ASYMPTOTIC BEHAVIOR OF A SOLUTION TO A BOUNDARY VALUE PROBLEM IN A PERFORATED DOMAIN WITH OSCILLATING BOUNDARY $\left.{ }^{\dagger} \ddagger\right)$

A. G. Belyaev, A. L. Pyatnitskǐ̆, and G. A. Chechkin

UDC 517.946

Introduction

Many contemporary problems of materials technology require studying the macroscopic behavior of micro-inhomogeneous perforated media and bodies with rough surfaces.

The aim of the present article is to consider one model problem for the Poisson equation in a perforated domain with a very rapidly oscillating outer boundary in the presence of small dissipation on the boundaries of holes.

In the recent years many mathematical articles were devoted to asymptotic analysis of problems in perforated domains. Various results on averaging were obtained for periodic, almost periodic. and random structures. We mention the articles [1-4] wherein the reader can find a detailed bibliography: Of particular interest is the most practically realistic case in which we have small dissipation on the boundaries of the holes. The corresponding mathematical statement involves the third boundary condition (the Fourier condition) with a small parameter; the periodic case was elaborated in [5- 8].

Another direction of research, dealing with equations in domains with very rapidly oscillating boundary, is well developed too (see, for instance, [2, 3, 9-17]).

The combination of these two phenomena, perforation and oscillation of the outer boundary. is natural but leads to additional mathematical difficulties. In the present article we study a particular case of such medium in which perforation as well as oscillation of the boundary are locally periodic and their structures are assumed to be coordinated. Studying locally periodic perforation, we face another difficulty: the geometry of cavities is not fixed. Using the method of compensated compactness [18] or the method of two-scale convergence [19], we can construct a limit problem but the methods provide no estimates for the error. In the present article we use the technique of asymptotic expansion [20.21] which requires the data to be regular but enables us to estimate the convergence rate.

In § 1 we introduce the necessary notations, construct a family of domains which depends on a small positive parameter ε, and pose the problem to be studied. $\S 2$ is devoted to constructing the first terms of the formal interior asymptotic expansion for a solution. The technical results of $\S 3$ make it possible to justify this asymptotic expansion and estimate the error. Namely, by Theorem 1 of $\S 4$. two terms of the interior asymptotic expansion guarantee an estimate of order $\sqrt{\varepsilon}$ in the H^{1}-norm. In $\S 5$, we construct a boundary layer corrector and so improve the estimate for the residual, making the former of order ε. This is the content of Theorem 2 .

§ 1. Statement of the Problem

We start with the definition of a perforated domain with oscillating boundary. Let $\Omega \subset \mathbf{R}^{d} \cap$ $\left\{x \mid x_{d}>0\right\}, d \geq 2$, be a smooth bounded domain whose boundary has a nontrivial flat part $\Gamma_{1}=\partial \Omega \cap\left\{x \mid x_{d}=0\right\}$. We suppose that the $(d-1)$-dimensional interior $\stackrel{\circ}{\Gamma}_{1}$ of Γ_{1} is nonempty.

[^0][^1]We wish to determine a locally periodic interior perforation in such a way that it vanishes in a neighborhood of $\Gamma_{2}=\partial \Omega \backslash \Gamma_{1}$ and is purely periodic in a neighborhood of Γ_{0}, where Γ_{0} is a compact subset of Γ_{1}. To this end. we introduce a $C_{0}^{x}\left(\mathbf{R}^{d}\right)$-truncator $\Phi(x)$ such that $0 \leq \Phi(x) \leq 1 . \Phi(x)=0$ in a neighborhood of Γ_{2}. and $\Phi(x)=1$ in a neighborhood of Γ_{0} and fix an open set Q with smooth boundary such that $\bar{Q} \subset \square=\left\{\xi \mid-1 / 2<\xi_{j}<1 / 2, j=1, \ldots, d\right\}$. Afterwards, denoting the 1-periodic extension of the characteristic function of Q by $\chi Q(\xi)$ and denoting the function $\chi Q(\xi / \Phi(x))$ by $\backslash(x . \xi)$. we define the domain $\Omega \frac{\varepsilon}{\varepsilon}=\Omega \backslash\left\{x \mid x_{d}>\varepsilon / 2, \chi(x, x / \varepsilon)=1\right\}$.

Fig. 1

We now furnish the so-constructed domain Ω_{1}^{ϵ} with an oscillating boundary (see Figs. 1, 2). To this end, given a smooth nonpositive function. $F(\hat{x}, \hat{\xi}), \hat{x}=\left(x_{1}, \ldots, x_{d-1}\right), \hat{\xi}=\left(\xi_{1}, \ldots, \xi_{d-1}\right)$, 1-periodic in $\hat{\xi}$ and such that $\operatorname{supp}_{x} F(\hat{x}, \hat{\xi}) \equiv \overline{\{x \mid F(\hat{x}, \hat{\xi})<0\}} \subset \Gamma_{0}$ for all $\hat{\xi}$, we put

$$
\Pi_{\varepsilon}=\left\{x \in \mathbf{R}^{d}: \hat{x} \in \Gamma_{1}, \varepsilon F(\hat{x}, \hat{x} / \varepsilon)<x_{d} \leq 0\right\}
$$

and finally define our perforated domain as follows: $\Omega^{\varepsilon}=\Omega_{1}^{\epsilon} \cup \Pi_{\epsilon}$. We also use the notations

$$
Q_{\varepsilon}=\{x \mid \chi(x / \varepsilon)=1\}, \Omega^{\prime}=\{x \in \Omega \mid \Phi(x)>0\}, \Omega^{\prime \prime}=\Omega \backslash \overline{\{x \in \Omega \mid \Phi(x)<1\}},
$$

$$
\Omega_{\varepsilon}^{\prime}=\Omega^{\prime} \cap \Omega_{1}^{\varepsilon}, \quad \Omega_{\varepsilon}^{\prime \prime}=\Omega^{\prime \prime} \cap \Omega_{1}^{\varepsilon}, \quad \omega=\mathbf{R}^{d} \backslash \overline{\{\xi \mid \chi Q(x, \xi)=1\}}
$$

Fig. 2

Arcording to the above construction the boundary $\partial \Omega^{\varepsilon}$ consists of Γ_{2} and $\Gamma_{1}^{\varepsilon}=\left\{x \in \Gamma_{1}, x_{d}=\right.$ $\varepsilon F(\hat{x}, \hat{x} / \varepsilon)\}$, forming the outer boundary, and of the boundary $S_{\varepsilon} \subset \Omega$ of the cavities, $S_{\varepsilon}=\left(\partial \Omega^{\varepsilon}\right) \cap \Omega$.

We study the asymptotic behavior of a solution $u_{\varepsilon}(x)$ to the following boundary vaiue problem in the domain Ω^{ε} as $\varepsilon \rightarrow 0$:

$$
\begin{gather*}
-\Delta u_{\varepsilon}=f(x) \text { in } \Omega^{\varepsilon} . \quad \frac{\partial u_{\varepsilon}}{\partial \nu_{\varepsilon}}+p(\hat{x} . \hat{x} / \varepsilon) u_{\varepsilon}=g(\hat{x}, \hat{x} / \varepsilon) \text { on } \Gamma_{1}^{\varepsilon}, \\
\frac{\partial u_{\varepsilon}}{\partial \lambda^{\prime}}=0 \quad \text { on } \quad \Gamma_{2} . \quad \frac{\partial u_{\varepsilon}}{\partial n_{\varepsilon}}+\varepsilon^{\alpha} q(x, x / \varepsilon) u_{\varepsilon}=0 \text { on } S_{\varepsilon}, \tag{1}
\end{gather*}
$$

where ν_{ε} is the outward normal of $\Gamma_{1}^{\varepsilon}, n_{\varepsilon}$ is the inward normal to the boundary of the "holes." $\boldsymbol{\lambda}^{-1}$ is the outward normal of $\Gamma_{2}, p(\hat{x}, \hat{\xi})$ and $g(\hat{x}, \hat{\xi})$ are positive functions 1 -periodic in $\hat{\xi}$, and $q(x, \xi)$ is a function 1-periodic in ξ. Moreover, we suppose that the functions p, g, and q are sufficiently smooth. Also, we suppose that $\operatorname{supp}_{x}(p(\hat{x}, \hat{\xi}))$ and $\operatorname{supp}_{x}(g(\hat{x}, \hat{\xi}))$ lie in Γ_{0} for all $\hat{\xi}$.

Definition. A function $u_{\varepsilon} \in H^{1}\left(\Omega^{\varepsilon}\right)$ is a solution to (1) if the integral identity

$$
\begin{gather*}
\int_{\Omega_{\Omega^{\varepsilon}}} \nabla u_{\varepsilon}(x) \nabla v(x) d x+\varepsilon^{\alpha} \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{\varepsilon}(x) v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{\epsilon}(x) v(x) d s \\
=\int_{\Omega^{\varepsilon}} f(x) v(x) d x+\int_{\Gamma_{1}^{\varepsilon}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s \tag{2}
\end{gather*}
$$

holds for every function $v \in H^{1}\left(\Omega^{\epsilon}\right)$.
Remark. In the present article, we study the critical case of $\alpha=1$. The other cases are the topic of independent research.

§2. The Formal Averaging Procedure

In this section we construct the first "locally periodic" terms of the formal asymptotic expansion and then write down the limit problem. Towards this end, we represent a solution $u_{\varepsilon}(x)$ to (1) as the asymptotic series

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}(x)+\varepsilon u_{1}(x, x / \varepsilon)+\varepsilon^{2} u_{2}(x . x / \varepsilon)+\varepsilon^{3} u_{3}(x, x / \varepsilon)+\ldots \tag{3}
\end{equation*}
$$

Inserting (3) in (1) and using the obvious relation

$$
\frac{\partial \zeta}{\partial x}(x, x / \varepsilon)=\left.\left(\frac{\partial \zeta}{\partial x}(x, \xi)+\frac{1}{\varepsilon} \frac{\partial \zeta}{\partial \xi}(x, \xi)\right)\right|_{\xi=x / \varepsilon}
$$

after simple transformations we obtain the following formal equality:

$$
\begin{gather*}
-f(x)=\Delta_{x} u_{\varepsilon}(x) \cong \Delta_{x} u_{0}(x)+\left.\varepsilon\left(\Delta_{x} u_{1}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.2\left(\nabla_{x}, \nabla_{\xi} u_{1}(x, \xi)\right)\right|_{\xi=x / \varepsilon} \\
+\left.\frac{1}{\xi}\left(\Delta_{\xi} u_{1}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon^{2}\left(\Delta_{x} u_{2}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.2 \varepsilon\left(\nabla_{x}, \nabla_{\xi} u_{2}(x, \xi)\right)\right|_{\xi=x / \varepsilon} \\
+\left.\left(\Delta_{\xi} u_{2}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon^{3}\left(\Delta_{x} u_{3}(x, \xi)\right)\right|_{\xi=x / \varepsilon} \\
+\left.2 \varepsilon^{2}\left(\nabla_{x}, \nabla_{\xi} u_{3}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon\left(\Delta_{\xi} u_{3}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\ldots \tag{4}
\end{gather*}
$$

Similarly, inserting (3) in the boundary conditions of (1), we obtain

$$
\begin{gather*}
0=\frac{\partial u_{\varepsilon}}{\partial n_{\varepsilon}}+\varepsilon q(x, x / \varepsilon) u_{\varepsilon} \cong\left(\nabla_{x} u_{0}, n_{\xi}\right)+\varepsilon q(x, x / \varepsilon) u_{0}+\varepsilon\left(\nabla_{x} u_{1}, n_{\varepsilon}\right) \\
+\left(\left.\nabla_{\xi} u_{1}\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\varepsilon^{2} q(x, x / \varepsilon) u_{1}+\varepsilon^{2}\left(\nabla_{I} u_{2}, n_{\varepsilon}\right)+\tilde{\varepsilon}\left(\left.\nabla_{\xi} u_{2}\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) \\
+\varepsilon^{3} q(x, x / \xi) u_{2}+\varepsilon^{3}\left(\nabla_{x} u_{3}, n_{\varepsilon}\right)+\varepsilon^{2}\left(\left.\nabla_{\xi} u_{3}\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\varepsilon^{4} q(x, x / \varepsilon) u_{3}+\ldots \tag{5}
\end{gather*}
$$

on S_{5}.

Fig. 3

Observe that the normal vector n_{s} depends on x and r / ε in $\Omega^{\prime} \backslash \Omega^{\prime \prime}$ and only on x / ξ in $\Omega^{\prime \prime}$. Considering x and $\xi=x / \varepsilon$ to be independent variables as usual, we write. n_{ε} in $\Omega^{\prime} \backslash \Omega^{\prime \prime}$ as

$$
n_{\xi}(x, x / \varepsilon)=\left.\check{n}(x, \xi)\right|_{\xi=x / \varepsilon}+\left.\varepsilon n_{\varepsilon}^{\prime}(x, \xi)\right|_{\xi=x / \varepsilon} .
$$

where \bar{n} is the normal of $S(x)=\partial\{\xi \mid \xi / \Phi(x) \in Q\}$ and $n_{\varepsilon}^{\prime}=$ $n^{\prime}+O(\varepsilon)$. Simple calculations show that n^{\prime} is 1-periodic in ξ and

$$
n^{\prime}=\left(\tilde{n}, \frac{\xi}{|\xi|}\right)\left(\nabla_{x} \Phi(x)-\left(\nabla_{x} \Phi(x), \tilde{n}\right) \tilde{n}\right), \quad \xi \in \square .
$$

Equating the terms of order ε^{-1} in (4) and of order ε^{0} in (5), we obtain the following auxiliary problem (see Fig. 3):

$$
\begin{gather*}
\Delta_{\xi} u_{1}(x, \xi)=0 \text { in } \square \cap \omega, \\
\frac{\partial u_{1}(x, \xi)}{\partial \tilde{n}}=-\left(\nabla_{x}\left(u_{0}(x)\right), \tilde{n}\right) \text { on } S(x) . \tag{6}
\end{gather*}
$$

This problem must be solved in the space of functions l-periodic in ξ with x a parameter. It represents a standard problem on a "cell" which results from averaging in a perforated domain in the case of the Neumann conditions on the boundary of the holes. It is clear that the solvability condition

$$
\int_{S}\left(\nabla_{x} u_{0}(x), \tilde{n}(\xi)\right) d \sigma=0
$$

of the problem (6) is satisfied and the corresponding solution gives the first "interior" corrector in (3).
Our next step consists in equating all terms of order ε^{0} in (4) and of order ε^{1} in (5). This leads to the problem

$$
\begin{gather*}
\Delta_{\xi} u_{2}(x, \xi)=-f(x)-\Delta_{x} u_{0}(x)-2\left(\nabla_{\xi}, \nabla_{x} u_{1}(x, \xi)\right) \text { in } \square \cap \omega, \tag{1}\\
\frac{\partial u_{2}(x, \xi)}{\partial \tilde{n}}=-\left(\nabla_{x} u_{1}(x, \xi), \tilde{n}\right)-\left(\nabla_{\xi} u_{1}(x, \xi), n^{\prime}\right) \\
-\left(\nabla_{x} u_{0}(x), n^{\prime}\right)-q(x, \xi) u_{0}(x) \text { on } S(x) .
\end{gather*}
$$

A 1-periodic (in ξ) solution to the last problem is the second term of the interior asymptotic expansion for $u_{\varepsilon}(x)$.

It is natural to represent a solution $u_{1}(x, \xi)$ to (6) as

$$
\begin{equation*}
u_{1}(x, \xi)=\left(\nabla_{x} u_{0}(x), M(x, \xi)\right), \tag{8}
\end{equation*}
$$

where the 1-periodic vector-function $M(x, \xi)=\left(M_{1}(x, \xi), \ldots, M_{d}(x, \xi)\right)$ satisfies the problem

$$
\begin{equation*}
\Delta_{\xi} M_{i}(x, \xi)=0 \text { in } \square \cap \omega, \quad \frac{\partial M_{i}(x, \xi)}{\partial \tilde{n}}=-\tilde{n}_{i} \text { on } S(x) . \tag{9}
\end{equation*}
$$

Now, we can rewrite (7) as follows:

$$
\begin{align*}
\Delta_{\xi} u_{2}(x, \xi)= & -f(x)-\Delta_{x} u_{0}(x)-2 \sum_{i, j=1}^{d} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \\
& -2 \sum_{i . j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial^{2} M_{i}(x ; \xi)}{\partial \xi_{j} \partial x_{j}} \text { in } \square \cap \omega, \tag{10}\\
\frac{\partial u_{2}(x, \xi)}{\partial \dot{n}}= & -\sum_{i . j=1}^{d} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} M_{i}(x, \xi) \dot{n}_{j}-\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial x_{j}} \tilde{n}_{j} \\
& -q(x, \xi) u_{0}(x)-\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} n_{j}^{\prime}-\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} n_{i}^{\prime} \text { on } S(x) .
\end{align*}
$$

Writing down the solvability condition for (10) in the space of 1 -periodic functions, we obtain the equation

$$
\begin{gather*}
\int_{\square \cap \omega}\left(f(x)+\Delta_{x} u_{0}(x)+2 \sum_{i, j=1}^{d} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right. \\
\left.+2 \sum_{i . j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial^{2} M_{i}(x, \xi)}{\partial \xi, \partial x_{j}}\right) d \xi=\int_{S}\left(\sum_{i, j=1}^{d} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} M_{i}(x, \xi) \dot{n}_{j}\right. \\
+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial x_{j}} \tilde{n}_{j}+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} n_{j}^{\prime} \\
\left.+\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} n_{i}^{\prime}+q(x, \xi) u_{0}(x)\right) d \sigma . \tag{11}
\end{gather*}
$$

By the Stokes formula, (11) implies the equality

$$
\begin{gather*}
|\square \cap \omega| \Delta_{x} u_{0}(x)+\sum_{i, j=1}^{d}\left\langle\frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}} \\
+\sum_{i, j=1}^{d}\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}+|\square \cap \omega| f(x)=Q(x) u_{0}(x)+\sum_{i=1}^{d} U_{i}(x) \frac{\partial u_{0}(x)}{\partial x_{i}}
\end{gather*}
$$

which is the limit equation in Ω. Here $\langle\cdot\rangle$ stands for integration over the set $\square \cap \omega, Q(x)=\int_{S} q(x, \xi) d \sigma$. and

$$
U_{i}(x)=\int_{S}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} n_{j}^{\prime}+n_{i}^{\prime}\right) d \sigma
$$

Inspect the function $U_{i}(x)$ in more detail. Fortunately, there is no need to calculate $U_{i}(x)$. Instead, recalling that the operators of the original problem are selfadjoint and using convergence of the corresponding bilinear forms, we infer that the G-limit operator is selfadjoint by necessity. Thus, the limit equation (12) takes the form

$$
\begin{equation*}
\sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right)+|\square \cap \omega| f(x)=Q(x) u_{0}(x) \tag{13}
\end{equation*}
$$

consequently,

$$
\begin{equation*}
U_{i}(x)=\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}}\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle-\sum_{j=1}^{d}\left\langle\frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}}\right\rangle \tag{14}
\end{equation*}
$$

It is clear that $\left\langle\delta_{i j}+\frac{\partial M_{i}\left(r_{,} \xi\right)}{\partial \xi_{j}}\right\rangle$ is a smooth matrix equal to a constant in $\Omega^{\prime \prime}$ and to the identity in $\Omega \backslash \Omega^{\prime}$. Arguing as in [3]. we can moreover verify that this matrix is positive definite.

We have thus found the limit equation inside the domain. Applying a similar technique, we can derive boundary conditions for the limit problem (see also $[13,14.16,17]$). Consequently, we arrive at
the following averaged problem:

$$
\begin{gather*}
\sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right)-Q(x) u_{0}(x)=-|\square \cap \omega| f(x) \text { in } \Omega \\
\sum_{i=1}^{d}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}+P(\hat{x}) u_{0}(x)=G(\hat{x}) \text { on } \Gamma_{1} \tag{15}\\
\frac{\partial u_{0}(x)}{\partial \mathcal{N}}=0 \text { on } \Gamma_{2}
\end{gather*}
$$

where

$$
P(\hat{x})=\int_{T} p(\hat{x}, \hat{\xi}) \sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}} d \hat{\xi}, \quad G(\hat{x})=\int_{T} g(\hat{x}, \hat{\xi}) \sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}} d \hat{\xi},
$$

and $T=\left\{\xi: 0<\xi_{j}<1, j=1, \ldots, d-1\right\}$.
The integral identity for (13) has the shape

$$
\begin{align*}
& \int_{\Omega}\left(\sum_{i, j=1}^{d}\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial v(x)}{\partial x_{j}}+Q(x) u_{0}(x) v(x)\right) d x \\
& +\int_{\Gamma_{1}} P(\hat{x}) u_{0}(x) v(x) d \hat{x}=\int_{\Omega}|\square \cap \omega| f(x) v(x) d x+\int_{\Gamma_{1}} G(\hat{x}) v(x) d \hat{x} \tag{16}
\end{align*}
$$

for all functions $v \in H^{1}(\Omega)$.
REMARK 2. According to the above construction, the functions $u_{0}(x)$ and $M(x, x / \varepsilon)$ are defined not in the whole of Ω^{ϵ} and $M(x, x / \varepsilon)$ is purely periodic in a neighborhood of Γ_{0}. Application of the symmetric extension technique [22] enables us to extend $u_{0}(x)$ to some neighborhood Π_{ε} and $M(x, \xi)$ to the interior of the "holes" so as to preserve regularity of the functions. We use the same notations for the extended functions.

In particular, in Theorem 1 below, $u_{0}(x)$ belongs to $C^{3}(\Omega)$ due to the standard elliptic estimates. Thus, $u_{0}(x)$ can be extended to Ω^{ε} as a C^{3}-function.

The limit behavior of a solution to the problem (1) is described by the following assertion:
Theorem 1. Assume $f(x) \in C^{1}\left(\mathbf{R}^{d}\right)$ and suppose that $g(\hat{x}, \hat{\xi}), p(\hat{x}, \hat{\xi})$, and $q(x, \xi)$ are sufficiently smooth functions. Also, suppose that $p(\hat{x}, \hat{\xi})$ and $q(x, \xi)$ are nonnegative and at least one of them is strictly positive in at least one point. Then the problem (1) has a unique solution for all sufficiently small ε and the following estimate holds:

$$
\begin{equation*}
\left\|u_{0}+\varepsilon u_{1}-u_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \leq K_{1} \sqrt{\varepsilon} \tag{1i}
\end{equation*}
$$

where u_{0} and u_{1} are solutions to the problems (13) and (6) and K_{1} is independent of ε.
Remark 3. In the statement of Theorem 1, the conditions $q(x, \xi) \geq 0$ and $p(\hat{x}, \hat{\xi}) \geq 0$ can be replaced with the weaker conditions $Q(x) \geq 0$ and $P(\hat{x}) \geq 0$.

§ 3. Preliminary Lemmas

This section is devoted to various technical assertions to be used below. Some of them are proven in [17] (see also [14]). We omit their proofs.

Lemma 1. The inequalities

$$
\begin{gather*}
\|v(\hat{x}, \bar{\varepsilon} F(\hat{x}, \hat{x} / \hat{\varepsilon}))-v(\hat{x}, 0)\|_{L_{2}\left(\Gamma_{1}\right)} \leq C_{1} \sqrt{\varepsilon}\|\cdot\|_{H^{1}\left(\Omega^{s}\right)} \tag{18}\\
\|v\|_{L_{2}\left(\Pi_{\epsilon}\right)} \leq C_{2} \sqrt{\hat{E}}\|v\|_{H^{1}\left(\Omega^{c}\right)} \tag{19}
\end{gather*}
$$

are valid for every $v \in H^{1}\left(\Omega^{\varepsilon}\right)$.
It is convenient to choose the coordinates $\hat{x}=\left(x_{1}, \ldots, x_{d-1}\right)$ on Γ_{1}^{ϵ}. The ($d-1$)-dimensional volume element on Γ_{1}^{ϵ} is calculated in the following lemma:

Lemma 2. Let $d s$ stand for the $(d-1)$-dimensional volume element of Γ_{1}^{ε}. Then

$$
d s=\sqrt{1+\left.\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}\right|_{\xi=\hat{x} / \epsilon}} d \hat{x}(1+O(\varepsilon))
$$

The following assertion is a straightforward consequence of the Sobolev embedding theorem (see, for instance, [23]).

Assertion 3. The inequality

$$
\left|\int_{\Gamma_{1}} u v d \dot{\hat{x}}\right| \leq C_{3}\|u\|_{H^{1 / 2}\left(\Gamma_{1}\right)}\|v\|_{H^{1 / 2}\left(\Gamma_{1}\right)}
$$

holds uniformly in $u, v \in H^{1 / 2}\left(\Gamma_{1}\right)$.
The uniform (in ε) coerciveness of the bilinear form in (2) is the topic of Lemma 4 which in particular implies that the problem (1) is well-posed.

Lemma 4. If the conditions of Theorem 1 are satisfied then the inequality

$$
\int_{\Omega^{\varepsilon}}|\nabla v|^{2} d x+\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) v^{2} d s+\int_{\Gamma_{1}^{e}} p(\hat{x}, \hat{x} / \varepsilon) v^{2} d s \geq C_{4}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}^{2}
$$

holds for all $v \in H^{1}\left(\Omega^{\varepsilon}\right)$, with C_{4} a constant independent of ε.
The following assertion will be used below systematically:
Lemma 5. Suppose that $h(\hat{x}, \hat{\xi})$ is a Lipschitz function 1-periodic in ξ and such that

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} h(\hat{x}, \hat{\xi}) d \hat{\xi} \equiv 0 \tag{20}
\end{equation*}
$$

Then the estimate

$$
\begin{equation*}
\left|\int_{\Gamma_{1}} h(\hat{x}, \hat{x} / \varepsilon) u(\hat{x}) v(\hat{x}) d \hat{x}\right| \leq C_{5} \sqrt{\varepsilon}\|u\|_{H^{1 / 2}\left(\Gamma_{1}\right)}\|v\|_{H^{1 / 2}\left(\Gamma_{1}\right)} \tag{21}
\end{equation*}
$$

is valid for arbitrary functions $u . v \in H^{1 / 2}\left(\Gamma_{1}\right)$.
Remark 4. For smooth functions $h(\hat{x}, \hat{\xi})$ in the two-dimensional case. the assertion was proven in [14] and independently in [24] (see also [25]). A proof for a Lipschitz function is given in [17].

Lemma 6. The following estimates are valid:

$$
\begin{align*}
\left|\int_{\Gamma_{\mathrm{i}}^{c}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s-\int_{\Gamma_{1}} G(\hat{x}) v(\hat{x}, 0) d \hat{x}\right| & \leq C_{6} \sqrt{\varepsilon}\|v\|_{H^{\mathrm{l}}\left(\Omega^{c}\right)} \tag{22}\\
\left|\int_{\Gamma_{1}^{\mathrm{i}}} p(\hat{x}, \hat{x} / \xi) v(x) u(x) d s-\int_{\Gamma_{1}} P(\hat{x}) v(\hat{x}, 0) u(\hat{x}, 0) d \hat{x}\right| & \leq C_{7} \sqrt{\varepsilon}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}\|u\|_{H^{1}\left(\Omega^{s}\right)}, \tag{23}
\end{align*}
$$

where

$$
P(\hat{x})=\int_{T} p(\hat{x}, \hat{\xi}) \sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}} d \hat{\xi}, \quad G(\hat{x})=\int_{T} g(\hat{x}, \hat{\xi}) \sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}} d \hat{\xi} .
$$

The following assertion is essentially a modified version of Lemma 5 .
Lemma 7. If

$$
\begin{equation*}
\frac{1}{|\square \cap \omega|} \int_{\square \cap \omega} Q(x) d \xi-\int_{S} q(x, \xi) d \sigma \equiv 0 \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) v(x) d x-\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) v(x) d s\right| \leq C_{8} \varepsilon\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \tag{25}
\end{equation*}
$$

for every $v(x) \in H^{1}\left(\Omega^{\epsilon}\right)$, with C_{8} a constant independent of ε.
Proof. It follows from (24) that the problem

$$
\begin{equation*}
\Delta_{\xi} \Psi(x, \xi)=\frac{1}{|\square \cap \omega|} Q(x) \text { in } \square \cap \omega, \quad \frac{\partial \Psi}{\partial n}=q(x, \xi) \text { on } S \tag{26}
\end{equation*}
$$

has a solution 1-periodic in ξ. Moreover, this solution is unique up to an additive constant.
Multiply (26) by a function $v(x) \in H^{1}\left(\Omega^{\varepsilon}\right)$ and integrate over the domain $\Omega_{\varepsilon}^{\prime}$. Integrating the left-hand side of the so-obtained formula by parts, we obtain

$$
\begin{gather*}
\left|\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) v(x) d x-\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) v(x) d s\right| \\
=\left|\int_{\Omega_{\varepsilon}^{\prime}} \Delta_{\xi} \Psi(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x-\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) v(x) d s \mid \\
=\mid \varepsilon \int_{\Omega_{\varepsilon}^{\prime}}\left(\nabla_{x}\left[\left.\nabla_{\xi} \Psi(x, \xi)\right|_{\xi=x / \varepsilon}\right]-\left.\left(\left(\nabla_{x}, \nabla_{\xi}\right) \Psi(x, \xi)\right)\right|_{\xi=x / \varepsilon}\right) v(x) d x \\
-\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) v(x) d s|\leq \varepsilon| \int_{\Omega_{\varepsilon}^{\prime}}\left(\left.\left(\nabla_{\xi} \Psi(x, \xi)\right)\right|_{\xi=x / \varepsilon}, \nabla_{x} v(x)\right) d x \mid \\
\quad+\varepsilon\left|\int_{\Omega_{\varepsilon}^{\prime}}\left(\left(\nabla_{x}, \nabla_{\xi}\right) \Psi(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d x \mid \\
+\varepsilon^{2}\left|\int_{S_{\varepsilon}}\left(\left.\left(\nabla_{\xi} \Psi(x, \xi)\right)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}^{\prime}\right) v(x) d s\right| \leq C_{\delta} \varepsilon\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} . \tag{27}
\end{gather*}
$$

The lemma is proven.
The following lemma enables us to neglect the right-hand side of (1) in the thin layer Π_{ε} without worsening the estimate.

Lemma 8. Let y_{ε} be a solution to the problem

$$
\begin{gather*}
-\Delta y_{\varepsilon}=h^{\varepsilon}(x) \text { in } \Omega^{\varepsilon}, \quad \frac{\partial y_{\varepsilon}}{\partial \nu_{\varepsilon}}+p(\hat{x}, \hat{x} / \varepsilon) y_{\varepsilon}=0 \text { on } \Gamma_{1}^{\varepsilon} \\
\frac{\partial y_{\varepsilon}}{\partial n_{\varepsilon}}+\varepsilon q(x, x / \varepsilon) y_{\varepsilon}=0 \text { on } S_{\varepsilon}, \quad \frac{\partial y_{\varepsilon}}{\partial \mathcal{N}}=0 \text { on } \Gamma_{2} \tag{28}
\end{gather*}
$$

where $h^{\varepsilon}(x)=f(x)$ for $x \in \Pi_{\varepsilon}$ and 0 otherwise. Then

$$
\begin{equation*}
\left\|y_{\varepsilon}\right\|_{H^{1}\left(\Omega^{c}\right)} \leq C_{9} \varepsilon . \tag{29}
\end{equation*}
$$

Proof. Put

$$
H^{\varepsilon}(x)=\int_{\epsilon F(\hat{\tilde{x}}, \hat{\mathbf{x}} / \epsilon)}^{x_{d}} h^{\varepsilon}(x) d x_{d} .
$$

It is easy to see that $H^{\varepsilon}=0$ on Γ_{1}^{ε} and $\left|H^{\varepsilon}(x)\right| \leq C_{10} \varepsilon$ in Π_{ε}. The integral identity for the problem (28) has the shape

$$
\begin{equation*}
\int_{\Omega^{\varepsilon}}\left(\nabla y_{\varepsilon}, \nabla \varphi\right) d x+\int_{\Gamma_{1}^{e}} p(\hat{x}, \hat{x} / \varepsilon) y_{\epsilon} \varphi d s+\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) y_{\varepsilon} \varphi d s=\int_{\Omega^{\varepsilon}} h^{\varepsilon}(x) \varphi(x) d x \tag{30}
\end{equation*}
$$

for all $\varphi \in H^{1}\left(\Omega^{\epsilon}\right)$. Extend y_{ε} to the "holes" so as to have

$$
\begin{equation*}
\left\|\dot{y}_{\varepsilon}\right\|_{H^{1}\left(\Omega \cup \Pi_{\varepsilon}\right)} \leq C_{11}\left\|y_{\varepsilon}\right\|_{H^{1}\left(\Omega_{\epsilon}\right)} \tag{31}
\end{equation*}
$$

where \dot{y}_{ε} denotes the extended function. Putting $\varphi=\dot{y}_{\varepsilon}$ in (30), we obtain

$$
\begin{equation*}
\int_{\Omega^{\varepsilon}}\left|\nabla \tilde{y}_{\varepsilon}\right|^{2} d x+\int_{\Gamma_{\mathrm{I}}^{c}} p(\hat{x}, \hat{x} / \varepsilon) \tilde{y}_{\epsilon}^{2} d s+\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) \tilde{y}_{\varepsilon}^{2} d s=\int_{\Omega^{\varepsilon}} \frac{\partial H^{\varepsilon}}{\partial x_{d}} \tilde{y}_{\varepsilon} d x . \tag{32}
\end{equation*}
$$

Integrating the right-hand side of (32) by parts and recalling the boundary condition in (28), from (31) and Lemma 4 we infer that

$$
\begin{aligned}
\left\|y_{\varepsilon}\right\|_{H^{1}\left(\Omega^{c}\right)}^{2} & \leq C_{4}\left(\int_{\Omega^{\varepsilon}}\left|\nabla \tilde{y}_{\varepsilon}\right|^{2} d x+\int_{\Gamma_{\mathfrak{i}}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) \tilde{y}_{\varepsilon}^{2} d s+\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) \tilde{y}_{\varepsilon}^{2} d s\right) \\
& \leq C_{4}\left(\left|\int_{\Omega^{\varepsilon}} H^{\varepsilon}(x) \frac{\partial \tilde{y}_{\varepsilon}}{\partial x_{d}} d x\right|+\left|\int_{\Gamma_{2}} H^{\varepsilon}(x) \tilde{y}_{\varepsilon} \mathcal{N}_{d} d s\right|\right) \\
& \leq C_{12} \max _{\Omega^{\varepsilon}}\left|H^{\varepsilon}(x)\right|\left\|\tilde{y}_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \leq C_{13} \varepsilon\left\|y_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} .
\end{aligned}
$$

Now. we obtain (29) immediately. The lemma is proven.
The following assertion can be proven by analogy with Lemma 7:
Lemma 9. Suppose that a 1-periodic (in ξ) function $w(\xi)$ belongs to $L_{2}(Q)$ and

$$
\begin{equation*}
\int_{Q} w(\xi) d \xi=0 \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\int_{Q_{\varepsilon} \cap \Pi_{\xi}} w(\xi)\right|_{\xi=r / \varepsilon} \nabla_{x} u_{0}(x) v(x) d x \mid \leq C_{14 \varepsilon^{3 / 2}}\|w\|_{L_{2}(Q)}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \tag{34}
\end{equation*}
$$

for every $v(x) \in H^{1}\left(\Omega^{\varepsilon}\right)$. with C_{14} a constant independent of ε.

§ 4. The Main Estimate

Proof of Theorem 1. We have to estimate the H^{1}-norm of the residual $\left\|u_{0}+\varepsilon u_{1}-u_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)}$. To this end, we extend the functions $u_{0}(x)$ and $M_{i}(x, \xi)$ to the layer Π_{ε} (see Remark 2 above) and insert the expression $z_{\varepsilon}(x, x / \varepsilon)=u_{0}(x)+\varepsilon u_{1}(x, x / \varepsilon)-u_{\varepsilon}(x)$ in (1) to obtain the equality

$$
\begin{gather*}
\Delta_{x}\left(z_{\varepsilon}(x, x / \varepsilon)\right)=\Delta_{x} u_{0}(x)+\left.\varepsilon \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} \\
+2\left(\nabla_{x},\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}\right)+\left.\frac{1}{\varepsilon} \Delta_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}-\Delta_{x} u_{\varepsilon}(x) . \tag{35}
\end{gather*}
$$

Using the relations

$$
\begin{gather*}
\Delta_{\xi} u_{1}(x, \xi)=0 \forall x \in \Omega_{1}^{\epsilon}, \quad \Delta_{x} u_{\varepsilon}(x)=-f(x) \text { in } \Omega^{\varsigma}, \\
2\left(\nabla_{x}, \nabla_{\xi} u_{1}(x, \xi)\right)=2 \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}+2 \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}} . \tag{36}\\
\sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right)-Q(x) u_{0}(x)-|\square \cap \omega| f(x) \text { in } \Omega, \tag{3i}
\end{gather*}
$$

we can rewrite (35) in Ω_{1}^{ϵ} as follows:

$$
\begin{align*}
& \Delta_{x}\left(z_{\varepsilon}(x, x / \varepsilon)\right)=\left.\varepsilon \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+\left.2 \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} \\
& +\left.2 \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon}+\Delta_{x} u_{0}(x) \\
& -\frac{1}{|\square \cap \omega|} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right)+\frac{1}{|\square \cap \omega|} Q(x) u_{0}(x) . \tag{38}
\end{align*}
$$

Similarly, on S_{ε} we have

$$
\begin{gathered}
\frac{\partial z_{\varepsilon}(x, x / \varepsilon)}{\partial n_{\varepsilon}}=-\left(\nabla_{x} u_{\varepsilon}(x), n_{\varepsilon}\right)+\left(\nabla_{x} u_{0}(x), n_{\varepsilon}\right) \\
+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\left(\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) \\
=\varepsilon q(x, x / \varepsilon) u_{\varepsilon}(x)+\left(\nabla_{x} u_{0}(x), n_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) \\
+\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon},
\end{gathered}
$$

whereas on Γ_{1}^{e} we have

$$
\begin{gathered}
\frac{\partial z_{\varepsilon}(x, x / \varepsilon)}{\partial \nu_{\varepsilon}}=-\left(\nabla_{r} u_{\varepsilon}(x), \nu_{\varepsilon}\right)+\left(\nabla_{x} u_{0}(x), \nu_{\varepsilon}\right) \\
+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right)+\left(\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) \\
=p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x)-g(\hat{x}, \hat{x} / \xi)+\left(\nabla_{r} u_{0}(x), \nu_{\varepsilon}\right) \\
+\varepsilon\left(\left.\nabla_{r} u_{1}(x, \xi)\right|_{\xi=r / \varepsilon}, \nu_{\varepsilon}\right)+\left.\sum_{i . j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \nu_{\varepsilon}^{j}\right)\right|_{\xi=x / \varepsilon}
\end{gathered}
$$

Finally: on Γ, we have the trivial boundary condition

$$
\begin{gathered}
\quad \frac{\partial z_{\varepsilon}(x, x / \xi)}{\partial . \mathcal{V}}=\left\{-\frac{\partial u_{\varepsilon}(x)}{\partial \mathcal{N}}+\frac{\partial u_{0}(x)}{\partial \mathcal{N}}+\sum_{i, j=1}^{d} \varepsilon \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} M_{i}(x, \xi) \mathcal{N}_{j}\right. \\
\left.+\sum_{i . j=1}^{d} \varepsilon \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial x_{j}} \mathcal{N}_{j}+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x . \xi)}{\partial \xi_{j}} \mathcal{N}_{j}\right\}\left.\right|_{\xi=x / \varepsilon} \equiv 0 .
\end{gathered}
$$

Multiplying (38) by $v(x)$ and integrating over Ω^{ε}, we now obtain

$$
\begin{gather*}
\int_{\Omega^{\varepsilon}} \Delta_{x}\left(z_{\varepsilon}(x, x / \varepsilon)\right) v(x) d x=\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x \\
+\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
+\left.\int_{Q_{\epsilon} \cap \Pi_{\varepsilon}} \frac{1}{\varepsilon} \Delta_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v d x+\int_{\Omega^{\varepsilon}} \Delta_{x} u_{0}(x) v(x) d x \\
-\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{c}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right) v(x) d x \\
+\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{\varepsilon}} Q(x) u_{0}(x) v(x) d x+\int_{\Pi_{\epsilon}} f(x) v(x) d x . \tag{39}
\end{gather*}
$$

On the other hand, we can transform the left-hand side of (39) by using the Green's formula as follows:

$$
\begin{gather*}
\int_{\Omega^{\varepsilon}} \Delta_{x}\left(z_{\varepsilon}(x, x / \varepsilon)\right) v(x) d x=\int_{S_{\varepsilon}} \frac{\partial z_{\varepsilon}}{\partial n_{\varepsilon}} v(x) d s+\int_{\Gamma_{1}^{c}} \frac{\partial z_{\varepsilon}}{\partial v_{\varepsilon}} v(x) d s+\int_{\Gamma_{2}} \frac{\partial z_{\varepsilon}}{\partial \mathcal{N}} v(x) d s \\
\quad-\int_{\Omega^{\varepsilon}} \nabla z_{\varepsilon} \nabla v(x) d x=\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{\varepsilon}(x) v(x) d s+\int_{S_{\varepsilon}} \frac{\partial u_{0}(x)}{\partial n_{\varepsilon}} v(x) d s \\
+\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon ;}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
+\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x) v(x) d s-\int_{\Gamma_{1}^{s}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s \\
+\int_{\Gamma_{1}^{\varepsilon}} \frac{\partial u_{0}}{\partial \nu_{\varepsilon}} v(x) d s+\varepsilon \int_{\Gamma_{1}^{\varepsilon}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s \\
+\int_{\Gamma_{2}} \frac{\partial z_{\varepsilon}}{\partial \mathcal{N}} v(x) d s-\int_{\Omega^{\varepsilon}} \nabla z_{\varepsilon}(x, x / \varepsilon) \nabla v(x) d x . \tag{40}
\end{gather*}
$$

From (39) and (40) we derive

$$
\begin{align*}
& \int_{\Omega^{\varepsilon}} \Gamma_{z_{\varepsilon}}(x, x / \xi) \Gamma_{c}(x) d x=\varepsilon \int_{S_{\varepsilon}} q(x . x / \xi) u_{s}(x) v(x) d s+\int_{S_{s}} \frac{\partial u_{0}(x)}{\partial n_{\varepsilon}} v(x) d s \\
& +\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x) v(x) d s-\int_{\Gamma_{\mathbf{1}}^{c_{1}}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s+\int_{\Gamma_{\mathbf{1}}^{e}} \frac{\partial u_{0}}{\partial \nu_{\varepsilon}} v(x) d s \\
& +\varepsilon \int_{\Gamma_{1}^{e}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) v(x) d s-\int_{\Pi_{\epsilon}} f(x) v(x) d x \\
& +\int_{\Gamma_{1}^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s+\int_{\Gamma_{2}} \frac{\partial z_{\epsilon}}{\partial \mathcal{N}} v(x) d s \\
& -\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x-\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& -\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x-\int_{\Omega^{e}} \Delta_{x} u_{0}(x) v(x) d x \\
& -\left.\int_{Q_{\varepsilon} \cap \Pi_{\varepsilon}} \frac{1}{\varepsilon} \Delta_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v d x \\
& +\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{c}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right) v(x) d x \\
& -\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{\mathrm{s}}} Q(x) u_{0}(x) v(x) d x . \tag{41}
\end{align*}
$$

In view of the obvious relation

$$
\begin{gathered}
\left.\operatorname{div}_{\xi}\left(\frac{\partial}{\partial x_{j}}\left(M_{i}(x, \xi) \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right)\right|_{\xi=x / \varepsilon}=\varepsilon \operatorname{div}_{x}\left(\left.\frac{\partial}{\partial x_{j}}\left(M_{i}(x, \xi) \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right|_{\xi=x / \varepsilon}\right) \\
-\left.\varepsilon \operatorname{div}_{x}\left(\frac{\partial}{\partial x_{j}}\left(M_{i}(x, \xi) \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right)\right|_{\xi=x / \varepsilon}
\end{gathered}
$$

application of the Stokes formula yields

$$
\begin{gathered}
\left.\int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial M_{i}(x . \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.\int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
\quad=\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{r} u_{1}(x, \xi)\right|_{\xi=r / \varepsilon}, n_{\xi}\right) v(x) d s+\varepsilon \int_{\Gamma_{\mathrm{i}}^{s}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} \cdot \nu_{\varepsilon}\right) v(x) d s
\end{gathered}
$$

$$
\begin{equation*}
+\varepsilon \int_{\Gamma_{3}}\left(\left.\nabla_{r} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, V^{\prime}\right) c(x) d s+O(\varepsilon)\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \tag{42}
\end{equation*}
$$

Using (41) and the boundary condition in (15), we estimate the expression

$$
\begin{align*}
& \left|\int_{\Omega^{\varepsilon}} \nabla z_{\varepsilon}(x \cdot x / \xi) \nabla v(x) d x+\varepsilon \int_{S_{\varepsilon}} q(x, x / \bar{\varepsilon}) z_{\xi}(x, x / \xi) v(x) d s+\int_{\Gamma_{1}^{\epsilon}} p(\hat{x}, \hat{x} / \xi) z_{\varepsilon}(x, x / \varepsilon) v(x) d s\right| \\
& \leq \varepsilon\left|\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{1}(x, x / \varepsilon) v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{1}(x, x / \varepsilon) v(x) d s\right| \\
& \left.+\left|\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{0}(x) v(x) d s-\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) u_{0}(x) v(x) d x\right|+\left|\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x \right\rvert\, \\
& +\left|\int_{S_{\varepsilon}}\left(\frac{\partial u_{0}(x)}{\partial n_{\varepsilon}}+\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon}\right) v(x) d s\right| \\
& +\left|\int_{\Gamma_{1}^{c}} p(\hat{x}, \hat{x} / \varepsilon) u_{0}(x) v(x) d s-\int_{\Gamma_{1}} P(\hat{x}) u_{0}(x) v(x) d \hat{x}\right|+\left|\int_{\Gamma_{1}} G(\hat{x}) v(x) d \hat{x}-\int_{\Gamma_{1}^{\mathrm{E}}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s\right| \\
& +\left\lvert\, \int_{\Gamma_{1}^{\varepsilon}}\left(\frac{\partial u_{0}(x)}{\partial \nu_{\varepsilon}}+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\xi}^{j}\right)\right) v(x) d s\right. \\
& -\int_{\Gamma_{1}} \sum_{i=1}^{d}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}} v(x) d \hat{x}\left|+\left|\int_{Q_{\varepsilon} \cap \Pi_{\varepsilon}} \frac{1}{\varepsilon} \Delta_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v d x\right| \\
& \left.+\left|\int_{\Pi_{e}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left[\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right] \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right|_{\xi=x / \varepsilon} v(x) d x \right\rvert\, \\
& +\left\lvert\, \int_{\Omega_{\varepsilon}^{\prime}} \sum_{i, j=1}^{d}\left(\frac{1}{|\square \cap \omega|} \frac{\partial}{\partial x_{j}}\left[\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right]\right.\right. \\
& \left.-\frac{\partial}{\partial x_{j}}\left[\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right]\right)\left.\right|_{\xi=x / \varepsilon} v(x) d x-\left.\varepsilon \int_{S_{s}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \mid \\
& +\left|\int_{\Omega \backslash \Omega^{\prime}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left[\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle-\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right] \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\int_{\Omega \backslash \Omega^{\prime}} Q(x) u_{0}(x) v(x) d x\left|+\left|\int_{\Pi_{\varepsilon}} f(x) v(x) d x\right|+O(\varepsilon)\|v\|_{H^{2}\left(\Omega^{e}\right)}\right. \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}+I_{9}+I_{10}+I_{11}+I_{12}+O(\varepsilon)\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} . \tag{43}
\end{align*}
$$

Lemmas 1 and 6 imply that $I_{i} \leq C_{1} \sqrt{\varepsilon}\|v\|_{H^{2}\left(\Omega^{\varepsilon}\right)}, I_{9} \leq C_{2} \sqrt{\varepsilon}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}, I_{5} \leq C_{7} \sqrt{\varepsilon}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}$, and $I_{6} \leq C_{6} \sqrt{\varepsilon}\|v\|_{H^{1}\left(\Omega^{s}\right)}$. Since $Q(x) \equiv 0$ in $\Omega \backslash \Omega^{\prime}$ and $M_{i}(x, \xi) \equiv 0$ for $x \in \Omega \backslash \Omega^{\prime}$, we have $I_{11}=0$. Estimate $I_{?}$. According to Lemma 7 .

$$
\begin{gathered}
I_{2}=\left|\varepsilon \int_{S_{\varepsilon}} q(x \cdot x / \varepsilon) u_{0}(x) v(x) d s-\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) u_{0}(x) v(x) d x\right| \\
\leq C_{15} \varepsilon\left\|u_{0}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)}\left\|v^{\prime}\right\|_{H^{1}\left(\Omega^{s}\right)}
\end{gathered}
$$

It is clear that I_{1} and I_{3} admit the estimate

$$
\left|I_{1}\right|+\left|I_{3}\right| \leq C_{16} \varepsilon\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}
$$

The identity $I_{4} \equiv 0$ follows from the boundary conditions of (6). By Lemma 8 , we may assume that the function $f(x)$ equals zero in the layer Π_{ε}. Then $I_{12}=0$. Estimate the integral I_{10}. Using (14), we can easily verify that

$$
\int_{\square n_{\omega}}\left[\frac{1}{|\square \cap \omega|} \frac{\partial}{\partial x_{j}}\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle-\frac{\partial}{\partial x_{j}}\left(\delta_{i j}-\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right)\right] d \xi-U_{i}(x)=0
$$

Applying the technique of the proof of Lemma 7, we can demonstrate that the preceding relation implies the inequality

$$
\left|I_{10}\right| \leq C_{17} \varepsilon\left\|\frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right\|_{H^{1}\left(\Omega_{1}^{\varepsilon}\right)}\|v\|_{\left.H_{\left(\Omega^{1}\right)}^{\varepsilon}\right)}
$$

Here we have used smoothness of $f(x)$, i.e., the fact that $f(x) \in C^{1}\left(\Omega_{1}^{\epsilon}\right)$. Finally, Lemma 9 yields the estimate

$$
I_{8} \leq C_{14} \sqrt{\varepsilon}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)}
$$

Inserting $v=u_{0}+\varepsilon u_{1}-u_{\varepsilon}$ in (43) and using the above estimates and Lemma 4, we arrive at (17). The theorem is proven.

§5. A Boundary Layer Corrector

The aim of this section is to construct a boundary layer corrector which helps us to improve the asymptotic behavior of $u_{\varepsilon}(x)$. We fix the asymptotic expansion of the solution $u_{\varepsilon}(x)$ to the problem (1):

$$
u_{\varepsilon}(x)=u_{0}(x)+\varepsilon u_{1}(x, x / \varepsilon)+\varepsilon v_{1}(x, x / \varepsilon)+\varepsilon^{2} u_{2}(x, x / \varepsilon)+\ldots
$$

The function $u_{0}(x)$ is defined in the problem (15),

$$
u_{1}(x, x / \varepsilon)=\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} M_{i}(x, x / \varepsilon)
$$

and $M_{i}(x, \xi)$ satisfy the problem (9). We construct a boundary layer function $v_{1}(x, x / \varepsilon)$ of the shape

$$
\begin{equation*}
v_{1}(x, x / \xi)=N(x, x / \xi)+N_{0}(x, x / \xi) u_{0}(x)+\sum_{i=1}^{d} N_{i}(x, x / \xi) \frac{\partial u_{0}(x)}{\partial x_{i}} \tag{5}
\end{equation*}
$$

Fig. 4

All functions $N(x, \xi), N_{0}(x, \xi)$, and $N_{i}(x, \xi), i=0,1, \ldots, d$, are defined in

$$
\begin{gathered}
\mathcal{B}=\left\{\xi \mid \hat{\xi} \in T^{d-1},\right. \\
\left.F(\hat{x}, \hat{\xi})<\xi_{d}<\infty\right\} \backslash\left\{\xi \mid \xi_{d}>0 ; \lambda Q(\xi)=1\right\}:
\end{gathered}
$$

moreover, we identify 1-periodic functions in $\hat{\xi}$ with functions defined on the standard $(d-1)$-dimensional torus $T^{d-1}=\mathbf{R}^{d-1} / \mathbf{Z}^{d-1}$. Also, we suppose that $N(x, \xi), N_{0}(x, \xi)$, and $N_{i}(x, \xi), i=0,1, \ldots, d$, decrease exponentially as $\xi_{d} \rightarrow+\infty$. To find $N(x, \xi), N_{0}(x, \xi)$, and $N_{i}(x, \xi)$, we insert the formal asymptotic series

$$
\begin{gathered}
u_{\varepsilon}(x)=u_{0}(x)+\varepsilon(N(x, x / \varepsilon) \\
+N_{0}(x, x / \varepsilon) u_{0}(x)+\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(N_{i}(x, x / \varepsilon)\right.
\end{gathered}
$$

$$
\begin{equation*}
\left.\left.+M_{i}(x, x / \varepsilon)\right)\right)+\varepsilon^{2} u_{2}(x, x / \varepsilon)+\ldots \tag{46}
\end{equation*}
$$

in (1) and equate the terms of the same order in ε. We arrive at the equations

$$
\Delta_{\xi} N(x, \xi)=0, \quad \Delta_{\xi} N_{0}(x, \xi)=0, \quad \Delta_{\xi} N_{i}(x, \xi)=-\Delta_{\xi} M_{i}(x, \xi) .
$$

Observe that $\Delta_{\xi} M_{i}(x, \xi)$ has compact support in \mathcal{B} which lies in $\tilde{Q}=\left\{\xi \mid \xi \in \mathcal{B}, \xi_{d}<0, \chi Q(\xi)=1\right\}$ (see Fig. 4). Similarly, inserting (46) in the boundary conditions of (1), we obtain the following formal equality on Γ_{1}^{ε} :

$$
\begin{aligned}
& 0=\frac{\partial u_{\varepsilon}(x)}{\partial \nu_{\varepsilon}}+p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x)-g(\hat{x}, \hat{x} / \varepsilon) \cong \sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \nu_{\varepsilon}^{i}+\varepsilon\left(\left.\nabla_{x} N(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) \\
& +\left(\left.\nabla_{\xi} N(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} N_{0}(x, \xi)\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}\right) u_{0}(x)+\left(\left.\nabla_{\xi} N_{0}(x, \xi)\right|_{\left.\xi=x / \varepsilon, \nu_{\varepsilon}\right) u_{0}(x)}\right. \\
& +\left.\varepsilon N_{0}(x, \xi)\right|_{\xi=x / \varepsilon} \frac{\partial u_{0}(x)}{\partial \nu_{\varepsilon}}+\varepsilon \sum_{i=1}^{d}\left(\nabla_{x} \frac{\partial u_{0}(x)}{\partial x_{i}}, \nu_{\varepsilon}\right) N_{i}(x, x / \varepsilon) \\
& +\left.\varepsilon \sum_{i=1}^{d}\left(\nabla_{x}\left(\frac{\partial u_{0}(x)}{\partial x_{i}} M_{i}(x, \xi)\right), \nu_{\varepsilon}\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial N_{i}(x, \xi)}{\partial x_{j}}\right|_{\xi=x / \varepsilon} \nu_{\xi}^{j} \\
& \quad+\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}+\left.\varepsilon \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial x_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j} \\
& \quad+\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\xi}^{j}+p(\hat{x}, \hat{x} / \varepsilon) u_{0}(x)-g(\hat{x}, \hat{x} / \varepsilon)+O(\varepsilon) \\
& =\left.\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\sum_{j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \nu_{\varepsilon}^{j}+\nu_{\xi}^{i}+\sum_{j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \nu_{\varepsilon}^{j}-\frac{\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}\right)\right|_{\xi=r / \varepsilon} \\
& \quad+\left(\sum_{i=1}^{d} \frac{\partial V(x, \xi)}{\partial \xi_{i}} \nu_{\varepsilon}^{i}-g(\hat{x}, \hat{x} / \varepsilon)+\frac{G(\hat{x})}{\left.\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}\right)\left.\right|_{\xi=x / \varepsilon}}\right.
\end{aligned}
$$

$$
+\left.u_{0}(x)\left(\sum_{i=1}^{d} \frac{\partial \lambda_{0}(x, \xi)}{\partial \xi_{i}} \nu_{\varepsilon}^{i}+p(\hat{x}, \hat{x} / \varepsilon)-\frac{P(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}\right)\right|_{\xi=x / \varepsilon}+\ldots
$$

Here we have also used the fact that

$$
\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle+P(\hat{x}) u_{0}(x)=G(\hat{x})+O(\varepsilon)
$$

for all $x \in \Gamma_{1}^{\varepsilon}$. To remove the terms that involve the functions N, N_{0}, and N_{i} in the above formula, we must choose the following boundary conditions on Γ :

$$
\begin{gathered}
\frac{\partial N(x, \xi)}{\partial \nu}=g(\hat{x}, \hat{\xi})-\frac{G(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}, \\
\frac{\partial N_{0}(x, \xi)}{\partial \nu}=\frac{P(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}-p(\hat{x}, \hat{\xi}), \\
\frac{\partial N_{i}(x, \xi)}{\partial \nu}=\frac{\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}-\nu_{\xi}^{i}-\frac{\partial M_{i}(x, \xi)}{\cdot \partial \nu} .
\end{gathered}
$$

Arguing similarly, we obtain the homogeneous Neumann conditions on the boundary of the "holes." Finally, the functions $N(x, \xi), N_{0}(x, \xi)$, and $N_{i}(x, \xi)$ satisfy the following problems in \mathcal{B} :

$$
\begin{gather*}
\Delta_{\xi} N(x, \xi)=0 \text { in } \mathcal{B}, \\
\frac{\partial N(x, \xi)}{\partial \nu}=g(\hat{x}, \hat{\xi})-\frac{G(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}} \text { on } \Gamma, \tag{47}\\
\frac{\partial N(x, \xi)}{\partial \tilde{n}}=0 \text { on } S(x), \\
\frac{\partial N_{0}(x, \xi)}{\partial \nu}=\frac{\Delta_{\xi} N_{0}(x, \xi)=0 \text { in } \mathcal{B},}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}-p(\hat{x}, \hat{\xi}) \text { on } \Gamma, \\
\frac{\partial N_{0}(x, \xi)}{\partial \tilde{n}}=0 \text { on } S(x), \tag{48}\\
\Delta_{\xi} N_{i}(x, \xi)=-\Delta_{\xi} M_{i}(x, \xi) \text { in } \mathcal{B}, \\
\frac{\partial N_{i}(x, \xi)}{\partial \nu}=\frac{\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}-\nu_{\varepsilon}^{i}-\frac{\partial M_{i}(x, \xi)}{\partial \nu} \text { on } \Gamma, \\
\frac{\partial N_{i}(x, \xi)}{\partial \tilde{n}}=0 \text { on } S(x) . \tag{49}
\end{gather*}
$$

We consider these problems in the space of functions with bounded Dirichlet integrals in \mathcal{B}.
Applying the technique of $[26,27]$, we can verify that each of the problems (47)-(49) has a unique solution vanishing as $\xi_{d} \rightarrow+\infty$. Moreover, these solutions decrease exponentially.

Theorem 2. Suppose that $f(x) \in C^{1}\left(\mathbf{R}^{d}\right) . F(\hat{x}, \hat{\xi}), g(\hat{x} . \hat{\xi})$, and $p(\hat{x}, \dot{\xi})$ are the above-defined smooth functions 1 -periodic in $\hat{\xi}$, and $q(x, \xi)$ is a smooth function 1 -periodic in ξ. Then the following estimate is valid for all sufficiently small ε :

$$
\begin{equation*}
\left\|u_{0}+\varepsilon u_{1}+\varepsilon v_{1}-u_{\varepsilon}\right\|_{A^{\prime}\left(\Omega^{c}\right)} \leq \kappa_{2} \varepsilon, \tag{50}
\end{equation*}
$$

where K_{2}^{\prime} is independent of ε, u_{0} is a solution to the problem (15), u_{1} is a solution to the problem (6), and v_{1} is the boundary laver corrector given by (45) with the functions $N(x, \xi), N_{0}(x, \xi)$, and $N_{i}(x . \xi)$ satisfying the respective equations (47)-(49).

Proof. To estimate $\left\|u_{0}+\varepsilon u_{1}+\varepsilon v_{1}-u_{\varepsilon}\right\|_{H^{1}\left(\Omega^{c}\right)}$, we insert the expression

$$
w_{\varepsilon}(x, x / \varepsilon)=u_{0}(x)+\varepsilon u_{1}(x, x / \varepsilon)+\hat{\varepsilon} v_{1}(x, x / \varepsilon)-u_{\varepsilon}(x)
$$

in (1) and after simple transformations obtain the following equality in Ω^{ϵ} :

$$
\begin{gather*}
\Delta_{x}\left(w_{\varepsilon}(x, x / \varepsilon)\right)=\Delta_{x} u_{0}(x)+\left.\varepsilon \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+2\left(\nabla_{x},\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}\right) \\
+\left.\frac{1}{\varepsilon} \Delta_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+\left.\varepsilon \Delta_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+2\left(\nabla_{x},\left.\nabla_{\xi} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}\right)+\left.\frac{1}{\varepsilon} \Delta_{\xi} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}-\Delta_{x} u_{\xi}(x) . \tag{31}
\end{gather*}
$$

Using the relations (36), (37), and

$$
\begin{gathered}
2\left(\nabla_{x}, \nabla_{\xi} v_{1}(x, \xi)\right)=2 \sum_{i=1}^{d} \frac{\partial^{2} N(x, \xi)}{\partial \xi_{i} \partial x_{i}}+2 \sum_{i=1}^{d} \frac{\partial^{2} N_{0}(x, \xi)}{\partial \xi_{i} \partial x_{i}} u_{0}(x) \\
+2 \sum_{i=1}^{d} \frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \frac{\partial u_{0}(x)}{\partial x_{i}}+2 \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial \xi_{j} \partial x_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}+2 \sum_{i, j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} .
\end{gathered}
$$

we rewrite (51) in Ω_{1}^{ε} as follows:

$$
\begin{align*}
& \Delta_{x}\left(w_{\varepsilon}(x, x / \varepsilon)\right)=\left.\varepsilon \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+\left.2 \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} \\
& +\left.2 \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon}+\left.\varepsilon \Delta_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}+\left.2 \sum_{i=1}^{d} \frac{\partial^{2} N(x, \xi)}{\partial x_{i} \partial \xi_{i}}\right|_{\xi=x / \varepsilon} \\
& +\quad+\left.2 \sum_{i=1}^{d} \frac{\partial^{2} N_{0}(x, \xi)}{\partial x_{i} \partial \xi_{i}} u_{0}(x)\right|_{\xi=x / \varepsilon}+\left.2 \sum_{i=1}^{d} \frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} \\
& +\left.2 \sum_{i . j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon}+\left.2 \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} \\
& +\Delta_{x} u_{0}(x)-\frac{1}{|\square \cap \omega|} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right)+\frac{1}{|\square \cap \omega|} Q(x) u_{0}(x) . \tag{52}
\end{align*}
$$

Similarly: insertion of $w_{s}(x . x / \xi)$ in the boundary conditions on S_{ε} yields

$$
\frac{\partial w_{\varepsilon}(x, x / \xi)}{\partial n_{\varepsilon}}=-\left(\nabla_{r} u_{\varepsilon}(x) \cdot n_{\varepsilon}\right)+\left(\nabla_{r} u_{0}(x) \cdot n_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{r} u_{1}(x \cdot \xi)\right|_{\xi=r / \varepsilon} \cdot n_{\varepsilon}\right)
$$

$$
\begin{aligned}
& +\left(\left.\Gamma_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\varepsilon\left(\left.\Gamma_{\Sigma} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\left(\left.\nabla_{\xi} v_{1}(x . \xi)\right|_{\xi=x / \varepsilon} \cdot n_{\varepsilon}\right) \\
& =\varepsilon q(x, x / \varepsilon) u_{\xi}(x)+\left(\nabla_{r} u_{0}(x), n_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) \\
& +\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \dot{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\tilde{\varepsilon}\left(\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} \\
& +\varepsilon\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right)+\left.\frac{\partial N(x, \xi)}{\partial \tilde{n}}\right|_{\xi=x / \varepsilon}+\left.u_{0}(x) \frac{\partial N_{0}(x, \xi)}{\partial \tilde{n}}\right|_{\xi=x / \varepsilon} \\
& +\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon}+\left.\varepsilon\left(\nabla_{\xi^{v}} v_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} .
\end{aligned}
$$

On Γ_{1}^{ε} we obtain

$$
\begin{aligned}
& \frac{\partial w_{\varepsilon}(x, x / \varepsilon)}{\partial \nu_{\varepsilon}}=-\left(\nabla_{x} u_{\varepsilon}(x), \nu_{\varepsilon}\right)+\left(\nabla_{x} u_{0}(x), \nu_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) \\
& +\left(\left.\nabla_{\xi} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \epsilon}, \nu_{\varepsilon}\right)+\left(\left.\nabla_{\xi} v_{1}(x, \xi)\right|_{\xi=x / \epsilon}, \nu_{\varepsilon}\right) \\
& =p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x)-g(\hat{x}, \hat{x} / \varepsilon)+\left(\nabla_{x} u_{0}(x), \nu_{\varepsilon}\right)+\varepsilon\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\left.\xi=x / \varepsilon, \nu_{\varepsilon}\right)}\right. \\
& \quad+\left\{\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \nu_{\varepsilon}^{j}\right)+\varepsilon\left(\nabla_{x} v_{1}(x, \xi), \nu_{\varepsilon}\right)\right. \\
& \left.+\frac{\partial N(x, \xi)}{\partial \nu_{\epsilon}}+u_{0}(x) \frac{\partial N_{0}(x, \xi)}{\partial \nu_{\varepsilon}}+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \nu_{\epsilon}^{j}\right)\right\}\left.\right|_{\xi=x / \varepsilon}
\end{aligned}
$$

Finally, on Γ_{2} we have the trivial boundary condition

$$
\frac{\partial w_{\varepsilon}(x, x / \varepsilon)}{\partial \mathcal{N}}=0
$$

Multiplying (52) by $v(x)$ and integrating over Ω^{ε}, we now obtain

$$
\begin{align*}
& \int_{\Omega^{\varepsilon}} \Delta_{x}\left(w_{\varepsilon}(x, x / \varepsilon)\right) v(x) d x=\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\left.\varepsilon \int_{\Omega^{c}} \Delta_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{\Omega_{d}^{\varepsilon}} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{e}} \sum_{i=1}^{d} \frac{\partial^{2} N(x, \xi)}{\partial x_{i} \partial \xi_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{2}} \sum_{i=1}^{d} \frac{\partial^{2} N_{0}(x, \xi)}{\partial x_{i} \partial \xi_{i}} u_{0}(x)\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\int_{\Omega^{\varepsilon}} \Delta_{x} u_{0}(x) v(x) d x+\int_{\Pi_{\varepsilon}} f(x) v(x) d x-\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{e}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right) v(x) d x \\
& +\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{\varepsilon}} Q(x) u_{0}(x) v(x) d x . \tag{53}
\end{align*}
$$

On the other hand. using the Green sformula, we find that

$$
\begin{align*}
& \int_{\Omega^{\varepsilon}} د_{r}\left(u_{\varepsilon}(x . x / \varepsilon)\right) v(x) d x=\int_{S_{\varepsilon}} \frac{\partial u_{\varepsilon}}{\partial n_{\varepsilon}} v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} \frac{\partial w_{\varepsilon}}{\partial \nu_{\varepsilon}} v(x) d s+\int_{\Gamma_{2}} \frac{\partial w_{\varepsilon}}{\partial \mathcal{N}} v(x) d s \\
& -\int_{\Omega^{\varepsilon}} \nabla w_{\varepsilon} \nabla v(x) d x=\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{\varepsilon}(x) v(x) d s+\int_{S_{\varepsilon}} \frac{\partial u_{0}(x)}{\partial n_{\varepsilon}} v(x) d s \\
& +\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} v_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\left.\int_{S_{\varepsilon}} \sum_{i=1}^{d}\left(\frac{\partial N(x, \xi)}{\partial \xi_{i}} \tilde{n}^{i}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s+\left.\int_{S_{\varepsilon}} \sum_{i=1}^{d} u_{0}(x)\left(\frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \tilde{n}^{i}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x) v(x) d s-\int_{\Gamma_{1}^{c}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s \\
& +\int_{\Gamma_{1}^{c}} \frac{\partial u_{0}}{\partial \nu_{\varepsilon}} v(x) d s+\varepsilon \int_{\Gamma_{1}^{c}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}\right) v(x) d s+\int_{\Gamma_{1}^{c}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s \\
& +\varepsilon \int_{\Gamma_{1}^{c}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) v(x) d s+\int_{\Gamma_{1}^{c}} \sum_{i=1}^{d}\left(\left.\frac{\partial N(x, \xi)}{\partial \xi_{i}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{i}\right) v(x) d s \\
& +\int_{\Gamma_{1}^{c}} \sum_{i=1}^{d} u_{0}(x)\left(\left.\frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{i}\right) v(x) d s \\
& +\int_{\Gamma_{\mathrm{I}}^{\mathrm{I}}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s-\int_{\Omega^{\varepsilon}} \nabla w_{\varepsilon}(x, x / \varepsilon) \nabla v(x) d x . \tag{54}
\end{align*}
$$

It follows from (53) and (54) that

$$
\begin{aligned}
& \int_{\Omega^{\varepsilon}} \nabla w_{\varepsilon}(x, x / \varepsilon) \nabla v(x) d x=\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{\varepsilon}(x) v(x) d s+\int_{S_{\varepsilon}} \frac{\partial u_{0}(x)}{\partial n_{\varepsilon}} v(x) d s \\
& +\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& \quad+\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \xi} v(x) d s \\
& +\varepsilon \int_{S_{\xi}}\left(\left.\nabla_{r} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s+\left.\varepsilon \int_{S_{\varepsilon}}\left(\nabla_{\xi} v_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s
\end{aligned}
$$

$$
\begin{align*}
& +\left.\int_{S_{\xi}} \sum_{i=1}^{d}\left(\frac{\partial V(x . \xi)}{\partial \xi_{i}} \dot{n}^{\prime}(x, \xi)\right)\right|_{\xi=r / \varepsilon} r(x) d s+\left.\int_{S_{\varepsilon}} \sum_{i=1}^{d} u_{0}(x)\left(\frac{\partial . V_{0}(x . \xi)}{\partial \xi_{i}} \tilde{n}^{i}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \\
& -\left.\int_{S_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial N_{i}(x . \xi)}{\partial \xi_{j}} \dot{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s+\int_{\Gamma_{1}^{c}} p(\hat{x}, \hat{x} / \varepsilon) u_{\varepsilon}(x) v(x) d s-\int_{\Gamma_{1}^{\Sigma_{1}^{c}}} g(\hat{x}, \hat{x} / \varepsilon) v(x) d s \\
& +\int_{\Gamma_{1}^{s}} \frac{\partial u_{0}}{\partial \nu_{\varepsilon}} v(x) d s+\varepsilon \int_{\Gamma_{1}^{s}}\left(\left.\nabla_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) v(x) d s \\
& +\int_{\Gamma_{1}^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s+\varepsilon \int_{\Gamma_{1}^{c}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \nu_{\varepsilon}\right) v(x) d s \\
& +\int_{\Gamma_{1}^{e}} \sum_{i=1}^{d}\left(\left.\frac{\partial N(x, \xi)}{\partial \xi_{i}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{i}\right) v(x) d s+\int_{\Gamma_{1}^{c}} \sum_{i=1}^{d} u_{0}(x)\left(\left.\frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{i}\right) v(x) d s \\
& +\int_{\Gamma_{1}^{i}} \sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right) v(x) d s \\
& -\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x-\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& -\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} M_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x-\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x \\
& -\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial^{2} N(x, \xi)}{\partial x_{i} \partial \xi_{i}}\right|_{\xi=x / \varepsilon} v(x) d x-\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& -\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial^{2} N_{0}(x, \xi)}{\partial x_{i} \partial \xi_{i}} u_{0}(x)\right|_{\xi=x / \varepsilon} v(x) d x-\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& -\left.2 \int_{\Omega^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x-\int_{\Omega^{\varepsilon}} \Delta_{x} u_{0}(x) v(x) d x \\
& +\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{e}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left\langle\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right) v(x) d x \\
& -\frac{1}{|\square \cap \omega|} \int_{\Omega_{1}^{\varepsilon}} Q(x) u_{0}(x) v(x) d x-\int_{\Pi_{\varepsilon}} f(x) v(x) d x . \tag{5.5}
\end{align*}
$$

Recalling (42), the boundary conditions in (15), and (47)-(49), from the last relation we derive the estimate

$$
\left|\int_{\Omega^{\varepsilon}} \nabla^{v} u_{\varepsilon}(x, x / \varepsilon) \nabla v(x) d x+\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) w_{\varepsilon}(x, x / \varepsilon) v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) w_{\varepsilon}(x, x / \varepsilon) v(x) d s\right|
$$

$$
\begin{aligned}
& \leq \varepsilon \mid=\int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{1}(x, x / \varepsilon) v(x) d s+\hat{\varepsilon} \int_{S_{s}} q(x, x / \varepsilon) v_{1}(x, x / \varepsilon) v(x) d s \\
& +\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) u_{1}(x, x / \varepsilon) v(x) d s+\int_{\Gamma_{1}^{\varepsilon}} p(\hat{x}, \hat{x} / \varepsilon) v_{1}(x, x / \varepsilon) v(x) d s \\
& +\left|\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{0}(x) v(x) d s-\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) u_{0}(x) v(x) d x\right| \\
& +\left|\varepsilon \int_{S_{\varepsilon}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, n_{\varepsilon}\right) v(x) d s-\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} u_{1}(x, \xi)\right|_{\xi=x / \epsilon} v(x) d x \\
& +\varepsilon \int_{\Gamma_{2}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \mathcal{N}\right) v(x) d s+\int_{\Gamma_{2}}\left(\left.\nabla_{\xi} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon}, \mathcal{N}\right) v(x) d s \\
& +\varepsilon \int_{\Gamma_{1}^{c}}\left(\left.\nabla_{x} v_{1}(x, \xi)\right|_{\xi=x / \epsilon}, \nu_{\varepsilon}\right) v(x) d s-\left.\varepsilon \int_{\Omega^{\varepsilon}} \Delta_{x} v_{1}(x, \xi)\right|_{\xi=x / \varepsilon} v(x) d x \mid \\
& +\left|\int_{S_{\xi}}\left(\frac{\partial u_{0}(x)}{\partial n_{\varepsilon}}+\left.\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}} \tilde{n}^{j}(x, \xi)\right)\right|_{\xi=x / \varepsilon}\right) v(x) d s\right| \\
& +\left|\int_{\Gamma_{1}^{E}} \frac{P(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}\right|_{\xi=x / \varepsilon} u_{0}(x) v(x) d s-\int_{\Gamma_{\mathrm{I}}} P(\hat{x}) u_{0}(x) v(x) d \hat{x} \\
& +\int_{\Gamma_{i}} G(\hat{x}) v(x) d \hat{x}-\left.\int_{\Gamma_{1}^{z}} \frac{G(\hat{x})}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}\right|_{\xi=x / \varepsilon} v(x) d s \\
& +\int_{\Gamma_{1}^{\varepsilon}}\left(\frac{\partial u_{0}(x)}{\partial \nu_{\epsilon}}+\sum_{i, j=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left(\left.\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \nu_{\varepsilon}^{j}\right)\right) v(x) d s \\
& +\left.\int_{\Gamma_{1}^{e}} \sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left[\frac{\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}-\nu_{\varepsilon}^{i}-\frac{\partial M_{i}(x, \xi)}{\partial \nu_{\varepsilon}}\right]\right|_{\xi=x / \varepsilon} v(x) d s \\
& -\int_{\Gamma_{1}} \sum_{i=1}^{d}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}} v(x) d \hat{x}\left|\int_{M_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left[\delta_{i j}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right] \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right|_{\xi=x / \varepsilon} v(x) d x \\
& \left.+\left.2 \int_{\Pi_{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int \sum_{i, j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} v(x) d x \right\rvert\, \\
& +\left\lvert\, \int_{\Omega_{s}^{\prime}} \sum_{i, j=1}^{d}\left(\frac{1}{|\square \cap \omega|} \frac{\partial}{\partial x_{j}}\left[\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle \frac{\partial u_{0}(x)}{\partial x_{i}}\right]\right.\right. \\
& \left.-\frac{\partial}{\partial r_{j}}\left[\frac{\partial M_{i}(x \cdot \xi)}{\partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right]\right)\left.\right|_{\xi=x / \xi} v(x) d x-\left.\vec{\varepsilon} \int_{S_{\varepsilon}}\left(\nabla_{\xi} u_{1}(x, \xi), n_{\varepsilon}^{\prime}(x, \xi)\right)\right|_{\xi=x / \varepsilon} v(x) d s \mid
\end{aligned}
$$

$$
\begin{aligned}
& +\left|\int_{\Omega \backslash \Omega^{\prime}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(\left[\left\langle\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right\rangle-\frac{\partial M_{i}(x, \xi)}{\partial \xi_{j}}\right] \frac{\partial u_{0}(x)}{\partial x_{i}}\right)\right|_{\xi=x / \epsilon} v(x) d x \\
& +\int_{\Omega \backslash \Omega^{\prime}} Q(x) u_{0}(x) v(x) d x\left|+\left|\int_{\Pi_{\boldsymbol{\epsilon}}} f(x) v(x) d x\right|\right. \\
& +\left|2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial^{2} N(x, \xi)}{\partial x_{i} \partial \xi_{i}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial^{2} N_{0}(x, \xi)}{\partial x_{i} \partial \xi_{i}} u_{0}(x)\right|_{\xi=x / \varepsilon} v(x) d x \\
& +\left.2 \int_{\Omega^{\varepsilon}} \sum_{i=1}^{d} \frac{\partial N_{0}(x, \xi)}{\partial \xi_{i}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x+\left.2 \int_{\Omega_{1}^{\varepsilon}} \sum_{i, j=1}^{d} \frac{\partial^{2} N_{i}(x, \xi)}{\partial x_{j} \partial \xi_{j}} \frac{\partial u_{0}(x)}{\partial x_{i}}\right|_{\xi=x / \varepsilon} v(x) d x \\
& \left.+\left.2 \int_{\Omega_{1}^{e}} \sum_{i, j=1}^{d} \frac{\partial N_{i}(x, \xi)}{\partial \xi_{j}}\right|_{\xi=x / \varepsilon} \frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}} v(x) d x \right\rvert\,+O(\varepsilon)\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}+I_{9}+I_{10}+O(\varepsilon)\|v\|_{H^{1}\left(\Omega^{c}\right)} .
\end{aligned}
$$

Since $Q(x) \equiv 0$ in $\Omega \backslash \Omega^{\prime}$ and $M_{i}(x, \xi) \equiv 0$ for $x \in \Omega \backslash \Omega^{\prime}$, we have $I_{8}=0$. We now estimate the term I_{2} on the right-hand side. By Lemma 7, we have

$$
I_{2}=\left|\varepsilon \int_{S_{\varepsilon}} q(x, x / \varepsilon) u_{0}(x) v(x) d s-\frac{1}{|\square \cap \omega|} \int_{\Omega_{\varepsilon}^{\prime}} Q(x) u_{0}(x) v(x) d x\right| \leq C_{18 \varepsilon}\left\|u_{0}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} .
$$

Clearly, the terms I_{1} and I_{3} can be estimated as follows:

$$
\left|I_{1}\right|+\left|I_{3}\right| \leq C_{19} \varepsilon\|v\|_{H^{1}\left(\Omega^{s}\right)} .
$$

The identity $I_{4} \equiv 0$ ensues from the boundary conditions of the problem (6). Lemma 8 enables us to assume that the function $f(x)$ vanishes in the layer Π_{ε}. Consequently, $I_{9} \equiv 0$. The integral I_{7} has been already estimated in $\S 4$:

$$
\left|I_{7}\right| \leq C_{20} \varepsilon\left\|\frac{\partial^{2} u_{0}(x)}{\partial x_{i} \partial x_{j}}\right\|_{H^{1}\left(\Omega_{1}^{\varepsilon}\right)}\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} .
$$

Recalling the boundary condition of the problem (15) and Lemma 5, we infer that

$$
\begin{gathered}
\left|I_{5}\right|=\left|\int_{\Gamma_{i}^{c}} \frac{\left(\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle+P(\hat{x}) u_{0}(x)-G(\hat{x})\right)}{\sqrt{1+\left(\nabla_{\xi} F(\hat{x}, \hat{\xi})\right)^{2}}}\right|_{\xi=x / \varepsilon} v(x) d s \\
-\left.\int_{\Gamma_{1}}\left(\sum_{i=1}^{d} \frac{\partial u_{0}(x)}{\partial x_{i}}\left\langle\delta_{i d}+\frac{\partial M_{i}(x, \xi)}{\partial \xi_{d}}\right\rangle+P(\hat{x}) u_{0}(x)-G(\hat{x})\right) v(x) d \hat{x}\right|_{\leq C_{21} \varepsilon\|v\|_{H^{1}\left(\Omega^{\varepsilon}\right)} .} .
\end{gathered}
$$

Similarly, using the technique of the proof of Lemma 8, we obtain

$$
I_{6} \leq C_{22} \varepsilon\|v\|_{H^{1}\left(\Omega^{8}\right)} .
$$

Finally. owing to the exponential decay of $N_{0}(x, \xi)$ and $N_{i}(x, \xi)$ as $\xi_{d} \rightarrow+\infty$, we conclude that

$$
I_{10} \leq C_{23}\|v\|_{H^{1}\left(\Omega^{s}\right)}
$$

Letting $c=u_{0}+\varepsilon u_{1}+\varepsilon v_{1}-u_{\varepsilon}$ and recalling all above estimates and Lemma 4, we arrive at (50). The theorem is proven.

Acknowledgements

Part of this research was carried out when A. L. Pyatnitskii and G. A. Chechkin visited the Laboratory of Numerical Analysis of the Pierre and Marie Curie University (Paris) (Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie) in March, 1997. The authors are grateful for this support. We also express our sincere gratitude to D. Cioranescu for hospitality.

References

1. V. A. Marchenko and E. Ya. Khruslov, Boundary Value Problems in Domains with a Fine-Grained Boundary [in Russian], Naukova Dumka, Kiev (1974).
2. E. Sanchez-Palencia, Homogenization Techniques for Composite Media, Springer-Verlag, Berlin and New York (1987).
3. G. A. Iosif'yan, O. A. Oleynik, and A. S. Shamaev, Mathematical Problems in the Theory of Strongly Inhomogeneous Elastic Media [in Russian], Moscow Univ., Moscow (1990).
4. V. V. Zhikov, S. M. Kozlov, and O. A. Oleĭnik, Averaging of Differential Operators [in Russian], Nauka, Moscow (1993).
5. D. Cioranescu and J. Saint Jean Paulin, "Truss structures: Fourier conditions and eigenvalue problems," in: Boundary Control and Boundary Variation, Springer-Verlag, Berlin and New York, 1992, pp. 125-141. (Lecture Notes in Control and Inform. Sci., 178.)
6. D. Cioranescu and P. Donato, "On a Robin problem in perforated domains," in: Homogenization and Applications to Material Sciences, Gakkōtosho, Tokyo, 1997, pp. 123-136. (GAKUTO Internat. Ser. Math. Sci. Appl., 9.)
7. D. Cioranescu and P. Donato, "Homogénésation du problèmé de Neumann non homogène dans des ouverts perforés," Asymptotic Anal., 1, No. 2, 115-138 (1988).
8. O. A. Oleinik and T. A. Shaposhnikova, "On the homogenization of the Poisson equation in partially perforated domain with the arbitrary density of cavities and mixed conditions on their boundary," Matematica e Applicazioni, Rendiconti Lincei Ser. IX, 8, No. 3, 129-146 (1997).
9. E. Sanchez-Palencia and P. Suquet, "Friction and homogenization of a boundary," in: Free Boundary Problems. Theory and Applications, Pitman, London, 1983, pp. 561-571.
10. G. Bouchitte, A. Lidouh, and P. Suquet, "Homogénéisation de frontière pour la modélisation du contact entre un corps déformable non linéaire et un corps rigide," C. R. Acad. Sci. Paris Ser. I Math., 313, No. 13, 967-972 (1991).
11. G. Bouchitte, A. Lidouh, J. C. Michel, and P. Suquet, Might Boundary Homogenization Help to Understand Friction? International Centre for Theoretical Physics, Trieste (1993). SMR. 719/9.
12. E. Sanchez-Palencia, Inhomogeneous Media and Vibration Theory [Russian translation], Mir, Moscow (1984).
13. A. G. Belyaev, "Averaging the third boundary value problem for the Poisson equation in a domain with a rapidly oscillating boundary," Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 6, 63-66 (1988).
14. A. G. Belyaev, On Singular Perturbations of Boundary Problems [in Russian], Dis. Kand. Fiz.Mat. Nauk, Moscow Univ., Moscow (1990).
15. A. B. Movchan and S. A. Nazarov, "The influence of small surface irregularities on the stress state of a body and the energy balance for a growing crack," Prikl. Mat. Mekh., 55, No. 5. 819-828 (1991).
16. A. G. Belyaev, A. G. Mikheev, and A. S. Shamaev, "Plane wave diffraction by a rapidly oscillating surface," Zh. Vychisl. Mat. i Mat. Fiz., 32, No. 8, 1258-1272 (1992).
17. G. A. Chechkin, A. Friedman, and A. L. Piatnitski, The Boundary Value Problem in Domains with Very Rapidly Oscillating Boundary, INRIA Rapport de Recherche No. 3062, Unité de Recherche - Institut National de Recherche en Informatique et en Automatique, Sophia Antipolis (1996).
18. F. Murat and L. Tartar. Calcul des Variations et Homogénéisation, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire d'Analyse Numérique, R 84012. Paris (1984).
19. G. Allaire. "Homogenization and two-scale convergence," SIAM J. Math. Anal., 23, 1482-1.518 (1992).
20. N. S. Bakhvalov, "Averaged characteristics of bodies with periodic structure," Dokl. Akad. Nauk SSSR. 218. No. 5. 1046-1048 (1974).
21. N. S. Bakhvalov, "Averaging of partial differential equations with rapidly oscillating coefficients," Dokl. Akad. Nauk SSSR, 221, No. 3, 516-519 (1975).
22. J.-L. Lions and E. Magenes, Inhomogeneous Boundary Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).
23. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Nauka, Moscow (1988).
24. M. Briane, Homogénéisation de Matériaux Fibres et Multi-Couches, PhD Thesis, University Paris 6, Paris (1990).
25. J. M. Ball and F. Murat, Remarks on Rank-One Convexity and Quasiconvexity, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire d'Analyse Numérique, Paris (1990). Report 90043.
26. E. M. Landis and G. P. Panasenko, "A theorem on the asymptotic behavior of the solutions of elliptic equations with coefficients that are periodic in all variables, except one," Dokl. Akad. Nauk SSSR, 235, No. 6, 1253-1255 (1977).
27. O. A. Oleĭnik and G. A. Iosif'yan, "On the behavior at infinity of solutions to second-order elliptic equations in domains with noncompact boundary," Mat. Sb., 112, No. 4, 588-610 (1980).

[^0]: t) To the unfaded memory of Sergeĭ L^{\prime} vovich Sobolev, an outstanding contemporary mathematician.
 5) The second and third authors were financially supported by the Russian Foundation for Basic Research (Grant 98-01-00062).

[^1]: Aizu (Japan). Moscow. Translated from Sibirskii Matematicheskii Zhurnal. Vol. 39. No. 4. pp. 730-7.j4. July-August. 1998. Original article submitted November $26,1997$.

