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Abstract

We study the averaging problem for a divergence form random parabolic operators with a
large potential and with coe2cients rapidly oscillating both in space and time variables. We
assume that the medium possesses the periodic microscopic structure while the dynamics of the
system is random and, moreover, di3usive. A parameter � will represent the ratio between space
and time microscopic length scales. A parameter � will represent the e3ect of the potential
term. The relation between � and � is of great importance. In a trivial case the presence of
the potential term will be “neglectable”. If not, the problem will have a meaning if a balance
between these two parameters is achieved, then the averaging results hold while the structure of
the limit problem depends crucially on � (with three limit cases: one classical and two given
under martingale problems form). These results show that the presence of stochastic dynamics
might change essentially the limit behavior of solutions. c© 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

We study the averaging problem for a random parabolic operators with symmet-
ric elliptic part in the presence of a large potential, all the coe2cients being rapidly
oscillating functions both in space and time variables.

The homogenization problems for various random structures are widely discussed in
the physical and mathematical literature, see, for example, Jikov et al. (1994) and its
bibliography.

In multidimensional case the @rst rigorous results for the divergence form random
elliptic operators with stochastically homogeneous coe2cients were obtained in Kozlov
(1980). Then, another approach was developed in Papanicolaou and Varadhan (1982).
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Later, many other random structures were investigated, among them the random porous
media (see, for instance, Hornung, 1997), the equations with lower-order terms in
Avellaneda and Majda (1991,1994) Fannjiang and Papanicolaou (1996,1997), systems
of equations, nonlinear models and others. An e2cient method of homogenization
of random structures was proposed in Bourgeat et al. (1994) where the technique
developed earlier for periodic micro-structures (Allaire, 1992) was generalized to the
random case.

Currently, there are several mathematical approaches which allow to examine ho-
mogenization problems in random media, but in all the studied models the randomness
in spatial variables and the presence of a group of transformation preserving some
probability measure, are supposed.

In our model, we assume that the medium possesses the periodic microscopic struc-
ture while the dynamics of the system is random and, moreover, di3usive. The equations
without potential were previously considered in Kleptsyna and Piatnitski (1997).

The problems of this type appear, for instance, when one studies the macroscopic
behavior of micro-inhomogeneous locally periodic dissipative media whose properties
change randomly in time, or the e3ect of random action on locally periodic structures
with large dissipation.

The corresponding parabolic operator is of the form:

ut(t; x) − div
[
a
(x
	
; 
t=	�

)
∇u(t; x)

]
− 	−�c

(x
	
; 
t=	�

)
u(t; x); x∈Rn;

where 	 is a small positive parameter, �; �¿0, the coe2cients aij(z; y) and c(z; y) are
periodic in the @rst argument, and 
t is a di3usion process with values in Rd solving
the following stochastic di3erential equation:

d
t =B(
t) dt + �(
t) dWt:

The parameter � represents the ratio between space and time microscopic length scales;
in the “self-similar” case �= 2, a coupling between space and time averaging appears.

Regarding the process 
s, we suppose good mixing and localization properties. Our
approach requires a su2ciently fast decay of the density of the invariant measure of 
s
at the in@nity; for instance, a condition of the Khasminski type B(y)y=|y|¡− c; c¿0,
is su2cient. In fact, quoting a new work Pardoux and Veretennikov (2001), we will
assume a weaker condition:

B(y)
y
|y|¡− c|y|�

for some �¿ − 1 and c¿0. The exact assumptions on the regularity of coe2cients
and the process 
 are given in Section 2.2.

The relation between � and � is of great importance. If �¡�=2∧1 then the presence
of the potential c(z; y) is neglectable in a proper sense. If, on the contrary, �¿�=2∧ 1
then, in general, the family of solutions is not compact. The only exception is the case
where �¿2 and where the mean value of c(z; y) in z is equal to zero for all y. In this
case, the proper choice is �= �=2 instead of �= 1.

We will show that for �= �=2 ∧ 1 under the natural regularity assumptions, the
averaging results hold while the structure of the limit problem depends crucially on
whether �= 2, or �¡2 or �¿2.
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If �¿2 then the family of solutions of corresponding Cauchy problems converges
in probability in a proper functional space to the solution of the Cauchy problem for
parabolic operator with constant nonrandom coe2cients. This result looks like clas-
sical homogenization result with the only di3erence that we obtain convergence in
probability. The almost sure convergence is an open question.

If �6 2 then the family of measures generated by the solutions, converges weakly to
the unique solution of the limit martingale problem which involves the one-dimensional
Brownian motion. The formula for the coe2cients of the limit problem are rather
di3erent in the cases �= 2 and �¡2.

These results show that the presence of stochastic dynamics might change essen-
tially the limit behavior of solutions. It is interesting to note that in a particular case
c(z; y)≡ 0 the limit equation is always deterministic Kleptsyna and Piatnitski (1997).

In Section 2 the precise setting of the problem is given and some auxiliary statements
are quoted.

The main results of the paper are formulated in Section 3.
The next section is devoted to the proof of the main statements. It should be noted

that, in general, the expectation of the norm of u	 does not admit uniform in 	 upper
bound. Thus, we cannot apply the standard technique in order to obtain weak com-
pactness results. Instead, we decompose u	 into the product:

u	(t; x) = exp
(

1
	1∧�=2

∫ t

0
〈c(· ; 
s=	�)〉 ds

)
v	(t; x)

and introduce in this way new unknown function v	; 〈 · 〉 stands for the mean value of
a periodic function.

For the family of functions v	 we obtain a priori estimates, prove the convergence
of v	 in probability to a deterministic limit in a suitable functional space and @nd
the auxiliary homogenized equation for the limit function. To this end we introduce a
family of correctors involving the solutions of proper Poisson equations and vanishing
in a suitable sense as 	→ 0, and, with the help of Itô’s calculus, reduce the problem
to studying the limiting behavior of a family of semi-martingales. Then, the technique
developed in Viot (1976) and Bouc and Pardoux (1984) can be applied.

The description of the limit distribution of

exp
(

1
	1∧�=2

∫ t

0
〈c(· ; 
s=	�)〉 ds

)

is due to Pardoux and Veretennikov (2001), where the weak convergence of the
integrals

1
	�=2

∫ t

0
〈c(· ; 
s=	�)〉 ds

has been proved.
Finally, the passage to the limit in the product relies on the deterministic nature of

the limit of v	.
The analysis used in this paper is essentially based on the properties of the density

on the invariant measure of 
t and of a solution of a Poisson equation stated in the
product of Rd and the torus Tn. Although the statements that characterize the said
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properties are of the same nature as those of Pardoux and Veretennikov (2001) and
can be obtained by similar methods, they are not presented in the cited works and thus
are to be proved. The appendix deals with a number of technical extensions of the
results from Pardoux and Veretennikov (2001).

2. The setup

We consider the asymptotic behavior of the solution of the following Cauchy problem
as 	 ↓ 0:

u	t (t; x) = div
[
a
(x
	
; 
t=	�

)
∇u	(t; x)

]
+

1
	1∧�=2 c

(x
	
; 
t=	�

)
u	(t; x); (1)

u	(0; x) = u0(x); x∈Rn; t ∈ [0; T ]; (2)

where �¿0 is a parameter and T¿0 is @xed.
The coe2cients a(z; y) and c(z; y) are periodic in z (or z belongs to the unit torus

Tn =Rn=Zn), and {
t}t¿ 0 is stationary ergodic di3usion process, with values in Rd,
given by

d
t =B(
t) dt + �(
t) dWt: (3)

Let us introduce the following operators:

• the in@nitesimal generator of the di3usion process {
t}:

Lg(y) =
∑

16 k;l6 d

qkl(y)gykyl(y) +
∑

16 k6 d

Bk(y)gyk (y) (4)

with q= 1
2��

∗,
• and

A	h(x) = div
(
a
(x
	
; y
)
∇h(x)

)
: (5)

A will denote A	 for 	= 1.

Note that, applied to a function f(z; y), L acts on the function y �→f(z; y) for z
@xed, and A	 acts on the function z �→f(z; y) for y @xed.

2.1. Notations

• In Rn, x·x′ will denote the scalar product and | · | the corresponding norm.
• In the space L2(Rn), (· ; ·) will denote the inner product, and ‖ · ‖ the norm.
• For a function (z; y) �→f(z; y), we use the following notations:

〈f(· ; ·)〉=
∫
Tn

∫
Rd

f(z; y)#(y) dy dz;

〈f(· ; y)〉=
∫
Tn

f(z; y) dz;

f(z; ·) =
∫
Rd

f(z; y)#(y) dy;
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here and in what follows #(y) stands for the density of invariant measure of process

s. The question of the existence of invariant measure and the properties of #(y)
will be discussed later.

• For a function or process (t; x) �→ u(t; x), u(t) will denote an application x �→ u(t; x).
Hence ‖u(t)‖ is (

∫
Rn |u(t; x)|2 dx)1=2. This notation is also used for u	(t; x) and for

the gradient ∇u	(t; x). We use, as well, the contracted notation:

c	 = c( x	 ; 
t=	�); a	 = a( x	 ; 
t=	�); a	; ij = aij( x	 ; 
t=	�);

and for a generic function g(z; y) : g	 = g(x=	; 
t=	�).

2.2. Hypotheses

In this section, we provide the precise assumptions on the coe2cient of (1) and on
the process 
t .

Hypothesis 2.1. The coe2cients a, c, and q as well as their derivatives are uniformly
bounded: there exists C1¿0 such that for all (z; y)∈Tn × Rd

|aij(z; y)| + |∇zaij(z; y)| + |∇yaij(z; y)|6C1;

|c(z; y)| + |∇zc(z; y)| + |∇yc(z; y)|6C1;

|qkl(y)| + |∇yqij(y)|6C1;

for all 16 i; j6 n; 16 k; l6d 1 . The vector function B as well as its derivatives
satisfy polynomial growth condition:

|B(y)| + |∇yB(y)|6C1(1 + |y|)�1

for some �1¿ 0.

Hypothesis 2.2. Operators L and A are uniformly elliptic: there exists a constant
C2¿0 such that for all (z; y)∈Tn × Rd

C2|z′|26 (a(z; y)z′)· z′ ∀z′ ∈Rn;

C2|y′|26 (q(z; y)y′)·y′ ∀y′ ∈Rd:

Hypothesis 2.3. There exist constants �¿− 1, R1¿0 and C3¿0 such that

B(y)· y|y|6 − C3|y|� ∀y s:t: |y|¿R1:

Under Hypotheses 2:1; 2:2, and 2:3, process {
t} admits the unique invariant measure
with smooth density #(y) given by

L∗#= 0 on Rd and
∫
Rd

#(y) dy= 1: (6)

1 Notations: ∇z , ∇y are the space gradient with respect to z and y, respectively. When there is no ambiguity
about the argument of the function we use the notation ∇, for example ∇u	(t; x) is ∇xu	(t; x).
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Moreover, the density #(·) decays faster than any negative power of |y| as |y|→∞
(see Lemma A.1 in Appendix). In fact, the following bound holds:

#(y)6 c1 exp(−c|y|1+�); c¿0:

Hypothesis 2.4. We will suppose that 〈c(· ; ·)〉= 0:

This hypothesis is, in fact, not a restriction. Indeed, considering the new unknown
function ũ 	(t; x) = e−t〈c〉=	u	(t; x), one can always achieve the relation 〈c〉= 0.

2.3. Auxiliary results

Let {(&t ; 
t)} be the di3usion process associated to the in@nitesimal generator A+L,
and let L2

#(Tn × Rd) denote the weighted space with the norm:

‖f‖2
# =

∫
Tn

∫
Rd

f(z; y)2#(y) dy dz:

Also, we introduce the spaces:

PL
2
#(Tn × Rd) = {f∈L2

#(Tn × Rd); 〈f(· ; ·)〉= 0};

PH
1
# (Tn × Rd) = {f∈ PL

2
#(Tn × Rd); |∇xf| + |∇zf| ∈L2

#(Tn × Rd)}:
The next statement is a generalization of [16, Theorem 1]. It is proved in Appendix.

Lemma 2.5. Let f∈ PL
2
#(Tn × Rd); and assume that

|f(z; y)|6C5(1 + |y|p) ∀(z; y)∈Tn × Rd

for some constants C5¿0 and p∈N. Then the equation

(A + L)u(z; y) =f(z; y) (7)

does have a unique solution u∈ PH
1
# (Tn × Rd) and the estimate

|u(z; y)|6C6(1 + |y|p1 ) ∀(z; y)∈Tn × Rd

holds; moreover; p1 depends only on p and � and the constant C6 depends only on
C5 and p and � (we assume that the dimensions are =xed).
If; in addition; there exists N¿0 such that for all n1; n2 ∈N with n1 + n26N we

have

|@n1
z @

n2
y f(z; y)|6C5(1 + |y|p) ∀(z; y)∈Tn × Rd

then

|@n1
z @

n2
y u(z; y)|6C6(1 + |y|p1 ) ∀(z; y)∈Tn × Rd:

Applying the technique developed by Pardoux and Veretennikov (2001, Proposition
2), leads to the following statement (proved in the Appendix):

Proposition 2.6. For any =xed T¿0; p¿0; �¿0; and �¿0:

lim
	↓0

E
(

sup
t6 T

	�|
t=	� |p
)

= 0:
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3. Main results

Here we formulate the main results of the paper; the proof will be given in the
following section.

It should be noted that for �6 2, we obtain the weak convergence of the law of
u	(t; x) to the nontrivial limit law which solves a proper martingale problem, while for
�¿2, the limit law is a Dirac measure concentrated on the solution of the Cauchy
problem for the limit deterministic parabolic equation with constant coe2cients.

Let L2
w(Rn) denote the space L2(Rn) endowed with the weak topology. De@ne

-T =L2
w((0; T );H 1(Rn)) ∩ C([0; T ];L2

w(Rn)) (8)

endowed with supremum of the topology of uniform convergence over the space
C([0; T ];L2

w(Rn)) and weak topology over the space L2((0; T );H 1(Rn)). -T is a Lusin
and regular space; denote by F its Borel �-@eld.

For any 	¿0, let Q	 be the Radon probability measure on (-T ;F) which is de@ned
by the law of {u	(t); 06 t6T}. The asymptotic behavior of u	, as 	 ↓ 0, depends on
whether �¡2, �= 2, or �¿2.

Theorem 3.1. Let �¡2; then under Hypotheses 2:1–2:4; the law Q	 of the solution
u	 of Eqs. (1)–(2) converges; as 	 ↓ 0; in space -T to the law Q̂ of the solution û of
the SPDE

dû(t; x) = [div(â∇û(t; x)) + ĉû(t; x)] dt + /û(t; x) dŴt (9)

with initial condition û(0; x) = u0(x); where (t; x)∈ [0; T ]×Rn; {Ŵt} is standard Brow-
nian motion in R and

â= 〈a(I + ∇z1)〉;

ĉ= 〈Gc〉 which is also equal to q∇G·∇G;

/2 = 2q∇G·∇G;

and the functions G ∈ PH
1
# (Rd) and 1i ∈ PH

1
# (Tn×Rd) are the solutions of the equations:

LG(y) = − 〈c(· ; y)〉; (10)

A1i(z; y) = −
n∑

j = 1

aijzj (z; y); (11)

for (z; y)∈Tn × Rd and 16 i6 n.

Theorem 3.2. For �= 2; under Hypotheses 2:1–2:4; the law Q	 of the solution u	 of
Eqs. (1)–(2) converges; as 	 ↓ 0; in space -T to the law Q̂ of the solution û of the
SPDE

dû(t; x) = [div(â∇û(t; x)) − b̂·∇û(t; x) + ĉû(t; x)] dt + /û(t; x) dŴt ; (12)
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with initial condition û(0; x) = u0(x); where (t; x)∈ [0; T ] × Rn; {Ŵt} is a standard
Brownian motion in R; and

â= 〈a(I + ∇z1)〉;

b̂= 〈1c + a∇zG〉;

ĉ= 〈Gc〉;

/2 = 2q〈∇yG〉·〈∇yG〉;
and the functions G; 1j ∈ PH

1
# (Tn × Rd) are the solutions of the equations

(A + L)G(z; y) = − c(z; y); (13)

(A + L)1j(z; y) = −
n∑

i = 1

aijzi (z; y) (14)

for (z; y)∈Tn × Rd and 16 j6 n.

Theorem 3.3. For �¿2; under Hypotheses 2:1–2:4; the solution u	 of Eqs. (1)–(2)
converges in probability in the space -T to the solution û of the following limit
Cauchy problem:

û t(t; x) = div(â∇û(t; x)) + ĉû(t; x); û(0; x) = u0(x) (15)

with (t; x)∈ [0; T ] × Rn and

â= 〈 Pa(I + ∇z1)〉; ĉ= 〈G Pc〉;
where the functions G; 1i ∈ PH

1
(Tn) are solutions of equations

PAG(z) = − c(z; ·); (16)

PA1i(z) = −
n∑

j = 1

aijzj (z; ·) (17)

for z ∈Tn and 16 i6 n; where the operator PA is de=ned by

PAf(z) = div(a(z; ·)∇f(z)): (18)

From which we deduce the following

Corollary 3.4. For �¿2; under Hypotheses 2:1–2:4; we have

P- lim
	↓0

‖u	 − û‖L2((0;T )×Rn) = 0 (19)

where u	 (resp. û) is the solution of Eqs. (1)–(2) (resp. (15)).

Comparison with systems without potential or without “noise input”: It is interesting
to compare the limit problems (9), (12), (15) above with the limit problems for the
equation without potential:

ut(t; x) = div
(
a
(x
	
; 
t=	�

)
∇u(t; x)

)
(20)
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and the equation “without noise input”:

ut(t; x) = div
(
a
(x
	

)
∇u(t; x)

)
+

1
	
c
(x
	

)
u(t; x): (21)

According to Kleptsyna and Piatnitski (1997), the absence of the potential in (20)
always leads to the deterministic form of homogenized problem:

u t(t; x) =
∑

16 i; j6 n

Paij
@2

@xi@xj
u(t; x);

this operator involves neither stochastic nor lower-order terms. The limit problem for
(21) takes the following form:

u t(t; x) =
∑

16 i; j6 n

Paij
@2

@xi@xj
u(t; x) + Pc u(t; x)

where Pc is the so-called “strange term”.
Comment on the limiting Eq. (12): The appearance of the @rst-order term b̂·∇ in

the drift part of the limit problem (12) is of special interest. It should be shown that
this @rst-order term is not necessarily null.

To this end, let us propose an example with n= 1 and d= 2. We take qkl = 7kl in
(4) and choose

B(y) = − 2
(
y1 + 8y2

y2 − 8y1

)

where 8¿0. One can easily check that the density #(y) of the invariant measure of 
t
is given, under this choice of qkl and B(y), by the formula

#(y) = ce−|y|2 ;

here c is a normalization constant. We consider the one-dimensional case (w.r.t. z):

b̂=
∫
T1

∫
R2

[1(z; y)c(z; y) + a(z; y)Gz(z; y)]#(y) dz dy:

Integrating by parts and taking into account Eqs. (13) and (14), we obtain

b̂=
∫
T1

∫
R2

(1LG − GL1)(z; y)#(y) dz dy: (22)

here we also used the divergent form and the symmetry of the operator A.
Finally, in view of (6), after integrating by parts, we get

b̂ = −
∫
T1

∫
R2

[(∇y1)·G(∇y#− B#)](z; y) dz dy

= −8
∫
T1

∫
R2

(∇y1)(z; y)·G(z; y)
(
y2

y1

)
dz dy: (23)

Denote k(y) = (L−1) sin(y1) and construct the operator A to be a small perturbation
of operator with constant coe2cient:

a(z; y) = 1 + ℵd(z; y) (24)



66 F. Campillo et al. / Stochastic Processes and their Applications 93 (2001) 57–85

where ℵ is a small parameter and d(z; y) = sin(z)k(y). It is easy to see that the function
11(z; y) = cos(z) sin(y1) solves the following auxiliary problem:(

d2

dz2 + L

)
11(z; y) = − cos(z)k(y):

Now, substituting the function ℵ11(z; y) in Eq. (14) which in our particular case reads(
d
dz

a(z; y)
d
dz

+ L

)
1(z; y) = − ℵ d

dz
d(z; y) = − ℵ cos(z)k(y)

and taking into account the coerciveness of the latter problem, we get

‖1 − ℵ11‖= O(ℵ2) as ℵ ↓ 0:

Thus, it su2ces to show that the integral∫
T1

∫
R2

(∇y11)(z; y)·G(z; y)
(
y2

y1

)
e−|y|2 dz dy

=
∫
T1

∫
R2

cos(z)y2 cos(y1)G(z; y)e−|y|2 dz dy

is not equal to zero under the proper choice of G(z; y).
To do so one can construct a smooth nonnegative function G(z; y) with a small

compact support concentrated near the point (z0; y0) such that

y0
2 cos(z0) cos(y0

1)e−|y0|2 �= 0;

say (z0; y0) = (�==4; (�==4; �==4)).

4. Proof of the main results

4.1. Decomposition of the solution u	: Auxiliary homogenization problem

The expectation of the L2 or L2((0; T );H 1(Rn))-norms of u	 in general does not
admit uniform in 	 estimates. Thus, in order to obtain the compactness of u	 we need
an approach that does not rely on estimates of the expectation.

In this section we decompose u	 into the product of the exponent of given function,
and of new unknown function v	(x; t):

u	(t; x) = exp
(

1
	1∧�=2

∫ t

0
〈c(· ; 
s=	�)〉 ds

)
v	(t; x): (25)

Direct calculations show that the function v	 satis@es the following equation:

v	t (t; x) = div
[
a
(x
	
; 
t=	�

)
∇v	(t; x)

]
+

1
	1∧�=2 c̃

(x
	
; 
t=	�

)
v	(t; x); (26)

v	(0; x) = u0(x); x∈Rn; t ∈ [0; T ]; (27)

where c̃(z; y) = c(z; y) − 〈c(· ; y)〉.
In the following sections we show that v	 converges in probability in the space -T

to nonrandom function being the solution of Cauchy problem with constant coe2cient.
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4.2. Tightness result for auxiliary homogenization problem

This section deals with the tightness of the family of distributions associated with
solutions v	 of Problem (26)–(27). We start by obtaining uniform estimates for v	.

Proposition 4.1. The inequalities
(E1) supt6 T ‖v	(t)‖26 c;

(E2)
∫ T

0 ‖∇v	(s)‖2 ds6 c; hold uniformly in 	¿0. For any test function ’∈C∞
0 (Rn)

the inequality
(E3) |(’; v	(t) − v	(s))|6 c|t − s|1=2 holds uniformly in 	¿0.

Proof. Multiplying Eq. (26) by v	 and integrating by parts we get

1
2‖v	‖2

t = −(a	∇v	;∇v	) + 	−(1∧�=2)(c̃	v	; v	)

= −(a	∇v	;∇v	) + 2	:(;	v	;∇v	);

where := 1− (1∧�=2) and ;(z; y) is z-periodic vector function de@ned by the relation

divz ;(z; y) = c̃(z; y): (28)

In order to construct such a function ;(z; y), one considers the equation

<zK(z; y) = c̃(z; y); z ∈Tn:

Thanks to the relation 〈c̃(· ; y)〉= 0 this equation is solvable for any y∈Rd. Moreover,
since c̃∈C1

b(Tn × Rd), all the derivatives of K(z; y) in z up to the third order are
uniformly bounded. By putting ;(z; y) =∇zK(z; y) we obtain the desired representation.

With the help of the Cauchy–Buniakovski inequality after simple transformation we
obtain

1
2
‖v	‖2 6

1
2
‖u0‖2 −

∫ t

0
(a	∇v	;∇v	) ds + 7

∫ t

0
‖∇v	‖2 ds +

c
7

∫ t

0
‖v	‖2 ds

6
1
2
‖u0‖2 − >

∫ t

0
‖∇v	‖2 ds + c1

∫ t

0
‖v	‖2 ds;

for some >¿0. Now (E1) and (E2) follow from Gronwall’s lemma.
For any test function ’ we have

|(’; v	(t) − v	(s))| 6
∫ t

s
(∇’; a	∇v	) dr + 	:

∫ t

s
|(;	;∇(’v	)| dr

6 c|t − s|1=2:
This completes the proof.

For any 	¿0 denote by Q̃
	

a Radon probability measure on (-T ;F) de@ned as the
law of {v	(t); 06 t6T} in -T . According to Viot (1976) and Bouc and Pardoux
1984, Theorem 2:5), Proposition 4.1 implies the tightness of the family {Q̃	} in -T .
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4.3. Description of homogenized operator for auxiliary problem – convergence in
probability

In this section we prove the convergence of v	 in probability and show that the limit
function satis@es parabolic equation with constant coe2cients. We study the cases �¿2,
�= 2 and �¡2 separately.
Case �¡2: Let v̂(t; x) be the solution of the following Cauchy problem:

v̂t = div(â∇v̂); v̂(x; 0) = u0(x); (29)

â has been de@ned in Theorem 3.1.

Proposition 4.2. For any test function ’(x; t)∈C∞([0; T ];C∞
0 (Rn)) the following limit

relation holds:

lim
	↓0

E sup
t6 T

∣∣∣∣∣ (’(t); v	(t)) − (’(0); u0) −
∫ t

0
(’s(s); v	(s)) ds

−
∫ t

0

(∑
ij

âij’xixj (s); v
	(s)

)
ds

∣∣∣∣∣ = 0: (30)

Proof. Let us introduce a process:

H	(t) = (’; v	(t)) + 	
n∑

k = 1

(1k(·=	; 
t=	�)’xk ; v
	(t)); (31)

where the z-periodic functions 1k ∈ PH
1
# (Tn × Rn) are de@ned as the solutions of the

following equations:

A1k(z; y) = −
∑
j

akjzj (z; y); k = 1; : : : ; n: (32)

From Proposition 4.1, (E1), (E2), Lemma 2.5 and Proposition 2.6 we have

lim
	→ 0

E sup
t6 T

|(’; v	) − H	(t)|= 0: (33)

Indeed, according to Hypothesis 2:1 the function on the right-hand side of (32) is uni-
formly bounded in |y|. Therefore, by Lemma 2.5 the solution 1k admits a polynomial
estimate, and from (E1) and Proposition 2.6 we have

E sup
t6 T

|(’; v	) − H	(t)| = 	E sup
t6 T

|(1	;k’xk ; v
	(t))|

6 C	E sup
t6 T

|1	;k | ‖v	‖

6 C	E sup
t6 T

|
t=	� |m →
	↓0

0:

Now, in order to prove (30), we assume for a while that a(x; y) is three times di3er-
entiable in x and y, and that all its derivatives up to the third order admit polynomial
estimates as |y| ↑ ∞.
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Then, clearly, we have for some m¿ 0:

|1k(y; z)| + |∇z1k(y; z)| + |∇y1k(y; z)| + |∇yy1k(y; z)|6C(1 + |y|)m: (34)

Applying Ito’s formula to the process H	(t) and integrating by parts one has

dH	(t) =
∑
ij

(a	; ij’xixj ; v
	) dt + 	−1

∑
ij

(a	; ijzj ’xi ; v
	) dt

+ 	−�=2(c̃ 	’; v	) dt + (’t; v	) dt

+
∑
k

[
	1−�(L1	;k’xk ; v

	) dt + 	1−�=2(∇y1	;k’xk ; v
	)·�	 dWt

+ 	−1((A1	;k)’xk ; v
	) dt + 	1−�=2(1	;k c̃	’xk ; v

	) dt

+
∑
ij

((a	; ij1	;k
zi )’xkxj ; v

	) dt

−	
∑
ij

(a	; ij1	;k’xkxi ; v
	
xj) dt

]
:

The functions 1k satisfy the relation 〈1k(· ; y)〉= 0, thus

〈(L1k)(· ; y)〉=L〈1k(· ; y)〉= 0;

and in the same way as in (28) we have

L1k(z; y) = divz ;k(z; y) (35)

with continuous ;k(z; y) of polynomial growth in |y|.
Taking into account (32) after simple transformation we get

dH	 =
∑
ij

(a	; ij’xixj ; v
	) dt +

∑
k

∑
ij

((a	; ij1	;k
zj )’xkxi ; v

	) dt + (’t; v	) dt

+ 	7=2(;	;∇(’v	)) dt + 	7(;	;k ;∇(’xk v
	)) dt + 	(1	;k’txk ; v

	) dt

+	
∑
k

∑
ij

(a	; ij1	;k’xkxi ; v
	
xj) dt + 	7=2(c̃1	;k’xk ; v

	) dt

+ 	7=2(∇y1	;k’xk ; v
	)�	 dWt

=
∑
ij

(a	; ij’xixj ; v
	) dt + 	7=2(;	;∇(’v	)) dt

+
∑
k

∑
ij

((a	; ij1	;k)zi’xkxj + a	; ij1	;k
zj ’xkxi ; v

	) dt

+(’t; v	) dt + 	7=2 dR	(t) (36)
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where 7= 2 − �, and lim	↓0 E supt6 T |R	(t)|6C. This limit relation follows immedi-
ately from (E1), (E2) and Burkholder–Davis–Gundy inequality. Therefore,

(’; v	) − (’; u0) −
∫ t

0
(’s; v	) ds−

∫ t

0

∑
ij

(âij’xixj ; v
	) ds

=
∫ t

0

[∑
ij

(a	; ij’xixj ; v
	) +

∑
k

∑
ij

(a	; ij1	;k
zj ’xkxi ; v

	)

−
∑
ij

(âij’xixj ; v
	)

]
ds + 	7=2R	(t);

where we have also added and subtracted the term
∑

ij(â
ij’xixj ; v

	) dt.
It remains to show that

P- lim
	↓0

sup
t6 T

∣∣∣∣∣
∫ t

0

(∑
ij

a	; ij’xixj +
∑
k

∑
ij

a	; ij1	;k
zj ’xixk −

∑
ij

âij’xixj ; v
	

)
ds

∣∣∣∣∣ = 0

which is the aim of the following Lemma 4.3.

Lemma 4.3. For any z-periodic function (z; y) �→ h(z; y) such that 〈h〉= 0 and |h|6
c(1 + |y|)A for some A¿ 0; we have

P- lim
	↓0

sup
t6 T

∣∣∣∣
∫ t

0

(
h
( ·
	
; 
s=	�

)
’; v	(s)

)
ds
∣∣∣∣ = 0

for any test function ’.

Proof. Denote by H a z-periodic vector function (z; y) �→H (z; y) given by

divz H (z; y) = h(z; y) − 〈h(· ; y)〉; |H |6 c(1 + |y|)A;
for instance, one can put H (z; y) =∇zĤ (z; y) where z-periodic Ĥ (z; y) solves the equa-
tion <zĤ (z; y) = h(z; y) − 〈h(· ; y)〉.

In view of the identity∫ t

0

(
h
( ·
	
; 
s=	�

)
’; v	(s)

)
ds = 	

∫ t

0

(
H
( ·
	
; 
s=	�

)
;∇(’v	(s))

)
ds

+
∫ t

0
〈h(· ; 
s=	�)〉(’; v	(s)) ds

and the estimates

E sup
t6 T

∣∣∣∣∣
∫ t

0

∑
i

(
Hi
( ·
	
; 
s=	�

)
; (’v	(s))xi

)
ds

∣∣∣∣∣ 6CE(‖v	‖2
L2((0;T );H 1(Rn)))

1=26C1

it is su2cient to obtain the following limit relation:

P- lim
	↓0

sup
t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉(’; v	(s)) ds

∣∣∣∣ = 0:
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Note that the family of distributions of the processes (’; v	) is relatively compact in
C[0; T ]. That is, for any :¿0, there exist N¿0 and f1; : : : ; fN ∈C([0; T ];Rn) such
that P(A:)¡: for all 	¿0 with

A: =
N⋂

k = 1

{
sup

06 t6 T
|(’; v	(t)) − fk(t)|¿:

}
:

Hence Ac
: is of the form

⋃
k B

k
: , B

k
: = {sup06 t6 T |(’; u	(t)) − fk(t)|6 :}, so Ac

: =⋃
k B̃

k
: , where B̃

k
: ⊂Bk

: and B̃
k
: ∩ B̃

l
: = ∅ for k �= l. Then,

E sup
t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉(’; v	) ds

∣∣∣∣
= E

[
1A: sup

t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉(’; v	) ds

∣∣∣∣
]

+E
[
1Ac

:
sup
t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉(’; v	) ds

∣∣∣∣
]

6C
√
: +

∑
k

E
[
1
B̃

k
:

sup
t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉(’; v	) ds

∣∣∣∣
]

6C1
√
: +

∑
k

E
[

sup
t6 T

∣∣∣∣
∫ t

0
〈h(· ; 
s=	�)〉fk(s) ds

∣∣∣∣
]

and the required statement follows from the averaging principle of Liptser and Shiryaev
(1989, Theorem 9:6:1) if we pass to the limit on the right-hand side @rst as 	 ↓ 0 and
then as : ↓ 0.

This completes the proof of Lemma 4.3.

Proof of Proposition 4.2 (Conclusion). Lemma 4.3 proves Proposition 4.2 in the
smooth case.

For a general matrix-valued function a(z; y) satisfying Hypotheses 2:1 and 2:2, Re-
lation (30) can be achieved by approximation of a(z; y) with smooth functions. Denote

a(z; y; A) =
1

A n+d

∫
Tn

∫
Rd

’0

(
(z; y) − (z′; y′)

A

)
a(z′; y′) dz′ dy′; A¿0

where ’0 ∈C∞
0 (Tn ×Rd), ’0¿ 0,

∫∫
’0(z; y) dz dy= 1. From Hypothesis 2:1 we ob-

tain

|a(z; y; A) − a(z; y)|6CA;

|a(z; y; A)| + |∇ya(z; y; A)| + |∇za(z; y; A)|6C: (37)

Higher-order derivatives of a(z; y; A) show polynomial growth in |y| although the cor-
responding estimates are not uniform in A¿0. For each @xed A¿0, Relation (30)
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holds

lim
	↓0

E sup
06 t6 T

∣∣∣∣(’(t); v	(t; A)) − (’(0); u0) −
∫ t

0
(’s(s); v	(s; A)) ds

−
∫ t

0

(∑
ij

âij(A)’xixj (s); v
	(s; A)

)
ds

∣∣∣∣∣ = 0: (38)

The di3erence v	 − v	(A) satis@es the following equation

(v	 − v	(A))t =
∑
ij

@
@xi

(
aij(x=	; 
t=	�)

@
@xj

(v	 − v	(A))
)

+
∑
ij

@
@xi

(
[aij(x=	; 
t=	�) − aij(x=	; 
t=	� ; A)]

@
@xj

v	(A)
)
; (39)

(v	 − v	(A))|t = 0 = 0:

Multiplying the latter equation by v	 − v	(A), we have after integrating by parts:∫
Rn

((v	(t) − v	(t; A))2

+
∫ t

0

∫
Rn

∑
ij

a	; ij
(

@
@xi

(v	(s) − v	(s; A))
)(

@
@xj

(v	(s) − v	(s; A))
)

dx ds

= −
∫ t

0

∫
Rn

∑
ij

(a	; ij − a	; ij(A))
(

@
@xi

v	(s; A)
)(

@
@xj

(v	(s) − v	(s; A))
)

dx ds

6CA‖v	(A)‖L2(0;T ;H 1(Rn))‖v	 − v	(A)‖L2(0;T ;H 1(Rn))

6CA:

This results in the following uniform upper bound:

‖v	 − v	(A)‖L∞(0;T ;L2(Rn)) + ‖v	 − v	(A)‖L2(0;T ;H 1(Rn))6CA: (40)

Now we want to estimate the di3erence â − â(A). To this end we consider the
corresponding auxiliary equations A1k = −∑i a

ik
zi and A(A)1k(A) = −∑i a

ik
zi (A).

Subtracting we @nd

A(1k −1k(A)) =
∑
i

(aikzi (A) − aikzi ) + (A(A) −A)1k(A): (41)

Again, multiplying by 1k −1k(A) and integrating by parts, one has∫
Tn

∑
ij

aij
@
@zi

(1k −1k(A))
@
@zj

(1k −1k(A)) dz

= −
∫
Tn

∑
i

(aik(A) − aik)
@
@zi

(1k −1k(A)) dz

−
∫
Tn

∑
ij

(aij(A) − aij)
@
@zi

1k(A)
@
@zj

(1k −1k(A)) dz
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6CA‖1k −1k(A)‖H 1(Tn) + CA‖1k −1k(A)‖H 1(Tn)‖1k(A)‖H 1(Tn)

6CA:

Therefore, ‖∇1k −∇1k(A)‖L2(Tn)6C
√
A uniformly in y∈Rd. Hence,

|â− â(A)|=
∣∣∣∣
∫
Tn

∫
Rd

[(I + ∇1)a− (I + ∇1(A))a(A)]p(y) dy dz
∣∣∣∣ 6C

√
A: (42)

It remains to note that (38), (40), and (42) imply (30). Proposition 4.2 is completely
proved.

It follows from Proposition 4.2 that v	 converges in probability to the solution v̂ of
(29). In order to show this, let us introduce a bounded continuous functional B’(u)
on the space -T :

B’(u) = 1 ∧ sup
t6 T

∣∣∣∣(’(t); u(t)) − (’(0); u0) −
∫ t

0
((’s(s); u(s)) ds

−
∫ t

0

(∑
ij

âij’xixj (s); u(s)

)
ds

∣∣∣∣∣ :
From (30), we get lim	↓0 EB’(v	) = 0, so for any limiting point Q of the family Q̃

	
,

we obtain EQB’(u) = 0 and therefore any limiting measure Q is concentrated on the
weak solution of the deterministic equation (29). Thus, the uniqueness of the solution
of the latter problem implies the desired convergence in probability.

Case �= 2: We follow the same scheme as above: let v̂(x; t) be the solution of the
Cauchy problem

v̂t = div(â∇v̂) − b̂∇v̂ + ˆ̃cv̂; v̂(x; 0) = u0(x); (43)

where â and b̂ were de@ned in Theorem 3.1, and ˆ̃c= 〈G̃c̃〉.
We are going to prove that any limit point of the family {Q̃	} is the 7-type measure

concentrated on v̂.

Proposition 4.4. For any test function ’(t; x)∈C∞([0; T ];C∞
0 (Rn)) the following limit

relation holds:

lim
	↓0

E sup
t6 T

∣∣∣∣(’(t); v	(t)) − (’(0); u0) −
∫ t

0
(’s(s); v	(s)) ds

−
∫ t

0

([∑
ij

âij’xixj (s) + b̂∇’(s) + ˆ̃c’(s)

]
; v	(s)

)
ds

∣∣∣∣∣ = 0:

Proof. Consider the auxiliary process:

H	(t) = (’; v	(t)) + 	
∑
k

(
1k
( ·
	
; 
t=	2

)
’xk ; v

	(t)
)

+ 	
(
G̃
( ·
	
; 
t=	2

)
’; v	(t)

)

where 1k is de@ned by (14) and G̃(z; y) satis@es the equation

(A + L)G̃(z; y) = − c̃(z; y): (44)
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It follows from Proposition 4.1, (E1), (E2), Lemma 2.5 and Proposition 2.6 that:

lim
	↓0

E sup
t6 T

|H	(t) − (’; v	(t))|= 0:

Applying Ito’s formula to H	(t) gives

dH	 =
∑
ij

[(a	; ij’xixj ; v
	) + 	−1(a	; ijzi ’xj ; v

	)] dt + 	−1(c̃	’; v	) dt

+ (∇yG̃
	
’ +

∑
k

∇y1	;k’xk ; v
	)·�	 dWt

+

[
	−1

∑
k

(L1	;k’xk ; v
	) +

∑
k

(1	;k c̃	’xk ; v
	) + (’t; v	)

+ 	−1
∑
k

(A1	;k ’xk ; v
	) + 	

∑
k

(1	;k ’txk ; v
	)

+
∑
ijk

((a	; ij1	;k)zi’xkxj + a	; ij1	;k
zj ’xkxi ; v

	)

+ 	
∑
ijk

(a	; ij1	;k’xixjxk ; v
	)

+ 	−1(LG̃
	
’; v	) + (G̃

	
c̃	’; v	)

+ 	−1(AG̃
	
’; v	) +

∑
ij

((a	; ijG̃
	
)zi’xj + a	; ijG̃

	
zj’xi ; v

	)

+ 	
∑
ij

(a	; ijG̃
	
’xixj ; v

	)

]
dt :

Taking into account Eqs. (14) and (44) we simplify the expression on the right-hand
side as follows:

dH	 =


∑

ij

(a	; ij ’xixj ; v
	) +

∑
ijk

((a	; ij1	;k)zi’xkxj + a	; ij1	;k
zj ’xkxi ; v

	)

+
∑
k

(1	;k c̃	’xk ; v
	) + (G̃

	
c̃	’; v	)

+
∑
ij

((a	; ijG̃
	
)zi ’xj + a	; ijG̃

	
zj’xi ; v

	) + (’t; v	)


 dt

+

(
∇yG̃

	
’ +

∑
k

∇y1	;k’xk ; v
	

)
·�	 dWt + 	 dR	(t) (45)
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where E supt6 T |R	(t)|6C. Denote by M	(t) the stochastic term on the right-hand
side of the latter formula:

M	(t) =
∫ t

0

(
∇yG̃

( ·
	
; 
s=	2

)
’ +

∑
k

∇y1	;k ’xk ; v
	(s)

)
·�(
s=	2 )	 dWs=	2 ;

clearly M	(t) is F	
t -adapted square integrable martingale.

Proposition 4.5. The following limit relation holds true:

lim
	→ 0

E sup
t6 T

|M	(t)|= 0:

Proof. It is easy to see that the operator L does commute with averaging in variable
z. Thus, taking the mean value in z in Eqs. (14) and (44), we @nd 〈∇y1(· ; y)〉= 0
and 〈∇yG̃(· ; y)〉= 0 for all y. Therefore,

E sup
t6 T

∣∣∣∣∣
∫ t

0

[∑
k

(∇y1	;k’xk ; v
	(s)) + (∇yG̃

	
; ’v	(s))

]
·�(
s=	2 ) dWs

∣∣∣∣∣
= 	 E sup

t6 T

∣∣∣∣∣
∫ t

0

[∑
k

(H	;k ;∇(’xk v
	(s))) + (H̃

	
;∇(’v	(s)))

]
·�(
s=	2 ) dWs

∣∣∣∣∣
where Hk(z; y) and H̃ (z; y) are given by

divz Hk(z; y) =∇y1k(z; y);

divz H̃ (z; y) =∇yG̃(z; y):

By virtue of (E1), (E2), and the Burkholder–Davis–Gundy inequality we have:

lim
	↓0

E sup
t6 T

∣∣∣∣∣
∑
k

∫ t

0
(∇y1	;k’xk ; v

	(s))·�(
s=	2 ) dWs

∣∣∣∣∣ = 0;

lim
	↓0

E sup
t6 T

∣∣∣∣
∫ t

0
(∇yG̃

	
’; v	(s))·�(
s=	2 ) dWs

∣∣∣∣ = 0:

Passing to the limit on the right-hand side of (45) by means of Proposition 4.5 and
Lemma 4.3, we complete the proof of Proposition 4.4.

Now, the convergence of v	 in probability can be derived in the same way as in the
case �¡2.
Case �¿2: The approach used in this case is quite similar to that of the preceding

cases so we consider it brieSy. We introduce a function v̂(x; t) to satisfy the Cauchy
problem

v̂t = div(â∇v̂) + ĉv̂; v̂(x; 0) = u0(x); (46)

with â and ĉ de@ned in Theorem 3.3. The proof of the fact that v	 converges to v̂ in
probability relies on the following.
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Proposition 4.6. For any test function ’(x; t)∈C∞([0; T ]; C∞
0 (Rn)) the following

limit relation holds:

lim
	↓0

E sup
t6 T

∣∣∣∣(’(t); v	(t)) − (’(0); u0) −
∫ t

0
(’s(s); v	(s)) ds

−
∫ t

0

(∑
ij

âij’xixj (s) + ĉ’(s); v	(s)

)
ds

∣∣∣∣∣ = 0: (47)

Proof. We de@ne the functions G ∈ PH
1
(Tn), g∈ PH

1
(Tn × Rd), to be solutions of the

system of equations:

PAG(z) = − c(z; ·);

Lg(z; y) = − [c̃(z; y) − c(z; ·) + AG(z) − PAG(z)]; (48)

and the functions 1k ∈ PH
1
(Tn) and Bk ∈ PH

1
#(Tn × Rd); k = 1; : : : ; n, to satisfy the

system

PA1k(z) = −
∑
i

aikzi (z; ·);

LBk(z; y) = −
[

(A− PA )1k(z) +
∑
i

(aikzi (z; y) − aikzi (z; ·))
]

(49)

k = 1; : : : ; n; 7= �− 2¿0. Applying Ito’s formula to the expression

H	 = (’; v	) + 	

(∑
k

1	;k’xk ; v
	

)
+ 	1+7

(∑
k

B	;k’xk ; v
	

)

+	(G	’; v	) + 	1+7(g	’; v	)

we obtain after simple transformations:

dH	 = (’t; v	) dt + 	−1

(∑
ij

a	; ijzi ’xj ; v
	

)
dt + 	−1(c̃	’; v	) dt

+

(∑
ij

a	; ij’xixj ; v
	

)
dt +

(∑
ij

a	; ij’xi ; v
	
xj

)
dt

+ 	−1

(∑
k

A1	;k’xk ; v
	

)
dt +

(∑
k

∑
ij

a	; ij1	;k
zi ’xkxj ; v

	

)
dt

+ 	

(∑
k

∑
ij

a	; ij1	;k’xkxi ; v
	
xj

)
dt + 	

(∑
k

1	;k ’txk ; v
	

)
dt

+

(∑
k

c̃	1	;k’xk ; v
	

)
dt
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+ 	7−1

(∑
k

AB	;k’xk ; v
	

)
dt + 	7

(∑
k

∑
ij

a	; ijB	;k
zj ’xkxj ; v

	

)
dt

+ 	7+1

(∑
k

∑
ij

a	; ijB	;k’xkxi ; v
	
xj

)
dt + 	7+1

(∑
k

B	;k’txk ; v
	

)
dt

+ 	7
(∑

k

c̃	B	;k’xk ; v
	

)
dt + 	−1

(∑
k

(LB)	; k’xk ; v
	

)
dt

+ 	7=2
(∑

k

∇yB	;k’xk ; v
	

)
dWt

+ 	−1(AG	’; v	) dt +

(∑
ij

a	; ijG	
zi’xkxj ; v

	

)
dt

+ 	

(∑
ij

a	; ijG	’xkxi ; v
	
xj

)
dt + 	(G	’t; v	) dt + (c̃	G	’; v	) dt

+ 	7−1((Ag)	’; v	) dt + 	7
(∑

k

∑
ij

a	; ijg	zi’xkxj ; v
	

)
dt

+ 	7+1

(∑
k

∑
ij

a	; ijg	’xkxi ; v
	
xj

)
dt + 	7+1(g	’t; v	) dt

+ 	7(c̃	g	’; v	) dt + 	−1((Lg)	’; v	) dt + 	7=2(∇yg	’; v	) dWt:

According to (48) and (49) the following terms on the right-hand side are mutually
cancelled:

	−1

(∑
ij

a	; ijzi ’xj ; v
	

)
+ 	−1

(∑
k

A1	;k’xk ; v
	

)
+ 	−1

(∑
k

LB	;k ’xk ; v
	

)
= 0;

	−1(c̃	’; v	) + 	−1(AG	’; v	) + 	−1(Lg	’; v	) = 0;

and we obtain

dH	 = (’t; v	) dt +

(∑
ij

a	; ij’xixj ; v
	

)
dt +

(∑
k

∑
ij

a	; ij1	;k
zi ’xkxj ; v

	

)
dt

+

(∑
k

c̃	1	;k’xk ; v
	

)
dt +

(∑
ij

a	; ijG	
zi’xj ; v

	

)
dt

+ (c̃	G	’; v	) dt + 	7=2∧1 dR̃
	

where E supt6 T |R̃
	
(t)|6C.
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In the same way as above one can check that (33) holds. The passage to the limit
is straightforward by virtue of Lemma 4.3.

It remains to show that the @rst-order terms in the limit equation are equal to zero
or, equivalently, that

〈 Pc1k + Pa∇G〉= 0:

Indeed, De@nitions (48) of G and (49) of 1k lead to

〈 Pc1	;k + Pa∇G〉 = 〈−( PAG)1	;k + Pa∇G〉

= 〈G( PA1	;k + ∇ Pa)〉

= 0:

4.4. Convergence in law of the solution of initial problem – description of the limit
distribution

In this section we establish the convergence of the family {u	} in law. We start by
studying the limit distribution of the exponent from (25). According to Pardoux and
Veretennikov (2001, Theorem 3) the family of integrals

J 	;�
t =

1
	�=2

∫ t

0
〈c(· ; 
s=	�)〉 ds

converges in law in C[0; T ] as 	→ 0, to /Ŵt , where Ŵt is a standard one-dimensional
Brownian motion and / is de@ned as follows:

/2 = 2q∇G·∇G; LG = − 〈c(· ; y)〉:
In fact, this de@nition coincides with that of Theorems 3.1 and 3.2. In particular, the
above result implies that for �¿2

P- lim
	→ 0

1
	

∫ t

0
〈c(· ; 
s=	�)〉 ds= 0

and, therefore,

P- lim
	→ 0

exp
(

1
	

∫ t

0
〈c(· ; 
s=	�)〉 ds

)
= 1: (50)

For �6 2 the family exp(J 	;�
t ) converges in law to the distribution of exp(/Ŵt).

In order to pass to the limit in the product exp(J 	;�
t ) v	, we represent it in the form

exp(J 	;�
t )v	 = exp(J 	;�

t )v̂ + exp(J 	;�
t )(v	 − v̂): (51)

It is easy to see that the map 8(·) �→ 8(·)v̂ is a continuous map from C[0; T ] to -T .
Thus, the @rst term on the right-hand side of (51) converges in law to exp(/Ŵt)v̂ in
-T as 	→ 0.

The second term converges in probability to zero. Indeed, by Prokhorov’s theorem
(Billingsley, 1968), for any :¿0 there is a compact subset K: of C[0; T ] such that

P{exp(J 	;�
· )∈K:}¿ 1 − ::
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For a @nite :-net f1(t); f2(t); : : : ; fN (t) in K:, we construct mutually nonintersecting
sets K:

1 ; K
:
2 ; : : : ; K

:
N such that K:

l belongs to :-neighborhood of fl(·), l= 1; 2; : : : ; N , and
K: =

⋃
l K

:
l . Now one can rewrite the expression studied as follows:

exp(J 	;�
t )(v	 − v̂) = 1exp(J 	; �

t ) =∈K: exp(J 	;�
t )(v	 − v̂)

+
∑
l

1exp(J 	; �
t ) ∈K:

l
fl(t) (v	 − v̂)

+
∑
l

1exp(J 	; �
t ) ∈K:

l
[exp(J 	;�

t ) − fl(t)] (v	 − v̂): (52)

It remains to notice that by (E1) and (E2)

‖1exp(J 	; �
t ) ∈K:

l
[exp(J 	;�

t ) − fl(t)] (v	 − v̂)‖L∞(0;T ;L2(Rn))

+ ‖1exp(J 	; �
t ) ∈K:

l
[exp(J 	;�

t ) − fl(t)] (v	 − v̂)‖L2(0;T ;H 1(Rn))6 c :;

and pass to the limit in (52) @rst as 	→ 0 and then as :→ 0.
Finally, in order to show that the limit distributions obtained satisfy the limit SPDEs

(9) or (12) one can apply Ito’s formula to the product exp(/Ŵt) v̂(t; x) and use the
auxiliary homogenized equations (29) or (43), respectively.

With evident simpli@cations, one can use (50) to pass to the limit in the product:

u	(t; x) = exp
(

1
	

∫ t

0
〈c(· ; 
s=	�)〉 ds

)
v	(t; x)

in the case �¿2, and to show that the functions v	 converge in probability in -T to
the solution v̂ of problem (46).
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Appendix A

In this appendix we prove the properties of the process 
t , of its invariant density,
and of a solution to the Poisson equation (7) which were formulated throughout the
paper, in particular Lemma 2.5 and Proposition 2.6.

Lemma A.1. Under Hypotheses 2:1–2:3, the process 
t governed by the operator L

possesses a unique invariant measure whose density decays at the in=nity faster than
any negative power of |y|.

Proof. The existence and uniqueness of the invariant measure of 
t have been ob-
tained in Veretennikov (1997, Theorem 6) and Pardoux and Veretennikov (2001,
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Proposition 1). The density #(y) of the invariant measure satis@es the stationary
Kolmogorov equation:

L∗#= 0 (A.1)

that is ∑
ij

@2

@yi @yj
(qij(y)#(y)) −

∑
i

@
@yi

(Bi(y)#(y))

=
∑
ij

@
@yi

(
qij(y)

@
@yj

#(y)
)

+
∑
ij

@
@yi

((
@
@yj

qij(y)
)
#(y)

)

−
∑
i

@
@yi

(Bi(y)#(y))

= 0:

Our regularity assumptions of Hypotheses 2:1 and 2:2 imply (see, for instance, Gilbarg
and Trudinger, 1994, Theorem 8:24) the HTolder continuity of #(y) and the following
Harnack inequality (cf. Gilbarg and Trudinger, 1994, Theorem 8:20): in a ball

Qy0 =
{
y;

|y − y0|
(1 + |y0|)�1

6 1
}

we have
maxy∈Qy0

#(y)

miny∈Qy0
#(y)

6C: (A.2)

Indeed, if we make a change of variables

y′ = (1 + |y0|)�1 y= A(y0)y

then in the coordinates y′, Eq. (A.1) reads

∑
ij

@
@y′

i

(
qij

(
y′

A(y0)

)
@
@y′

j
#
(

y′

A(y0)

))

+
∑
ij

@
@y′

i

((
@
@y′

j
qij

(
y′

A(y0)

))
#
(

y′

A(y0)

))

− 1
A(y0)

∑
i

@
@y′

i

(
Bi

(
y′

A(y0)

)
#
(

y′

A(y0)

))
= 0:

In the ball {y′; |y′ − y0|=A(y0)6 2}, the coe2cients of the latter equation admit an
upper bound uniformly in y0. Therefore, in the smaller ball

1
A(y0)

Qy0 = {y′; |y′ − y0|=A(y0)6 1}
we have

max
y′ ∈ 1

A(y0) Qy0

#(y′=A0)

min
y′ ∈ 1

A(y0) Qy0

#(y′=A0)
6C
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and (54) follows. Proposition 1 of Pardoux and Veretennikov (2001) states that, for
any m¿0∫

Qy0

(1 + |y|m)#(y) dy6C(m): (A.3)

From (A.2) and (A.3) we obtain

max
y∈Qy0

#(y)6C1(m)
(1 + |y0|)�1

(1 + |y0|)m =C1(m) (1 + |y0|)�1−m:

Finally, the desired statement follows from the fact that m is an arbitrary positive
number.

Proof of Lemma 2.5. The statement of Lemma 2.5 is similar to that of Theorem
1 of Pardoux and Veretennikov (2001), but in our case the di3usion process under
consideration takes on values on the product of the torus Tn and the whole space Rd

while, in the cited paper, a process with values in Rd is studied.

A simple analysis of the proof of Theorem 1 of Pardoux and Veretennikov (2001)
shows that this statement relies crucially on the estimate of the variance of the di3erence
between invariant measure of a di3usion process and the law of this process issued
from a given point at time 0.

Denote by 8x;y(dx′; dy′) the distribution of the di3usion process (&xt ; 

y
t ) governed

by the operator A+L with the initial conditions &x0 = x, 
y0 =y, x∈Tn, y∈Rd. Then
we have

8x;y(dx′; dy′) =p(t; x; y; x′; y′) dx′ dy′

where a positive continuous density p(t; x; y; x′; y′) exists for all t¿0.
Our aim is to obtain an estimate

var(8x;yt − 8inv)6 (1 + t)−; (1 + |y|)m (A.4)

with arbitrary m¿0, 0¡;¡m=2; here 8inv is the invariant measure of (&t ; 
t):

8inv(dx′; dy′) = #(y′) dx′ dy′: (A.5)

Denote by 8̃yt (dy′) = p̃(t; y; y′) dy′ the distribution of 
yt , t¿0. Since the coe2cients
of L do not depend on x, we have an evident relation∫

Tn
p(t; x; y; x′; y′) dx′ = p̃(t; y; y′): (A.6)

We want to estimate

var(8x;yt − 8inv) =
∫
Tn

∫
Rd

|p(t; x; y; x′; y′) − #(y′)| dx′ dy′

6
∫
Tn

∫
Rd

|p(t; x; y; x′; y′) − p̃(t; y; y′)| dx′ dy′

+
∫
Tn

∫
Rd

|p̃(t; y; y′) − #(y′)| dx′ dy′



82 F. Campillo et al. / Stochastic Processes and their Applications 93 (2001) 57–85

=
∫
Tn

∫
Rd

|p(t; x; y; x′; y′) − p̃(t; y; y′)| dx′ dy′

+
∫
Rd

|p̃(t; y; y′) − #(y′)| dy′:

The second integral of the right-hand side has been estimated in Veretennikov (1997,
Theorem 6), and Pardoux and Veretennikov (2001, Eq. (6)).

We are going to show that the @rst one admits the upper bound:

var(8x;yt − 8̃yt ) =
∫
Tn

∫
Rd

|p(t; x; y; x′; y′) − p̃(t; y; y′)| dx′ dy′6C e−:t ; t¿0:

(A.7)

Denote by Q̃(y; d’(·)) the law of 
y· in the space (C[0; T ])d of the continuous
trajectories in Rd, and by Q(t; x; y; dx′; d’(·)) the joint distribution of (&xt ; {
y· }) in
Tn × (C[0; T ])d. For any trajectory 
y· , the process &x· is governed by the operator

@
@x′i

aij(x′; 

y
t )

@
@x′j

:

Thus

Q(t; x; y; dx′; d’) = g(t; x; x′; ’) dx′ Q̃(y; d’) (A.8)

where the function g(t; x; x′; ’) satis@es the following equation:

@
@t
g(t; x; x′; ’(·)) =

∑
ij

@
@x′i

(
aij(x′; ’(t))

@
@x′j

g(t; x; x′; ’(·))
)
; g|t = 0 = 7(x′ − x):

(A.9)

Now, we need the following lemma:

Lemma A.2. Uniformly in x and ’(·) the following estimate holds:∫
Tn

|g(t; x; x′; ’(·)) − 1| dx′6C e−:t ; :¿0: (A.10)

Proof. By the Harnack inequality (Trudinger, 1968, Theorem 5:1):

maxx′ g(1; x′)
minx′ g(1; x′)

6C (A.11)

where the constant C only depends on the upper and lower ellipticity constant of {aij};
for brevity here and afterwards we omit the arguments x and ’(·) of g.

In view of evident relation:∫
Tn

g(t; x′) dx′ = 1 (A.12)
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Eq. (A.11) implies the upper bound

‖g(1; ·)‖C(Tn)6C:

We want to show that |g(t; x′)−1| decays exponentially as t ↑ ∞. By (A.12), we have∫
Tn(g(t; x′) − 1) dx′ = 0; thus it is su2cient to show that

osc
x′ ∈Tn

g(t0 + 1; x′)6C osc
x′ ∈Tn

g(t0; x′) with 0¡C¡1; (A.13)

for any t0¿1. Making an appropriate linear transformation k1 g + k2 and considering
the fact that (A.13) is invariant with respect to such a transformation, we may assume,
without loss of generality, that maxx′ ∈Tn g(t0; x′) = 1, and minx′ ∈Tn g(t0; x′) = − 1.
Denote g+(t0; x′) = g(t0; x′)∨0, g−(t0; x′) = − (g(t0; x′)∧0), and consider the following
two problems:

@
@t
g̃±(t; x′) =

∑
ij

@
@x′i

(
aij(x′; ’(t))

@
@x′j

g̃±(t; x′)

)
; x′ ∈Tn; t¿ t0;

g̃±(t0; x′) = g±(t0; x′):

Clearly

g(t; x′) = g̃+(t; x′) − g̃−(t; x′): (A.14)

According to the maximum principle:

06 g̃±(t; x′)6 1; t¿ t0: (A.15)

Again, by the Harnack inequality one has

max
x′ ∈Tn

g̃±(t; x′)6C min
x′ ∈Tn

g̃±(t; x′): (A.16)

From (A.14)–(A.16) we derive

max
x′ ∈Tn

g(t0 + 1; x′) = max
x′ ∈Tn

(g̃+(t0 + 1; x′) − g̃−(t0 + 1; x′))

6 max
x′ ∈Tn

g̃+(t0 + 1; x′) − min
x′ ∈Tn

g̃−(t0 + 1; x′)

6 max
x′ ∈Tn

g̃+(t0 + 1; x′) − 1
C

max
x′ ∈Tn

g̃−(t0 + 1; x′):

Similarly,

min
x′ ∈Tn

g(t0 + 1; x′)¿
1
C

max
x′ ∈Tn

g̃+(t0 + 1; x′) − max
x′ ∈Tn

g̃−(t0 + 1; x′):

Subtracting the two last inequalities leads to

osc
x′ ∈Tn

g(t0 + 1; x′) 6
(

1 − 1
C

)(
max
x′ ∈Tn

g̃+(t0 + 1; x′) − max
x′ ∈Tn

g̃−(t0 + 1; x′)
)

6
(

1 − 1
C

)
osc

x′ ∈Tn
g(t0 + 1; x′):

It remains to put /= log(1 − 1=C).



84 F. Campillo et al. / Stochastic Processes and their Applications 93 (2001) 57–85

We can, now, return to the proof of Lemma 2.5.
By virtue of Lemma A.2 we obtain the following upper bound:

var(Q(t; x; y; dx′; d’) − Q̃(y; d’) dx′)

6
∫

(C[0;T ])d

∫
Tn

|g(t; x; x′; ’(·)) − 1|Q̃(y; d’) dx′

6C e−:t
∫

(C[0;T ])d
Q̃(y; d’)

= C e−:t

which, in turn, implies the estimate

var(8x;yt (dx′; dy′)−8yt (dy′)dx′)6var(Q(t; x; y; dx′; d’)−Q̃(y; d’)dx′)6C e−:t :

(A.17)

In order to justify the @rst inequality here it su2ces to note that if we reduce in the
second variance the collection of test subsets and consider instead of all Borel subsets
of (C[0; T ])d only the collection of cylindrical subsets of the form

{’(·) ; ; ’(t)∈G}
where G is a Borel set in Rd, then we will obtain the @rst variance in (A.17). Estimate
(A.4) is now straightforward. Now, let f(x; y) satisfy the estimate

|f(x; y)|6C (1 + |y|)�
with some �. From the inequality of item A of the proof of Pardoux and Veretennikov
(2001, Theorem 1), it follows that the function

u(x; y) =
∫ ∞

0
dt
∫
Tn

∫
Rd

8x;yt (dx′; dy′)f(x′; y′)

is well-de@ned and

|u(x; y)|6C(m) (1 + |y|)m
for any m¿2 ∨ �. Moreover,

lim
N↑∞

sup
x;y

(
(1 + |y|)−m

∣∣∣∣u(x; y) −
∫ N

0
dt
∫
Tn

∫
Rd

8x;yt (dx′; dy′)f(x′; y′)
∣∣∣∣
)

= 0:

Furthermore, items C and D of the said proof of Pardoux and Veretennikov (2001)
only rely on probabilistic representation of solutions of Cauchy problem for a parabolic
operator and Dirichlet problem for an elliptic operator, and on local regularity properties
of these equations. Thus, all the arguments apply in our case and we have

(A + L∗)u(x; y) =f(x; y);

which ends the proof of Lemma 2.5.

Proof of Proposition 2.6. As was shown in Pardoux and Veretennikov (2001, proof
of Proposition 2)

E sup
06 s6 t

|
xs |p6C(p) (1 + |x|)p−1=2
√
t
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for any x∈Rd, p¿0, t¿0. By introducing t =T=	� with T¿0 @xed, we get

E sup
06 s6 T

|
xs=	� |p6
√
T C(p) (1 + |x|)p−1=2 	−�=2:

Multiplying by 	� gives

E	� sup
06 s6 T

|
xs=	� |p6
√
T C(p) (1 + |x|)p−1=2 	�=2:

For the stationary process 
s distributed with the invariant law �inv we @nd

E�inv

(
	� sup

06 s6 T
|
s=	� |p

)
6 	�=2

√
T C(p)

∫
Rd

(1 + |x|)p−1=2 �inv(dx)

6
√
T C1(p) 	�=2:

Here Proposition 2:5 has also been used. This implies the required statement for �¿ �.
In case �¡� we have by HTolder inequality

E�inv

(
	� sup

06 s6 T
|
s=	� |p

)
6
(
E�inv

(
	� sup

06 s6 T
|
s=	� |

�
� p
))�=�

→
	↓0

0:
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