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Abstract. We develop some aspects of general homogenization theory for second order elliptic
difference operators and consider several models of homogenization problems for random discrete el-
liptic operators with rapidly oscillating coefficients. More precisely, we study the asymptotic behavior
of effective coefficients for a family of random difference schemes whose coefficients can be obtained
by the discretization of random high-contrast checker-board structures. Then we compare, for var-
ious discretization methods, the effective coefficients obtained with the homogenized coefficients for
corresponding differential operators.
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1. Introduction. We develop some aspects of general H-convergence and ho-
mogenization theory for second order elliptic difference operators and consider several
homogenization problems for random discrete elliptic operators with rapidly oscillat-
ing coefficients. More precisely, we study the asymptotic behavior of effective coeffi-
cients for a family of random difference schemes whose coefficients can be obtained by
the discretization of random high-contrast checker-board structures. Then we com-
pare, for various discretization methods, the effective coefficients obtained with the
homogenized coefficients for corresponding differential operators.

Many results can also be formulated in terms of the central limit theorem for
random walks in random statistically homogeneous media.

Originally, G- and H-convergence of differential operators and Γ-convergence of
the corresponding functionals were introduced by Spagnolo [27], De Giorgi [7], [8], and
Murat and Tartar [22]. Then these notions were developed and generalized essentially
in the works of Bensoussan, Lions, and Papanicolaou [4], Tartar [26], Murat [21], Jikov
et al. [28], G. Dal Maso [18], and many others. This resulted in the appearance of
advanced homogenization theory.

In recent years, significant progress has been achieved in the homogenization
theory of random differential operators. We refer to the original works of Kozlov
[13] and Papanicolaou and Varadhan [24], and to the book by Jikov, Kozlov, and
Oleinik [11] wherein an additional bibliography can be found. In particular, in case of
random high-contrast checker-board structures, the asymptotics of effective diffusion
have been constructed in Jikov, Kozlov, and Oleinik [11]. Berlyand and Golden in [5]
have improved this result in a special case.

In contrast with differential operators, the homogenization theory of difference
operators is not so well developed. There are only a few mathematical works on this
subject, among them Künnemann [17], Kozlov [14], [15], and Krasniansky [16]. In
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[17] it is proved that the central limit theorem holds for symmetric random walks
in random ergodic statistically homogeneous media. Then, many interesting results
for various kinds of random walks in random media were obtained in Kozlov [14].
The first homogenization results for difference schemes were formulated and proved
in Kozlov [15]. We also mention the work Bricmont and Kupiainen [6] where the
central limit theorem was obtained for a class of nonsymmetric random walks.

Perhaps the difference operators with rapidly oscillating coefficients did not at-
tract the attention of mathematicians because these operators did not appear in the
classical difference schemes approximation approach (see, for example, Quarteroni
and Valli [25]): the fast oscillation of coefficients of difference schemes would contra-
dict the regularity and even the measurability of coefficients of the initial differential
equations.

On the other hand, many modern practical and numerical applications involve
various homogenization problems for discrete operators with rapidly oscillating coeffi-
cients. For instance, when discretizing microinhomogeneous media, due to the natural
restrictions, it is not possible to keep the size of the numerical grid much smaller than
the typical size of inhomogeneity (the microscopic length scale) of the medium. This
leads to the appearance of difference operators with rapidly oscillating coefficients
(see, for instance, McCarthy [19], Nœtinger [23]). The most important question here
is, How far could the effective coefficients of a difference scheme diverge from ones
of corresponding differential operators? The first successful attempt to answer this
question was done by Avellaneda, Hou, and Papanicolaou [2] where it was shown that,
in the multidimensional case, the finite difference approach does not provide the right
homogenized coefficients unless the ratio of the size of a discretization mesh to the
microscopic length scale goes to 0.

In the present work we show that the effective coefficients of the difference schemes
approximating a family of elliptic PDEs with rapidly oscillating coefficients depend
essentially on the discretization method.

The paper is divided into two parts. The first one is devoted to H-convergence
and homogenization of difference operators.

Earlier homogenization problems for difference operators were investigated by
Kozlov in [15] where a number of homogenization results for difference schemes were
obtained. In the present work we extend further the homogenization theory of dis-
crete operators and prove a number of basic statements such as convergence of so-
lutions of the Neumann problem, convergence of energies and of arbitrary solutions,
Γ-convergence, and some others. To this end we mainly use the discrete analogue
of the compensated compactness technique originally introduced in Murat [21] and
Tartar [26] for functions of continuous arguments. Namely, we prove a version of
compensated compactness lemma, adapted to difference operators, and then apply
it systematically in our considerations in combination with the method of correctors
and variational techniques.

For the sake of completeness we also formulate some technical results from Kozlov
[15] and give another proof of the homogenization theorem for random difference op-
erators. An additional reason for this is the fact that we use a more general definition
of ellipticity than that in [15].

It should be noted that although some basic ideas here have been borrowed from
homogenization theory of differential equations, still the peculiarities of difference
operators such as the big dimension of difference gradient, the irreducibility and ellip-
ticity conditions in the case of boundary-value problems, and the asymptotic nature
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of difference schemes, create additional difficulties in studying these operators and
make the generalization of homogenization theory to difference operators nontrivial.

In the second part of the paper, we discretize high-contrast two-dimensional
checker-board structures, find the asymptotics of effective diffusion, and show that
different discretization methods lead to different asymptotics.

1.1. Difference elliptic operators. Let Q ⊂ R
d be a smooth bounded domain

and let Qε = Q ∩ εZd, where Z
d is the standard integer lattice in R

d and ε > 0. We
consider the discrete Dirichlet problem in Qε:

Aεu
ε(x) =

∑

z,z′∈Λ

∂ε
−z (aεzz′(x)∂ε

z′uε(x)) = fε(x) in Qε , uε(x) = 0 on ∂QΛ
ε .

(1.1)

Here Λ is a fixed finite subset of Z
d symmetric with respect to 0, the matrix Aε =

{aεzz′} is symmetric, ∂QΛ
ε is the boundary of Qε defined by

∂QΛ
ε

△
= (Qε + εΛ) \Qε = {x + εz |x ∈ Qε, z ∈ Λ} \Qε ,

and ∂ε
z is the standard difference derivative: (∂ε

zv)(x)
△
= 1

ε (v(x + ε z) − v(x)) . For

any vε : Qε 7→ R , we introduce the following norm (the L2(Qε)-norm): ‖vε‖2
L2(Qε)

△
=

εd
∑

x∈Qε
|vε(x)|2 . We say that a function vε defined on εZd belongs to the space

W 1,2
0 (Qε) if v(x) = 0 for x 6∈ Qε . We define the norm on the space W 1,2

0 (Qε) as

follows: ‖vε‖2
W 1,2

0
(Qε)

= εd
∑

x∈Qε

∑d
i=1 |∂ε

±eiv
ε(x)|2 , where {ei}i=1,...,d is the stan-

dard basis in R
d and Qε

△
= Qε + εΛ = Qε ∪ ∂QΛ

ε ; W−1,2(Qε) is the dual space to
W 1,2

0 (Qε).
In the summation in (1.1), we can consider only the elements from the set Λ\{0},

as the contribution of the element {0} is null.
Definition 1.1. We say that the family of problems (1.1) (or, simply, problem

(1.1)) is uniformly elliptic if there are c1, c2 > 0 and ε0 > 0 such that, for any
vε ∈ W 1,2

0 (Qε) and any ε < ε0 ,

|aεzz′(x)| ≤ c1,(1.2)

c2‖vε‖2
W 1,2

0
(Qε)

≤ εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x) .(1.3)

Remark 1.2. The uniform boundedness of the matrix Aε implies the following
upper bound:

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x) ≤ c(Λ)‖vε‖2

W 1,2

0
(Qε)

.

Indeed, it suffices to represent z as a sum z = z1 + z2 + · · · + zN with |zi| = 1 for all
i = 1 . . . N . Then,

∂ε
zv

ε(x) =

N
∑

k=1

∂ε
zkv

ε(x + z1 + · · · + zk−1)
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and the required bound is the consequence of the finiteness of Λ.
In what follows we always assume the uniform ellipticity conditions (1.2)–(1.3) to

hold.
It should be noted that, in general, the uniform ellipticity condition (1.3) is rather

implicit. For instance, it neither requires the positiveness of the matrix {aεzz′(x)} nor
follows from the estimate

c3|ξ|2 ≤
∑

z,z′∈Λ

aεzz′(x)(ξ, z)(ξ, z′) ≤ c4|ξ|2, ξ ∈ R
d, c3 > 0 ,(1.4)

where (·, ·) is the scalar product in R
d . One can easily see this by considering the

one-dimensional problem with

aεzz′(x) =

{

1/2 if z = z′, |z| = 2,
0 otherwise.

Clearly, (1.3) is not satisfied although (1.4) holds.
In order to ensure the uniform ellipticity of problem (1.1) one should combine esti-

mates such as (1.4) with a proper irreducibility condition. Below we show that for two
important particular classes of difference operators commonly used in applications,
the ellipticity conditions can be easily verified.

Suppose we are given a family of functions pεz(x), x ∈ Qε, z ∈ Λ, possessing the
following properties:

1. positiveness: pεz(x) ≥ 0,
∑

z∈Λ pεz(x) = 1 for each x ∈ Qε ,
2. pε±ei(x) ≥ δ > 0, i = 1, . . . , d ,
3. symmetry: pεz(x) = pε−z(x + εz) .

Then, the family of problems

uε(x) =
∑

z∈Λ

pεz(x)uε(x + εz) + ε2 fε(x) in Qε , uε(x) = 0 on ∂QΛ
ε ,(1.5)

can be easily rewritten in the form (1.1) with

aεzz′(x) =

{

pεz(x) if z = z′, z 6= 0,
0 otherwise.

(1.6)

Proposition 1.3. Let {pεz(x)} possess the abovementioned properties (1), (2),
and (3). Then problem (1.5) is uniformly elliptic.

Proof. Summing by parts, one can show after simple calculations that

δε−d‖vε‖2
W 1,2

0
(Qε)

= δ
∑

x∈Qε

d
∑

i=1

|∂ε
±eiv

ε|2

≤
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)∂z′vε(x)∂zv
ε(x)

≤ C
∑

x∈Qε

∑

z∈Λ

|∂ε
zv

ε|2 ≤ c(Λ)ε−d‖vε‖2
W 1,2

0
(Qε)

uniformly in ε. This yields the desired result.
Assumption (2) can be relaxed as follows:
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(2′) For some N > 0 and δ > 0 and for any x′, x′′ ∈ Qε , |x′ − x′′| = ε ,
there is a finite sequence of vectors y1, y2, . . . , yk ∈ Λ , k ≤ N , such that
x′′ = x′ + ε

∑k
j=1 y

j and pεyj (x′ + ε
∑j−1

i=1 yi) ≥ δ .
Another important class of uniformly elliptic operators is formed by matrices

{aεzz′(x)} that satisfy the estimate

∑

z,z′∈Λ

aεzz′(x) ηz ηz′ ≥ c

d
∑

i=1

|η±ei |2 , η ∈ R
|Λ| ,

uniformly in ε and x ∈ Qε ; here we assume that all the vectors ±ei, i = 1, 2, . . . , d,
are elements of Λ; if it is not the case, the right-hand side (RHS) of the latter formula
does not make sense.

Clearly, the uniform ellipticity implies the coerciveness of problem (1.1) and we
have the following statement.

Proposition 1.4. Let problem (1.1) be uniformly elliptic and fε ∈ L2(Qε). Then
there exists a unique solution uε ∈ W 1,2

0 (Qε) and the estimate

‖uε‖W 1,2

0
(Qε)

≤ c‖fε‖L2(Qε)

holds uniformly in ε. Henceforth we usually suppose that fε(·) is a discretization of
a given function f ∈ L2(Q) .

We also define the norm on the space W 1,2(Qε) by

‖vε‖2
W 1,2(Qε)

= εd
∑

x∈Qε

d
∑

i=1

|∂̄ε
±eiv

ε(x)|2 + ‖vε‖2
L2(Qε) ,

where we use the notation

∂̄ε
zϕ(x) =

{

∂ε
zϕ(x) if x + εz ∈ Qε ,

0 otherwise.

2. Tools for discrete operators analysis.

2.1. Compensated compactness lemma. One of the main tools in the ho-
mogenization of differential operators is the so-called compensated compactness lemma
(see Murat [21] and Tartar [26]), which gives a sufficient condition for passing to the
limit in the inner product of two weakly converging sequences of vector functions.
In this section, we prove the discrete version of this result that serves the case of
functions defined on a grid.

First of all, we introduce the discrete divergence as follows: for any vector function

q ∈
(

L2(Qε)
)|Λ|

,

divε
Λ q(x)

△
=
∑

z∈Λ

∂ε
−zqz(x).

It should be emphasized that the above divergence operator depends on the choice of
the set Λ.

Lemma 2.1. Let qε and vε be sequences of vector functions from
(

L2(Qε)
)|Λ|

such that

qε −−−→
ε→0

q0 weakly in L2(Qε) ,divε
Λq

ε −−−→
ε→0

f0 in W−1,2(Qε) ,

vε −−−→
ε→0

v0 weakly in L2(Qε) ,v
ε
z(x) = ∂ε

zu
ε(x) for some uε ∈ W 1,2(Qε) .
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Then, the sequence (qε vε) converges ⋆-weakly to q0 v0: qε vε
⋆−−−→

ε→0
q0 v0 .

Proof. According to Kozlov [15, Proposition 3], the weak convergence of qε in
L2(Qε) implies the following weak convergence in W−1,2(Qε):

divε
Λq

ε −−−→
ε→0

∑

z∈Λ

∂

∂z
q0
z =

∑

z∈Λ

z · ∇q0
z ;

here the standard notation ∂
∂z f(x) = z · ∇xf(x) for the derivative along arbitrary

vector z has been used. Thus,
∑

z∈Λ z · ∇q0
z = f0, and we have

lim
ε→0

‖divε
Λ(qε − q0)‖W−1,2(Qε) = 0 .

From now on, the notation like q0 or v0 is used both for the functions of continuous
argument and for their discretization (see Appendix A). Using the representation
qε vε = (qε−q0) vε +q0 vε and taking into account the ⋆-weak convergence of qε v0 to
q0 v0, one can assume, without loss of generality, that q0 = 0 . Also, under the proper
choice of additive constant,

∑

x∈Qε
uε(x) = 0. Then, by the Poincaré inequality, the

sequence uε is uniformly bounded in the W 1,2-norm. For any ϕ ∈ C∞
0 (Q) we get

εd
∑

x∈Qε

qε(x) vε(x)ϕ(x) = εd
∑

x∈Qε

∑

z∈Λ

qεz(x) ∂ε
zu

ε(x)ϕ(x)

= εd
∑

x∈Qε

∑

z∈Λ

{qεz(x) ∂ε
z(u

ε(x)ϕ(x)) − qεz(x)uε(x) ∂ε
zϕ(x)} + τ(ε)

with limε→0 τ(ε) = 0 (see Appendix B). Summing by parts in the latter expression
leads to

εd
∑

x∈Qε

qε(x) vε(x)ϕ(x)

= εd
∑

x∈Qε

∑

z∈Λ

{

∂ε
−zq

ε
z(x)uε(x)ϕ(x) − qεz(x)uε(x) ∂ε

zϕ(x)
}

+ τ(ε)

= εd
∑

x∈Qε

(divε
Λ qε(x) , uε ϕ) − εd

∑

x∈Qε

∑

z∈Λ

qεz(x)uε(x) ∂ε
zϕ(x) + τ(ε) .

Since uε is uniformly bounded in W 1,2(Qε) and divε
Λ qε converges to 0 in the W−1,2-

norm, the first term in the RHS goes to 0 as ε → 0. The second term goes to
0 because qεz ∂

ε
zϕ converges to 0 in L2(Qε) weakly. Finally, for any ϕ ∈ C∞

0 (Q),
limε→0

∑

x∈Qε

∑

z∈Λ qεz(x) vεz(x)ϕ(x) = 0 .

2.2. H-convergence and homogenization. In this section, we give the defi-
nitions of the H-convergence and the homogenization of discrete operators and then
study the main properties of this convergence (see Spagnolo [27], Murat and Tartar
[22] for the relevant definitions in case of differential operators).

Consider a family of uniformly elliptic discrete Dirichlet problems,

Aεu
ε = divε

Λ

(

∑

z′∈Λ

aεzz′ ∂ε
z′uε

)

= fε , uε ∈ W 1,2
0 (Qε) ,(2.1)

and denote by Aε(x) the matrices of the coefficients {aεzz′(x)}. Let A(x) = {azz′(x)}, x
∈ Q, be a |Λ| × |Λ| matrix.
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Definition 2.2 (H-convergence). We say that the matrix Aε H-converges to A
(Aε H−−−→

ε→0
A) if, for any sequence fε ∈ W−1,2(Qε) such that fε −−−→

ε→0
f in W−1,2(Qε),

we have

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Qε) ,

sε =
∑

z∈Λ

aεzz′ ∂ε
zu

ε −−−→
ε→0

s0 =
∑

z∈Λ

azz′

∂

∂z
u0 weakly in L2(Qε) ,

where u0 is the solution of the limit Dirichlet problem,

∑

z,z′∈Λ

− ∂

∂z

(

azz′(x)
∂

∂z′
u0

)

= f, u0 ∈ W 1,2
0 (Q).

The homogenization is a particular case of H-convergence. Given a matrix-valued
function A1(x) = {a1

zz′(x)}, z, z′ ∈ Λ, x ∈ Z
d, we define the sequence Aε as follows:

Aε(x) = A1(x/ε), x ∈ Qε. Suppose that the corresponding family of problems
(defined in (2.1)) is uniformly elliptic.

Definition 2.3. The constant matrix A is the homogenized matrix for Aε(x) =
{aεzz′(x)} if, for any sequence fε ∈ W−1,2(Qε) such that fε −−−→

ε→0
f in W−1,2(Q), the

solutions uε of the Dirichlet problems

divε
Λ

(

∑

z′∈Λ

aεzz′ ∂ε
z′uε

)

= fε, uε ∈ W 1,2
0 (Qε) ,

converge to the solution u0 of the limit Dirichlet problem

−
∑

z,z′∈Λ

∂

∂z
azz′

∂

∂z′
u0 = f , u0 ∈ W 1,2

0 (Q),(2.2)

in the following sense:

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Q) ,

∑

z′∈Λ

aεzz′ ∂ε
z′uε −−−→

ε→0

∑

z∈Λ

azz′

∂

∂z
u0 weakly in L2(Q) .

Remark 2.4. The dimension of the difference gradient of functions defined on
Qε is equal to |Λ| and does not coincide with the dimension of the standard gradient of
functions defined on Q. This is the reason we write the limit equation in the definitions
above in a nonstandard form. This allows us to define the convergence of streams. Of
course, one can easily transform the limiting equation to the standard form

∑

z,z′∈Λ

∂

∂z
azz′(x)

∂

∂z′
=

d
∑

i,j=1

∂

∂xi
ǎij(x)

∂

∂xj
, ǎij(x) =

∑

z,z′∈Λ

(z, ei)azz′(x)(z′, ej) .

One of the remarkable properties of H- and G-convergences of differential oper-
ators is the compactness of a family of uniformly elliptic operators; see, for example,
Murat and Tartar [22], Zhikov et al. [28]. We proceed by quoting the compactness
result for a family of uniformly elliptic difference operators.
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Proposition 2.5 (see Kozlov [15, section 2]). Any uniformly elliptic sequence of
problems defined in (2.1) contains an H-convergent subsequence. The limit problem
involves a second order uniformly elliptic operator in divergence form:

Au = −
∑

z,z′∈Λ

∂

∂z

(

azz′(x)
∂

∂z′
u

)

= −
d
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj
u

)

.

In the subsections below we prove a number of general results on H-convergence
and homogenization of difference operators that are not exhibited in the existing
literature.

2.2.1. Convergence of arbitrary solutions. One of the significant properties
of H-convergence is the fact that the H-limit operator depends only on the original
sequence of operators and does not depend on the type of boundary conditions and
on the domain. In a general form, this can be formulated as follows.

Theorem 2.6 (convergence of arbitrary solutions). Let a sequence of uniformly
elliptic operators Aε H-converge in a domain Q to the limit operator A, and suppose
that a sequence of functions wε ∈ W 1,2(Qε) satisfies the conditions

wε −−−→
ε→0

w0 weakly in W 1,2(Qε) ,

divε
Λ

(

∑

z′∈Λ

aεzz′ (gz′ + ∂ε
z′wε)

)

= f ,(2.3)

where g ∈
(

L2(Q)
)|Λ|

and f ∈ W−1,2(Q) do not depend on ε . Then, w0 satisfies the
homogenized equation

−
∑

z,z′∈Λ

∂

∂z

[

azz′

(

gz′ +
∂

∂z′
w0

)]

= f ,

and the streams do converge in L2(Qε) weakly:

∑

z′∈Λ

aεzz′ (gz′ + ∂ε
z′wε) −−−→

ε→0

∑

z′∈Λ

azz′

(

gz′ +
∂

∂z′
w0

)

.

Proof. Under the conditions of the theorem, the streams are uniformly bounded in
L2(Qε) . Thus, taking a proper subsequence, we have

∑

z′∈Λ aεzz′ (gz′ + ∂ε
z′wε) −−−→

ε→0

ξzweakly in L2(Qε) . Passing to the limit in (2.3), one can easily check that −∑z∈Λ
∂
∂z ξz

= f . We have to prove the relation ξz =
∑

z′∈Λ azz′

(

gz′ + ∂
∂z′w

0
)

. Let u0 be an ar-

bitrary function from W 1,2
0 (Q). Denote by uε the solution of the Dirichlet problem,

divε
Λ

(

∑

z′∈Λ

aεzz′ ∂ε
z′uε

)

=
∑

z,z′∈Λ

∂

∂z

(

azz′

∂

∂z′
u0

)

,

and consider the following identity:

∑

z∈Λ

(gz + ∂ε
zw

ε)
∑

z′∈Λ

aεzz′ ∂ε
z′uε =

∑

z∈Λ

∂ε
zu

ε
∑

z′∈Λ

aεzz′ (gz′ + ∂ε
z′wε) .(2.4)
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By the definition of H-convergence, we have

∑

z′∈Λ

aεzz′ ∂ε
z′uε −−−→

ε→0

∑

z′∈Λ

azz′

∂

∂z′
u0 weakly in L2(Qε) ,

while the limiting relation

∑

z∈Λ

(gz + ∂ε
zw

ε) −−−→
ε→0

∑

z∈Λ

(

gz +
∂

∂z
w0

)

weakly in L2(Qε)

is an evident consequence of the weak convergence of wε . Now, passing to the limit
on the left-hand side (LHS) of (2.4), with the help of Lemma 2.1 we obtain

∑

z∈Λ

(gz + ∂ε
zw

ε)
∑

z′∈Λ

aεzz′ ∂ε
z′uε ⋆−−−→

ε→0

∑

z∈Λ

(

gz +
∂

∂z
w0

)

∑

z′∈Λ

azz′

∂

∂z′
u0 .

The fact that gz does not depend on ε has also been used here.
Similarly, passing to the limit on the RHS of (2.4) gives

∑

z∈Λ

∂ε
zu

ε
∑

z′∈Λ

aεzz′ (gz′ + ∂ε
z′wε)

⋆−−−→
ε→0

∑

z∈Λ

∂

∂z
u0 ξz .

Finally, considering the fact that u0 is arbitrary function from W 1,2
0 (Q), we deduce

ξz =
∑

z′∈Λ

aεzz′

(

gz′ +
∂

∂z′
w0

)

.

Corollary 2.7 (local property of H-convergence). If Aε
H−−−→

ε→0
A in a domain

Q, then Aε
H−−−→

ε→0
A in any subdomain Q1 ⊂ Q .

2.2.2. Convergence of energies. In this section, we address a family of Dirich-
let problems with nonhomogeneous boundary conditions:

divε
Λ

(

∑

z′∈Λ

aεzz′ ∂ε
z′uε

)

= f , uε − u0 ∈ W 1,2
0 (Qε) ,(2.5)

where u0 ∈ W 1,2(Rd) and f ∈ W−1,2(Q) are fixed given functions.
We suppose that the family {Aε} is uniformly elliptic and H-converges to the

limit operator A. Then, one can assume without loss of generality that the function
u0 satisfies the equation Au0 = f in the domain Q.

In order to show the uniform boundedness of {uε} in W 1,2(Qε), we replace uε by
uε − u0 in (2.5), multiply the resulting equation by uε − u0, and then sum over Qε.
After summation by parts we get

∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
z

(

uε(x) − u0(x)
)

∂ε
z′(uε(x) − u0(x)) =

∑

x∈Qε

f(x)
(

uε(x) − u0(x)
)

−
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
z

(

uε(x) − u0(x)
)

∂ε
z′u0(x).
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This implies the required boundedness.
By Theorem 2.6 (convergence of arbitrary solution), any weak limiting point of

the sequence {uε} coincides with u0 in Q. Hence, the whole family {uε} converges to
u0 in W 1,2(Qε) weakly.

Proposition 2.8 (convergence of energies). Let Aε
H−−−→

ε→0
A and let uε be the

solution of problem (2.5). Then the following limit relation holds true:

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zu

ε(x) ∂ε
z′uε(x) −−−→

ε→0

∫

Q

∑

z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Proof. By (2.5) we have

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
z(u

ε − u0)(x) ∂ε
z′(uε − u0)(x)

= εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zu

ε(x) ∂ε
z′(uε − u0)(x)

− εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂ε

z′(uε − u0)(x) + τ(ε)

= εd
∑

x∈Qε

f(x) (uε − u0)(x) − εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂ε

z′uε(x)

+ εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) + τ(ε) ;

here and afterwards τ(ε) stands for a generic function that vanishes as ε → 0. On the
other hand,

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
z(u

ε − u0)(x) ∂ε
z′(uε − u0)(x)

= εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zu

ε(x) ∂ε
z′uε(x)

− 2εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂ε

z′uε(x)

+ εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) + τ(ε) .

After subtraction we find

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zu

ε(x) ∂ε
z′uε(x) − εd

∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x)
∂

∂z
u0(x) ∂ε

z′uε(x)

− εd
∑

x∈Qε

f(x) (uε − u0)(x) + τ(ε) = 0 .(2.6)

Passing to the limit in the last relation, and taking into account the weak convergence
of uε − u0 to 0 in W 1,2

0 (Qε) and the weak convergence of the streams aεzz′ ∂ε
z′uε in
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L2(Qε), we obtain

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zu

ε(x) ∂ε
z′uε(x) −−−→

ε→0

∫

Q

∑

z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

In fact, the result on convergence of energies can be formulated in more “local”
form, as follows.

Proposition 2.9. Under the assumptions of Theorem 2.6 one has

∑

z,z′∈Λ

aεzz′(x)∂zw
ε(x)(∂z′wε(x) + gz′(x))

⋆−−−→
ε→0

∑

z,z′∈Λ

azz′(x)
∂

∂z
w0(x)

( ∂

∂z′
w0(x) + gz′(x)

)

.

(2.7)

Proof. In the expression

∑

z,z′∈Λ

∂zw
ε(x)aεzz′(x)(∂z′wε(x) + gz′(x)) ,

the streams aεzz′(x)(∂z′wε(x) + gz′(x)) converge weakly in L2(Qε) ( by Theorem 2.6)

to the limit stream azz′(x)
(

∂
∂z′w

0(x) + gz′(x)
)

, and the family ∂zw
ε(x) converges

to ∂
∂zw

0(x) weakly by the assumption of Theorem 2.6. Now, the desired statement
follows from Lemma 2.1.

Remark 2.10. In the case of elliptic differential equations, H-convergence of
operators implies weak L1-convergence of the corresponding energy functions. This
result relies on the Meyers estimates of the gradient of solutions; see Meyers [20].

For the difference operators the Meyers-type estimates have not been obtained, so
the weak L1-convergence of energies is an open question.

2.2.3. Neumann problem. The notion of the H-limit operator has been ex-
pressed in terms of the operators of the corresponding Dirichlet problems. But, as
was already mentioned in the previous section, we can also consider other boundary
value problems. In this section, the Neumann problem is investigated.

Definition 2.11. Let f ∈
(

L2(Q)
)|Λ|

. We say that uε ∈ W 1,2(Qε) is a solution
of the Neumann problem for the equation

divε
Λ

(

∑

z′∈Λ

aεzz′ ∂ε
z′uε

)

=
∑

z∈Λ

∂ε
−zf

ε
z

if the relation

∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂̄ε
zϕ

ε(x) ∂̄ε
z′uε(x) =

∑

x∈Qε

∑

z∈Λ

fε
z (x) ∂̄ε

zϕ
ε(x)(2.8)

holds true for any ϕ ∈ W 1,2(Q); here we use the notation

∂̄ε
zϕ =

{

∂ε
zϕ if x + εz ∈ Qε,

0 otherwise.

Clearly, the functions uε are defined up to an additive constant. To fix the choice
of the constant, we assume that

∑

x∈Qε
uε(x) = 0 .
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In order to study the Neumann problem, we should modify the definition of
uniform ellipticity and impose a slightly stronger condition because Definition 1.1
above does not ensure the coerciveness of problem (2.8).

Definition 2.12. We say that the family of operators {Aε} is N -elliptic in a
domain Qε if the inequality

∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂̄ε
zϕ(x)∂̄ε

z′ϕ(x) ≥ c
∑

x∈Qε

d
∑

i=1

(

∂̄ε
±eiϕ(x)

)2
, c > 0,(2.9)

holds for any ϕ.
It should be noted that N -ellipticity implies the uniform ellipticity in the same

domain Q and that, under the condition of Proposition 1.3, the family of operators is
always N -elliptic.

Example. To clarify the difference between the uniform ellipticity and N -ellipticity
we provide below a simple one-dimensional example which shows that due to “bound-
ary effects,” a uniformly elliptic operator is not necessary N -elliptic.

Let Q be an open interval (0, 1), and suppose Λ = {0,±1,±2,±3}. If we set

p±1(0) =
1

2
, pz(0) = 0 if z 6= ±1;

p−1(1) =
1

2
, p0(1) =

1

2
, pz(1) = 0 if z 6= −1, 0;

p±3(2) =
1

2
, pz(2) = 0 if z 6= ±3,

and extend this function periodically with period 3, then for ε = 1/n with integer
n > 3 we have

Qε =

{

1

n
,
2

n
, . . . ,

n− 1

n

}

, Qε =

{−2

n
,
−1

n
, 0,

1

n
,
2

n
, . . . ,

n− 1

n
, 1,

n + 1

n
,
n + 2

n

}

.

Consider the following test function:

ϕε(x) =

{

1 if x = − 2
n , − 3

n ,
0 otherwise.

For this function the LHS of (2.9) is equal to zero while the RHS is strictly positive.
Thus (2.9) cannot hold. On the other hand, one can easily verify that this problem
is uniformly elliptic.

Proposition 2.13. Suppose that a family of N -elliptic operators {Aε} H-
converges to the operator A in the domain Q. Then the solutions uε of problem
(2.8) converge, as ε → 0, in W 1,2(Qε) to the solution of the limit Neumann problem:
for any ϕ ∈ W 1,2(Q) ,

∫

Q





∑

z,z′∈Λ

azz′(x)
∂

∂z
ϕ(x)

∂

∂z′
u0(x)



 dx =

∫

Q

(

∑

z∈Λ

fz(x)
∂

∂z
ϕ(x)

)

dx .

Moreover, the streams also converge.
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Proof. Using the Poincaré inequality, we derive from the N -ellipticity the uniform
coerciveness of problem (2.8). Thus, the family uε is uniformly bounded in W 1,2(Qε).
By Theorem 2.6, any limit point w0 of the family uε satisfies the H-limit equation
and

∑

z′∈Λ

aεzz′ ∂ε
z′uε −−−→

ε→0

∑

z′∈Λ

azz′

∂

∂z′
w0 weakly in L2(Qε) .

So, for any ϕ ∈ W 1,2(Q), passing to the limit in (2.8), we get

∫

Q





∑

z,z′∈Λ

azz′(x)
∂

∂z
ϕ(x)

∂

∂z′
w0(x)



 dx =

∫

Q

(

∑

z∈Λ

fz(x)
∂

∂z
ϕ(x)

)

dx .

Moreover,
∫

Q
w0(x) dx = 0.

2.2.4. Γ-convergence. The results proved in this section exhibit the relation
between the H-convergence of operators and a special kind of convergence of corre-
sponding quadratic forms, so-called Γ-convergence, that was introduced originally in
De Giorgi [8].

Proposition 2.14. Let Aε be a N -elliptic family of operators in a domain Q.

Then, Aε
H−−−→

ε→0
A in Q if and only if the following conditions are satisfied:

1. For any u0 ∈ W 1,2(Q) and for any sequence wε ∈ W 1,2(Qε) such that
wε −−−→

ε→0
u0 weakly in W 1,2(Qε), the following inequality holds:

lim inf
ε→0

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂̄ε
zw

ε(x) ∂̄ε
z′wε(x)

≥
∫

Q

∑

z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

2. For any u0 ∈ W 1,2(Q), there exists a sequence uε ∈ W 1,2(Qε) such that
uε −−−→

ε→0
u0 weakly in W 1,2(Q), uε − u0 ∈ W 1,2

0 (Q), and

lim
ε→0

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂̄ε
zu

ε(x) ∂̄ε
z′uε(x)

=

∫

Q

∑

z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Proof. Suppose that Aε
H−−−→

ε→0
A .

1. Consider the Neumann problem (2.8), with fz =
(

∑

z′∈Λ azz′
∂u0

∂z′

)

z∈Λ
, where

u0 is the solution of the H-limit Neumann problem. The solution uε of
(2.8) provides the minimum in the following variational problem: E =
infv∈W 1,2(Qε) Jε(v) , where

Jε(v) = εd
∑

x∈Qε

∑

z,z′∈Λ

[

aεzz′(x) ∂̄ε
zv(x) ∂̄ε

z′v(x) − 2azz′(x) ∂̄ε
zv(x)

∂

∂z′
u0(x)

]

.
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For any sequence {wε} such that wε → u0 weakly in W 1,2(Qε), we have

Jε(wε) ≥ Jε(uε) .(2.10)

Then, by Proposition (2.13), ∂ε
zu

ε −−−→
ε→0

∂

∂z
u0 weakly in L2(Qε) and, there-

fore,

εd
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂̄ε
zw

ε(x) ∂̄ε
z′wε(x)

= Jε(wε) + 2
∑

x∈Qε

∑

z,z′∈Λ

azz′(x) ∂̄ε
zw

ε(x)
∂

∂z′
u0(x)

≥ Jε(uε) + 2
∑

x∈Qε

∑

z,z′∈Λ

azz′(x) ∂̄ε
zw

ε(x)
∂

∂z′
u0(x)

= −
∑

x∈Qε

∑

z,z′∈Λ

azz′(x) ∂̄ε
zu

ε(x)
∂

∂z′
u0(x)

+2
∑

x∈Qε

∑

z,z′∈Λ

azz′(x) ∂̄ε
zw

ε(x)
∂

∂z′
u0(x)

−−−→
ε→0

∫

Q

∑

z,z′∈Λ

azz′(x)
∂

∂z
u0(x)

∂

∂z′
u0(x) dx .

Equation (2.8) has also been used here. Now, taking the infimum limit in
both sides of (2.10), we obtain the required inequality.

2. It is the statement of Proposition 2.8.

The remaining part of the proposition is an easy consequence of the uniqueness of the
H-limit.

Remark 2.15. The statements of Propositions 2.8 and 2.14 remain valid if we
replace the sums over x ∈ Qε by the sums over x ∈ Qε.

2.3. Description of the random environment. In this section we introduce
random difference elliptic operators with statistically homogeneous rapidly oscillating
coefficients.

Let (Ω,F , µ) be a standard probability space, where F is a σ-algebra of subsets
of Ω and µ is a probability measure. Let {Tx : Ω 7→ Ω; x ∈ Z

d} be a group of
F-measurable transformations which preserve the measure µ:

1. Tx : Ω 7→ Ω is F–measurable for all x ∈ Z
d,

2. µ(TxB) = µ(B), for any B ∈ F and x ∈ Z
d,

3. T0 = I , Tx ◦ Ty = Tx+y.

In what follows we assume that the group Tx is ergodic. That is, any f ∈ L1(Ω) such
that f(Tx ω) = f(ω) µ-a.s for each x ∈ Z

d is equal to a constant µ-a.s.

Let Λ be a finite subset of Z
d. Given a matrix-valued F-measurable function

{azz′(ω)}, z, z′ ∈ Λ, with values in the space of symmetric |Λ| × |Λ| matrices, we
define a family of difference operators Aε with the coefficients

aεzz′(x) = azz′(Tx/εω), x ∈ εZd, z, z′ ∈ Λ .(2.11)
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We suppose here that ±ei ∈ Λ, i = 1, . . . , d, and that

∑

z,z′∈Λ

azz′(ω)ηzηz′ ≥ c

d
∑

i=1

|η±ei |2 , η ∈ R
|Λ| .(2.12)

|azz′(ω)| ≤ c1, z, z′ ∈ Λ.(2.13)

It is easy to see that these inequalities imply the N -ellipticity and the uniform ellip-
ticity of the corresponding family Aε in any regular domain Q.

In applications, especially in those related to random walks, we usually deal with
the following particular case of the above construction.

Let {q(ω, z), z ∈ Z
d} be a family of random variables such that µ-a.s,

1.
∑

z∈Zd

q(ω, z) = 1 ,

2. q(Txω, z) = q(Tx+zω,−z) ,
3. q(ω, z) ≥ 0, q(ω,±ei) ≥ δ > 0, i = 1, . . . , d (ellipticity condition).

We introduce a family of transition probabilities as follows:

pz(x) = q(Txω, z),

where the argument ω, treated as a realization of the medium, is omitted. The
important characteristic of a family of transition probabilities is the structure of its
support:

Λ =

{

z ∈ Z
d | ess sup

Ω
pz(x) 6= 0

}

.

In all the models considered below, the set Λ is finite.

Now, if we denote pεz(x) = pz(ε
−1x), x ∈ Qε, z ∈ Λ, then due to the assumptions

on q(ω, x), problem (1.5) is uniformly and N -elliptic.

It is convenient to define the “ω-divergence” operator:

for any random variable v ∈ L2(Ω) , divω v(ω)
△
=
∑

z∈Λ

v(T−zω) − v(ω) .

We will use it in the following analysis.

2.4. Homogenization of random operators. This section is devoted to ho-
mogenization of the random difference operators introduced in the preceding section.
The first proof of the homogenization theorem for such operators was obtained in [15],
where the “corrector technique” was used. Here we give another proof of the theorem,
which relies on the compensated compactness lemma.

2.4.1. Auxiliary problem. Let us define the following subspaces of
(

L2(Ω)
)|Λ|

(see Kozlov [15]):

L2
pot(Ω, Λ) is the closure of the set

{

v ∈ (L2(Ω))|Λ| ; vz(ω) = u(Tzω) − u(ω) for some u ∈ L∞(Ω)
}

,
L2
sol(Ω, Λ) is the closure of the set:

{

v ∈ (L2(Ω))|Λ| ; divω v = 0
}

.

For λ ∈ R
|Λ| we denote by V2

pot,λ(Ω, Λ) the closed set
{

v + λ ; v ∈ L2
pot(Ω, Λ)

}

.
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Consider the following auxiliary problem: given λ ∈ R
|Λ|, find v ∈ V2

pot,λ(Ω, Λ)
such that

divω

(

∑

z′∈Λ

azz′(ω) vz′(ω)

)

= 0 .(2.14)

In order to prove the existence and uniqueness of the solution of this problem we
introduce the operator

Apot : L2
pot(Ω, Λ) 7→ L2

pot(Ω, Λ)

(vz)z∈Λ 7→ Πpot

(

∑

z′∈Λ

azz′(ω) vz′(ω)

)

,

where Πpot is the orthogonal projection onto the subspace L2
pot(Ω, Λ).

In view of the Weyl decomposition (see Kozlov [15])
(

L2(Ω)
)|Λ|

= L2
pot(Ω,Λ) ⊕

L2
sol(Ω,Λ) , we can rewrite the problem (2.14) in the following form: given λ ∈ R

|Λ|,
find v ∈ L2

pot(Ω) such that

Apotv = Πpot

(

∑

z′∈Λ

azz′(ω)λz′

)

.

The operator Apot is coercive. Indeed, for any v ∈ L2
pot(Ω, Λ), we have

(Apotv, v) =
∑

z∈Λ

(

Πpot

(

∑

z′∈Λ

azz′(ω) vz′(ω)

)

, vz(ω)

)

L2(Ω)

=
∑

z∈Λ

(

∑

z′∈Λ

azz′(ω) vz′(ω), Πpot (vz(ω))

)

L2(Ω)

=
∑

z∈Λ

(

∑

z′∈Λ

azz′(ω) vz′(ω), vz(ω)

)

L2(Ω)

.

According to hypothesis (2.12), this implies (Apotv, v) ≥ cE
[
∑n

i=1 |v±ei |2
]

, where
E stands for the expectation with respect to the measure µ. On the other hand, for
any v of the form vz(ω) = u(Tzω) − u(ω), u ∈ L2(Ω) , we have

‖v‖2
(L2(Ω))|Λ| = E

[

∑

z∈Λ

|vz(ω)|2
]

= E

[

∑

z∈Λ

|u(Tzω) − u(ω)|2
]

= E







∑

z∈Λ

∣

∣

∣

∣

∣

∣

N(z)−1
∑

i=0

u(Tζi+1
ω) − u(Tζiω)

∣

∣

∣

∣

∣

∣

2





,

where ζ0 = 0, ζN(z) = z, |ζi+1 − ζi| = 1, and N(z) ≤ d diam(Λ). Therefore,

‖v‖2
(L2(Ω))|Λ| ≤ E

[

d(diam(Λ))2|Λ|
d
∑

i=1

(v±ei(ω))2

]

≤ c1(d,Λ)E

[

d
∑

i=1

(v±ei(ω))2

]

.

By definition, the said set of v(ω) is dense in L2
pot(Ω,Λ), and by the continuity argu-

ments, the latter estimate holds for any v ∈ L2
pot(Ω,Λ) .

Thus, (Apotv, v) ≥ c2(d,Λ) ‖v‖2
(L2(Ω))|Λ| , and the desired existence and uniqueness

follow from the Lax–Milgram lemma.
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2.4.2. Homogenization. In this section, we study the family of random oper-
ators {Aε} with statistically homogeneous coefficients given by (2.11). The homog-
enization theorem for such operators was originally proved in [15]. We give another
proof based on the compensated compactness lemma, which seems to be easier and
shorter. The main result here is the following theorem.

Theorem 2.16. Let the coefficients of Aε be given by (2.11), and suppose the
condition (2.12) is fulfilled. Then, a.s., the family {Aε} admits homogenization and
the limit matrix A0 does not depend on ω.

Proof. For a fixed f ∈ W−1,2(Q) , consider the following Dirichlet problems:

divε
Λ

(

∑

z′∈Λ

aεzz′∂ε
z′uε

)

= f , uε ∈ W 1,2
0 (Qε) .(2.15)

Since uε and
∑

z′∈Λ aεzz′ ∂ε
z′uε are uniformly bounded, respectively, in W 1,2(Qε) and

(L2(Qε))
|Λ|, we have

uε −−−→
ε→0

u0 weakly in W 1,2
0 (Qε) ,

sε −−−→
ε→0

s0 weakly in
(

L2(Qε)
)|Λ|

,

where sεz stands for
∑

z′∈Λ aεzz′ ∂ε
z′uε.

Let vz(ω) solve the auxiliary problem (2.14). If we denote vε(x)
△
= v

(

Tx/ε ω
)

, qε
△
=

vεAε, i.e., ∀z ∈ Λ, qεz =
∑

z′∈Λ vεz′ aεzz′ , then, the identity

∑

x∈Qε

∑

z∈Λ

sεz(x) vεz(x) =
∑

x∈Qε

∑

z∈Λ

qεz(x) ∂ε
zu

ε(x)(2.16)

obviously holds. We introduce a constant matrix A to satisfy the relation E(qε) =
λA0. This matrix is well defined because qε is a linear functional of λ. By the Birkhoff
ergodic theorem, we have

vε −−−→
ε→0

E(vε) = λ weakly in L2(Qε) a.s.,

qε −−−→
ε→0

E(qε) = λA weakly in L2(Qε) a.s.

It follows from (2.14) and the definition of divω and divε
Λ that for almost all realizations

we have divε
Λq

ε = 0, while the fact that v − λ ∈ L2
pot(Ω,Λ) implies a.s. the relation

vεz = ∂ε
zθ

ε for some (in general not statistically homogeneous) functions θε. Also,
from (2.15) we have divε

Λs
ε = f . By Lemma 2.1,

∑

z∈Λ

sεz v
ε
z

⋆−−−→
ε→0

∑

z∈Λ

s0
z λz

and

∑

z∈Λ

qεz ∂
ε
zu

ε ⋆−−−→
ε→0

∑

z,z′∈Λ

λz a
0
zz′

∂

∂z′
u0 ,

or, equivalently,

∑

z,z′∈Λ

vεz′ aεzz′ ∂ε
zu

ε ⋆−−−→
ε→0

∑

z,z′∈Λ

λz a
0
zz′

∂

∂z′
u0;
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δpermeability 

permeability 1

Fig. 3.1. Example of a realization of the random medium.

we have also used here Proposition 3 from [15]. Hence, passing to the limit in (2.16)
and bearing in mind the fact that λ is an arbitrary vector, we find

s0
z =

∑

z′∈Λ

a0
zz′

∂

∂z′
u0 .

Since
∑

z∈Λ
∂
∂z s

0
z = f , the function u0 is the solution of the homogenized problem

and A0 is the limit matrix.

3. Asymptotic behavior of the effective coefficient. In this second part
of the work, we consider the difference operators obtained by discretizing a random
two-dimensional high-contrast checker-board structure, as various discretization pro-
cedures are applied. For each discretization method, we find the asymptotics of the
effective coefficient. The results obtained in this section rely essentially on the fine
results from the percolation theory, such as channel property and related statements.
For the reader’s convenience, we formulate these results and provide necessary defini-
tions in section 3.1.

To define the random media, we split the plane R
2 into regular squares {[− 1

2 ,
1
2 ]2+

j}, j ∈ Z
2, and assign a value of permeability, independently at each square, as follows:

κ(y)
△
=

{

δ with probability p
1 with probability 1 − p

, y ∈
[

−1

2
,
1

2

]2

+ j, j ∈ Z
2,

where δ is a small strictly positive parameter (see Figure 3.1). Then, we consider the
grid Z

2, fix a finite set Λ ⊂ Z
2, and define the transition probabilities {pz(x); x ∈

Z
2, z ∈ Λ} to be a function of {κ(x + z)}, z ∈ Λ. Finally, we define the coefficients

of operator Aε in terms of {pz(x)} by (1.6).
Henceforth, we suppose that the properties (1), (2), and (3) in section 1.1 are

satisfied. It then follows from the independence of κ(j) for different j ∈ Z
2 that the

family {pz(x)} is ergodic. Now, the following assertion is a direct consequence of
Theorem 2.16 (see also Kozlov [15, section 2]).

Proposition 3.1.
1. The operators Aε G-converge as ε → 0 to an elliptic operator

with constant nonrandom coefficients A = {azz′}z,z′∈Λ\(0,0).
2. The limit matrix is isotropic: A = aδ(p) I (I is the identity

matrix).
We call aδ(p) the effective coefficient and study its asymptotics as δ → 0 for

various p ∈ [0, 1].

3.1. Some results from percolation theory. In this section, we quote and
discuss briefly several results from percolation theory. We consider the so-called site
percolation model (see Grimmett [10]) and, following the tradition, say black and
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0 n

n

n

0 n

Fig. 3.2. The neighbor squares and black channels in the cases γ = 1 (left) and γ =
√

2 (right).

white squares instead of “δ” and “1” squares, respectively. All the squares are enu-
merated by the coordinates of their centers and the distance dist(i, j) between squares
i and j, (i, j ∈ Z

2), is defined as the Euclidean distance |i− j|.
Definition 3.2.

• Two black squares i and j are γ-connected if dist(i, j) ≤ γ. As soon as the
value of γ is fixed, we just refer to connected squares or neighbor squares.

• Consider the random subgraph containing only the black squares. The con-
nected components of this graph are called black clusters.

• A finite set of black squares forms a black channel if the squares can be enu-
merated in such a way that any two successive squares in this enumeration
are γ-connected (see Figure 3.2 for examples).

Similarly, we define γ-connected white squares, white clusters and white channels.
When the probability p varies, the geometric properties of the black clusters are
modified. The more p increases, the bigger are the sizes of the clusters, and they
eventually form the unique infinite cluster (see, for example, Grimmett [10]). Below,
some basic constructions of percolation theory are presented.

The probability space is introduced as follows. As sample space, we take K =
Πs∈Z2{δ, 1}. Each point of K: κ = (κ(s); s ∈ Z

2) is called a configuration. We take
G to be the σ-field of subsets of K generated by the finite dimensional cylinders.
And, for each p ∈ [0, 1], we define the probability measure Pp as the product measure
on (K,G) such that the random variables κ(s), s ∈ Z

2 are independent and satisfy
Pp(κ(x) = δ) = p.

In what follows we identify the probability space (K,G, Pp) with the general prob-
ability space (Ω,F , P ) defined above.

Let |C| be the cardinal of the cluster which contains the origin. The cluster-
size distribution is given by θn(p) = Pp(|C| = n), n ∈ N

∗ . The probability θ(p) =
Pp(|C| = +∞) that the origin belongs to the infinite cluster is called the percola-
tion probability. There exists a critical probability pc(γ), also called the percolation
threshold, such that

{

θ(p) = 0 if p ≤ pc(γ) ,
θ(p) > 0 if p > pc(γ) .
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Table 3.1
Evolution of the number of infinite cluster with respect to p.

p 0 pc(2) pc(
√

2) pc(1) 1 − pc(2) 1

γ = 1 White No infinite cluster Black

γ =
√

2 White Black and White Black
γ = 2 White Black and White Black

Thus, for each fixed γ, the critical probability is pc(γ)
△
= sup{p : θ(p) = 0} .

Figure 3.2 shows the sets of neighbor squares, with respect to the marked square,
in the cases γ = 1 and γ =

√
2, and it emphasizes the difference between the structures

of channels.
In Table 3.1, we can see, for three different values of γ, the presence of white

and black clusters with respect to the values of p. The following relation holds:
pc(1) + pc(

√
2) = 1, while pc(1) ∼ 0.59 and pc(

√
2) ∼ 0.41 (see Kesten [12]).

Moreover, according to Aizenman and Grimmett [1], pc(2) < pc(
√

2) .

3.1.1. The channel property. Denote by N(n) the number of mutually non-
intersecting black channels joining the left and the right sides of the box [0, n]2.

Proposition 3.3 (see Kesten [12, section 11]). Let γ = 1 or γ =
√

2. If
p > pc(γ), then for almost all κ ∈ K the inequality

N(n) ≥ c(p)n , c(p) > 0,

holds for any n ≥ n0(κ)
Remark 3.4. In fact, this result holds true for any value of γ (see Golden and

Kozlov [9]).
Remark 3.5. For all γ ≥

√
2, the percolation models admit the coexistence of

the channels of both colors (see Figure 3.2). The geometry of the white and black
subgraphs is rather different in subcritical and supercritical zones. In this connection,
it is interesting to study carefully what happens near pc(γ).

Proposition 3.6 (see Kesten [12, section 11]). There exist some strictly positive
constants c1, c2, c3, δ1, δ2 such that, for p > pc(γ),

Pp

(

N(n) ≥ c1 (p− pc(γ))δ1n
)

≥ 1 − c2 (n + 1) e−c3 n (p−pc(γ))α2

.

By the Borel–Cantelli lemma, we have

c(p) ≥ c1 (p− pc(γ))δ1 .(3.1)

Remark 3.7. One can easily check that all the channels can be chosen to be no
longer than θ(p)n .

3.2. Behavior of the effective coefficient. In this section, for the checker-
board model introduced above, we consider several discrete models characterized by

• the set of admissible jumps, i.e., the set Λ;
• the corresponding transition probabilities {pz}z∈Λ .

In all these models, the distribution of {pz}z∈Λ will be invariant with respect to
rotations at the angle π/2. This symmetry implies the isotropy of the effective tensor,
and thus there is only one scalar effective coefficient aδ(p) to be determined.

For each model, we study the limit behavior of the effective coefficient as δ → 0.
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3.2.1. Harmonic mean. We begin by considering the “harmonic mean” model.
Namely, we assume that

Λ = {±(1, 0), ±(0, 1), (0, 0)}

and define the transition probabilities as the harmonic mean of the values of κ(·) at
the corresponding points:

pz(x) =















1

4

2κ(x)κ(x + z)

(κ(x) + κ(x + z))
if z ∈ Λ \ {(0, 0)} ,

1 −∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z 6∈ Λ .

Clearly, the family {pz(x)} satisfies the conditions (1), (2), and (3) in section 1.1, and
moreover, its distribution is isotropic.

Remark 3.8. The choice of the harmonic mean is natural in the framework of
the finite volume approach. Indeed, with this choice for the coefficients, we conserve
the fluxes. This conservation is violated under another choices (see explanations in
McCarthy [19]).

The asymptotic behavior of the effective coefficient aδ(p) as δ → 0 is described
by the following statement.

Theorem 3.9. The effective coefficient aδ(p) satisfies, for small δ, the following
inequalities:

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√

2),

δ ≤ aδ(p) ≤ c2(p) δ, c2(p) > 0 if pc(
√

2) < p ≤ 1.

This means, in particular, that aδ(p) does not vanish as δ → 0 if p < pc(
√

2).
Proof.
1. Case 0 ≤ p < pc(

√
2).

Consider the percolation model with γ = 1. By Proposition 3.3, for 0 ≤ p <
1 − pc(1) there are at least N(n) = c(p)n mutually nonintersecting white
channels joining the left and the right sides of the square [0, n]2. We denote
by Ck the kth channel, 1 ≤ k ≤ N(n) .

Define on the space
(

L2(Ω)
)|Λ|

the following seminorm:

‖φ‖2 △
= E

{

∑

z∈Λ

pz(ω) (φz(ω))2

}

,(3.2)

where E is the expectation related to the measure µ. In fact, under the
assumptions of the theorem, it is a norm, but we will not use this fact.
Let P1(z) = z1 be the projection onto the first coordinate of vector z. Ac-
cording to Kozlov ([14, Chapter II, section 2], the effective coefficient aδ(p)
can be calculated as follows:

aδ(p) = inf
ϕ∈L2

pot(Ω,Λ)
‖P1(z) − ϕ‖2 ,(3.3)

where the subspace L2
pot(Ω,Λ) has been defined in section 2.4.1 of this paper.

Denote by H the linear set H = {ϕz(ω) = ϕ̃(Tzω) − ϕ̃(ω) ; ϕ̃ ∈ L∞(Ω)} . This
set H is dense in L2

pot(Ω,Λ) (see section 2.4.1) and the functional ϕ → ‖z1−ϕ‖
is continuous in L2

pot(Ω,Λ). Therefore, the infimum over L2
pot(Ω,Λ) in (3.3)

can be replaced by the infimum over H.
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Let ϕ belong to H: there exists ϕ̃ ∈ L∞(Ω) such that ϕz(ω) = ϕ̃(Tz ω)−ϕ̃(ω).
Then,

‖P1(z) − ϕ‖2 = E

{

∑

z∈Λ

pz(ω)(z1 − (φ̃(Tz ω) − φ̃(ω)))2

}

.

Since Tx is ergodic, by the Birkhoff theorem we have for almost all realizations

‖P1(z) − φ‖2 = lim
n→+∞

1

n2

∑

x∈Z2∩[0,n]2

∑

z∈Λ

pz(Tx ω)
(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

= lim
n→+∞

1

n2

∑

x∈Z2∩[0,n]2

∑

z∈Λ

pz(x)
(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

.(3.4)

Our goal now is to construct a uniformly positive lower bound for aδ(p). To
this end, on the RHS of the last formula, we first take into account only the
points x located inside the channels :

‖P1(z) − φ‖2 ≥ lim inf
n→+∞

1

n2

∑

x∈C

∑

z∈Λ

pz(x)
(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

,

where C stands for the union of white channels. Then, we enumerate the
points x along each channel in such a way that any consecutive numbers
correspond to neighbor points, and we replace the inner sum over z ∈ Λ(x)
by the sum over z such that x+ z belong to the same channel as x and have
greater index than x. Denote this latter set of z by λ(x), and notice that for
each x from the union of white channels λ(x) is not empty and consists of
only one element. For z ∈ λ(x), we clearly have pz(x) = 1/4. Hence,

‖P1 − ϕ‖2 ≥ lim inf
n→+∞

1

4n2

∑

x∈C

∑

z∈λ(x)

(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

,

If we denote S(x) =
∑

z∈λ(x) (z1 − ẽ(Tx+z ω) + ẽ(Tx ω)) , and enumerate the

channels C = ∪N(n)
k=1 Ck , then, for the kth channel, we have

∑

x∈Ck

S(x) =
∑

x∈Ck

∑

z∈λ(x)

(z1 − φ̃(Tx+zω) + φ̃(Txω))

= n +
∑

x∈Ck

∑

z∈λ(x)

(−φ̃(Tx+zω) + φ̃(Txω))

= n + φ̃(Txs(Ck)ω) − φ̃(Txf (Ck) ω) ≥ n− c ,

where c = 2 ‖φ̃‖L∞(Ω) , and xs(Ck) and xf (Ck) are, respectively, the starting
and final points of kth channel. Summing up over the channels, we obtain

∑

x∈C

S(x) ≥ (n− c)N(n) .(3.5)

By the Cauchy inequality, taking into account Remark 3.7, we get

∑

x∈C

S(x)2 ≥
(
∑

x∈C S(x)
)2

θ(p)nN(n)
.
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In view of (3.5) this implies

∑

x∈C

S(x)2 ≥ (n− c)2 N(n)2

θ(p)nN(n)
,(3.6)

and

‖P1(z) − φ‖2 ≥ lim
n→+∞

1

4n2

c(p)

θ(p)
(n− c)2 ≥ c1 > 0 .(3.7)

Hence: aδ(p) ≥ c1 > 0 . The upper bound aδ(p) ≤ 1 is obvious and, finally,

0 < c1 ≤ aδ(p) ≤ 1 .

2. Case pc(
√

2) < p ≤ 1.
Consider the percolation model with γ =

√
2. There are at least c(p)n non-

intersecting black channels Ck, k = 1, 2, . . . , N(n) , joining the left and the
right sides of the square [0, n]2 (see Proposition 3.3).
Let us denote ε = 1/n and define functions wε on εZ2 ∩ [0, 1]2 as follows:

• wε(·, 0) = 0 , wε(·, 1) = 1 (boundary conditions),

• wε(x) = (k−1/2)
N(n) for x ∈ εCk ,

• wε(x) = k
N(n) for x from the set bounded by εCk and εCk+1 .

Here, we suppose without loss of generality that the channels do not intersect
the bottom and top faces of the square. The above function wε has been
designed to possess the following properties :

• In the area situated between any two consecutive channels Ck and Ck+1,
this function is equal to a constant, the constants are different in distinct
areas.

• At each channel Ck the function wε makes a jump. The values of jumps
are uniformly distributed on the channels so that the total increment of
wε, as x2 varies from 0 to 1, is equal to one.

By the definition and according to Proposition 3.3, the sequence wε is uni-
formly bounded in W 1,2(Qε) and uniformly Lipschitz continuous; moreover,
the Lipschitz constant is less than or equal to c−1(p). Thus, for a proper
subsequence, we have

wε −−−→
ε→0

u0 weakly in W 1,2(Qε) ,

sup
x∈Q

|wε − u0| −−−→
ε→0

0 ,

where u0 ∈ W 1,2(Q), u0(·, 0) = 0, u0(·, 1) = 1, and

|u0(x
1) − u0(x

2)| ≤ c−1(p)|x1 − x2| , x1, x2 ∈ [0, 1]2 .

Consider the expression

Jε(wε) = ε2
∑

x∈Qε

∑

z,z′∈Λ

aεzz′(x) ∂ε
zw

ε(x) ∂ε
z′wε(x) = ε2

∑

x∈Qε

∑

z∈Λ

pεz(x) (∂ε
zw

ε(x))
2
.

(3.8)

It follows from the definitions of wε and pεz(x) that

Jε(wε) ≤ c−2(p) δ .(3.9)
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Fig. 3.3. Illustration of Theorem 3.10. The behavior of aδ(p).

Moreover, by Proposition 2.14, lim infε→0 J
ε(wε) ≥ aδ(p)

∫

[0,1]2
|∇u0(x)|2dx ≥

aδ(p) . Combining the last two estimates, we get the desired inequality aδ(p) ≤
c−2(p) δ . The lower bound aδ(p) ≥ δ is evident.

The next result describes the behavior of the effective coefficient aδ(p) for p from
a neighborhood of the critical point pc(

√
2).

Theorem 3.10. In the vicinity of pc(
√

2) , the following inequalities hold:

c1 (pc(
√

2) − p)α1 ≤ aδ(p) if p < pc(
√

2),

aδ(p) ≤ c2

(p− pc(
√

2))α2

δ if pc(
√

2) < p,

where c1, c2, α1, and α2 are strictly positive constants.

Figure 3.3 illustrates this result.

Proof. It is sufficient to substitute the estimate (3.1) in (3.7) and (3.9). The
required estimates are now straightforward.

3.2.2. Comparison with the behavior in continuous media. The asymp-
totic behavior of the effective coefficient described in the previous section (section
3.2.1) differs essentially from that obtained for the case of differential equations (see
Jikov, Kozlov, and Oleinik [11, Chapter 9]). One of the reasons for this disagreement
is the fact that we ignore the streams through the neighborhoods of vertices of the
checker-board structure.

Here we modify the model of the previous section by involving the streams along
the “diagonal directions,” so that the asymptotic behavior of the effective coefficient
as δ → 0 in this new model is similar to that obtained for the corresponding differential
operator.

Let us begin by describing the scheme of discretization. We set

Λ = {(0, 0),±e1,±e2,±(e1 + e2),±(e1 − e2)} , e1
△
= (1, 0), e2

△
= (0, 1),

(so, at each step, a trajectory of the corresponding random walk can choose one of
the eight nearest points of Z

2 or keep the same position).

In order to assign the values for pz(x), |z| =
√

2, we consider auxiliary periodic
checker-board structure with a cell of periodicity shown in Figure 3.4. The effective
coefficient of this medium is equal to

√
δ (see Jikov, Kozlov, and Oleinik [11, section

7.2]). This gives us an idea that, for the combination of squares shown in Figure 3.4,
the coefficient pz(x) with z = (e1 + e2), should be of order

√
δ.



HOMOGENIZATION OF ELLIPTIC DIFFERENCE OPERATORS 77

κ=δ

κ=δ

κ=1

κ=1

x+z

x

Fig. 3.4.

Inspired by these heuristic arguments, we define the transition probabilities by

pz(x) =































1
8 min

(

2κ(x)κ(x+z)
κ(x)+κ(x+z) ,

√

κ(x+z1e1)+κ(x+z2e2)
2

κ(x)+κ(x+z)
2

)

if |z| =
√

2 ,

1

8

2κ(x)κ(x + z)

κ(x) + κ(x + z)
if |z| = 1 ,

1 −∑z∈Λ,z 6=(0,0) pz(x) if z = (0, 0) ,

pz(x) = 0 if z 6∈ Λ .

The following theorem describes the asymptotic behavior of the effective coeffi-
cient aδ(p).

Theorem 3.11. The effective coefficient aδ(p) satisfies, for small δ, the estimates

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√

2),

c2(p)
√
δ ≤ aδ(p) ≤ c3(p)

√
δ if pc(

√
2) < p < 1 − pc(

√
2),

δ ≤ aδ(p) ≤ c4(p) δ if 1 − pc(
√

2) < p ≤ 1,

where c1(p), c2(p), c3(p), and c4(p) are strictly positive.

Thus, the effective coefficient is uniformly positive when p < pc(
√

2), is of order√
δ when p is between pc(

√
2) and 1− pc(

√
2), and is of order δ when p > 1− pc(

√
2).

Proof. The cases 0 ≤ p < pc(
√

2) and 1 − pc(
√

2) < p ≤ 1 can be studied exactly
in the same way as in Theorem 3.9.

Now, we proceed with the case pc(
√

2) < p < 1 − pc(
√

2).

Consider the percolation model with γ =
√

2. Again, for sufficiently large n, there
are at least c(p)n mutually nonintersecting black

√
2-channels and white

√
2-channels

joining the left and the right sides of the square [0, n]2 (see Figure 3.5).

Lower bound. We consider the infinite white cluster. In order to obtain the lower
bound for aδ(p), we follow part (1) of the proof of Theorem 3.9. We point out that,
along each white channel, if both x and x + z belong to the channel and |z| ≤

√
2,

then pz(x) ≥
√
δ/8. Indeed, in this case κ(x) = κ(x + z) = 1 and, by the definition,

pz(x) takes on one of the following values: 1
8 ,

1
8

√

1+δ
2 , 1

8

√
δ .
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Fig. 3.5. Intersection between a black and a white channel; p ∈] pc(
√

2), 1 − pc(
√

2)[ .

From (3.4), (3.6) and the above estimate of pz(x), we get

‖P1(z) − ϕ‖2 = lim
n→+∞

1

n2

∑

x∈Z2∩[0,n]2

∑

z∈Λ(x)

pz(Tx ω)
(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

≥ lim inf
n→+∞

√
δ

8n2

∑

x∈Cw

∑

z∈Λ(x)

(

z1 − φ̃(Tx+z ω) + φ̃(Tx ω)
)2

≥ lim
n→+∞

√
δ

8n2

c(p)

θ(p)
(n− c)2 ≥ c

√
δ ,

where symbol Cw stands for the union of white channels. By virtue of (3.3), the last
inequality implies the required lower bound.

Upper bound. We consider the infinite black cluster and the N(n) = c(p)n black
channels Cb

k, k = 1, 2, . . . , N(n) in the square [0, n]2.

The upper bound aδ(p) ≤ c3(p)
√
δ can be established with the help of the

following auxiliary functions:
• wε(·, 0) = 0 , wε(·, 1) = 1;

• wε(x) = (k−1/2)
N(n) for x ∈ εCb

k ;

• wε(x) = k
N(n) for x from the set bounded by εCb

k and εCb
k+1 ,

where ε = 1/n. Direct calculations show that Jε(wε) ≤ c−2(p)
√
δ; indeed, by the

definition of {pz(x)}, we have pz(x) ≤ δ/8 if x belongs to a black channel, and

pz(x) ≤
√
δ

8 if x and x + z are situated at the opposite banks of a black channel. If
we denote by u0 an accumulating point of wε, then we have by Proposition 2.14

c(p)−2
√
δ ≥ lim

ε→0
Jε(wε) ≥ aδ(p)

∫

[0, 1]2
|∇u0(x)|2 dx ≥ aδ(p) .

Comparing these results with Jikov, Kozlov, and Oleinik [11, Chapter 9, Theorem
9.5] shows that the discrete operators considered in this section adopt the asymptotic
properties of the corresponding differential operators.

3.2.3. Geometric mean. We modify here the scheme of discretization of section
3.2.1 by taking the geometric mean in the definition of transition probabilities instead
of the harmonic mean:

pz(x) =











1

4

√

κ(x)κ(x + z) if z ∈ Λ \ {(0, 0)} ,
1 −∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z 6∈ Λ ,
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Fig. 3.6. γ = 2. The neighbor squares (left), a black channel Ck (center), and one of its
possible modifications C̃k (right).

the set Λ being the same as in section 3.2.1 (i.e., with displacements toward the four
nearest neighbors). Then, the asymptotic behavior of the effective coefficient aδ(p) is
described by the following statement.

Theorem 3.12. The effective coefficient aδ(p) satisfies, for small δ, the esti-
mates:

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < pc(
√

2),

c2(p)
√
δ ≤ aδ(p) ≤ c3(p)

√
δ if pc(

√
2) < p < 1 − pc(2),

δ ≤ aδ(p) ≤ c4(p) δ if 1 − pc(2) < p ≤ 1,
where c1(p), c2(p), c3(p), and c4(p) are strictly positive.

Proof.
1. In the case 0 ≤ p < pc(

√
2), we need to justify only the lower bound. It can

be done exactly in the same way as in Theorem 3.9. Another way to obtain
the lower bound is to notice that for |z| 6= 0 the coefficients pz(x) under
consideration majorate the respective coefficients defined as the harmonic
mean. By virtue of the convergence of energy result and Theorem 3.9 this
implies the desired lower bound.

2. In order to obtain the upper bound for pc(
√

2) < p < 1− pc(2) one can apply
the technique developed in the part (2) of the proof of Theorem 3.9.
To justify the lower bound in the case pc(

√
2) < p < 1 − pc(2), we consider

the percolation model with γ = 2 (see Remark 3.4). Here we encounter an
additional difficulty: for p ∈]1 − pc(

√
2) , 1 − pc(2)[ the white 2-channels are

not connected in a usual sense.
We proceed as follows. For each channel Ck we introduce its 1-neighborhood:

C+
k = {x ∈ Z

2 : |x− j| ≤ 1 for some j ∈ Ck} .
It is easily seen that C+

k contains a sequence of squares {xi} denoted by

C̃k, which joins the left and the right sides of the square [0, n]2 and has the
following properties:

• |xi+1 − xi| = 1 for any consecutive xi and xi+1;
• pz(x) ≥

√
δ/4 for any x and z such that x, z + z ∈ C̃k and |z| = 1

(see Figure 3.6) These sets C̃k are connected in a usual sense and consist
in general of both white and black squares. Clearly, the number Ñ(n) of
mutually nonintersecting sets C̃k still satisfies the estimate Ñ(n) ≥ c̃(p)n,
c̃(p) > 0, for sufficiently large n. Then, one can use C̃k instead of Ck and
argue like in part (1) of the proof of Theorem 3.9.

3. The upper bound in the case 1 − pc(2) < p ≤ 1 requires slightly different
arguments than above. Consider the percolation model with γ = 2, and for
each white cluster C denote by C

+ the 1-neighborhood of C:

C
+ = {x ∈ Z

2 : |x− j| ≤ 1 for some j ∈ C} .
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Let C
+(0) be the set C

+ containing 0, and denote by W (0) the size of C
+(0).

If 0 does not belong to the 1-neighborhood of the union of white clusters,
then C

+(0) is empty and W (0) = 0.
We introduce the following sequence of random variables ϕ̃N (ω) ∈ L∞(Ω):

ϕ̃N =

{

− min
j∈C+(0)

j1 if 1 ≤ W (0) ≤ N

0 otherwise,

and put ϕN
z (ω) = ϕ̃N (Tzω) − ϕ̃N (ω) , z ∈ Λ. It is clear that |ϕN

z (ω)| ≤ 2N .
According to Kesten [12, Theorem 5.1], the estimate

Pp{W (0) > n} ≤ c exp(−c(p)n) , c(p) > 0 ,(3.10)

holds for all p > 1 − pc(2). Therefore, by the definition of ϕN
z , we have

Pp{ϕN
z ≥ n} ≤ c exp(−c1(p)n) , c1(p) > 0 , n = 1, 2, . . . , 2N .(3.11)

The random variables ϕN
z and pz possess the following properties:

• if both 0 and z belong to C
+(0) and W (0) ≤ N , then P1(z) − ϕN

z = 0 ;
• if at least one of them does not belong to C

+(0), then pz = δ/4 .
In combination with (3.10) and (3.11), this implies

aδ(p) ≤ ‖P1(z) − ϕN
z ‖ = E

∑

z∈Λ

pz(z1 − ϕN
z )2

≤ c δ

2N
∑

k=1

k exp(−c1(p)k) + c exp(−c(p)N)

≤ c̄ δ + c exp(−c(p)N) ,

where c̄ does not depend on N . Passing to the limit as N → ∞ gives aδ(p) ≤
c̄ δ.

3.2.4. Arithmetic mean. This section deals with another modification of the
scheme of section 3.2.1. Namely, the transition probabilities are defined as the corre-
sponding arithmetic means

pz(x) =











1

4

κ(x) + κ(x + z)

2
if z ∈ Λ \ {(0, 0)} ,

1 −∑z∈Λ\{(0,0)} pz(x) if z = (0, 0) ,

0 if z 6∈ Λ ,

while the set Λ remains the same as in section 3.2.1.
Theorem 3.13. The effective coefficient aδ(p) satisfies, for small δ, the estimates

0 < c1(p) ≤ aδ(p) ≤ 1 if 0 ≤ p < 1 − pc(2),
δ ≤ aδ(p) ≤ c2(p) δ if 1 − pc(2) < p ≤ 1,

where c1(p) and c2(p) are strictly positive.
Proof. The first estimate relies on the channel property of the percolation model

corresponding to γ = 2. As in the preceding theorem, we enlarge the white 2-channels
to make them connected, and note that along each modified channel the transition
probabilities are uniformly positive: pz(x) ≥ (1+δ)/8 if z ∈ Λ and x and x+z belong
to a modified channel. As above, this implies the lower bound aδ(p) ≥ c1(p) > 0.
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The proof of the second estimate is exactly the same as that of the last estimate
in the preceding theorem.

Remark 3.14. The statements of Theorems 3.9–3.11 remain unchanged if we
assume that the size of mesh h(ε) of a grid is less than ε while h(ε)/ε is a constant.

Appendices.

Appendix A. Convergence of discrete functions. Let fε be an arbitrary
function defined in the discrete domain Qε = εZd ∩ Q, and let f̃ε be the piecewise-
constant interpolation of fε:

f̃ε(x) = fε(y) if y ∈ Qε and x ∈ y +

[−ε

2
,
ε

2

]d

.

Definition A.1. We say that a family of functions fε ∈ L2(Qε) converges
strongly (resp., weakly) to the function f ∈ L2(Q) as ε → 0 if f̃ε converges strongly
(resp., weakly) to f in L2(Q). For this convergence we use the notation

fε −−−→
ε→0

f in L2(Qε) (resp., weakly in L2(Qε)) .

Similarly, one can define the W 1,2(Q)-convergence of discrete functions with f̃ε

being the piecewise linear interpolation of fε (instead of the piecewise constant one).
The convergence in W−1,2(Q) can be defined in terms of duality. Namely, we say

that fε ∈ W−1,2(Qε) converges to f ∈ W−1,2(Q) strongly (resp., weakly) if for any
sequence gε ∈ W 1,2

0 (Qε) and g ∈ W 1,2
0 (Q) such that gε → g weakly (resp., strongly)

in W 1,2(Q), we have

〈fε, gε〉 −−−→
ε→0

〈f, g〉 .

Definition A.2. Let wε ∈ L2(Qε) and w0 ∈ L2(Q). The sequence wε converges
⋆-weakly to w0 if for any ϕ ∈ C∞

0 (Q),

lim
ε→0

εd
∑

x∈Qε

wε(x)ϕ(x) =

∫

Q

w0(x)ϕ(x) dx .

Appendix B. The derivative of a product of discrete functions.

Proposition B.1. Let f and g belong to W 1,2(Qε). Then,

∑

z∈Qε

|∂ε
z(fg) − f∂ε

zg − g∂ε
zf | ≤ ε

∑

z∈Qε

|∂ε
zf ||∂ε

zg| .

Proof. We have

ε ∂ε
z(f(x) g(x)) = f(x + ε z) g(x + ε z) − f(x) g(x)

= g(x) (f(x + ε z) − f(x)) + f(x + ε z) (g(x + ε z) − g(x))

= ε [g(x) ∂ε
zf(x) + f(x + ε z) ∂ε

zg(x)] .

We have f(x + ε z) = f(x) + ε∂ε
zf(x). Therefore,

∂ε
z(f(x) g(x)) = g(x) ∂ε

zf(x) + f(x) ∂ε
zg(x) + ε∂ε

zf(x)∂ε
zg(x),
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and the desired estimate immediately follows.

Appendix C. The Friedrichs and Poincaré inequalities.

This appendix is devoted to the Friedrichs and Poincaré inequalities for grid
functions. In fact, in order to prove the propositions below, one can follow the same
ideas as in the case of the continuous argument. For this reason, we omit the proof.

Proposition C.1. Let Q be a bounded domain with piecewise smooth boundary
and denote the discretization of Q by Qε. Then, for any vε ∈ W 1,2

0 (Qε) the following
inequality holds:

‖vε‖2
L2(Qε)

≤ c(Q) εd
∑

x∈Qε

d
∑

i=1

(∂ε
±eiv

ε(x))2 .(C.1)

Proposition C.2. Let Q be a smooth bounded domain. Then, for all sufficiently
small ε and for any vε ∈ W 1,2(Qε) such that

∑

x∈Qε
vε(x) = 0, the following inequality

is satisfied:

∑

x∈Qε

|vε(x)|2 ≤ C(q) εd
∑

x∈Qε

d
∑

i=1

|∂̄ε
±eiv

ε(x)|2 .(C.2)

Remark C.3. The statement of Proposition C.2 remains valid for the domain
Qε.
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