possible 

.r.t the best expert 1 in the pool, i.e. to minimize the regret 

 T = 

T ∑ 

t=1 

h t − min 

n ∈N 

T ∑ 

t=1 

l n t = H T − min 

n ∈N 
L n T . 

Among lots of existing learner’s strategies for combining ex- 

erts predictions [9,18] , the aggregating algorithm (AA) by [41] is 

ypically considered to be the best. For a wide class of η-mixable 

 η-exponentially concave) loss functions λ it provides the way to 

fficiently combine experts’ predictions { γ n 
t } N n =1 

to a single predic- 

ion γt so that the learner achieves a small regret bound. More 

recisely, if the learner follows the AA strategy, the regret w.r.t. 

he best expert will not exceed 

ln N 
η , i.e. R T ≤ ln N 

η . Here η is the 

aximal constant for which the loss function λ is η-mixable ( η- 

xp-concave). The bound does not depend on the game length T . 

esides, the knowledge of T is not required before the game. Many 

xisting loss functions λ : � × � → R + are mixable (exp-concave). 

hus, AA can be efficiently applied to combine experts’ predic- 

ions. Below we briefly review two most common practical online 

earning problems and two corresponding (mixable) loss functions 

hich are typically used. 

The most straightforward practical application of online pre- 

iction with expert advice is online time-series forecasting or 
1 In the online scenario, the best expert is unknown beforehand. 

https://doi.org/10.1016/j.patcog.2021.108175
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108175&domain=pdf
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Protocol 1: Online Prediction with Expert Advice. 

Parameters : Pool of experts N = { 1 , 2 , 3 . . . , N} ; Game length 

T ; Loss function λ : � × � → R + 
for t = 1 , 2 , . . . , T do 

1. Experts n ∈ N provide forecasts γ n 
t ∈ �; 

2. Learner combines forecasts γ n 
t into forecast γt ∈ �; 

3. Nature reveals true outcome ω t ∈ �; 

4. Experts n ∈ N suffer losses l n t = λ(γ n 
t , ω t ) ; 

5. Learner suffers loss h t = λ( γt , ω t ) ; 

end 
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2 The usage of weight function u ω together with measure μω is redundant. One 

may naturally eliminate it by changing variables: (u ω , μω ) 
→ (u ′ ω , μ′ 
ω ) = (1 , μ′ 

ω ) , 

with d μ′ 
ω := u ω d μω . However, we keep the notation over-parametrized to be com- 

patible with all the losses discussed in Section 4 . 
nline regression . Typical examples include electricity price and 

oad forecasting [15] , thermal load forecasting [16] , etc. Predic- 

ions γ n ∈ � and the outcome ω ∈ � are usually assumed to be 

eal-valued, i.e. �, � ⊂ R . Naturally, the squared loss function 

(γ , ω) = (γ − ω) 2 is used to compare the prediction with the 

rue output. It is known to be mixable [41] and exponentially con- 

ave [18] under certain boundness conditions. 

Another practical scenario is online classification with expert 

dvice . In this case the goal of the learner is to predict probabili-

ies γ ∈ � = 	K = { (‖ γ ‖ 1 = 1) ∧ (γ > 0) } for a given list of events

= { 1 , 2 , . . . , K} based on experts’ predictions. After the true out-

ome ω is revealed, the forecast is typically assessed by using the 

ogarithmic loss , i.e. λ(γ , ω) = − log γ (ω) . It is mixable and exp- 

oncave, see [3,40] . Such a multi-class classification scenario may, 

or example, refer to prediction of sports results or the forecast- 

ng of precipitation occurrence. Other classification losses such as 

rier score λ(γ , ω) = 

∑ K 
k =1 (γk − I [ ω = k ]) 2 are also known to be

ixable, see [42] . Mixability holds true even if the output is it- 

elf a distribution ω ∈ � = 	K and the score is given by λ(γ , ω) =
 ω − γ ‖ 2 , see [45] . 

A more advanced problem is the prediction of vector-valued 

utcomes . In this case both the experts and the learner output a 

nite-dimensional vector, e.g. a weekly weather forecast. For exam- 

le, for D -dimensional outputs in regression, it is natural to con- 

ider � := �D and � := �D . Naturally, the vector-input square loss 

D (γ , ω) = 

1 

D 

D ∑ 

d=1 

λ(γd , ω d ) = 

1 

D 

D ∑ 

d=1 

(ω d − γd ) 
2 = 

1 

D 

‖ ω − γ ‖ 

2 

(1) 

an be used to assess the quality of the forecasts. 

Until recently, it was unknown whether vectorized loss func- 

ions such as (1) are mixable and AA can be efficiently applied. 

he mixability of vectorized loss functions was studied by [2] . 

hey proved that every vector loss function of the form λ(ω, γ ) = 

1 
D 

∑ D 
d=1 λ(ω d , γd ) is η-mixable (exp-concave) if the corresponding 

-dimensional-input λ is η-mixable (exp-concave). Meanwhile, the 

ggregated forecast is built by coordinate-wise aggregation of ex- 

erts’ forecasts. 

In this paper, we introduce the general notion of integral loss 

unctions and prove their mixability ( exp-concavity ). We consider 

he online scenario to predict the function: at each step t the ex- 

erts output functions γ n 
t : X → � (i.e. γ n 

t ∈ �X ) and the learner 

as to combine these functions into a single function γ t : X → �. 

he true output is a function ω t : X → �. For example, in the task

f probabilistic forecasting of a scalar value, each experts’ pre- 

iction may be provided as the cumulative distribution function 

 

1 → [0 , 1] (CDF) of predictive distribution. In turn, the true out- 

ut is the CDF of the empirical observed outcome. We provide 

ther examples related to probabilistic forecasting in Table 1 of 

ection 4.1 . 
2 
For the function-valued forecasting it is reasonable to measure 

oss via integral loss functions which naturally arise from loss 

unctions used for comparing one-dimensional outcomes. 

efinition 1 (Integral loss function) . Let (�, σ�) , (�, σ�) , (X , σX )
e measurable spaces. Assume that λ : � × � → R + is a loss func- 

ion measurable w.r.t. σ� × σ�. Let μω be ω-dependent measure 

n (X , σX ) and u ω be some ω-dependent σ -finite non-negative 

easurable function satisfying 
 

X 
u ω (x ) dμω (x ) = 1 

or all ω. Then the function λu,μ : M (�X ) × M (�X ) → R + defined

y 

u,μ(γ , ω) = 

∫ 
X 

λ
(
γ (x ) , ω(x ) 

)
u ω (x ) dμω (x ) (2)

s called an X -integral λ-loss function. 2 Here we use 

 (�X ) , M (�X ) to denote the sets of all measurable functions 

 → � and X → � respectively. 

Clearly, such a general scenario of forecasting under integral 

oss functions extends vector-valued forecasting scenario of [2] . In- 

eed, if |X | = D , one may use u ω (x ) ≡ 1 and μω (x ) ≡ 1 
|X | = 

1 
D and

btain a vectorized loss. 

In real life, function-valued predictions can be used for forecast- 

ng physical processes for a period ahead, e.g. temperature distri- 

ution [10] , ocean wave prediction [37] , etc. Besides, every proba- 

ilistic forecast is actually a function, e.g. density or cumulative 

istribution function, and classical function-based losses can be 

sed to assess the quality. The main contributions of the paper 

re: 

1. We introduce the concept of function-valued forecasting and 

related concept of mixable (exponentially concave) integral loss 

functions. 

2. We prove that for every η-mixable (exp-concave) measurable 

loss function λ : � × � → R + its corresponding X -integral λ- 

loss function λu,μ : M (�X ) × M (�X ) → R + is η-mixable (exp- 

concave) for every admissible u, μ. The aggregated forecast is 

built point-wise according to the aggregating rule for λ. 

3. We demonstrate applications of our results to probabilistic fore- 

casting. We derive mixability (exp-concavity) for Sliced Con- 

tinuous Ranked Probability Score, Energy-Based Distance, Beta- 

2 and Kullback-Leibler Divergences, Optimal transport costs 

& Sliced Wasserstein-2 Distance, Characteristic Function and 

Maximum Mean Discrepancies. The results are summarised in 

Table 1 of Sub section 4.1 . 

Although our paper is mainly built around online learning 

ramework of prediction with expert advice, we emphasize that 

he properties of mixability and exponential concavity that we 

tudy are extremely useful in other areas of machine learning. In 

tatistical machine learning , mixability typically guarantees faster 

onvergence, see [14] . In online convex optimization exponential 

oncavity usually leads to better regret bounds, see [18] . The ar- 

icle is structured as follows. In Section 2 , we recall the defi- 

itions of mixability and exponential concavity of loss functions. 

n Section 3 , we state the theorem on mixability (exp-concavity) 

f integral loss functions and prove it. In Section 4 , we apply 

ur result to prove mixability of different loss functions used for 

omparing probability distributions. The results are summarised in 
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Table 1 

Mixability & exp-concavity of various loss functions used for assessing probabilitic forecasts. 

Loss Function Specifications Empirical Outcomes Aggregating Rule 

Exp-concavity Mixability 

Continuous Ranked Probability 

Score (CRPS) 

Borel distributions on 

X = 

∏ D 
d=1 [ a d , b d ] 

Possible Mixture for η = 

1 

2 
∏ D 

d=1 (b d −a d ) 
Formula for η = 

2 ∏ D 
d=1 (b d −a d ) 

Sliced Continuous Ranked 

Probability Score (SCRPS) 

Borel distributions on 

X ⊂ Ball R D (0 , R ) 

Possible Mixture for η = 

1 
8 R 

No closed form, η = 

1 
2 R 

Energy-Based Distance ( E) Borel distributions on 

X ⊂ Ball R D (0 , R ) 

Possible Mixture for η = 

S D −2 

8 R (D −1) S D −1 
No closed form, η = 

S D −2 

2 R (D −1) S D −1 

KullbackLeibler divergence 

(KL) 

Distributions on (X , σ, μ) 

with non-zero density 

Reduces to Log-loss Mixture for η = 1 

Beta-2 divergence ( B 2 ) Distributions on (X , σ, μ) 

with ‖ μ‖ 1 < ∞ and 

M-bounded density 

If |X | < ∞ Mixture for η = 

1 
2 ‖ μ‖ 1 M 2 No closed form, η = 

2 
‖ μ‖ 1 M 2 

Characteristic function 

discrepancy (CFD) 

Borel distributions on X ⊂ R 
D Possible Mixture for η = 

1 
8 

No closed form, η = 

1 
4 

Maximum mean discrepancy 

(MMD) 

Borel distributions on 

X ⊂ R 
D ,Positive definite 

kernel k (x, y ) = ψ(x − y ) 

forpositive definite 

function ψ(x ) = 

∫ 
R D 

e −i 〈 x,t〉 dμ(t) 

Possible Mixture for η = 

1 
8 ‖ μ‖ 1 No closed form, η = 

1 
4 ‖ μ‖ 1 

1-dimensional optimal 

transport cost (OT) 

Borel distributions on X ⊂ R ; 

η-mixable (exp-concave) cost 

c : X × X → R satistying 
∂ 2 c 

∂ x∂ x ′ < 0 

Possible Wasserstein-2 barycenter Mixed quantile for monotone 

substitution c ; No closed 

form for arbitrary substitution, 

but can be modeled implicitly 

( Lemma 4.3 ) 

Sliced Wasserstein-2 distance 

( SW 2 ) 

Radon distributions on 

X ⊂ Ball R D (0 , R ) , scaled and 

translated copies of each 

other. 

Possible Sliced Wasserstein-2 

barycenter for η = 

1 
8 R 2 

( Lemma 4.4 ) 

Unknown, η = 

1 
2 R 2 

? (see 

Subsection 4.7.2 ) 
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3 In specific cases one may apply exp-concavifying transform to reparametrize 

the loss to make it exponentially concave, see [20] . 
4 The maximal exponential concavity rate η of squared loss is 4 times lower than 

the corresponding mixability rate. 
able 1 of Subsection 4.1 . In Appendix A , we give minor techni-

al details. In Appendix B , we review the strategy of AA and recall

erivation of algorithm’s constant regret bound. 

. Preliminaries 

In this section, we recall the definition of mixability and expo- 

ential concavity of loss functions. 

efinition 2 (Mixable loss function) . A function λ : � × � → R 

s called η-mixable if for all N = 1 , 2 , . . . , probability vectors

α1 , . . . , αN ) and vectors of forecasts (γ 1 , . . . , γ N ) ∈ �N there ex- 

sts an aggregated forecast γ ∈ � such that for all ω ∈ � the fol- 

owing holds true: 

xp 

[
− ηλ( γ , ω ) 

]
≥

N ∑ 

n =1 

αn exp 

[
− ηλ(γ n , ω ) 

]
. (3) 

If function λ is η-mixable, then it is also η′ -mixable for all 0 < 

′ ≤ η. The maximal η (for which λ is mixable) is always used in 

rder to obtain lower regret bound for AA. 

For η-mixable function λ there exists a substitution function 

: �N × 	N → �

hich performs aggregation (3) of forecasts γ n w.r.t. weights αn , 

nd outputs aggregated forecast γ . Such a function may be non- 

nique. For common loss functions, there are usually specific sub- 

titution functions (given by exact formulas) under consideration. 

xample 1 (Square loss) . The function λ(γ , ω) = (γ − ω) 2 with 

= � = [ l, r] is 2 
(r−l) 2 

-mixable, see [41] or [9, Section 3.6] . Its sub-

titution [ l,r] 

L 2 
is defined by 

[ l,r] 

L 2 

({ γ n , αn } N n =1 

)
= 

r + l 

2 

+ 

(r − l) 

4 

log 

∑ N 
n =1 α

n exp [ −2 

(
r−γ n 

r−l 

)
2 ] ∑ N 

n =1 α
n exp [ −2 

(
γ n −l 
r−l 

)
2 ] 

.

(4) 
3 
xample 2 (Logarithmic loss) . The function λ(γ , ω) = − log γ (ω) 

ith � = { 1 , . . . , K} and � = 	K is 1-mixable, see [3] . The substi-

ution function log is defined by 

log 

({ γ n , αn } N n =1 

)]
(k ) = 

N ∑ 

n =1 

αn γ n (k ) . 

efinition 3 (Exponentially concave loss function) . Let � be a con- 

ex subset of a linear space over R . A function λ : � × � → R 

s called η-exponentially concave if for all N = 1 , 2 , . . . , probabil-

ty vector (α1 , . . . , αN ) and vectors of forecast (γ 1 , . . . , γ N ) ∈ �N 

he following holds true for all ω ∈ �: 

xp 

[
− ηλ( γ , ω ) 

]
≥

N ∑ 

n =1 

αn exp 

[
− ηλ(γ n , ω ) 

]
, 

here γ = 

∑ N 
n =1 α

n γ n . Note that γ ∈ � due to the convexity of �. 

Clearly, exponential concavity leads to mixability . Indeed, one 

ay naturally put 
({ γ n , αn } N 

n =1 

)
= 

∑ N 
n =1 α

n γ n as the substitu- 

ion function. However, the inverse is not always true, see discus- 

ion in [9] . 3 Also exp-concavity is naturally defined only for convex 

ubsets of linear spaces, while mixability can be defined on arbi- 

rary sets. 

The square loss function λ(γ , ω) = (γ − ω) 2 with � = � = [ l, r]

s 1 
2(r−l) 2 

-exponentially concave, see [22] . 4 Also, from the previous 

ubsection we see that the logarithmic loss is 1-exponentially con- 

ave. 

. Mixability (exp-concavity) of integral loss functions 

In the framework of Protocol 1 we consider function-valued 

orecasting. We prove that η-mixable (exp-concave) loss λ for com- 
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aring single-value outcomes admits an η-mixable (exp-concave) 

ntegral extension for comparing function-valued outcomes. 

heorem 3.1 (Mixability & Exp-concavity of Integral Losses) . Let 

�, σ�) , (�, σ�) , (X , σX ) be measurable spaces. Assume that 

: � × � → R + is a loss function measurable w.r.t. product σ� × σ�. 

et λu,μ be X -integral λ-loss function. Assume that the substitution 

unction λ is measurable. Then function λu,μ is η-mixable, and as a 

ubstitution function (for N experts) we can use 

λu,μ
: 
(
M (�X ) 

)
N × 	N → �X 

efined by point-wise ( x ∈ X ) application of substitution function λ

or λ: 

λu,μ

[{ γ n , αn } N n =1 

]
(x ) := λ

({ γ n (x ) , αn } N n =1 

)
. 

We emphasize that the suggested substitution function λu,μ
is 

ndependent of both u and μ. Thus, the same substitution function 

ttains efficient prediction for all possible X -integral λ-loss func- 

ions (all admissible μ and u ), which may be even chosen by an 

dversary after the prediction at each step is made. 

To prove our main Theorem 3.1 , we will need the following 

heorem 3.2 (Generalized Holder Inequality) . Let (X , μ) and 

Y, ν) denote two σ -finite measure spaces. Let f (x, y ) be positive 

nd measurable on (X × Y, μ × ν) function, and u (x ) , v (y ) be weight

unctions and 
∫ 
X u (x ) dμ(x ) = 1 . Then ∫ 

Y 
exp 

(∫ 
X 

log f (x, y ) u (x ) dμ(x ) 
)

v (y ) dν(y ) ≤

xp 

(∫ 
X 

log 

[ ∫ 
Y 

f (x, y ) v (y ) dν(y ) 
] 

u (x ) dμ(x ) 
)
. (5) 

An explicit discussion of inequality (5) is provided in [32] . In- 

quality (5) is also known as Continuous Form of Holder Inequal- 

ty by [12] and Extended Holder Inequality by [27] . The proof can 

e found within the mentioned works. 

Now we prove our main Theorem 3.1 . Consider the pool N 

f experts. Let γ n : X → � be their measurable forecasts and 

1 , . . . , αN be the experts’ weights. We denote the forecast aggre- 

ated according to λu,μ
by γ ∈ M (�X ) . 

In the following proof we will directly check that for every ω ∈ 

 (�X ) it holds true (in fact, for all admissible u and μ) that 

xp 

[
− ηλu,μ( γ , ω ) 

]
≥

N ∑ 

n =1 

αn exp (−ηλu,μ(γ n , ω )) , (6) 

o that λu,μ
is a proper substitution function and λu,μ is indeed 

-mixable. 

roof. Choose any ω ∈ M (�X ) . Since λ is η-mixable with substi- 

ution function λ, for all x ∈ X we have 

xp 

[
− ηλ

(
γ (x ) , ω (x ) 

)]
≥

N ∑ 

n =1 

αn 
[ 

exp 

[
− ηλ

(
γ n (x ) , ω (x ) 

)]] 
. 

e take the logarithm of both parts of the inequality and for every 

 ∈ X obtain 

ηλ
(
γ (x ) , ω (x ) 

)
≥ log 

N ∑ 

n =1 

αn 
[ 

exp 

[
− ηλ

(
γ n (x ) , ω (x ) 

)]] 
. 

e multiply both sides by u ω (x ) ≥ 0 and integrate over all x ∈ X 

.r.t. measure μω : ∫ 
X 

[
− ηλ

(
γ (x ) , ω (x ) 

)]
u ω (x ) dμω (x ) ︸ ︷︷ ︸ 

−ηλu,μ( γ ,ω ) 

≥

∫ 
X 

log 

N ∑ 

n =1 

αn 
[ 

exp 

[
− ηλ

(
γ n (x ) , ω (x ) 

)]] 
u ω (x ) dμω (x ) (7) 
4 
he left part of inequality (7) equals to −ηλu,μ( γ , ω ) . Next, for

 ∈ X and n ∈ N we define 

f (x, n ) := exp 

[
− ηλ

(
γ n (x ) , ω (x ) 

)]
. 

y applying the notation change and taking the exponent of both 

ides of (7) , we obtain 

xp 

[
− ηλu,μ( γ , ω ) 

]
≥ exp 

(∫ 
X 

log 
[ N ∑ 

n =1 

αn · f (x, n ) 
]
u ω (x ) dμω (x ) 

)

(8) 

he final step is to apply Theorem 3.2 , i.e. Generalized Holder in- 

quality (3.2) . In the notation of Theorem we use Y := N , v (y ) ≡ 1 ,

(y ) := αy and obtain 

exp 

(∫ 
X 

log 
[ N ∑ 

n =1 

αn · f (x, n ) 
]
u ω (x ) dμω (x ) 

)
≥

N ∑ 

n =1 

αn exp 

(∫ 
X 

log 
(

f (x, n ) 
)
u ω (x ) dμ(x ) 

)
= 

N ∑ 

n =1 

αn 
[ 

exp 

(∫ 
X 

log 
(

f (x, n ) 
)

︸ ︷︷ ︸ 
−ηλ(γ n (x ) ,ω(x )) 

u ω (x ) dμω (x ) 
)] 

= 

N ∑ 

n =1 

αn 
[ 

exp 

(
− η

∫ 
X 

λ(γ n (x ) , ω(x )) u (x ) dx ︸ ︷︷ ︸ 
λu,μ(γ n ,ω) 

)] 
= 

N ∑ 

n =1 

αn exp (−ηλu,μ(γ n , ω)) (9) 

ow we combine (9) with (8) and obtain the desired inequality 

6) . �

. Forecasting of probability distributions 

In this section, we consider online probabilistic forecasting. At 

ach step of the game experts provide forecasts as probability dis- 

ributions on X . The learner has to aggregate forecasts into a single 

orecast being a probability distribution on X . Next, the true proba- 

ility distribution, probably empirical, is revealed. Both the experts 

nd the learner suffer losses using a loss function. 

We analyse loss functions which are widely used for compar- 

ng probability distributions, show that they are actually integral 

oss functions and prove their mixability (exp-concavity). The re- 

ults are summarised in Table 1 of Subsection 4.1 . Each following 

ubsection is devoted to a particular loss function. 

.1. Mixability & exp-concavity table 

Our results on mixability (exp-concavity) of common loss func- 

ions used to compare probability distributions are summarised in 

able 1 . The column “empirical outcomes ” indicates whether it is 

ossible to use the loss function to compare the predicted distribu- 

ion γ (typically continuous) with a discrete outcome ω (empirical 

istribution). 

.2. Continuous ranked probability score 

.2.1. One-dimensional case 

Let X = [ a, b] ⊂ R and assume that � = � is the space of all

robability measures over Borel field of X . In this case Continu- 

us Ranked Probability Score (CRPS) by [30] is widely used for 

omparing probability distributions: 

RPS (γ , ω) = 

∫ b 

| CDF γ (x ) − CDF ω (x ) | 2 dx, (10) 

a 
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Fig. 1. Visualization of the comparison of CDFs of distributions γ , ω on [ a, b] by using Continuous Ranked Probability Score. 
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here by CDF υ : X → [0 , 1] we denote cumulative distribution 

unction of probability distribution υ ∈ �, i.e. CDF υ (x ) = υ([ a, x ])

or all x ∈ [ a, b] . We visualize CRPS in the following Fig. 1 . 

In practice, CRPS is used, for example, for assessing the qual- 

ty of forecasts of different weather-related variables [44] . As 

e know, so far CRPS is the only non-trivial loss on continu- 

us outcomes which is already known to be mixable. Indeed, 

13,43] proved the mixability of CRPS but only for the case when 

he outcome ω is a Dirac distribution ω = δx 0 for some x 0 ∈ [ a, b] . 

Within our framework CRPS equals to the integral square loss 

n [ a, b] with density u ω (x ) ≡ 1 
b−a 

and Lebesgue measure μω , mul-

iplied by (b − a ) : 

RPS (γ , ω) = (b − a ) 

∫ b 

a 

| CDF γ (x ) − CDF ω (x ) | 2 
u ω (x ) ︷ ︸︸ ︷ 

1 

b − a 
dx ︸ ︷︷ ︸ 

Integral squared loss 

. (11) 

or all x ∈ [ a, b] it holds true that CDF γ (x ) , CDF ω (x ) ∈ [0 , 1] .

he function | CDF γ (x ) − CDF ω (x ) | 2 is a square loss function 

0 , 1] × [0 , 1] → R of inputs CDF γ , CDF ω . It is 2-mixable ( 1 2 -exp- 

oncave), see Example 1 . Thus, by Theorem 3.1 the corresponding 

ntegral loss on [ a, b] is also 2-mixable ( 1 2 -exp-concave). We con- 

lude that CRPS is mixable (exp-concave) but with (b − a ) times 

ower learning rate, i.e. η = 

2 
(b−a ) 

(or η = 

1 
2(b−a ) 

for exp-concavity). 

For 2 
(b−a ) 

-mixable CRPS the aggregated prediction γ is given by 

ts CDF: 

DF (x ) = 

1 

2 

+ 

1 

4 

log 

∑ N 
n =1 α

n exp [ −2 

(
1 − CDF γ n (x ) 

)
2 ] ∑ N 

n =1 α
n exp [ −2 

(
CDF γ n (x ) 

)
2 ] 

, (12) 

or weights (α1 , . . . , αN ) ∈ 	N and expert s’ predictions 
1 , . . . , γ N ∈ �. It equals to the point-wise application of [0 , 1] 

L 2 

defined by (4) ) to experts’ forecasts CDF’s. One may perform 

traightforward check to verify that the resulting aggregated 

unction (12) is indeed a CDF. 

For 1 
2(b−a ) 

-exponentially concave CRPS we have 

DF (x ) = 

N ∑ 

n =1 

αn · CDF γn 
(x ) , (13) 

hich means that aggregated prediction γ is a mixture of proba- 

ility distributions γ n w.r.t. weights αn . 

.2.2. Multi-dimensional case 

Let X ⊂ R 

D be a compact subset. Assume that � = � is the 

pace of all probability measures over Borel field of X . One 

ay naturally extend CRPS formula (10) for comparing multi- 

imensional distributions γ , ω on X : 

RPS ( CDF γ , CDF ω ) = 

∫ 
| CDF γ (x ) − CDF ω (x ) | 2 dx, (14) 
X 

5 
here CDF υ : X → [0 , 1] denotes CDF of multi-dimensional υ ∈ 

. Similar to the analysis of the previous subsection, one 

ay prove that if X ⊂ ∏ D 
d=1 [ a d , b d ] , then the loss (14) is

2 ·
(∏ D 

d=1 (b d − a d ) 
)−1 

]
-mixable (and 4-times lower exp-concave), 

nd obtain an analogue to aggregation rule (12) for mixability and 

13) for exp-concavity. The analogue to (13) is straightforward: 

he aggregated distribution is a mixture. However, the substitution 

nalogue to (12) is hard to use in high-dimensional spaces, e.g. to 

ample from the distribution or to calculate moments. Besides, def- 

nition (14) is not symmetric to probability measure rotations and 

s sensitive to the choice of the coordinate system. 

To overcome above-mentioned issues, we propose to use Sliced 

ontinuous Ranked Probability Score (SCRPS) which reduces to 

stimation of multiple one-dimensional CRPS and is invariant to 

he choice of the coordinate system. First, for all υ ∈ � we define 

CDF : S D −1 × R → [0 , 1] by 

CDF υ (θ, t) = υ
({ x ∈ X | 〈 x, θ〉 ≤ t} ), 

here θ ∈ S 
D −1 = { x ∈ R 

D ∧ ‖ x ‖ 2 = 1 } is a unit sphere. Function

CDF υ (θ, ·) is a CDF of the distribution υ projected on to the line 

rthogonal to 〈 x, θ〉 = 0 . Let S D −1 be the surface area of (D − 1) -

imensional unit sphere. Now we define SCRPS: 

CRPS (γ , ω) = 

1 

S D −1 

∫ 
S D −1 

[ ∫ ∞ 

−∞ 

| SCDF γ (θ, t) − SCDF ω (θ, t ) | 2 dt 

] 
dθ. 

(15) 

rom the definition we see that SCRPS is the average over all the 

liced CRPS scores. Thus, similar to Sliced Wasserstein distances 

23] , its stochastic computation in practice can be efficiently pre- 

ormed via projections on random directions θ ∈ S 
D −1 . 

Let us prove that SCRPS is mixable (exp-concave) for bounded 

 ⊂ Ball 
R D 

(0 , R ) . In this case limits ±∞ of the inner integral in

15) are replaced by ±R respectively. We have 

SCRPS (γ , ω) = 

2 R 

∫ 
S D −1 ×[ −R,R ] 

| SCDF γ (θ, t) − SCDF ω (θ, t) | 2 1 

2 RS D −1 

dθdt 

︸ ︷︷ ︸ 
Integral squared loss 

, (16) 

hich similar to (11) reduces SCRPS to a multiple integral of 

he squared loss, which is 2-mixable ( 1 2 -exp-concave) on [0,1]. 

hus, the integral squared loss is 2-mixable ( 1 2 -exp-concave) by 

heorem 3.1 . We conclude that SCRPS is also mixable (exp- 

oncave) but with 2 R lower learning rate. 

For 1 
2 R -exp-concave SCRPS the aggregated prediction γ is given 

y its sliced CDF: 

CDF (θ, t) = 

N ∑ 

n =1 

αn · SCDF γ n (θ, t) (17) 

or experts’ predictions γ 1 , . . . , γ N ∈ � and weights 

α1 , . . . , αN ) ∈ 	 . The mixture γ of probability distributions 
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n w.r.t. weights αn can be used as an aggregated prediction 

ecause its sliced CDF equals (17) . 

For 2 
R -mixable SCRPS the aggregated prediction’s sliced CDF 

hould satisfy 

CDF (θ, t) = 

1 

2 

+ 

1 

4 

log 

∑ N 
n =1 α

n exp [ −2 

(
1 − SCDF γ n (θ, t) 

)
2 ] ∑ N 

n =1 α
n exp [ −2 

(
SCDF γ n (θ, t) 

)
2 ] 

. 

(18) 

owever, we do not know whether SCDF (θ, t) is necessarily a 

liced CDF of some distribution γ . To fix this issue, one may con- 

ider the projection trick and define 

= arg min 

γ ∈ �

(
1 

S D −1 

∫ 
S D −1 

[ ∫ ∞ 

−∞ 

| SCDF γ (θ, t) − SCDF (θ, t ) | 2 dt 

] 
dθ

)
.

CRPS is a squared norm of difference of SCDFs in 

 

2 := L 

2 (S D −1 × [ −R, R ]) of quadratically integrable functions 

w.r.t. the product of uniform probability measure on S 
D −1 and 

ebesgue measure on [ −R, R ] ). Thus, SCDF γ can be viewed as the

rojection of SCDF on to the convex subset of sliced cumulative 

istribution functions. Hence, for all ω ∈ � it satisfies 

 SCDF ω − SCDF ‖ 

2 
L 2 ≥ ‖ SCDF ω − SCDF γ ‖ 

2 
L 2 = SCRPS (ω, γ ) , 

.e. distribution γ can be used as the aggregated prediction. 

Although the projection trick potentially allows to obtain ad- 

issible aggregated SCDF and the corresponding distribution, we 

o not know whether in a general practical case the computation 

f γ is feasible for SCRPS. Thus, from the computational point of 

iew, formula (17) should be preferred despite the fact it provides 

-times lower learning rate. 

.3. Energy-based distance 

Let X ⊂ R 

D be a compact subset and � = � is the space of all

robability measures over Borel field of X . For γ , ω ∈ � we con- 

ider Energy-Based Distance : 

(γ , ω) = 2 · E γ ×ω ‖ x − y ‖ 2 − E γ ×γ ‖ x − x ′ ‖ 2 − E ω×ω ‖ y − y ′ ‖ 2 . 

(19) 

t is absolutely non trivial to show that E is actually defines a met- 

ic on the space of probability distributions, see e.g. [36] for ex- 

lanations. Formula (19) naturally admits unbiased estimates from 

mpirical samples, which makes Energy-Based distance attractive 

or the usage in generative models, see [7] . 

Note that at the first glance Energy-based distance defines L 

1 - 

ike metric because it operates with distances in X ⊂ R 

D rather 

han their squares. Since L 

1 -loss is not mixable (unlike squared 

oss L 

2 ), it is reasonable to expect that E is also not mixable (exp- 

oncave). 

Surprisingly, Energy-based distance equals SCRPS up to a con- 

tant which depends on the dimension D . Thus, Energy-based dis- 

ance is mixable (exp-concave). Equivalence is known for D = 1 , 

ee [36] . We prove the equivalence for arbitrary D ≥ 1 . 

heorem 4.1 (Equivalence of SCRPS and Energy-Based Dis- 

ance) . Let γ , ω be two Borel probability measures on X = R 

D with

nite first moments, i.e. E X∼γ | X| , E Y ∼γ | Y | < ∞ . Then for D > 1 

(γ , ω) = (D − 1) 
S D −1 

S D −2 

SCRPS (γ , ω) . 

roof. For x ∈ X consider the value s (x ) = 

∫ 
θ∈ S D −1 |〈 x, θ〉| dθ . Note

hat s (x ) depends only on ‖ x ‖ , i.e. 

 (x ) = 

∫ 
D −1 

|〈 x, θ〉| dθ = ‖ x ‖ ·
∫ 

D −1 

| θ1 | dθ = ‖ x ‖ · s (1) , 

θ∈ S θ∈ S 

6 
here θ1 is the first coordinate of θ = (θ1 , . . . , θD ) ∈ S 
D −1 ⊂ R 

D .

hus, 

E γ ×γ ‖ x − x ′ ‖ = E γ ×γ
s (x − x ′ ) 

s (1) 
= 

1 

s (1) 
E γ ×γ

[ ∫ 
θ∈ S D −1 

|〈 x − x ′ , θ〉| dθ
]

= 

1 

s (1) 

∫ 
θ∈ S D −1 

[
E γ ×γ |〈 x − x ′ , θ〉| ]dθ = 

1 

s (1) 

∫ 
θ∈ S D −1 

[
E γ ×γ |〈 x, θ〉 − 〈 x ′ , θ〉| ]dθ (20) 

e derive analogs of (20) for other terms of (19) and obtain 

E(γ , ω) = 

1 

s (1) 

∫ 
θ∈ S D −1 

[ 
2 E γ ×ω |〈 x, θ〉 − 〈 y, θ〉| 

−E γ ×γ |〈 x, θ〉 − 〈 x ′ , θ〉| − E ω×ω |〈 y, θ〉 − 〈 y ′ , θ〉| 
] 

dθ (21) 

he expression within the large square brackets of (21) equals 

nergy-based score between 1-dimensional projections of γ and 

onto the direction θ . According to [36] , it equals to CRPS multi- 

lied by 2, i.e. (21) turns into 

(γ , ω) = 

1 

s (1) 

∫ 
θ∈ S D −1 

[ 
2 

∫ ∞ 

−∞ 

| SCDF γ (θ, t) − SCDF ω (θ, t ) | 2 dt 

] 
dθ = 

2 S D −1 

s (1) 
· SCRPS (γ , ω) 

ow we compute s (1) . Let B 

D = Ball 
R D 

(0 , 1) be the D -dimensional

nit ball (whose boundary is S D −1 ). Let V D be the volume of B 

D .

e note that 
 

B D 

| θ1 | dθ = 

∫ 1 

−1 

| θ1 | ·
[
( 
√ 

1 − θ2 
1 
) D −1 · V 

D −1 
]
dθ1 = 

2 

∫ 1 

0 

θ1 ·
[
( 
√ 

1 − θ2 
1 
) D −1 · V 

D −1 
]
dθ1 = 

2 V 

D −1 

D + 1 

, (22) 

here we to compute the integral we decompose it into ball sliced 

rthogonal to the first axis. Now we compute the integral again, 

ut by decomposing it into the integrals over spheres: 
 

B D 

| θ1 | dθ = 

∫ 1 

0 

[ ∫ 
r·S D −1 

| θ1 | d θ
]
d r = 

∫ 1 

0 

r D 
[ ∫ 

S D −1 

| θ1 | d θ
]

︸ ︷︷ ︸ 
s (1) 

d r 

= 

s (1) 

D + 1 

. (23) 

inally, by matching (22) with (23) and using equality V D −1 = 

S D −2 

D −1 

e conclude that s (1) = 2 V D −1 = 

2 S D −2 

D −1 and finish the proof. �

From Theorem 4.1 we immediately conclude that Energy-Based 

oss is mixable (exp-concave). If X ⊂ Ball 
R D 

(0 , R ) , then the learning

ate for mixability (exp-concavity) is (D − 1) 
S D −1 
S D −2 

times lower than 

he analogous rate for SCRPS. The aggregated prediction is com- 

uted exactly the same way as for SCRPS, see discussion in previ- 

us Subsection 4.2.2 . 

.4. Density-based losses 

Let (X , σ, μ) be a probability space with σ -finite measure μ. 

enote the set of all absolutely continuous w.r.t. μ probability 

easures on (X , σ ) by � = �. For every υ ∈ � we denote its den-

ity by p υ (x ) = 

dυ(x ) 
dμ(x ) 

. 

.4.1. Kullback-Leibler divergence 

Consider Kullback-Leibler Divergence between the outcome 

nd the predicted distribution: 

L (ω|| γ ) = −
∫ 

log 

[ 
p γ (x ) 

p ω (x ) 

] 
p ω (x ) dμ(x ) 
X 
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m  
= −
∫ 
X 

log [ p γ (x )] · p ω (x ) dμ(x ) ︸ ︷︷ ︸ 
− ∫ 

X log [ p γ (x )] dω(x ) 

−H μ(p ω ) . (24) 

L is a key tool in Bayesian machine learning. It is probably the 

ost known representative of the class of f -divergences [33] . 

By skipping the γ -independent (prediction) entropy term 

H μ(p ω ) one may clearly see that the resulting loss is integral 

oss with density u ω (x ) = p ω (x ) and μω ≡ μ for the logarithmic

oss function. The logarithmic function is 1-mixable (exp-concave), 

hus, from Theorem 3.1 we conclude that KL divergence is also 1- 

ixable (exp-concave). 

For 1-mixable (exp-concave) KL-divergence the aggregated pre- 

iction γ is given by its density 

p (x ) = 

N ∑ 

n =1 

αn p γ n (x ) 

or experts’ predictions γ 1 , . . . , γ N ∈ � and weights 

α1 , . . . , αN ) ∈ 	N . The resulting p is the density of a mixture 

f probability distributions γ n w.r.t. weights αn . 

KL divergence (and the related log-loss) is known to have mode 

eeking property , i.e. the divergence between KL (p ω || p γ ) is small 

hen p γ attains huge values in areas where p ω has huge values. 

uch behaviour suggests that in some problems KL may not be a 

ood measure of dissimilarity of distributions [35] . Although some 

ther representatives of f -divergence class are known to be robust, 

.g. Reverse KL-divergence, we do not know whether they are mix- 

ble. 

.4.2. Beta-2 divergence 

The well-known representative of β-divergences class [11] used 

o compare probability distributions is Beta-2 divergence : 

 2 (p γ , p ω ) = 

∫ 
X 

| p γ (x ) − p ω (x ) | 2 dμ(x ) . 

hile KL divergence is known to have mode seeking property , 

eta-2 is more robust , see [35] . This property is useful when com-

aring distributions with outliers. 

When |X | < ∞ and μ(x ) ≡ 1 for all x ∈ X , values p γ (x ) , p ω (x )

ecome probabilities. In this case within the framework of online 

earning the loss in known as Brier score . In practice it is widely 

sed (similar to CRPS) to assess the quality of weather forecasts 

44] . Brier score between the distributions on the finite sets is mix- 

ble, see e.g. [42] . 

We consider a more general case. Assume that ‖ μ‖ 1 < ∞ and 

= � is the set of all probability measures υ on (X, σ ) with 

p υ (x ) ∈ [0 , M] for all x ∈ X . In this case, the loss function | p γ (x ) −
p ω (x ) | 2 is 2 

M 

2 -mixable ( 1 
2 M 

2 -exp-concave) since it is a squared loss

unction of inputs p γ (x ) , p ω (x ) ∈ [0 , M] . The divergence B 2 is a

ultiple of an integral squared loss 

 2 (p γ , p ω ) = ‖ μ‖ 1 

∫ 
X 

| p γ (x ) − p ω (x ) | 2 1 

‖ μ‖ 1 

dμ(x ) ︸ ︷︷ ︸ 
Integral squared loss. 

. 

e conclude that B 2 is 2 
‖ μ‖ 1 M 

2 -mixable ( 1 
2 ‖ μ‖ 1 M 

2 -exp-concave). 

For 1 
2 ‖ μ‖ 1 M 

2 -exp-concave Beta-2 divergence the aggregated pre- 

iction γ is given by its density: 

p (x ) = 

N ∑ 

n =1 

αn · p γ n (x ) (25) 

or weights (α1 , . . . , αN ) ∈ 	N and expert s’ predictions 
1 , . . . , γ N ∈ �. The resulting p is the density of a mixture of 

robability distributions γ n w.r.t. weights αn . 
7 
For 2 
‖ μ‖ 1 M 

2 -mixable Beta-2 divergence the density of aggregated 

rediction γ should satisty: 

p (x ) = 

M 

2 

+ 

M 

4 

log 

∑ N 
n =1 α

n exp [ −2 

(M−p γ n (x ) 

M 

)
2 ] ∑ N 

n =1 α
n exp [ −2 

( p γ n (x ) 

M 

)
2 ] 

. (26) 

imilar to SCRPS in Subsection 4.2.2 , the result of (26) may not be

 density function w.r.t. μ. This issue can be solved by the pro- 

ection trick, i.e. projecting p γ onto the convex subset of L 

2 (X , μ)

f L 

1 -integrable non-negative functions which represent densities 

f distributions w.r.t. μ. The resulting projection will by definition 

e the density function of some distribution γ . Whereas for finite 

 formulas for the projection are tractable and given in e.g. [42] , 

n the case of continuous X analytic formulas for the projection 

ecome intractable for arbitrary distributions and finite approxi- 

ations should be used. Similar to SCRPS, formula (25) for the ag- 

regation of predictions is more preferable from the computational 

oint of view. 

.5. Characteristic function discrepancy 

Let X = R 

D and assume that � = � is the set of all probabil-

ty measures over its Borel field. For a fixed σ -finite measure μ
n X and measurable non-negative function u : X → R + satisfying 
 

R D 
u (t) dμ(t) = 1 , we consider the Characteristic Function Dis- 

repancy (CFD): 

FD u,μ(γ , ω) = 

∫ 
R D 

‖ φγ (t) − φω (t ) ‖ 

2 
C 

u (t ) dμ(t ) , (27)

here φυ(t) = E x ∼υe i 〈 x,t〉 denotes the characteristic function of a 

istribution υ ∈ �. CFD is highly related to Maximum Mean Dis- 

repancy which we discuss in the next Subsection 4.6 , yet in prac- 

ice it attains faster stochastic computation that was noted by [4] . 

y varying u and μ it is possible to assign different importances to 

requencies of compared probability distributions. 

For all t ∈ R 

D we have φω (t) , φγ (t) ∈ Ball C (0 , 1) . In Appendix A ,

e prove that the function λ : Ball C (0 , 1) × Ball C (0 , 1) → R + de- 

ned by 

(z, z ′ ) = (z − z ′ ) · (z − z ′ ) = ‖ z − z ′ ‖ 

2 
C 
. 

s 1 
4 -mixable and 

1 
8 -exp-concave. Unlike most previous cases, the 

earning rates for mixability and exp-concavity differ only 2 times 

ut not 4 times. This is due to functions having different domains: 

 Ball C (0 , 1)] 2 ⊂ C 

2 instead of [ a, b] 2 ⊂ R 

2 , see Appendix A for de-

ails. Since CFD is a λ-loss function, by our Theorem 3.1 we con- 

lude that it is also 1 
4 -mixable and 

1 
8 -exp-concave. 

For 1 
8 -exp-concave CFD the aggregated prediction γ is given by 

ts CF 

(x ) = 

N ∑ 

n =1 

αn · φγ n (x ) (28) 

or weights (α1 , . . . , αN ) ∈ 	N and expert s’ predictions 
1 , . . . , γ N ∈ �. The resulting φ is the CF of a mixture of probabil-

ty distributions γ n w.r.t. weights αn . 

Although we pointed that CFD is 1 
4 -mixable, we note that the 

ggregated result obtained by point-wise function (provided in 

ppendix A ) will not be necessarily a CF of some distribution γ . 

hus, we have the situation similar to SCRPS and Beta-2 diver- 

ence, see Subsections 4.2.2, 4.4.2 . 

.6. Maximum mean discrepancy 

Let X = R 

D and assume that � = � is the set of all probability

easures over its Borel field. Let k : X × X → R be a symmetric
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ositive definite kernel, i.e. for all N = 1 , 2 , . . . , points x 1 , . . . , x N ∈
 and a 1 , . . . , a N ∈ R it satisfies 

N ∑ 

,n ′ =1 

a n a n ′ k (x n , x n ′ ) ≥ 0 . (29) 

onsider (the square of) Maximum Mean Discrepancy (MMD): 

MD 

2 
k (γ , ω) = E γ ×γ

[
k (x, x ′ ) 

]
− 2 · E γ ×ω 

[
k (x, y ) 

]
+ E ω×ω 

[
k (y, y ′ ) 

]
. (30) 

t is known that (30) is non-negative and its root satisfies the tri- 

ngle inequality. For characteristic kernels k it also holds true that 

MD k (γ , ω) = 0 ⇐⇒ γ = ω. Thus, for such kernels MMD k turns 

o be a metric on the space of probability distributions, see [39] for 

etailed explanations. 

Maximum mean discrepancy is used to compare probability 

istributions in two-sample hypothesis testing, see [17] . Also, use- 

ul properties of MMD k , e.g. it naturally admits unbiased estimates 

rom empirical samples, made it widely applicable to generative 

achine learning, see [28] . 

In this paper, we consider only symmetric positive definite ker- 

els of the form k (x, y ) = ψ(x − y ) , where ψ is a bounded and

ontinuous function. Such kernels are usually called translation- 

nvariant . We note that the majority of kernels used in practice 

re actually translation-invariant (Gaussian, Laplacian, Sine, etc.), 

ee e.g. Table 2 in [39] . 

In the case of translation-invariance, the positive definiteness of 

ernel k (29) turns to the a positive definiteness of a function ψ , 

.e. for all N = 1 , 2 , . . . , points x 1 , . . . , x N ∈ X and a 1 , . . . , a N ∈ R it

olds true that 

N ∑ 

,n ′ =1 

a n a n ′ ψ(x n − x n ′ ) ≥ 0 . (31) 

ccording to well-celebrated Bochner’s Theorem , see [39, Theo- 

em 3] , function ψ is positive definite if and only if it is the Fourier

ransform of a finite nonnegative Borel measure μ on R 

D , that is, 

(x ) = 

∫ 
R D 

e −i 〈 x,t〉 dμ(t) . 

y using this correspondence between kernel k , function ψ and 

easure μ, [39, Corollary 4] prove that 

MD 

2 
k (γ , ω) = 

∫ 
R D 

‖ φγ (t) − φω (t ) ‖ 

2 
C 

dμ(t ) , (32) 

here φγ , φω are the characteristic functions of γ and ω respec- 

ively. From (32) we see that MMD k turns to be a multiple of Char- 

cteristic function discrepancy (27) . Indeed, by introducing u (t) ≡
1 

‖ μ‖ 1 we obtain 

MD 

2 
k (γ , ω) = ‖ μ‖ 1 

∫ 
R D 

‖ φγ (t) − φω (t ) ‖ 

2 
C 

u (t ) dμ(t ) = 

‖ μ‖ 1 · CFD 1 
‖ μ‖ 1 ,μ

(γ , ω) , (33) 

quation (33) immediately means that MMD k is 1 
8 ‖ μ‖ 1 - 

xponentially concave. Analogously to (28) , the aggregated 

redictive distribution is a mixture of input distributions. We also 

onclude that MMD k is 1 
4 ‖ μ‖ 1 -mixable, although the aggregated 

rediction is infeasible in general (analogously to CFD, see the 

iscussion of Subsection 4.5 ). 

.7. Optimal transport costs 

.7.1. 1-Dimensional optimal transport 

Let X = R 

1 and assume that � = � is the space of all probabil-

ty measures over its Borel field. For a cost function c : X × X →
8 
 consider the optimal transport cost [21] between distributions 

, ω ∈ �: 

(γ , ω) = min 

μ∈ �(γ ,ω) 

∫ 
�×�

c(x, x ′ ) dμ(x, x ′ ) , (34) 

here �(γ , ω) is the set of all probability distributions (transport 

lans) on X × X whose left and right marginals are distributions 

and ω respectively. 

In contrast to the losses considered in Subsection 4.4 , optimal 

ransport cost is defined for arbitrary distributions which may not 

ave densities. Thus, similar to CRPS and CFD, it can be used to 

ompare predicted distribution with discrete outcomes. Besides, 

ptimal transport costs are widely used in many machine learn- 

ng and image-processing problems, see [34] . In particular, they are 

pplied to generative modeling [5,24] . 

If cost function is the p-th degree of the p-th Euclidean norm, 

.e. c(x, x ′ ) = ‖ x − x ′ ‖ p p , the resulting distance C(ω, γ ) is called

asserstein- pdistance and denoted by W 

p 
p . 

In this section, we show that under specific conditions the op- 

imal transport cost is mixable (exp-concave). To begin with, we 

ecall that for X = R the optimal transport has a superior prop- 

rty which brings linearity structure to the space of 1-dimensional 

robability distributions. 

emma 4.2 (Explicit 1D Optimal Transport) . If the transport cost c : 

 × X → R is twice differentiable and ∂ 2 c(x,x ′ ) 
∂ x∂ x ′ < 0 , then the optimal 

ransport cost between γ , ω is given by 

(γ , ω) = 

∫ 1 

0 

c 
(
Q γ (t ) , Q ω (t ) 

)
dt , (35) 

here Q υ : [0 , 1] → R is the quantile function of υ ∈ � defined by 

 υ (t) = inf { x ∈ R : t ≤ CDF υ (x ) } . 
The result was initially proved by [29] and then rediscovered 

everal times, see [6,31,38] . The lemma makes it possible to con- 

ider the probability distribution’s quantile function (inverse cu- 

ulative distribution function) instead of the probability distribu- 

ion for computation of 1-dimensional optimal transport cost. Un- 

ike CRPS (see Fig. 1 ), optimal transport compares CDFs not verti- 

ally but horizontally, see the illustration in Fig. 2 . 

From Lemma 4.2 we conclude that if transport cost c : X × X → 

 + is η-mixable, then by Theorem 3.1 the corresponding C(γ , ω) 

s η-mixable (exp-concave) X -integral c-loss function. 

For η-mixable transport cost the aggregated prediction’s quan- 

ile function should satisfy: 

 (t) = c 

({ Q γ n (t) , αn } N n =1 

)
. 

or experts’ predictions γ 1 , . . . , γ N ∈ � and weights 

α1 , . . . , αN ) ∈ 	N . In general, Q (t) may not be a quantile function 

f some distribution. It is necessarily a quantile function if the 

ubstitution c for transport cost c is monotone. However, even 

f c is not monotone, Q (t) can be used to implicitly model the 

ggregated prediction. To show it, we state and prove 

emma 4.3 (Implicit Aggregation for 1D Optimal Transport) . Let ζ
e the uniform probability measure on [0,1]. Consider the pushforward 

robability measure γ = Q ◦ ζ , i.e. γ is distributed according to Q (t) 

or t ∼ ζ . Then for all ω ∈ � it satisfies: 

xp 

(
− ηC( γ , ω ) 

)
≥

N ∑ 

n =1 

αn exp 

[
− ηC(γ n , ω ) 

]
. (36) 

Lemma 4.3 explains the mixability of the optimal transport cost 

with arbitrarily substitution c . Additionally, it provides a natu- 

al way to sample from the aggregated distribution γ , i.e. sampling 

rom t ∼ Uniform [0 , 1] and applying Q . Now we prove the lemma. 
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Fig. 2. Visualization of the comparison of CDFs of distributions γ , ω on [ a, b] by using Optimal Transport Cost. 
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roof. Consider any ω ∈ � and let ω ∈ �( γ , ω) be a transport

lan (between γ and ω) given by ω = [ Q , Q ω ] ◦ ζ = [ Q ◦ ζ , Q ω ◦ ζ ] .

ince ω is not necessarily the optimal transport plan, its cost is 

ot smaller then the cost of the optimal one (which is given by 

emma 4.2 ): 
 1 

0 

c( Q (t) , Q ω (t)) dt = 

∫ 
X×X 

c(x, x ′ ) dω(x, x ′ ) ≥
∫ 1 

0 

c( Q γ (t) , Q ω (t)) dt = C( γ , ω) , (37) 

here Q γ is the quantile function of γ . Since Q is obtained by the 

ubstitution function c , we have 

xp 

[
− η

∫ 1 

0 

c( Q (t) , Q ω (t)) dt 
]

≥
N ∑ 

n =1 

αn exp 

[
− ηC(γ n , ω) 

]
. (38) 

e combine (37) with (38) and obtain desired (36) . �

For η-exp-concave cost the aggregated prediction’s quantile 

unction is given by: 

 (t) = 

N ∑ 

n =1 

αn · Q γ n (t) . 

he obtained function (for all admissible costs c!) is a quan- 

ile function of a Wasserstein-2 barycenter γ of distributions 
1 , . . . , γ N w.r.t. weights (α1 , . . . , αN ) ∈ 	N , see [8, Corollary 1] . 

.7.2. Sliced Wasserstein-2 distance 

Definition (34) has a natural multidimensional extension to 

 = R 

D . However, in this case the resulting optimal transport 

ost does not admit representation analogous to the one provided 

n Lemma 4.2 . Even for the squared cost c(x, x ′ ) = ‖ x − x ′ ‖ 2 
2 

the

asserstein-2 metric space of distributions is highly non-linear 

nd has negative curvature. 

Instead, we prove that Sliced Wasserstein-2 distance might be 

ixable under certain conditions. Following [8] , we assume that 

= � is the set of Radon (locally finite Borel) probability mea- 

ures on X ⊂ R 

D with finite second moment. For all υ ∈ � we de- 

ne sliced quantile function by 

Q (θ, t) = inf { s ∈ R : t ≤ SCDF υ (θ, s ) } . 
ext, we define sliced quadratic transport cost (the square of Sliced 

 2 distance): 

 W 

2 
2 (γ , ω) = 

1 

S D −1 

∫ 
S D −1 

[ ∫ 1 

0 

(
SQ γ (θ, t) − SQ ω (θ, t ) 

)
2 dt 

] 
dθ . 

(39) 

rom the definition we see that S W 

2 
2 

is the average over all 

he sliced quadratic transport costs. If γ , ω have supports ⊂
all 

R D 
(0 , R ) , then SQ (θ, t) ∈ [ −R, R ] and point-wise squared loss is

2 R 2 ) −1 -mixable ( (8 R 2 ) −1 -exp-concave). We use Theorem 3.1 and
9 
similar to CRPS) conclude that S W 

2 
2 

is (2 R 2 ) −1 -mixable ( (8 R 2 ) −1 -

xp-concave). 

For (8 R 2 ) −1 -exp-concave sliced cost the aggregated prediction’s 

liced quantile should satisfy: 

Q (θ, t) = 

N ∑ 

n =1 

αn · SQ γn 
(θ, t) (40) 

or experts’ predictions γ 1 , . . . , γ N ∈ � and weights 

α1 , . . . , αN ) ∈ 	N . 

Unfortunately, for D > 1 function SQ (θ, t) is not necessarily a 

uantile function of some distribution, see the discussion in [8] . In 

articular, the image of the map γ 
→ SQ γ is not necessarily con- 

ex (as a subset of the space L 

2 ([0 , 1]) ). As a corollary, we see

hat the projection trick (the one we used for other losses, see 

.g. Subsection 4.2.2 ) is not applicable due to the mentioned non- 

onvexity. 

We recall the sufficient condition [8] for SQ (θ, t) being a 

liced quantile of some distribution. For probability measure γ and 

s, u ) ∈ R + × R 

D we use ψ s,u ◦ γ to denote a probability measure

btained from γ by pushing it forward with ψ s,u (x ) = sx + u , i.e.

 s,u ◦ γ is a scaled and translated copy of γ . 

emma 4.4 (Barycenter of scaled and translated distribu- 

ions) . Assume that all the predictions γ 1 , . . . , γ N are scaled and 

ranslated by ψ s 1 ,u 1 , . . . , ψ s N ,u N copies of some reference probability 

easure γ 0 . Then aggregated SQ (given in (40) ) is the sliced quantile 

f ψ s , u ◦ γ 0 , where 

 = 

( N ∑ 

n =1 

αn 

s n 

)−1 and u = 

∑ N 
n =1 

αn u n 

s n ∑ N 
n =1 

αn 

s n 

. 

easure ψ s , u ◦ γ 0 is called Sliced Wasserstein-2 Barycenter of 
1 , . . . , γ N w.r.t. weights α1 , . . . , αN . 

The proof of the fact is given in [8, Proposition 12] . 

emma 4.4 provides an explicit formula to compute the aggre- 

ated prediction when all the predictive distributions are scaled 

nd translated copies of each other. 

We do not now whether the necessary condition for SQ being 

 quantile of some distribution exists. We also leave the question 

or existence of the aggregated prediction for (2 R 2 ) −1 -mixability 

roperty open (even in the case of scaled and translated copies 

hat we considered for exp-concavity). These open questions serve 

s the challenge for our further research. 

. Conclusion 

In this paper, we proved that natural integral losses arising from 

one dimensional) mixable (exp-concave) losses are also mixable 

exp-concave). As a consequence of our main result, we demon- 

tated that a wide range of losses for comparing the probability 

istributions are indeed mixable (exp-concave). In most cases the 
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ubstitution function for mixability is computationally heavy and 

ractically inaplicable. Yet for exp-concavity the aggregated predic- 

ion simply reduces to computation of the mixture of predictions 

r Wasserstein-2 barycenter of predictions. 

Our theoretical results indicate that a constant-regret online 

rediction with experts’ advice with probabilistic forecasts and 

utcomes is possible. Providing high-quality online probabilistic 

orecasts is essential for various applications of machine learning 

ncluding electricity consumption forecasting, weather forecasting, 

tock prices prediction, etc. We believe that our findings will help 

o improve existing models for prediction and obtain stronger the- 

retical justification of their performance. 
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ppendix A. Mixability and Exp-Concavity of Complex Squared 

oss 

In this section we prove 1 
4 -mixability and 

1 
8 -exp-concavity for 

: Ball C (0 , 1) × Ball C (0 , 1) → R + 

iven by λ(z, z ′ ) = ‖ z − z ′ ‖ 2 
C 

. First, we recall well-known lemma

18, Lemma 4.2] on exponential concavity: 

emma A.1. Let � ⊂ R 

D be a convex set. Let λ : � × � → R be a loss 

unction which is twice diffitentiable over γ for all ω ∈ �. Then λ is 

-exponentially concave (for η > 0 ) iff for all ω ∈ �: 

 

2 
γ λ(γ , ω) � η · [ ∇ γ λ(γ , ω)] · [ ∇ γ λ(γ , ω)] � (A.1) 

roof. The lemma follows directly from concavity condition of 

unctions f ω (γ ) = e −η·λ(γ ,ω ) for all ω ∈ �. For ω ∈ � the function 

f ω (γ ) is concave in γ iff

 � ∇ 

2 
γ f ω (γ ) ⇔ 0 

�
(

− η∇ 

2 
γ λ(γ , ω ) + η2 · [ ∇ γ λ(γ , ω )] · [ ∇ γ λ(γ , ω )] � 

)
·e −ηλ(γ ,ω ) 

hich is equivalent to (A.1) due to positivity of exponent and η > 

 . �

orollary A.1.1. The function λ(γ , ω) = ‖ γ − ω‖ 2 is 1 
8 B 2 

- 

xponentially concave in the first argument for ω, γ ∈ � = � = 

 

R D 
(0 , B ) . 

roof. We check that λ satisfies the condition (A.1) , i.e. 

 I D � 1 

2 B 

2 
(γ − ω) · (γ − ω) T , 

here I D is the D -dimensional identity matrix. The inequality holds 

rue for all ω, γ because the value on the right is a positive semi-

efinite matrix with the only non-zero eigenvalue equal to ‖ γ −
‖ 2 ≤ (2 B ) 2 = 4 B 2 . �

Due to natural mapping z 
→ ( Re z, Im z) , function 

(z, z ′ ) = ‖ z − z ′ ‖ 2 
C 

can be viewed as a squared loss on R 

2 ,

.e. λ : Ball 
R 2 

(0 , 1) × Ball 
R 2 

(0 , 1) → R + . Thus, from corollary we 

onclude that λ it 1 
8 - exponentially concave on a unit ball. 

To prove 1 
4 -mixability we also view the function as a function 

n R 

2 × R 

2 and note that Ball 2 (0 , 1) ⊂ [ −1 , 1] 2 . Thus, the function

R 

10 
an be viewed as the vectorized squared loss (1) with D = 2 , multi-

lied by 2. Since vectorized squared loss with inputs from [ −1 , 1] D 

s 1 
2 -mixable, we conclude that λ is 1 

4 -mixable with the substitu- 

ion function given by 

λ

({ γ n , αn } N n =1 

)
= 

(
[ −1 , 1] 

L 2 

({ Re γ n , αn } N n =1 

)
, [ −1 , 1] 

L 2 

({ Im γ n , αn } N n =1 

))

or weights (α1 , . . . , αN ) ∈ 	N and expert s’ predictions 
1 , . . . , γ N ∈ C , see definition of [ l,r] 

L 2 
in (4) . 

ppendix B. Aggregating Algorithm 

In this section for completeness of the exposition we review the 

trategy of the aggregating algorithm by [41] . Besides, we recall the 

asic analysis required to establish constant regret bound for AA. 

The algorithm by [41] keeps and updates a weight vector 

α1 
t , α

2 
t , . . . , α

N 
t ) ∈ 	N 

hich estimates the performance of the experts in the past. These 

eights are used to construct a combined forecast from experts 

redictions’ by using the substitution function λ. The weights of 

xperts are used to combine the forecast for the step t simply pro- 

ortional to exponentiated version of experts’ cumulative losses, 

.e. 

n 
t ∝ exp [ −ηL n t ] = exp [ −η

t−1 ∑ 

τ=1 

l n t ] = exp [ −η
t−1 ∑ 

τ=1 

λ(γ n 
τ , ω 

n 
τ )] . 

he Aggregating Algorithm 2 is shown below. Next, we review the 

Algorithm 2: Online Aggregating Algorithm. 

Parameters : Pool of experts N = { 1 , 2 , 3 . . . , N} ; Game length 

T ; η-mixable loss function λ : � × � → R 

The learner sets experts’ weights α1 
1 
, α2 

1 
, . . . , αN 

1 
≡ 1 

N ; 

for t = 1 , 2 , . . . , T do 

1. Experts n ∈ N provide forecasts γ n 
t ∈ �; 

2. Algorithm combines forecasts of experts into single 

forecast 

γt = λ(γ
1 

t , α
1 
t , . . . , γ

N 
t , αN 

t ) 

3. Nature reveals true outcome ω t ∈ �; 

4. Experts n ∈ N suffer losses l n t = λ(γ n 
t , ω t ) ; 

5. The learner suffers loss h t = λ(γt , ω t ) ; 

6. The learner updates and normalizes weights for the 

next step: 

αn 
t+1 = 

αn 
t exp [ −ηl n t ] ∑ N 

n ′ =1 α
n ′ 
t exp [ −ηl n 

′ 
t ] 

;

end 

nalysis of the algorithm and recall the importance of mixability 

exp-concavity). 

First, we define the notion of mixloss at the step t: 

 t = − 1 

η
log 

N ∑ 

n =1 

αn 
t exp [ −ηl n t ] . 

ote that since aggregating of forecasts is performed via the sub- 

titution function, we have 

xp [ −ηh t ] = exp [ −ηλ( γt , ω t )] ≥
N ∑ 

n =1 

αn 
t exp [ −ηλ(γ n 

t , ω t ) ︸ ︷︷ ︸ 
l n t 

] 

= exp [ −ηm t ] , 

hus, h t ≤ m t . Next, we denote the cumulative mixloss by 

 t = − 1 

η
log 

N ∑ 

n =1 

αn 
t exp [ −ηL n t ] . 

https://doi.org/10.13039/501100002261
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ne may check by a direct computation that M t − M t−1 = m t for 

ll t . Usual analysis shows that 

 T = 

T ∑ 

t=1 

h t ≤
T ∑ 

t=1 

m t = 

T ∑ 

t=1 

(M t − M t−1 ) = M T 

= − 1 

η
log 

n ∑ 

n =1 

αn 
1 exp [ −ηL n t ] = 

− 1 

η
log 

1 

N 

N ∑ 

n =1 

exp [ −ηL n t ] = 

log N 

η

− log 

N ∑ 

n =1 

exp [ −ηL n t ] ≤
log N 

η
+ min 

n ∈N 
L n T , 

hich exactly means that regret w.r.t. the best expert does not ex- 

eed 

ln N 
η . 

AA (as an exponential weights algorithm) has a number of 

ayesian probabilistic interpretations [3,25] and other modifica- 

ions [1,19,26] . These extensions are not discussed in this paper. 

hey are follow ups of the algorithm rather than the loss function 

e are mostly interested in. But we note that our framework of 

ixability (exp-concavity) of integral losses by default admits all 

hese described extensions. 
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lgorithms, developed by Evgeny Burnaev and his scientific group, formed a core 
f the algorithmic software library for metamodeling and optimization. Thanks to 

he developed functionality, engineers can construct fast mathematical approxima- 
ions to long running computer codes (realizing physical models) based on avail- 

ble data and perform design space exploration for trade-off studies. The software 
ibrary passed the final Technology Readiness Level 6 certification in Airbus. Ac- 

ording to Airbus experts, application of the library provides the reduction of up 
o 10% of lead time and cost in several areas of the aircraft design process. Nowa-

ays a spin-off company Datadvance develops a Software platform for Design Space 
12 
xploration with GUI based on this algorithmic core. Since 2016 Evgeny Burnaev 
orks as Associate Professor of the Skolkovo Institute of Science and Technology 

nd manages his research group for Advanced Data Analytics in Science and En- 
ineering. For his scientific achievements in the year 2017 Evgeny Burnaev (jointly 

ith Alexey Zaytsev and Maxim Panov) was honored with the Moscow Government 
rize for Young Scientists in the category for the Transmission, Storage, Processing 

nd Protection of Information for leading the project “The development of methods 
or predictive analytics for processing industrial, biomedical and financial data”. 
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