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AVERAGING OF A SINGULAR RANDOM SOURCE TERM IN A
DIFFUSION CONVECTION EQUATION*

ALAIN BOURGEAT! AND ANDREY L. PIATNITSKI#

Abstract. We consider a simplified model for the radionuclides migration in an underground
nuclear waste repository, based on a linear partial differential equation of diffusion convection type.
This partial differential equation has a source term constituted by a large number of “local” sources
spatially periodically distributed and lying on the porous domain median plane. The behavior of
each source is spatially homogeneous but their time dependence is uncertain; their release curve
(source emission versus space and time) parameters are random both in space and in time. Starting
from the mesoscopic model described above, our aim is then to obtain by “upscaling” a model with
a deterministic “averaged” source term, describing the global evolution of such a system, and to
prove the convergence, estimate (under proper mixing assumptions) the rate of convergence, and
characterize the asymptotic behavior of the corrector.

Key words. convection-diffusion, stochastic homogenization, random source term
AMS subject classifications. 35B27, 35K20, 35Q35, 35R60, 60H15, 60H30, 76M50

DOI. 10.1137/080736077

Introduction. Our interest in studying the transport migration of a contaminant
in aquifers from a “source site” made of a large number of randomly behaving “local”
sources comes initially from the problem of assessing the performance of a long-lived
underground nuclear waste repository. An underground waste repository site is made
of a large number of sealed packages containing diverse materials contaminated by
some radionuclides. Each repository zone is made of a large number of similar storage
vaults, each vault containing a group of sealed packages. It is clearly impossible to
have an exhaustive description of all the complicated phenomena concerning possible
radionuclides leaking into the host geological media. There is both epistemic and
aleatoric uncertainty in modeling the complexity of the involved physical phenomena
(container corrosion, breaking and alteration of glass packages, the hydrological and
mechanical properties of geological or artificial containment materials, and variability
of the containers’ contents). The source emission versus space and time graph (called
the release curve) parameters associated to each package (or local source) should then
be considered as random in space and in time.

In order to study the consequence of these uncertainties in the leaking of the
packages, we consider a simplified but typical mesoscopic or “local” modeling of
the radionuclides migration in a porous media (one-phase saturated). The corre-
sponding equation is a linear diffusion-convection equation, with a high number of
parallelepiped-shaped sources, each source with a space and time random behavior
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AVERAGING OF EQUATION WITH RANDOM SOURCE 2627

(release curve):

(1) Ou® — div(a(z)Vu®) + div(b(z)u®) = [ in Q x (0, +00);
€ 8 1> 1> €
(2) u ‘t:O =0, 3nau —b(z) - n(x)u® + =0 ondQ,
where %us = a(x)Vu(z,t) - n(z), n(x) is the external normal to 9Q), and the source

density f°(z,?) is the sum of the “local source” densities f{(z,t), such that all of
these local sources are supported in small parallelepipeds situated periodically along
a horizontal plane ¥ (see Figure 2); i.e., f(x,t) = > 52 [ (2,1). The domain @
comprising the source site is bounded and regular. Moreover, assuming the release
curve, fjs(-, -), of each local source is random, our aim is to construct a mathematical
model which characterizes the global evolution of such a system.

According to the above discussion, the form of the equation and the boundary
condition in (1)—(2) have been chosen as a simplified but typical model of the ra-
dionuclides migration in porous media, as it appears in the context of modeling the
long-term behavior of a nuclear waste repository.

The boundary condition imposed in (2) is commonly used in engineering for mod-
eling physical processes that involve diffusive (or molecular) and convective transport
within physical systems; see, for instance, [5]. This condition, used in mass transfer, is
analogous to the Newton law used in thermal transfer, and states that on the bound-
ary of the domain the concentration obeys Fick’s law, i.e., that the flux is proportional
to the difference between concentrations inside and outside the domain; X is then the
mass transfer coefficient. Here, for the sake of simplicity, the outside concentration is
assumed to be zero.

It should be noted that the approach used in this work applies to any general
well-posed initial-boundary problem with a parabolic operator of the form

(3) Ou® — div(a(z)Vu®) + b(z) - Vu® + c(z)u® = f°

with sufficiently regular coefficients. All the results of this work on the limit behavior
of solutions on finite time intervals remain valid and can be proved in exactly the
same way as in the case of problem (1)—(2). In particular, the boundary conditions
in (2) can be replaced with Dirichlet, Neumann, or Fourier boundary conditions.

If the elliptic operator related to (3) with the corresponding boundary condition
is dissipative, then the statements on the convergence on the infinite time interval
also hold true.

The deterministic case, i.e., the worst possible scenario where all the packages
start leaking at the same time with a same deterministic “release curve,” was stud-
ied in previous papers, with different types of periodic microstructure and different
convection regimes; see, for instance, [7], [6], and [8].

In section 1, we define the geometry of the source site and specify the assump-
tions on the random local sources. In this first section, we study a general “source
site” model assuming only statistical homogeneity and ergodicity of the random field
x — fe(x,t) in spatial variables x, and the exponential decay of f¢(z,t) in temporal
variable . Then in section 2 we derive an effective (or upscaled) model which char-
acterizes the effective concentration u°, and we prove the convergence result. The
statements of this section are quite simple, but we will provide proofs for presentation
completeness. In section 3, assuming additional mixing properties, we estimate the
rate of convergence of (u® — u") to zero. Namely, we show that if the correlation
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2628 ALAIN BOURGEAT AND ANDREY L. PIATNITSKI

function or strong mixing coefficient of the random field f¢ decays sufficiently fast,
then the expectation of the square of L? norm of the discrepancy admits the estimate
of order £2; see Theorems 2-5 for detailed statements.

In section 4 we study the asymptotic behavior of the corrector u! = (u® — u°)/e.
We show that, under appropriate mixing assumptions on f€ in spatial variables, the
function u' converges in law, at any fixed point (z,t), towards a centered Gaussian
random variable. Then we prove a similar result for any finite dimensional distribution
of the random field u!(z,t); thus u'(z,t) weakly converges in law to a Gaussian
random field. This is the subject of Theorem 8.

We would like to stress that the results of sections 2-5 also hold for more gen-
eral source terms concentrated in the vicinity of a surface and possessing statistical
homogeneity and good mixing properties. Our analysis does not exploit the specific
geometry of the source term assumed in the paper. See section 4 for further discussion.

Similar results are valid for the volume-distributed source terms, but in this case
they are not optimal and can be improved.

To the best of our knowledge the equations with oscillating random source terms
situated in a small neighborhood of a hypersurface have not been studied in the
existing literature. These source terms will naturally appear when, for example,
studying various interface problems.

The model equation studied here is derived from the modeling of contaminant
transport and migration in aquifers from a nuclear waste underground repository. In
this case the above “local model” may be used for all the upscaling stages: from the
set of containers to a vault, or from the set of vaults to a repository zone, or finally
from the set of repository zones to the entire waste site.

Although this is not the case for the radionuclides migration in an underground
nuclear waste repository, we consider in the last section a possible extension of the
above results to the case of operators with rapidly oscillating coefficients. We deal
with two classical models, namely, operators with random statistically homogeneous
coefficients and operators with locally periodic coefficients.

In the random case, obtaining the optimal estimates for the rate of convergence
(for a fixed right-hand side) is a well-known challenge. Important progress in this
direction has been achieved in [16], where, under certain mixing conditions, it has
been shown that the discrepancy admits a polynomial estimate; however, this estimate
does not seem sharp. In any case we cannot expect an estimate better than /¢ for
the L? norm of the discrepancy; thus, the results of sections 3 and 4 cannot hold in
this case, and we may only formulate the convergence theorem without specifying the
rate of convergence.

To the contrary, in the locally periodic case results identical to those in sections 3
and 4 can be obtained. Actually, in the locally periodic case, in order to avoid the
boundary effects, we should assume that the oscillations disappear in the vicinity
of the exterior boundary of the domain. Under this same assumption, both Green’s
function of the original problem and its solution admit a good approximation in terms
of Green’s function (respectively, a solution) of the effective problem (see [4], [3] for
the asymptotic expansion techniques). Therefore, in the locally periodic case, the
desired results can be achieved by combining the classical homogenization theorems
for Green’s functions and our approach in sections 3 and 4.

Notice that in the studied problem the source term has an asymptotically singu-
lar structure and converges weakly to a surface measure with time-dependent density.
The L? norm of the source term tends to infinity as ¢ — 0. Due to this, the energy
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Fic. 1. Each local source support, in the local variables y = %

is obtained by successive trans-

2
lation of the three-dimensional reference set K. = [17%, H%] X [17252 , H%} x [—e¥71sg, €7 Lsg).

estimates technique fails to provide sharp estimates for the rate of convergence. In-
stead, we use the representation of a solution of a parabolic problem in terms of the
corresponding Green’s function and study the limit behavior of this representation,
as € — 0, exploiting various bounds and asymptotics for Green’s function. In particu-
lar, our analysis relies on Aronson-type estimates for Green’s function. We also need
upper bounds for the derivatives of Green’s function. These bounds are obtained by
combining the Aronson-type and parabolic estimates.

In the case of rapidly oscillating coefficients we also use the results on convergence
of Green’s function proved by the classical methods of homogenization theory.

1. Definition of the problem.

1.1. Description of the local sources’ geometry. We first define a smooth
bounded domain @ C R3, with diam(Q) = R < oo, and such that QT = {z € Q :
23 >0} and @~ = {x € Q : x3 < 0} are nonempty Lipschitz domains situated on
each side of the middle plane ¥ = {z € Q : 23 =0} .

Then we describe the geometry of the sources’ supports inside this domain. To
this end we first denote by ¢ a small positive number (measuring the typical nondimen-
sionalized length of a source support or the source support’s period); then we define,
in the rescaled variables y = /e, a two- and a three-dimemsional nondimensionalized
reference set (see Figure 1):

KO:[I—sl 1+81}X{1—32 1+82]
(@) 2 e
K. =K% x " Y—s3,83); K*= U(K0+j),

jez?

with 0 < s1,52,s3 < 1 and v > 1. In the original coordinates x, these reference sets
take the form

. 0 _ _ RO
i Bl =e¢K.=B.x&"[—s3, s3].

BEOZzEKO:[El_Sl 1+81}X[ 1— 359 1+52}

5 ST 2 T
We also introduce the sets
B =B +¢j,  Bl=Bl+e(j0), jeZ’

obtained by pertinent translations of the reference sets in (4) with vector ¢j, j € Z2.
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Fic. 2. The entire three-dimensional “source site” support Be is defined by repeating periodically
a single three-dimensional source support, eKe.

Let II C ¥ be a closed rectangle, II = [—/f1, B1] X [—f2, B2], such that II C Q.
Without loss of generality we may suppose that the origin belongs to () and that the
source supports are located in the vicinity of the rectangle II. We then define

(5) B.= J B, B= |J B

JEZ2Ne— 111 JEZ2Ne— 111

We assume that B. is the support of the source density f¢ in (1), and B. is its
projection on ¥ (see Figure 2).
In what follows, we will use the notation

(6) ¥ = (x1,22) €5 = (2',23), y = 2/e,

(7) z = [a'/e] = ([1/e], [w2/e]), X' =[],
with [ -] standing for the integer part.

1.2. Description of the random source term. In this subsection we describe
the assumptions made on the stochastic properties of the source term f€ in (1).

Let (2, F,P) be a standard probability space with two-dimensional discrete er-
godic dynamical system Ty, z € Z2. Let us recall that T}, is a collection of measurable
maps, Ty, : Q — Q, z € Z2, which

e preserves the measure P for all z € Z?;
e possesses the group properties 1,y = T, o Ty, for all z,y, Ty = Id;
e is ergodic, i.e., the relation P(A)(1 — P(A)) = 0 holds for any invariant set
AcF.
Then, given a random field ¢ (w,t), t € [0,+00), such that

(3) 100, 8]l L=(a) < Cexp(—At),
we define the random functions ®(2’,t) and ¢°(2/,t) as follows:
9) @', t) = p(Tww,t) = p(Tipw, t); ¢ (x,t) = P(Tpw, t) = P(Tiz jqw, t);

here and in what follows [2] stands for the integer vector x’ with xj, k = 1, 2, being
the largest integer which does not exceed z;. By construction,

O (2 t) = D(2' /e, t).
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The source term on the right-hand side of (1) (see also (12) below) is now defined as

(10) FE(@t) = 1m (0)6 @)

and, by construction, the function 2’ — ¢°(2',t) is statistically homogeneous and
ergodic with respect to the discrete group 7j,//. We also introduce the rescaled
source function

1
flz,t) = E—,Y]le_q.gs (x)®(2',t).
Thanks to (8) the source density f(x,t) satisfies the bound
1
(11) fe(z,t) < a—vCexp(—At),
with nonrandom constants A > 0 and C' > 0. It is also clear that
supp(f) € 2° = % x [—&7,&"].

Remark 1. In the context of a geological nuclear waste repository, the general
random behavior of the sources, as considered above, could be adapted to the different
upscaling stages (from the set of packages to a vault, or from the set of vaults to a
repository zone) by adapting the pertinent assumptions on the randomness to each
situation.

For example, if the local sources, described by the generic source term @ in (8),
(9) (see also Remark 11), are the altered glass packages of long-lived nuclear waste,
then a typical release curve (in mol/year) of a local source is

O(.,t) = Foe MQvalt),
with the altered glass quantity Qva(t) given by
alw) if to <t <to+ Mi/a,
Qvalt) =< Bw) if to+Mi/a<t<to+ M /a+ My/5,

0 otherwise,

where Fj is the radioactive element initial fraction in the package in mol/gram, and
the three parameters a(w), f(w), and ty = to(w) are random.

Remark 2. The results of numerical simulations of a set of altered glass packages in
a long-lived nuclear waste repository were presented in [9]. They show total agreement
with the theoretical results obtained herein.

1.3. Original mesoscopic equations. Under the definitions and assumptions
of sections 1.1 and 1.2 we consider the initial-boundary problem

(12) Opu® — div(a(z)Vu®) + div(b(z)u®) = f¢  in Q x (0,00);
(13) us‘tzo =0, (’9i u® —b(z) -n(x)u® + Au® =0 on dQ x (0,00),

where a(z) (the diffusion tensor) is a uniformly positive definite smooth matrix func-
tion, b(z) (the convection velocity) is a smooth vector field, and where n, and n are
the external conormal and normal, respectively. We also assume that A > 0 so that
the studied model is dissipative.

A classical result says (see, for instance, [13, Chapter III, sections 4 and 5])
that for each € > 0 and each w € Q, problem (12)—(13) has a unique solution u® €
12,,(0, 00 H'(Q)) N C(0, +00; L2(Q)).

loc
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2. Limit averaged equations; convergence. Our first aim is to show that
the limit problem takes the form

(14) 9’ — div(a(z)Vu®) + div(b(z)u®) = 1n (") F(t)ds(z) in Q x (0,00);

0
0 _ 0 0 0_
(15) u |t:0_0’ Bnau —b-nu’+ A’ =0 ondQ x (0,00),
where F'(t) is the expectation
(16) F(t) = 2515283 E{®(a2', 1)},

which does not depend on z’ due to statistical homogeneity of the random field ® in
variable a’; dx(x) = dxi1dzed(x3) is the surface Lebesgue measure with support X,
and 1p(z") is the characteristic function of the rectangle II.

In what follows, for brevity we will use the notation

Fr(z,t) = F(t)1n(z).

Since the surface Lebesgue measure 1y(2')dx(x) is an element of W~1°°(Q),
then the function 1y;(2')F(¢)0x(z) belongs to the space L>(0,T; W~1°(Q)) for any
T > 0. Thus, according to [13, Chapter III, section 10], the solution u° is an element
of L2(0,T; HY(Q))NC((0,T) x Q) for some a € (0,1); here C* stands for the space
of Holder continuous functions. Considering the smoothness of the coefficients a(x)
and b(z) and of the boundary 9@Q), we also derive from the local parabolic estimates
(see [13, Chapter III, section 12]) that u°(z,t) is a smooth function on any compact
subset of @ x (0,7) that does not intersect the set {(z,t) : 2’ € I, x3 = 0}.

By construction, the function a’ — f€(a’,x3,t) defined in (10) is statistically
homogeneous and ergodic in 2’. In the rest of this section, with no additional as-
sumption on the function f¢, except for those already formulated in section 1.2, we
prove that u® converges almost surely (a.s.) to u%, as e — 0, in the L%(0,T; H}(Q))
norm. To this end we will introduce an auxiliary two-dimensional source term with
support on ¥ () B (see (5)):

(17) Fe(x,t) = 2531 ()¢ (2", )05 (2).

We start with two preliminary statements.
LEMMA 1. Under assumption (8), for any fized t the following bound holds:

1£548) = F=()ll2(q) < C7/2e

with a nonrandom constant C'.
Proof. Letting

x3
[ @ m <o

1

9" (x,1) = +1
- fs(x/7y7t)dya T3 > 07

x3

we have

8i “(x,t) = f(x,t) — F*(x,1) and g% (,1)| < Ce™M.
T3
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It is also clear that supp(g®) C B.. Therefore, for any ¢ € C§°(Q),

(1) — F(a, ()] = | [ 22g (o, ()
Q q Ox3

<| [ smngptws < ([ @nras) ([ wopar)”

< C| gl ma () €™,

which implies the statement. a

Moreover, by Birkhoff’s ergodic theorem the function (F¢(z,t) — Fr(z,t)dx(z))
a.s. converges to 0 weakly in L?(X), as ¢ — 0, for all + > 0. As a consequence, we
obtain the following result.

LEMMA 2. Under the ergodicity assumption on dynamical system T, (see sec-
tion 1.2), and under assumption (8), for any T > 0 the following limit relation holds
true a.s.:

(18) il_{% | F€ — FH52”L2(O,T;H*1(Q)) =0.

Proof. For any ¢ € L*(0,T; H}(Q)), denoting by (f,¢) the duality between
H}(Q) and its dual, we have

‘ /OT (F*(x,t) — Fu(wz,t)0s(z), @) dt‘
- ’/OT/E(FEWOJ) — Fu(a',0,8)p(a’,0,1) dx’dt‘

T
< /O oy arnre o I(F= (5 1) = TaF (@) gr-1/2 (s dt
1/2

T
(19) §O|<P|L2<0,T;H3<Q>></O II(FE(-,t)—Fn(nt)llé-uz(g)dt) ;

here we have also used the fact that II is a compact subset of ). Due to the
compactness of embedding of L?(X) into H~'/2(X), the a.s. weak convergence of
(Fe(2’,0,t) — Fii(2',0,t)) to 0 in L?(X) implies that a.s. for all ¢ € [0, T

i [|(F2( 8) = Fua( 8) [l r-1/2(s) = 0.

e—0

Since [|(F(-,t) — Fuu(-,t))| z2(s)y < Ce™!, by the Lebesgue theorem we get a.s.

T

i [ = ) syt =0
for any T' > 0. The desired result now follows from (19). O

Remark 3. Later on, we also use the estimate
(20) ||F€(at) - FH('at)62|‘H*1(Q) < Oe—At V(w,t) €O x (0,00),

which is an easy consequence of (8).
We now proceed with the convergence result.
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THEOREM 1. Under the assumptions of sections 1.1, 1.2, and 1.3, we have the
convergence

. 0 o
lim [Ju® = ul[z2 (0,001 () =0 @,

with u® being a solution of (12)—(13), and with u® being a solution of (14)—(15).
Proof. Subtracting (14) from (12) we conclude that the difference (uf —u") satisfies
the equation

Op(uf —u?) — div(a(x)V (uf —u°)) — b(2)V(u® —u’) = f— Fpdy  in Q x (0, 00);

(21) 9

(us—uo)‘tzo =0, . (uf—u®) + (A =b-n)(u—u’) =0 on dQ x (0, 00).

The standard energy estimate for this problem reads (see [13, Chapter III, sections 2
and 5] for the proof)

(22) l[u® — w0l 20,11 (@) < CD)FE = Fudslr2o,mm-1(0));

it then follows, from Lemmas 1 and 2, that
. 0
(23) il_I% ||u5 —Uu ||L2(07T;H1(Q)) =0 a.s.

for any 7" > 0.

The proof of convergence on the infinite time interval (0, c0) relies on the dissi-
pative properties of the studied problem.

First, we consider an auxiliary problem:

(24) Orw — div(a(z)Vw) — div(b(z)w) =0 in Q x (0, c0),

0
anaw—l—()\—b-n)w—O on 9Q x (0, 00);

then we prove the following statement.
LEMMA 3. A solution of problem (24) satisfies the estimate

w‘t:O = Wo,

w(-, ey < Ce ™ wollL2), t>1,

with some constants kK > 0 and C > 0.

Proof of Lemma. Without loss of generality we may assume that wy > 0. Then,
by the maximum principle, the solution w is positive for any time. Moreover, by the
Harnack inequality (see [2, Theorem E]) and the standard parabolic estimates,

1) < Cminw(z, 1), 1)< .
gleaécw(x ) < glelgw(x ) Iwneaécw(x ) < lwollr2(q)

Integrating by parts (24) over the set {(z,t) : z € Q, 1 < s < t}, we obtain

/Qw(x,t)da:—/Qw(x,l)da:z —A[ ds /{)Q w(z, s)do,

where do is the surface volume element. It follows from the last two relations and the
Harnack inequality that

/Qw(a:,t)dx§/Qw(x,l)da:—c/\/lt/Qw(a:,s)da:,
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with a constant ¢ > 0 which does not depend on wy. Applying the Gronwall lemma,
we conclude that

/ w(z, t)dt < e_CA(t_l)/ w(zx, 1)dt.
Q

Q

Letting x = cA, the last estimate reads

/ w(z,t)dt < Ce*“t/ w(x, 1)dt.
Q

Q
From this estimate the statement of the lemma easily follows by the Harnack inequal-
ity. a
Finally, to complete the proof of Theorem 1, we make use of Green’s function
G(t,x,y) of problems (24) and (21). By Lemma 3 and the Harnack inequality we
have

G(t,z,y) < C(tg)e ", t>to,

where ty is a positive number; for instance, we can set tg = 1. Considering the
smoothness of the coefficients and of the domain in (12)-(13), by parabolic estimates
(see [13, Chapter III, section 12]) we have

(25) |Gt )llar ) < Ce ™, G, x, Mgy < Ce ™, t > to.

Using the integral representation of the solution of (21) in terms of G(¢,x,y), and
combining (25) and (20) with the estimates of Lemma 1, gives

(26) /T us(-,t) — uo(-,t)llfql(Q)dt < Ce2min(Am)T

Indeed, if for N € ZT we denote x% (t) = Ly n—2 74+~ (t) and introduce Ufr%v and
U;?V as solutions of problems similar to (21) but with the right-hand side replaced
with (f¢ — Fnios)x% and (f¢ — Fnds)(1 — x%), respectively, then, on the interval
(T'+ N —1,T+ N), we have (u® —u°) = Ua’j\, + U;%\, From (20) and (22) we get
< Ce—2AMT+N)

2
HUIE“),}VHLQ((TJerLTJrN) s HY(Q))

Estimates (20) and (25) imply that

< Cef2min(A7n) (T+N) )

‘|U;’3\,(-,T+ N - 1)||i2(Q) =

By the energy estimate we obtain

2 112 —2min(A,k)(T+N
||U76—'>NHL2((T+N717T+N);Hl(Q)) < (Ce (Ak)( )

This yields

Jus — uOHi2((T+N717T+N);Hl(Q)) < Ce—2min(AR)(T+N)
Taking N = 1,2, ... and summing up the obtained inequalities, we arrive at (26).
Together with the convergence on finite intervals, obtained in (23), estimate (26)

implies the desired statement of Theorem 1. O
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3. Rate of convergence. In applications the convergence result alone is not of
great interest if it is not accompanied by proper estimates of the rate of convergence.
In this section, under natural additional assumptions on the ergodic properties of
the source term, we provide a number of bounds for the convergence rate. These
assumptions will be made on the rate of decay at infinity for the correlation function
of the source density or for one of its mixing coefficients; see, for instance, [10] and
[14] for the corresponding definitions.

Let us start by recalling the definition of the correlation function of a random
field (z/,t) € R? x R+ U(2,t):

(27) R(t,s,2',y) = E[(¥(2,t) — BV (2, 1)) (L(y, s) — E¥(Y, s))].

Due to the properties of the random field ®((,¢) defined in (9), the corresponding
correlation function R(¢, s, 2’,y’) takes the form

(28) R(tv 5, x/’ y/) = R(tv 5, [:E/] - [y/])
=E[(2(0,t) - E®(0,1))(2([2] - [y], s) — B®([2'] - [y'],5))]-

3.1. Mixing assumptions. Ergodicity is a qualitative property; under the sole
assumption that ®(2',t) is ergodic, it is not possible to estimate effectively the dis-
crepancy |u® — u°| in Theorem 1.

In this section we introduce a number of conditions on the random field ¢ —
®(2’,t) which will be used later on when obtaining error bounds.

e First, we assume that the correlation function of ®(2’,¢) admits the upper
bound

(29) IR(t,s,2",y")| < exp(—Amin(s,t))R(z — 1),

with function R(2’ — 3’'), which depends only on the difference (2’ — /).
This bound ensures in particular that there is an estimate uniform in ¢ and
s for the correlation of ®(-,¢) and ®(-,s). It should also be noted that the
bound (29) is consistent with the previous assumption (8).

e Then, concerning R(y’), we will assume that at least one of the following
conditions holds true:

RO.
R(y') =0 if|y| > Ry,
for some Ry > 0.
R1.
/ R(y)dy' < .
RQ
R2.

Riy)<Cl+lyh™, v>o.

Assumptions RO-R2 might be insufficient for obtaining the estimates for higher
order moments of the discrepancy |u® — u°|, and for studying the limit law of the
normalized difference (u® — u°). In this case we should impose additional conditions
on the mixing coefficients of the random field ®(2’,t).
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e We will assume that the function ® (', t) possesses one of the following mixing
properties:
M1. The strong spatial mixing coefficient a(r) of ®(z’,t) satisfied the inequality

(30) a(r) < C(1+r)™™, v >0,
where the strong spatial mixing coefficient a(r) is defined as follows:

alr)y= sup sup |P(& N&) —P(&)P(E)],
G1,G2 E1€Fc,
E2€Fa,

with Fg, = o{®(y1.t1) @ y1 € G1, t1 > 0}, Fa, = o{®(y3,t2) : y5 € G, ta > O}

and the first supremum is taken over all sets G1, G2 C R? such that dist(G1,G2) > r.

M2. The maximum spatial correlation coefficient 3(r) of ®(-,t) decays fast enough
so that

(31) Bry < C(1+r)~", v, >0,
with

B(s) = sup sup [E(&n)],
G1,G2 &,n
where the second supremum is taken over all random variables, £ and 7, which are,
respectively, Fa,- and Fg,-measurable and satisfy the conditions E{ = En = 0,
€)= [InllL=@) = 1, and where the first supremum is taken over all sets
G1, G2 C R? such that dist(G1,Gg) > r.

Remark 4. Notice that the condition RO is fulfilled if the strong mixing coefficient
a(r) is equal to 0 for r > Ry. Also, according to Lemma VIII.3.102 in [10], any one
of the conditions M1 or M2 implies the condition R2 with v = v;.

Replacing the random source density f€(x,t), which is distributed in a small
neighborhood of the plane ¥, with a random source density F°(z,t) concentrated on
the plane ¥, as specified in (17), we define the auxiliary problem

(32) 0vii® — div(a(z)Va®) + div(b(z)d®) = F°  in Q x (0, 00);
0
ong

We proceed by estimating the difference (u® — ).

LEMMA 4. Let the above assumptions on the domain geometry and on the coef-
ficients of problem (12)—(13) be fulfilled, and assume, moreover, that (8) is satisfied.
Then the following bounds hold:

:07

33) @

0 4° —b(x) -n(x)a® + A =0 on 9Q x (0,00).

(34) lu® — 0| Lo x(0,1)) < Ce”|Inel,
(35) lu® — 0% Loo 0,70 (@) < Clp)e?, 1< p<oo.

Proof. Denote by G(t—s, z,y) Green’s function of problem (12)—(13), and let K be
a compact subset of () that contains some neighborhood of ¥ N II. Using Aronson’s
estimates for fundamental solutions on finite time intervals [1] and the maximum
principle, one can show that on any finite time interval (0,7] and for all y € K the
function G(t,x,y) admits the upper bound

C x—y|?
(36) Glt,,) < =7z exp (_Cl tyl )
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with strictly positive constants C' and ¢ that might depend on T'. Indeed, we can
assume without loss of generality that the matrix a(-) and the vector field b(-) are de-
fined everywhere in R? and satisfy the smoothness and ellipticity conditions specified
in section 1.3. Denote by P(t,z,y) the fundamental solution of the corresponding
Cauchy problem in R? x (0,7). Then, according to [1], the following upper bound
holds:

lz — y|?

(37) P(taxay) SQ exp < > ’ z,y € R37 te (OaT)a

with the constants C' > 0 and ¢ > 0 which might depend on T'. For the difference
G(t,z,y) — P(t,z,y) we have

G0, z,y) =P0,2,y) =0, z,y€q,
and, for all y € K and = € 0Q,

0
ong

The energy estimate reads

HG(tv 7y) - P(tv ’y)HL2(Q) < 06_62/t

(G=P)=b-n(G-P)+ NG —-P)|<Ce /!,  ¢;>0, C>0.

for all y € K. Since the coeflicients in (12) and the domain @ are smooth, we derive
by means of the standard Schauder-type parabolic estimates (see [13, Chapter III,
section 12]) that

|G(t,2,y) — P(t,a,y)| < Ce /!

for all z € @ and y € K. Combining this estimate with (37) yields (36).
Applying once again the standard Schauder-type parabolic estimates, we conclude
that

C |lz—yl |z —y]?
(38) V,G(t, z,y)| < wr g el )
Clearly, the difference (f¢ — F©) can be represented as follows:

Fo(t) — B 1) = 5o (22 L () (00,

8333
with
r+1, —-1<r<Qq,
Ir)=<¢ r—1, 0<r <1,
0 otherwise.

By Green’s formula and estimates (8), (38), we have

|u®(z,t) — xt|—‘/ /G s;zcya8 19(%) (Y)o° (2, s) dyds

‘/ / 5y Gt = 5009 (55 )15 )67 (0" 5) dyds

C  Jx-— r— ul?
/ / |\/—ys|eXp(_C| t_il )1{\y3\S67}eXP(—AS)dsdy.
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Integrating first in time and then in space, after straightforward computation, one
gets

1 Jz—y o —yP?
/0 G Vi exp ( - cﬁ) exp(—As)ds

t1|33—y| lz —y|?
39 < —
(39) _/052 7 exp( c . )ds

< 1 /°° 1 ( C)d Co
— —mexp| ——)ds=—— .
Syl Jy 2P & —yP?

For |z3| < 2¢7 this gives (34), i.e.,

1

5 dy’ < C(Q,7)e"|In(e)];
v |<R |y

2e”
(40)  |u(a.t) — i (x )| < C / dys
0 |

here and later on R = diam(Q). For |z3| > 2&7 we obtain

e 1
(41) [uf (z,t) — 4 (z,t)] < OEW/ ——5 4y’ < C(Q)e”|In(|z3])|.
\wi<r T3+ [V

Finally, (40)—(41) yield
(42) |u€(x7 t) - ﬁa(x, t)' < C(Q7 7)5” 1n(max{|x3|, 287}”7

which implies (34).

Integrating (42) leads to (35). This completes the proof. O

Remark 5. The estimates of Lemma 4 have nothing to do with the randomness
of f¢. We have only used the properties of Green’s function G(t,z,y), the structure
of the support of f¢, and the fact that function f€ is bounded.

Next we denote

(43) Fe(t) = 253 B{D (2, 1)} (2/)05(x)

and consider another deterministic auxiliary problem with a nonrandom source term:

(44) oy — div(a(x)Va©) + div(b(z)a®) = F°  in Q x (0, 00);
(45) u|,_, =0, 3i 4 —b(x) -n(x)a® + A =0 on 9Q x (0,00).

Representing the difference (15 (2') —s152) in the form 15 (2) —s152 = ediv, 0(z' /)
with |f| < ¢ (one can easily find an explicit formula for 8, though we do not use it),
and following the lines of the proof of Lemma 4, we obtain the following proposition.

PROPOSITION 1. Let @° be a solution of (44)—(45) and u® a solution of (12)-(13);
then

(46) [a° = u®l| L= (0,7;02(@)) < Ce.
In view of Lemma 4 and Proposition 1, in order to estimate the discrepancy

[u® — u°|| Lo (0,7;12(q)), it suffices to obtain an upper bound for the expression |4 —
4% || oo (0,7;12(@))- This is the main and most technical part of this section.
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PROPOSITION 2. Let ¢ and u° be solutions of problems (32)—(33) and (44)—(45),

respectively, and suppose that condition RO is fulfilled; then the following estimate
holds:

(47) E{[a° — a°||72 0,702y } < Ce™.
Proof. The difference U¢ = (4° — u°) solves the problem
(48) U — div(a(x)VU?®) + div(b(z)U®) = F* — F° in Q x (0, 00);

(49)  U®|,_, =0, ai U® = b(z) - n(z)U° + AU =0 on dQ x (0,0).

Our aim is to estimate the expression E{||U?(t, -)H%z(Q)}; to this end, we first obtain
a pointwise bound for EU?(t, ). Using the notation F§ = F° — F*, we have

E{U%(z,t)} = E{ (/Ot/Q Gt —s,z,y)FS (s, y)dyd5>2}
:E{ /Ot/Q/Ot/Q Gt — 5,2, 9)G(t — 1, O)FE (5, ) FE (. ) dydsd(dr}

SC/ot/Q,/Ot QIG(t—s,x,(y’,O))G( — o, (¢, 0)R (lC’ y')dy’dsdg’dr

—c/// Q/Gsa: Y, 0)G(rz, (¢, 0)R (K/ y')dy'dsdg’dr

+| —y'P
<Cl////Q,s3/2r3/2ep(_c )

CC% + |:El _</|2)
r

where we have denoted Q' = Q N {yz = 0}.
Integrating first in s gives

x—l—w /|2

1 /t/($§+$'y'2) 1 ¢ Cy
= — 75 €xXp ( - —) ds < ,
(22 + |2/ — y' D)2 J, 5372 s (22 + |2/ — o/ [2)1/2

with Cy = [ s73/2 exp(—c/s)ds. Then substituting (51) in inequality (50), one gets

faol]

X exp ( —c (Kl ; yll) dy'dsd(’ dr,

|C y| duy’
Y ¢’
52 E{U?(z,t) <c// :
o B, ,x3+|x_y|)1/2(x3+|$_4/|>1/z

Without loss of generality we may assume that 0 € Q. If we denote Qo = {y' €
R? |y'| < 2diam(Q)} and perform the change of variables ' =y — 2/, (' = ' — 2/,
then (52) leads to

1 1 7 |§/_g/| ~ 171
o e | e memmE ) ol
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For brevity denote ngs = {(gj’,f’) €EQoxQo : | — §’| < Rpe}, where Ry is the
constant from assumption RO; then due to RO inequality (53) implies the estimate
1

E{U?(z,t <c/
e <e [ crmm o

In order to achieve an upper bound for the integral on the right-hand side, we divide
the mtegratlon area mto two parts, namely, Q7° = Qo N {|7'| < 2Roe, || < 2Roe}
and Q2° = Q2°\ Q2

The 1ntegra1 over Q7° can be estimated as follows:

dy'dc’.

o et = yana wrvivem)
Qs (@3 +[71)Y2 (@3 + (0122 T \ v <2reey (@3 + (712

(54) _ /mﬂL L /4R§62L ’
U @) T

([ ) <ome

in the last inequality here an explicit formula for the corresponding integral has been
used.

Denote dg = 2diam(Q). Since for any (
I€'| > Roe, and |’ —€'| < Roe, then for all ('

7,€) € Q3° we have Roe < || < do,
,€) € Q3 and z3 the following estimate

holds:
1 1 1
<C(Ry)—5——5;
@ wPE @ e = SR )
hence,
d¢’ dg'dc’!
/ 1/2 : 212§C(R0)/ 2y7€/2
2.6 x+|y| (22 + |¢')2)V/ Qe (3 +[7'%)
i dl! / dj'
55) < C / L S—OT) - S —
B5) = CE wyezinzaa. gy = O [ ciicae G4

= C(Ry)e? /dQ __rdr < C(Ro, Q) In(x2 + £2).
Roe (@3 +72) 7 ’ ’

Combining (54) and (55), we arrive at the desired pointwise upper bound:
(56) E{U?%(z,t)} = E{(a° — 0°)*} < C(Ro, Q)* In(z3 + €2).

Now, the estimate (47) is straightforward; we just integrate (56) over Q. O

The above statements allow us to estimate the rate of convergence in Theorem 1
if assumption RO is satisfied.

THEOREM 2. Let the assumptions of Theorem 1 be fulfilled, and assume in addi-
tion that condition RO holds true. Then

(57) E{W - u0|%2<07T;L2<Q»} < C(Ro, Q)22

where u® is a solution of the original problem (12)—(13), and u® is a solution of the
upscaled problem (14)—(15).
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Remark 6. Notice that the scaling €2 on the right-hand side of (57) is the central
limit theorem scaling in dimension two. This scaling is natural in our framework due
to the nearly two-dimensional structure of the source term. The limit behavior of a
normalized difference (u® — u®)/e and the validity of a full central limit theorem are
discussed in section 4.

Remark 7. The estimate for the rate of convergence given by Theorem 2 is better
than that obtained with the help of Lemma 1. Indeed, for v = 1, using Lemma 1 and
an a priori estimate instead of Green’s function representation, we would have had in
(57) the right-hand side of order ¢ instead of £2.

Proof of Theorem 2. This assertion is a straightforward consequence of the results
of Lemma 4, Propositions 1 and 2, and the assumption that v > 1. O

Moreover, taking into account the dissipative properties of the boundary con-
ditions (13) and the bounds (8), (29), and following along the lines of the proof of
Proposition 2, one can obtain the estimate

THEOREM 3. Under the assumptions of Theorem 2 the following inequality holds:

(58) E{HUE - u0||2L2((t,oo);L2(Q))} < C(Ro, Q) exp(—rt)e®, K >0,

with k > 0, which depends only on A, on the operator in (12)—(13), and on the domain
Q.

Our next goal is to relax the mixing assumptions on the source function f¢(x,w);
we want to show that the statement of the last theorem remains valid if the correlation
function of ®(-,t), or its strong mixing coefficient, satisfies certain polynomial decay
conditions.

THEOREM 4. Suppose that either condition R2, with v > 2, is fulfilled or the
strong spatial mizing coefficient «(s) satisfies the upper bound a(s) < C(1 + )™
with vy > 2. Then the following inequality holds:

E{nuf - u°|iz<o7T;L2<Q>>} < Cn.Q).

Proof. Using the results of Lemma 4 and Propositions 1 and 2, as in the proof of
Theorem 2, we need only show that the estimate (56) holds. To this end we consider
the auxiliary problem (48)—(49) and notice that the upper bounds (52) and (53) are
still valid under the assumptions of Theorem 4. It then follows from (53) and the
standing assumptions that

2 1 1 ! gdC
E{U (x,t)} < C/O/O ($§_|_ |§|2)1/2 ($§_|_ |§|2)1/2 ((1+6—1|<~_g|)u) dyd¢

1 1 1 -
= 052/ / _ _ _ dgdc,
e1Qo Je-1qo (X3 + 9112 (X3 + |(]2)1/2 ((1 +1¢ — z?l)”)

with v > 2 and X3 = x3/e; for simplicity of notation, here and later on, instead of
writing ¢’ and ¢’ (both of them belong to R?) we write § and (.

In order to estimate the latter integral, we divide the domain e ~1Qg x e ~1Qy into
three parts, namely,

e Qoxe 'Qu=Q1UQUQ;

def

S50 il < I8 {0 s 5Ia < 1ol <2} u{@.0) - 1l > 20
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and we estimate the contribution of each subdomain separately.
In @, we have | — §| > £[¢|, thus

/ Ce2d¢ / 1 1 ai
e-1Qo (X3 + (122 Jeagi<icry (X3 + 191DV (1 41C = g))»

Ce2dC 1 Cclv) .
< 2 P 2 ~12)1/2 = dy
e-1Qo (X3 +[C1)V2 Jagi<icy (X3 +1912)V2 (14 (¢~

O(Z/)EQdé lfl/ZL
- /Q (X3 + ({22 (1 + |§|)v/0 (X2 +2)1/2
C(v)e2dC ) e ,
~ =—C1(v Cy(v)e”.
= /51Q0 (X§+|<|2)1/2(1+|<|)1, 1( )(Xg +|<| ) < 2( )8

The contribution of @3 can be estimated in the same way if we exchange the order of
integration in the variables ¢ and (. It then remains to estimate the integral over Qs.
We have

/ Ce2dC dj 1
@ (X2 +[C)V2 (X3 + 191DV (1+|C - g~

4Ce2dC djj 4Ce2dC dj
< = ~ < o =~ —
B / (XF+IC1?) A+ IC—gD) — /ElQo (X3 +1¢?) /2alczo (1+1gh)~

2 L 2 v nl|r
e [ | o <GS0+ )

Combining the above estimates, we conclude finally that
E{U?(z,t)} < C(v)e*(1+|In(|zs])]).

This yields the desired statement if the assumption R2 with v > 2 is fulfilled. To
complete the proof, we use the fact that condition M1 implies condition R2 with
vV =u. 0

THEOREM 5. Assume that at least one of the conditions R1, R2 with v > 2, or
M1 with vy > 2 is satisfied; then the discrepancy (u — u®) admits the estimate

E{|U€ — u0|%2((t7oo);L2(Q))} S CeXp(_lﬂ'/t)52, K > 0

Proof. By following along the lines of the proof of Theorem 4, one can show that
under the condition R1 the following upper bound holds:

E{||u5 - u0|%2(O,T;L2(Q))} < Ce”.

Finally, we combine the above estimates, local in time, and the statement of Lemma 3;
considering the exponentially decaying factors in (8) and (29), we arrive at the desired
result. d

Denote Qs = {z € Q : |z3| > 6}.

LEMMA 5. Under the assumptions of Lemma 4, for any § > 0, the following two
relations hold a.s. for all t > 0:

. 1 N
(59) lim —[Ju (-, 1) = (1) 1 @) = O,
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1
lim — t) —a° (-t = 1 :
(60) lig — [0 1) = (. Ol i) =0, B [1,+0)
Moreover, the convergence is uniform on finite time intervals.
Proof. In view of (42) the second relation is a consequence of the first one. To
prove (59) we make use of the representation

32
FoG@st) = Fo (1) = 5501 (5150 (0) (T, ),
with
1(r+1)2, —1<r<o,
Vi(r) =9 $(r—1)% 0<r<1,
0 otherwise.

For sufficiently small ¢ > 0 we have

|uf(z,t) — 4% (x,t)| = &7

‘ 9? Y3 /
/0 / G(t — s,x,y)a—y%ﬁl (g)ﬂés W) f(Tyr jew, s) dyds

i t o2 Ys ,
=c / 3y3 5 G(t — 875579)191(5—7)1&5@ ) (Tyrjew, s) dyds|.

Using upper bound (36) and parabolic Schauder-type estimates (see [13, Chapter III,
section 12]) we derive that Green’s function satisfies the estimate

52

5,2 060w <€)

for all z, y, and ¢ such that |x — y| > 6 and ¢ > 0. Then
[us (z,t) — 4 (x,t)] < C(5)e*
for all x € Qs, t > 0, and € < §. This implies the desired statement. d
Remark 8. In the particular case ®(t,y’) = p(t)Po(y’) with a smooth positive

deterministic (t), making straightforward computations similar to those of Proposi-
tion 2 it is easy to see that

lim — E— E([la® — o[ 720,1:02(q)) = o0
if
(61) /R2 E((2([y']) — E®(0))(®(0) — E®(0)))dy’ = oc.

If v < 2, then there is a random statistically homogeneous field ®([y’]) such that
condition R2 is fulfilled and relation (61) holds true. In this case the statement of
Theorem 4 fails to hold. This shows that the condition v > 2 is sharp.
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4. Corrector’s limit law. The aim of this section is to study the limit behavior
of the normalized difference ¢~ (u® — u%). We are going to show that it converges
weakly in law, as ¢ — 0, towards a centered Gaussian random field. This result
can be interpreted as a two-dimensional central limit theorem. We first show that
e (uf(z,t) — u%(z,t)) converges to a Gaussian random variable for each (x,t) such
that x3 # 0, and then we prove the convergence of finite-dimensional distributions of
e~ (uf —u) to the corresponding finite-dimensional distributions of a limit Gaussian
random field.

Notice that by Lemma 5 the function e~1(4°(z,t) — u®(x,t)) tends to zero for
each (x,t) € Q x (0,400) such that x3 # 0. It will also be proved later in this section
that e~ 1(u(x,t) — u®(x,t)) vanishes, as € — 0, for each z € Q \ ¥. The asymptotic
behavior of e 1(u® — u°) coincides with that of e~!(4° — 4¢). Bearing this in mind,
we mainly focus on the limit behavior of the latter quantity.

Denote
(62) ct,s) = lim —— R(t,s,y, () Lg=(y) L= (C)dy1 dy2dC dCs,

N —oc0 N [0,N]4
where K and R(t, s, y, () have been defined in (4) and (28), respectively. It is easy
to verify that under condition R1 the above limit exists and admits the upper bound

a(t,s) < 4 / / R(y)dy,dyo.
0 0

THEOREM 6. Assume that one of the conditions M1 or M2 is fulfilled with vy > 2.
Then for each t > 0 and x € Q, x3 # 0, the normalized difference e~*(u€ — 4¢) of
a solution 4° of (32)—(33) and a solution ¢ of (44)—(45) converges in law towards a
Gaussian random variable with zero mean and variance

(63)  o*(t,x) = /0 /0 /HG(t —s,2,(y,0)G(t —r,x,(y,0))e(s, r)dy dsdr.

Proof. We follow the classical scheme of proof of the central limit theorem; namely,
we are going to show that the characteristic functions E exp (%(a‘S — ﬁa)) converge,
as € — 0, to the function exp(—o2)\?) with ¢ defined in (63).

First, let § be a sufficiently small positive number, say § = $(v1 — 2)/(v1 + 2);
then we define

1446

(64) L.= [57/5} , N. =12,
where, as above, the symbol [-] stands for the integer part. Clearly, N, = e~ (1=%) 4
O(e™ 156)).
We introduce also, for any z = (21, z2) € Z?, the following two sets:
(65)  Jo={j=(j1,j2) €Z°Ne I :
Lezi +1<j1 < Lo(z1+1); Lezo+1 < jo < Lo(20+ 1)}
(66) S, ={2' €R?*NII : eL.zy < a1 <eL.(21+1); eLozo < a9 < eLlo(20 + 1)},
Next, we introduce the four sets of indices:
19 = {z=(21,22) € Z2Ne M : 2 and 25 are even},
I ={z = (21,2) € Z* Ne I : 2 is even, 2 is odd},
I ={z = (21,2) € Z* Ne I : 2, is odd, 2 is even},
I ={z = (21,29) € Z*Ne "I : 2, and zp are odd}.
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Clearly, all four sets do not intersect and their union coincides with Z2 N e~ 'II.
Finally, we introduce a family of random variables:

Xy = Xjat) = [ [ 6t = s, (/.0) ({70 0) — Bo0) 155 )y

(71)
JEZ?Nne I,
and
1
(72) =< X =D, Lm=0,1
Jj€J2 zellm

Notice that e~ 1(a° — 4°) = 05, + 05, + 05, + 65,.

With all of this preliminary notation, we are now able to prove the following
statement.

LEMMA 6. Under either of conditions M1 or M2 with vy > 2, the random vector
(059, 050, 051,05,) converges in law, as € — 0, to a Gaussian vector (63, 0%,09,,0%;)
consisting of four independent identically distributed Gaussian random variables with

1

zero average and variance 102(x,t), o2 being defined in (63).

Proof. First we show that 6§, converges in law to a Gaussian random variable

with zero mean and variance 10?(z,t). To this end we study the limit behavior of

the characteristic function of 6g:
O(\) = Eexp(iAdyy).

Let z' be one of the elements of I°. Clearly, for any z € S, and y € U, oo\ 51} Sz

1-§5

it holds that |§ - %} > ¢~z . Then, from conditions M1 or M2, and due to Lemma
VIIL.3.102 in [10], one has

‘E( I1 exp(i)mi)) —Eexp(i)\nil)E( I1 exp(i)mi))‘ <CE 7)™

2€100 zE€100\ {z1}

here we have also used the fact that |exp(iAng, )| =1 and | [], exp(i/\nj)J =1
Iterating this procedure and considering the inequality [I°°| < ce=*~?, we end up
with the relation

(73) ‘E( H eXP(i/\Ui)) - ( H Eexp(z')mj))‘ < eI T = e 1(n-2),

ze 00 ze 00
the last equality here is a consequence of our choice of §; indeed, if § = 2("1/11—:_22), then
-1 - 6 + %1 1%6 = VIT72 .

Our next aim is to compute the expectation Eexp(iAn), z € I°° N e~ L. From
(64), (65), (66), and (72) we deduce that |n;| < ce® for any z € I°°. Therefore, by
the Taylor formula,

2

exp(iN) — 1 — i + 5 (05)?] < e=005)°.

This yields

)\2
Bexp(ivg) 1+ 5 BlEP | < V"Bl
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Taking into account the definition of 75 in (72), after straightforward computations
we obtain

t pt
E(n;)2=al+5/0/0 Glt — 5,2, (6522, 00)G(t — 7,2, (€2, 0))E(s, r)dsdr

+ o(e't?),

(74)

where ¢(s,r) is defined in (62). Indeed,

/'/’/‘/'Gt_8$ (v, 0)G(t — 7,2, (', 0))

!

x R(s r, yg ¢ ) 5.1 (v))dC dy dsdr.

Since 11 > 2, assumption Rl is satisfied. Also, for 3 # 0, the function G(t —
z, (y',0)) is continuously differentiable in s and y’. Therefore,

[ [ 6= a6 - o € R (s L. g)Bxcngymcm/
// Gt — s, F2,0)G( — ra, (5 2, 0)R s, C/)JIBE(C’)]lée(y/)dC/dy’

1446

o I Yl (azzo))a(t—m(sﬁzo))( r)+o(e)

for all s and r, 0 < s,r < ¢, and the relation (74) follows. Passing to the limit, as
€ — 0, in (73) yields

Ehg%E< 1T eXP(an))

ze ][00

= lim <— 1+5//Gt—sx £'% 7,0))
EA)OZEIOO

Gt —r,a, (% g ,0))2(s,)dsdr + o(e 1+5)>

( ///G —s,2,(y,0)G(t -7z (y,0))e(s, T)dsdrdy)
= exp(—(\?/8)(0(,1))*;

the factor 1/8 appears in the last line here because the set I’ contains only the
integer vectors with even coordinates. Thus, 6§, converges in law towards a Gaussian
random variable with zero mean and variance $¢(z,t). Similarly, one can show that
the random variables 65, 6], and 67, converge in law to the same limit.

Making use of our mixing assumptions, M1 or M2, it is straightforward to check
that the vector (05;, 65,1, 05y, 651) converges in law to a vector consisting of indepen-
dent random variables. This implies that 65, 4 65, + 07, + 05, converges in law to
a Gaussian random variable with zero mean and variance (o(x,t))2. This completes
the proof of Lemma 6. a

The statement of Theorem 6 is now an immediate consequence of the formula
e~ (uf (z,t) — 4 (2, t)) = O, + 05, + 05, + 05,. 0
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The result of the last theorem can be generalized to the finite-dimensional distri-
butions of the normalized difference ¢ ~*(u°(x,t) — 4°(x,t)).
THEOREM 7. Under the assumptions of Theorem 6, for any finite set (x1,t1),
L (@NtY), ad #£ 0, the random vector { (e (4 (a7, ) —uf (a7, 7))}, j=1,..., N,
converges in law towards a centered Gaussian vector with the covariance matric {o;;}
given by

(75) o4 = / / / Gt —s,2° (v ,0)G(t —r, 2%, (y',0))e(s,r)dy drds.
o Jo Jo

Proof. The proof is exactly the same as that of Theorem 6. d

We proceed with estimating the difference (u — @). In order to improve the
estimate (46), we will suppose that the e-periodic structure is consistent with the
rectangle II = [— 1, 1] X [ B2, B2]; i.e., we add the following assumption.

C1. Both numbers 1 and S, are integer multipliers of e.

LEMMA 7. Under assumption C1, for anyt > 0 and z € (Q \ X), the following
relation holds:

: -1 .0 —
611_1}(1)5 |af (z,t) — u’(z,t)| = 0.
Proof. Denote H(y',t) = 2s3E{®(-,t)}1x=(y') — F(t), with F(¢) defined in (16).
Then H(y',t) is a periodic function in y’ having zero average for each t > 0. The
difference (u°(x,t) — u®(x,t)) can now be represented as

t /
a(z,t) —u’(x,t) = / / Gt —s,z,(y, O))H(y?, t) dy'ds.
o Ju

Let ¢(y') be a periodic solution to the problem A, ((y',t) = H(y',t), and denote
h(y',t) = Vy((y',t). Then H(%,t) = sdivy/h(y?/,t); substituting this last relation
into the above integral and integrating by parts, we obtain the desired bound. d

Combining the statements of Lemma 7, Proposition 2, and Theorem 7, we arrive
at the last and main result of this study.

THEOREM 8. Let condition C1 be fulfilled, and assume that at least one of the
conditions M1 or M2 holds true with vy > 2. Then for any finite set (x*,t'), (2%,1?),

s (@N Y)Y with @) # 0, the random vector { (e (uf(2?,t7) — u0(a7, 7))}, j =

1,..., N, converges in law towards a centered Gaussian vector with the covariance
matric {o;;} introduced in (75).

Remark 9. Without the assumption C1 the statement of Lemma 7 might fail to
hold and the difference (%° — u") might be of order e.

Remark 10. The statement of the last theorem shows in particular that the
estimates for the rate of convergence obtained in the previous section are optimal.
Indeed, it follows from Theorem 8 that for any (z,t) € @ x (0,T) we have

E(|u®(x,t) — u’(x,t)]?) = 0% (x,t)e*(1 4 o(1)),

where o(1) tends to zero as ¢ — 0. Since, except for some degenerate cases, o%(z,t) >
0 for all (x,t), then by the Fatou lemma

. 1 € 012 2
> o(x, t)dxdt .
111[01 E(g Hu u ||L2(Q><(O,T))) / / ( ) ) >0
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This shows that the estimate of Theorem 2 and other estimates of section 2 are
optimal.

Remark 11. In problem (12)—(13) the right-hand side f¢ has a specific periodic
geometry and is statistically homogeneous with respect to a discrete grid. There is
no essential change in the results if we suppose that

1
fe= gﬂn(ﬂf/)l[%mw](353)‘1)(33//5,t)7 v>1,
with ®(y’,t) being a random field bounded statistically homogeneously in 3’ € R?; in
this case the corresponding dynamical system has a continuous arguments 3’ € R2.
If the random field ¢°(z',t) = ®(z'/e,t) possesses either of the conditions M1 or M2
with 11 > 2, then the statement of Theorem 8 holds true with

tt ol
w=[ [ ] G(ti—s,xuy’,o»G(tf—r,xﬂ‘,@’,o»( R(s,r,zndz’)dy/drds,
o Jo Jo R2

where R(s,7,2") = E((®(y/,s) — E®(y/, s))(®(0,7) — E®(0,7))).

5. Operators with oscillating coefficients. Homogenization. Although this
is not the case of the application we have in mind (modeling a geological nuclear waste
repository), we consider in this section a possible extension of the above results to
the case of operators with rapidly oscillating coefficients. The most interesting case
corresponds to the two characteristic lengths (oscillations and period of the sources)
being of same order; it leads to the following local problem:

(76)  Owu® — div(a(x, g)VuE) + div(b(xg)u‘f) =f° in@Q x (0,00);
0

M =0 5

u® —b(x) -n(z)u® + Au® =0 on dQ x (0,00).

All the assumptions on the right-hand side f¢ and on the domain are the same as in
sections 1-4. Concerning the coefficients, we suppose one of the following assumptions
holds.
O1. For each z € Q the functions a;;(x,y) = a;j(z,y,w) and b;(z,y) = b;(x,y,w)
are statistically homogeneous ergodic random fields of y € R®. The realiza-
tions a;;(x,y,w) and b;(x,y,w) are smooth in x and y.
02. a;j(r,y) and b;(z,y) are smooth periodic in y functions on @ x R3.
We also assume the uniform ellipticity conditions: there is A > 0 such that

a(z,y) > A, laij(z,y)| < ATY [bi(z,y)| < AT

where I stands for the unit 3 x 3 matrix.

In this section we consider only the case of a finite time interval; the results for
the infinite interval follow from the dissipativity as in the previous sections.

We will consider two types of oscillating coefficients: random and periodic. We
first consider the operators with randomly oscillating coeflicients. Simple arguments
show that we cannot expect a precision better than that of order /. However, this
precision has not been achieved. To the best of our knowledge, the best result in this
direction was proved in [16], where it was shown that if the uniform mixing coefficient
decays polynomially, then the discrepancy admits an estimate by some positive power
of €. This exponent is defined in a rather implicit way and can be quite small.
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This means that the arguments of sections 3 and 4 in this case are irrelevant. We
justify only the convergence.

THEOREM 9. Assume that a(z,w) and b(z,w) are elements of C(Q; L>°(2)), and
suppose that a(z,y) = a(z, Tyw), b(z,y) = b(x, Tyw), where T. is an ergodic three-
dimensional dynamical system. Then a solution u converges in L*(0,T; L*(Q)) to a
solution of the problem

(78)  Qyu’ — div(aP*™(z)Vul) + div(b"™ (2)u’) = 1 (z')F(t)ds(x) in Qx (0, 00);

(79) u0|t:0 =0, a" vy -n — M’ + M’ = 0 on 9Q x (0, 00),

with F(t) defined in (16); here a®*™(x) and b"°™ (z) are the coefficients of the homog-
enized equation (see [12], [15], [11]).
Proof. Denote by U¢ a solution of the following initial-boundary problem:

(80) 8,U° — div (a <x §>VU€) + div (b(%) UE) — Fuds  in Q x (0,00);

0
ong

(81) U|,_, =0, U —b(x) n(@)U*+AU° =0 on dQ x (0, 00).

With the help of the standard energy estimate it is straightforward to check that

u® = U 200,751 (@) < C(Df° = Fuds | p20,m58-1(Q))

with a constant C(7T") which depends only on the ellipticity constants and does not
depend on €. By Lemma 2 this yields

(82) Hus — UEHL2(O7T;H1(Q)) — 0,

as € — 0. The fact that U® converges to u°, as e — 0, in L?(0,T; L?(Q)) is a classical
homogenization result. Combined with (82) this implies the desired statement. O

Remark 12. Notice that the above convergence result follows from the facts that

— the operator in (12)—(13) admits a.s. homogenization;

— the right-hand side in (12) converges a.s. in the L?(0,7; H~*(Q)) norm.

This means in particular that the result remains valid in the case when the operator
coefficients and the right-hand side have different stationarities and different scaling
factors (microscopic length scales), and that the homogenization and the upscaling
processes do not interact.

We proceed with the case of periodic homogenization. Here, in order to avoid
boundary effects, we assume that a(z,y) and b(z, y) do not depend on y in a sufficiently
small neighborhood of 9Q).

As was already announced, in the periodic case the results similar to those of
sections 3 and 4 hold. We illustrate this by proving the statement similar to that of
Theorem 8. Other results can be obtained in an analogous way. First we introduce
some notation. Denote by G"™ (¢, z,y) Green’s function of the limit problem (78)-
(79) and by x(x,y) a periodic in y solution of the cell problem

divya(z, y)(Vyx(z,y) +I) = 0.

It is well known that this problem has a unique up to an additive constant solution
x(z,y); in order to fix the choice of the additive constant, we assume that the average
of x in y is equal to zero.
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Using a classical technique of asymptotic expansion (see [4], [3]) and the standard
parabolic estimates, it is straightforward to deduce that for all x € @ and y € @,
x # y, and t > 0 the following bound holds:

(83) |Gty - G y) —ex (o, D) - VaGR(tay)| < O

where G¢(t, x, y) is Green’s function of problem (76)—(77), and the constant C' depends
only on the distance |z — y|. Also we introduce

(84) opo™ = /0 /0 /HGhom(ti—s,xi, (y/,0)GPo™ (t0 —r 27 (3, 0))E(s, r)dy’ drds,

with ¢(s,r) defined in (62).

THEOREM 10. Let the above condition O2 on a(xz,y) and b(x,y) and assumption
C1 be fulfilled, and assume that at least one of the conditions M1 or M2 holds true with
v1 > 2. Then for any finite set (x1,t%), (22,12),..., (N, tN) with ¥} # 0, the random
vector { (7 (uf (27, t7) —u(a? 7)) } —x (@, £)-Vul(ad, t7), j = 1,..., N, converges in
law towards a centered Gaussian vector with the covariance matriz {olhjom} introduced
in (84).

Proof. The proof relies on bound (83) and then follows along the lines of the proof
of Theorem 8. O
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