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Abstract

The paper deals with the homogenization of a non-statiocarnwection-
diffusion equation defined in a thin rod or in a layer with Diviet boundary
condition. Under the assumption that the convection tertarige, we describe
the evolution of the solution’s profile and determine the Htits decay. The main
feature of our analysis is that we make no assumption on tmeostiof the initial
data which may touch the domain’s boundary. This requiresctinstruction of
boundary layer correctors in the homogenization processhyburprisingly, play
a crucial role in the definition of the leading order term & limit. Therefore we
have to restrict our attention to simple geometries likechaoa layer for which
the definition of boundary layers is easy and explicit.
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1 Introduction

The paper deals with the homogenization of a non-stationanvection-diffusion
equation with large convection stated either in a thin rotha layer. In the previous
work [4] the authors addressed a similar homogenizatiomlpro for an equation
defined in a general bounded dom&irc R¢. Namely, the following initial-boundary
value problem has been considered:

o — div(a(Z) V) + % b(Z) - Vs =0, in (0,7) x O,
uf(t,xz) =0, on (0,T) x 9, 1)

u®(0,z) = uo(x), x € 9,
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with periodic coefficients:;;, b; and a small parameter Notice that in the case of

a solenoidal vector-field(y) with zero mean-value the problem can be studied by
the classical homogenization methods (see, for examgle[24]). In particular, the
sequence of solutions is boundedit? [0, 7'; L?(Q)]NL2[0, T; H(Q)] and converges,
ase — 0, to the solution of an effective or homogenized problem iriclvlthere is no
convective term. For more general vector figlda similar behaviour ofi® is observed

if the so-called effective drift (a suitable weighted aygafb) is equal to zero. The
behaviour of the solution changes essentially if the eiffeddrift is nontrivial. Problem

(1) with nonzero effective drift has first been consideredhia whole spac®¢? [3],
[12], [18], [21] by using the method of moving coordinatelse solution travels at a
large speed (equal to the effective drift divided 4dyand its profile is given by the
solution of an homogenized diffusion equation. Recenttyahthors solved the same
problem in a bounded domash under the crucial assumption that the initial function
up has a compact support 2 [4]. In this case the initial profile moves towards
the boundary during a time of order and then, upon reaching the boundary, starts
dissipating. As a result, the solution is asymptoticallya#irfor time ¢ >> ¢ and our
paper [4] describes precisely the asymptoticaQfwhich is quite different from that
obtained in the case &f.

Without the assumption that) has a compact support{, one faces the necessity
to construct boundary layer correctors in the neighboudred@2. It is well known
that the construction of boundary layers for general domé&na difficult problem
which cannot be expressed in explicit form (see howeverdghbent papers [13], [14]).
However, it is a feasible task if the periodic structure agreith the geometry of the
boundary of2. In the present paper we consider two types of domains whiskgss
this property. Namely, we study a convection-diffusion misdn a thin rod (see Fig. 1)
and in a layer (see Fig. 2) iR?. We emphasize that, unlike classical homogenization,
the boundary layers we shall construct for (1) are not justecdor terms but, rather,
they play a crucial role in the definition of the leading ortlerm in the asymptotic
analysis (for more details, see the discussion after Tine@je

In the case of a thin rod (Section 2) we impose homogeneousblien boundary
conditions on the lateral boundary of the rod and homogen&orichlet boundary
conditions on its bases. As in the case of a general boundedidd4], the solution
asymptotically vanishes for time>> . Theorem 2 determines the rate of vanishing
of the solution and describes the evolution of its profilethé effective axial drift
is not zero (otherwise the problem is trivial), the rescadetution concentrates in
the vicinity of one of the rod ends, and the choice of the enpkdds on the sign
of the effective convection. In order to characterize the od decay we introduce a
1-parameter family of auxiliary cell spectral problemsigar to Bloch waves but with
real exponential argument (see [8], [9], [11]). The asyrtipteehaviour of the solution
is then governed by the first eigenpair of the said family @fcsmal problems and by a
one-dimensional homogenized problem with a singularahdata.

In the case of a layer, addressed in Section 3, in additioféofdctorization
principle, we also have to introduce moving coordinates[f&]. More precisely, we
use a parameterized cell spectral problem and factorizgtimciple to suppress the
normal component of the effective drift (perpendiculartte tayer boundary). While,
due to the presence of the longitudinal components of teefe convection, we have
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to introduce moving coordinates (parallel to the layer kotarg). The main result in
this case is given by Theorem 10. The asymptotic behaviout @ again governed
by the first eigenpair of the spectral cell problem and by adgenized problem with
a singular initial data.

In both cases (rod or layer) the initial data of the homogeshjaroblem, and thus
the asymptotic behavior of solutions to (1), differ from $leoobtained for the case
of a general domain in [4] (see again the discussion afteoiéme 2). Among the
technical tools used in the paper, are factorization ppiedisee [16], [23], [24], [2],
[9]), dimension reduction arguments and qualitative tsstdquired for constructing
boundary layer correctors.

2 The case of a thin rod

This section is concerned with the homogenization of equafl) stated in a thin
rodG. = (—1,1) x eQ (see Figure 1). Her& c R?~! is a bounded domain with
Lipschitz boundanp@, ¢ > 0 is a small parameter. Without loss of generality, we
assume thaf) has a unitd — 1)-dimensional measure, i.¢Q|;—1 = 1. Throughout
this section the points iiR¢ are denoted: = (x1,z’) with 2/ € R?~!. The lateral
boundary of the rodz. is denoted, = (—1,1) x €9Q. ForT > 0, we consider the
following model:

Oput (t,z) + Acu(t,z) =0, in (0,T) x G,

B.uf(t,z) =0, on (0,7) x X,
uf(t,£1,2") =0, on (0,7T) x eQ, @)
uf(0,x) = ug(x1), z € G;
with
Auf = —div(aEVus) + ébs -Vu®; Beu® =a"Vu® - n.
The coefficients of the equation are given by
a=ay(D), K=b(3). 1<ij<d )

Note that the fixed domaif in (1) is replaced in (2) bg=. which has a vanishing cross-
section and that the Dirichlet boundary conditions areiappherely at the end bases
of the thin rod. If the rod had a square cross-section, thbleno with the Neumann
boundary condition on the lateral boundaty could be reduced to a problem with
periodic boundary conditions in a cylinder having in thessrgection the square of
double size. This gives us an idea that our results can bexa@edeto the case of
periodic boundary conditions on the lateral boundary oftite Indeed, the arguments
used in the paper also apply, with some simplifications,¢atse of periodic boundary
conditions.
We assume that:
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A T3
X G,

e
Figure 1: The rod-.

(H1) The coefficients ofA. are measurable bounded functions, thatiisb; €
L*(R x Q). Moreover,a;;(y1,y'),b;(y1,y’) are 1-periodic with respect to

Y1-

(H2) Thedxd matrixa(y) is symmetric and satisfies the uniform ellipticity conditio
that is there existA > 0 such that

ai;(y)&& > A|Ef®, Va, & e RY

(H3) The initial functionug(z,) € C*[—1,1].
(H4) For simplicity, we assume that=1/N, N € Z,.

Remark 1 In assumption(H2) the Einstein summation convention over repeated
indices is used, as well as later in this paper. Assumpttéh) means that the rod
is made up of a number of entire cells which are not cut at bottse

Since the rod has a vanishing thickness apds smooth, there is no fundamental
restriction in assuming that, depends only on .

Under the stated assumptions we study the asymptotic bmivaef solutions
u®(t, z) of problem (2), ag — 0.
2.1 Auxiliary spectral problems and main result
In what follows we denote
Au = —div(aVu) +b-Vu, Bu=aVu-n; 4)
A*u = —div(aVu) —div(bu), B*u=aVu-n+ (b-n)u. (5)

Following [8], [9], for § € R, we introduce two parameterized families of spectral
problems (direct and adjoint) which are different from tiseal Floquet-Bloch spectral
problems because the exponential fac¢tas real instead of being purely imaginary.
They reads

e A" py(y) = A(O) po(y), InY =T xQ,
e % Bef py(y) =0, ondY =T, x 9Q, (6)

y1 — po(y) 1-periodic
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and
e A* e pi(y) = MO) pp(y), InY,

1 B* e~ p¥(y) =0, ondy,

y1 — py(y) 1-periodic
HereT; is the 1-dimensional unit circle. Note that the exponemtéaisform is applied

only with respect to the first space compongntThe next result, based on the Krein-
Rutman theorem, has been proved in [9].

Lemma 1 For eachf € R, the first eigenvalue\; (6) of problem(6) is real, simple,
and the corresponding eigenfunctiopgs and p; can be chosen positive. Moreover,
0 — Xi(0) is twice differentiable, strictly concave and admits a maxin which is
obtained for a uniqué = O.

The eigenfunctiongy andpj defined by Lemma 1, are normalized by
[may =1 and [ paupitw)ay = 1. ™
Y Y

Differentiating equation (6) with respect & integrating against; and writing down
the compatibility condition for the resulting equationely

dA . £ x
d_el = / (0199 P + a1j(po By, p5 — 1 Dy, pe) — 20 pp Py ar1) dy. (8)

Y

Noticing that\; (0) = 0 andpy(y)|s—o = 1, one obtains

%‘920 = / (a1 0y,p* + b1 p*) dy = by, 9
Y
wherep*(y) = p;(y)|le=o. The last expression is the so-called effective axial drift
Bl eR.
In what follows we assume that > 0 (which is equivalent t® > 0). The case
b, < 0 is symmetric and can be considered in the same way.
To avoid excessive technicalities, we first formulate ouimnesult in a loose way.

Theorem 2 Let conditiong H1) — (H4) be fulfilled andb; > 0 (see(9)). Suppose
that ug(—1) # 0. Then there exist constants” and M such that, fort > 0 and
x € G, the asymptotics of the solutiesi of problem(2) takes the form

9 MOt (z1+1)

u(t,x) =ee 2 e = p@(w

E) [u(t, x1) + re(t, :C)],
whereu is a solution of the one-dimensional effective problem
Ou = a® ailu, (t,z1) € (0,T) x (—1,1),
u(t,+1) =0, t e (0,7),

uw(0,21) = =M ug(—1) 8 (z1 + 1), = € (-1,1).
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Herer.(t,z) is such thatr.(t, )| < Cefort > tg > 0,z € I xeQ, [T € (—1,1],
and the constant’ depends od™, A, Q. d.

A more precise statement of Theorem 2 can be found below inrEnes 8 and 9.
The interpretation of Theorem 2 is that it is a result of battalization/concentration
and homogenization. Indeed, up to a multiplicative cortstdnthe solutionu® is
asymptotically equal to the product of two exponential terenperiodically oscillating
function p@(m) (which is uniformly positive and bounded) and the homogediz

g
function u(t, z1) (which is independent of). The first exponential term™ En
indicates a fast decay in time, uniform in space. The secopdrential termee(ml“) ,
indicates a localization of the solution in a small neighitmard of the right end of the
rod, where the solution attains its maximum; everywhereigls—1, 1) the solution is
exponentially smaller. The homogenized solutiodepends only on the value of the
initial dataug at the opposite extremity; = —1 and it is proportional to the constant

M which depends on some homogenization boundary layers.

The role of boundary layers is thus crucial in the result ofdiem 2. Furthermore,
if the initial datau, had a compact suppofd, 5] € (—1,1) andug(«) # 0, then
Theorem 5.2 in [4] gives a similar asymptotic behaviour @kder the initial data of
the homogenized problem which would b&), z1) = M ug(a) 6(z; — ). In other
words, the derivative of the Dirac mass would be replaceH thi¢ Dirac mass itself.

Remark 2 The error estimate for the remainder tenm is not precise enough and
it shall be improved in Theorem 9. Indeed, the homogeneotishiZt boundary
condition for u(t, z1), together with the exponentiale(rim shows thatu®(t, x)
attains its maximum at a distance of ordef the end pointc; = 1: there, by a
Taylor expansionu(t, 1) is of the order of, like the remainder term, (¢, 2) which
is thus not negligible. A better ansatz with a better erratireate will be given in

Theorem 9 (again, boundary layers will be crucial).

The proof of Theorem 2 is performed in several steps. Firstwvake use of a
factorization principle in order to simplify the originaigblem. Then, we represent the
new unknown function in terms of the corresponding Greemrgfion. And, finally,
we study the asymptotic behaviour of the mentioned Greemstion, as — 0.

2.2 Proof of Theorem 2
2.2.1 Factorization

In order to simplify the original problem we perform the clgarof unknowns, as was
suggested in [3], [4], [10], [23].

2@t O(zi+1) x
€

ut(t, ) =e < e p@(g) ve(t, x). (10)
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Note that (10) is a proper definition of sincepg is a positive function. Substituting
(10) into (2) yields the problem for the new unknown functién

1 .
pol(H) 0 ~an(o° (D)) + 11°(2) T =0, m(0.7)x
a@(E)VvE~n:O, on(0,T) x X,
€
ve(t,+1,2") =0, ' € (0,T) x eqQ,
v°(0,2) = uo(xl)pél(g) e~ Q(Iiﬂ), r € G,.
(11)
Here

pe(y) =pe(y)ps(y), a®(y) =pe(y) rs(y)aly),
b°(y) = pe(y) Ps(¥) b(y) — 20 pe(y) Po () aly)er (12)

+a(y) [pe(y) Vyrs(y) — o (y) Vype (¥)],
with e; the first coordinate vector. For brevity, in what follows wendte

oV = —div(aG(E)VU) + E b@(f) -Vv, Bgv= GG(E)VU ‘N,
€ € € €
Aov = —div(a®Vv) +b° - Vo, Bev=0a®°Vuv-n, (13)

agto=—aiv(a®(D)ve) - 11°(2) -,

v = —div(a®Vov) — b° - V. (14)
Straightforward calculations yield that, for afy R,
div,b’(y) =0 inY, b’-n=0 ondY. (15)

Taking into account the fact th& is the maximum point of; and equality (8), we
obtain that the first component b? has zero mean:

[was=o (16)

Y

Due to (15), (16), the partial differential equation in (1dguld be homogenized
by standard methods [7], [8] if the initial data were indegemt of . However,
the presence of an asymptotically singular initial comditin (11) brings some
difficulties into the homogenization procedure. In patécuthe classical approach
of homogenization (based on energy estimates in Soboleespaannot be applied
since the initial data is not uniformly boundediid(G. ).

In order to study the asymptotic behaviourof following our previous work [4],
we use its representation in terms of the correspondingrGréenction K. (¢, x, )

) = [l utne’ () e
Ge

91+

de. (17)



60 G. Allaire, I. Pankratova and A. Piatnitski

Here K., as a function of andz, for eacht € G., solves the problem
05 0K, + ASK. =0, (t,z) € (0,T)xG.,

BgK. =0, (t,z) € (0,T) x 2.,

(18)
K (t,z,¢&) T 0, (t,2")e(0,T)xeQ,
K. (0,2,8) =6(z — &), z € Ge.

Note thatK. with respect tq¢, £) is a solution of the formally adjoint problem, which
differs from (18) by the sign in front of the first-order terms

Because of the presence of the delta-function in the irgtaldition, it is difficult
to construct the asymptotics féf. directly. Let us introduce a function

V:E(taxag) :q)g(t,x,f)—Kg(t,x,f), (19)

where®. stands for the Green function in the infinite cylinder = R x Q. As a
function oft and¢, it is a solution to the following problem

e (£) 0:®: + ABE(I)E =0, (¢ €(0,T)xGe,
Bg®. =0, (t,€) € (0,T) x I, (20)

(I)E(vavg):5(x_§)v ¢ € G..

By I'. we denote the lateral bounddRyx 0(eQ) of the cylinderG.. For each: € G,
V. as a function ot and¢ solves the problem

Pe (&) 0iVe + Ag"Ve =0, (t,€) € (0,T) x Ge,
BV =0, (t,€) € (0,T) x 2.,

(21)
Ve(t, z,§) 1 Pc(t, 2,€) S (t.§) € (0,T) x eQ,
‘/5(07:1775):07 geGE

In the following subsection we construct an asymptotic espan for ®. which is a
relatively easy task because it is defined in an infinite d@im(thus not requiring any
boundary layers). Subsection 2.2.3 will be devoted to tipe@pmation ofV. which is
delicate because of the necessity of defining boundaryddyerstill possible since the
boundary condition fo#/. is smooth forz # +1. The final subsection will combine
these two results to get an ansatz for and, using (17), to prove Theorem 2.

2.2.2 Asymptotics for®. (¢, , &)

The goal of this section is to compute an asymptotic exparfsiothe Green function
d. with a bound on the error term (see Lemma 4 below). Denotebyg fundamental
solution of the 1-dimensional homogenized problem

{ 8IS(I)O =a aglq)o(tv'rlvgl)? (tagl) € (OaT) X Rv Ty € Rv

(1)0(07171761) - 6(:171 - 51)7 51,501 S R.

(22)
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Here the effective coefficient™ is given by one of the two equivalent formulae

J
Y Y

o — / (a8, +a®8,,N — b N) dy = / (0%, + a2, N* + 19 N*)dy, (23)

where thel-periodic iny; functionsN and N* solve the standard cell problems (direct
and adjoint, respectively):

AoN(y) = 0y,a51(y) — b2 (y), yeY,
(24)
BG)N(y) = 01 Yy S 6Y,
oN*(n) = 9y,aS () + 00 (n), neY,
(25)
BG)N*(n) :01 neay

Of course, (22) is the homogenized problem for (20) and itteashown that*” > 0.
Note thatN and N* are Holder continuous functions (see [15]). The fundament
solution®, admits the explicit formula

1 1 I ETE
NG (20)

We also introduce the first- and second-order approximatdd. by

Qo(t,x1,&1) =

(I)i(tv'rvg) :(I)O(tv'rlvgl)—i_aN(E) 8I1(I)0(t,1171,€1)
e
¢ (27)
+€N*(g) aflq)o(t?xlvgl)v
(I);(t,l',g) = (I)i(t,x,@ + 52 N2(§) 651(1)0@7951751)
(28)
+€2 N;(g) aglq)o(t,l'l,gl) + 52 N(g) N*(g) 6m1651 (I)O(ta xlagl)'

The functionsN; and N are defined later on in Section 2.2.3, see formula (36).
Our further analysis relies on Aronson type upper boundbfar Consider the Green
function ®(¢, y,n) of the following initial boundary problem in the infinite reled
cylinderG = R x @ with lateral boundarny:

p@(y) 6tq) + A@(I) = 07 (ta y) € (07 OO) X G7
Be® =0, (t,y) € (0,00) x X, (29)
®(0,y,m) =0(y —n), yeG.

Lemma 3 The Green functio®, solution of(29), satisfies the following Aronson type
estimate

)2
0< ®(t,y,n) < Cpmax (t_d/z, t_1/2) exp ( - CM) (30)

with positive constant§’; andec.
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Remark 3 In the right hand side of estima(80) the factort—%/2 takes care of the
short times (for which there is no difference between thiadgt G and the full space
R%) while the other factot—'/2 is valid for the longer times (for which the cylind&r
behaves as a 1-d line).

Proof. We only briefly sketch this proof. The idea is to derive (3@ni the
classical Aronson estimate iR (see [5]) for divergence form operators. Let us
check first that the operatote can be rewritten in divergence form. Sinkg is a
divergence-free vector field and the average of its first comept is zero, there is a
skew-symmetric periodic ig; matrix S(y) with bounded entries such thiag = divS
(see e.g. [9]). Then

Ae¢ = —div((a® — S)V¢).

Assume for a moment that the cross sectipis the unit cube irR?~!. We duplicate
the cube by symmetric reflection of the operator coefficiantsthe solutio® (¢, y, n)

of (29) with respect to each direction orthogonal to its fac&€he resulting problem

is now periodic with perio@ in each coordinate direction. It should be noted that the
initial condition on each period is the sum2f—! delta functions iny at the point;

and its symmetric reflections. We denote these point&yt@(m)}id:l1 with 1 (n) = n.

Then the solutionf(t, y,n) of the introduced aboveQ-periodic problem coincides
with ®(¢,y,n) on Q.
Due to the linearity of the problem

2d71

Ot,y,m) = Y Gyt y,m(n)),
k=1

whereGx4(t,y,n) is the Green function of the correspondin@-periodic operator.
Clearly, G4 (t,y,n) is constructed from the fundamental soluti6itt, v, n) in the
whole space by summing over the square periodic networkridg2@). Namely,

Gu(tym) = > G(ty,n+2n).

nezd—1

Making use of the classical Aronson estimate for the fundgaieolutionG (¢, y, n)
in R¢, we get

Gut.ym) = Y G(t,y,n+2n)

o nezd—1 (31)

lyr—n112 Co Ly’ =n'=2n|2
< — e~ Co= e 0 G
> e Z

t nezd—1

)

for some positive constan€s Cy. For small time the contributions of the distant cells
are negligible because of the exponential decay, and the coairibution is given by
the term withn = 0. Consequently, for small time
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with some positive constants, C,. For large timef all the terms in (31) contribute.
Indeed, after making the change of variables

-~
Il
NS
Il
=
3
Il
|
S
Il
SN

—nl2

iy ed d o =12 -1
T g7 Co% o il oy li=a
Ge(55) < ame - Y oe -
ne(§Z)d—1
Cié _o lm=ml? Co i = =72 10 191 =71 |2
e e Co T g < 2L e G0
S Zap / = 71/2

Rd—1
Changing back the variables we have

2
ly1—n1l
—Colazmln

y
G ta 9 S_
#(t,y,m) i€

for any timet such that > ¢y, > 0. Thus, estimate (30) is satisfied wh@ris the unit
cube.

Finally, if @ is not a cube, we first map it to the unit cube by a Lipschitz
diffeomorphism which preserves the divergence form anigtill character of the
operator with uniformly bounded coefficients. O

Using Lemma 3, we can paraphrase the upper bound, annoumd@d]i (see
Chapter II, page 85) and then proved rigorously in [1] (similesults were proved
in [6]). The difference is that we address the case of an tefiylinder instead of the
whole space as in these previous references.

Lemma 4 For anyz, ¢ € G, andt > ¢2,

EkJrl

Wa k2071727 (32)

et @t @, €) — DR (t, w1, &) < C

whered§ = @, @5 is defined by27) and &5 by (28).

We do not give the details of the proof of Lemma 4 which is caetgdy similar to
that in [1]. It relies on two arguments. The first one is thedBlalecomposition and
m-sectorial property of the decomposition of the operatgrin Y which still holds
true in the present case. The second one is the Aronson éstivhéch is granted by
Lemma 3. Estimate (32) holds true|®|;—1 = 1. Otherwise, the multipliefQ|s—1
appears in front of ¥~ ®_(t, z, £).

2.2.3 Asymptotics forV_ (¢, x, &)

The goal of this section is to construct an asymptotic exiparfer the differencd/,
defined by (19), with a bound on the remainder term (see Lentvaasd 6 below).
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Bearing in mind estimate (32), it is?~ 'V, rather thanl/., which has a limit. The
formal asymptotic expansion fef—! V. takes the form (see e.qg. [7], [19])

We(t,z, &) = Vo(t, 21,&1) + EN(g) Oz, Vo(t, x1,61)

te N*(g) 0e, Vo(t,x1,&1) +eVi(t,x1,&1) +e Vig(t, x,6) (33)

+2 Vo (t, 21, & g g) + Wt 2, €),
wherely, for eachzy, is the solution of the homogenized problem
Vo = a0 Vo, (t,&) € (0,T) x (—1,1),
Vo(t,z1,£1) = Oo(t, 21, £1), te(0,7), (34)
Vo(0,21,&1) =0, &e(-11)

with the effective coefficient*® defined by (23). Recall thay and N* are solutions
of (24) and (25), respectively. The other terms in (33) afendd as follows.
The functionV; is defined by

‘/2(157@1751;9,77) = NQ(y) 8£1‘/0(taxla€1)
+N2*(77) 8£21 V()(t,thl) + N(y) N*(W) az1851 V()(t, Ilagl) (35)
+N(y) 6m1‘/1(t1 xlagl) + N*(n) 651 Vl (taxlagl)

where the functionsvz(y) and N; () (1-periodic with respect to their first variable)
solve the following problems:

J

{ AoNy = 3y, (af N) + a0, N +af, =09 N —a*" po, inY, a5)

BeNy = —a§n; N, ondy,

and

J

N3 =0y, (aq N*) + a0, N* + af) + 0P N* — a*" pe, inY,
BeNj = —a§n; N*, ondY.

In order to definé; and the boundary layer correctdy; in (33), we introduce two
functionsv* defined in semi-infinite cylinders,” in G* = (0, +o0) x @ andvt in
G~ = (-00,0) x Q:

Agv*(n) =0, neGF,

Bev®(n) =0, neXT, (37)

’Ui(oa 77/) = _N*(O777/)1
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whereX* are the lateral boundaries G@f*. It has been proved in [20] that bounded
solutionsv* exist, are uniquely defined and stabilize to some constahtsit an
exponential rate, ag, — +oo:

[ E () — 0% < Coe7Iml Co,y > 0;

Vo~ [|L2((nni1)x@) < Ce 7", ¥n >0, (38)

[Vt 2= (nt1),—myx@) < Ce ™, ¥n > 0.

Then the first boundary layer corrector is given by

Vit ) = [ (0, 8) 0] 06, (- @), 6 = 1) o
+[U+(&T_1v g) - ﬁﬂ ¢, (Vo — @0)(t, 21,61 = 1),

andVi, forz; € (—1, 1), satisfies the problem
OVi=a"O; Vi + F(t,x1,&), (t,&)€(0,T) x (-1,1),
, te (0,7), (40)

&1=%1
Vl(Oaxlugl):Ou 51 S (_171)7

Vl (t,l‘l, :|:1) = ’lA}i 651 (VO — (I)())

where

Fit.an, &) = 0 Valt.an. €0) [ (a0, 50
’ 41)
+a§ )N () + B2 ()N () — 0™ po () N* (1)) dn.

Finally, the second boundary layer correcktf, is designed to compensate the time
derivative ofl/; and is defined by

51_+15_/)_

Wilt.2.€) = [w (2=, %) = 906, (Vo — @)t &0 = =)

ot (1 E) —it) 00, 06 - @)t = 1),

The functionsv® solve nonhomogeneous problems
swh(n) = (0 —v*(n) pe(n), neGT,
Bew* (1) =0, n€xT,
w*(0,7') = 0.

Bounded solutionsy® exist, are uniquely defined and stabilize to some constafts
at an exponential rate, s — +oo (see [20]).
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Using the standard elliptic estimates one can easily shay for z; # +1,
the functionV} belongs toC*>([0,T] x (—1,1) x [-1,1]), and fort € [0,T],
r1 €l € (-1,1),& € [-1,1], we have

c
< :
= min{|zy — 1, |2y + 1}

10F 5, OF) Vot 21,61)) (42)

ThenV; is also a smooth function of its variables fore I € (—1, 1). Notice finally
that N, and N5 are Holder continuous. Indeed, it is straightforward teatthat the
equation and the boundary conditions in (36) can be rewrittehe form

1
Ae(Ny +y1 N + 5@/?) =—apg, yev,

1
Bo(N> +11 N+ 5uf) =0, y € 0Y.
Sinceafpg € L>(Y), then it is known that the corresponding solution is Holder
continuous (see [15]). The Holder continuity 8§ can be justified in a similar way.
We denote by the first-order approximation ef! ~1V,

X
Vf(t,l’,g) = ‘/O(taxlagl) + EN(E) 611V0(t7x17§1)
¢ (43)
+€N*(g) 8§1V0(t7 Ilagl) + €V1(t,$1,§1) + 6‘/bgl(ta Iaé)
By construction, its trace at the cylinder ends coincidénliat of®$, namely

{Vf(ta%f)}

= ot 29|,

ﬁlzil 1:i17

wheredj is defined by (27). Of cours&jF is also the first-order approximation @f,
defined by (33). It turns out that all terms¥f will contribute to the leading term of
the asymptotics of¢~1V., while the other termsy, and Wy, in (33) are constructed
in order to guarantee the required accuracy.

Lemma5 Let V. be defined by19), or equivalently be a solution of21). Let V¢
be defined by43). Then, there exists a consta@it depending on/, A, @, d and
independent of, such that, forr € I x eQ andt >0, € (—1,1),

/|ed*1v5 —ViPde < Cete?l (44)
Ge

Proof. The strategy of the proof is the following: we plug the diéfiace
W. — e4=1V_ into the boundary value problem (21) and calculate the ihiginid sides
in the equation and in the boundary condition. The terms@&ymptotic expansion
W, were designed in a such a way that these right-hand sidesraié sThus, by a
priori estimates, the differend®. — 4=V, is small in an appropriate norm. For the
sake of clarity, we divide the proof into several steps.
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Step 1 We first prove a priori estimates for the following problem:

P50 + AGTw® = f(t,x) + divF(t,z), in(0,T) x G-,

Bg w® =¢g(t,z) — F - n, on(0,T) x X, 45)
we(t, £1,2") =0, (t,2') € (0,T) x Q,
we(0,z) =0, z € Ge.

Since by (154iv bg = 0 andbg - n = 0 on the lateral boundary, a priori estimates are
obtained in a standard way. Multiplying the equation in (%) and integrating by
parts and exploiting the Cauchy-Bunyakovsky inequalitg @&rdnwall’'s lemma, we
obtain foranyt <T'

t

G/|w6(t)|2dx+0/C/|Vw8|2dxdT (46)

< Ot (||f||%2((o.,TE)xGE) + e lgllZ20.1yx 2y + IF 201y x6.)
where the constants, C; are independent afandt.
Step 2 To estimate thé.?(G.) norm of W, —e?~ 1V, we first substitutéV, — 4=V,
for w® in (45). This yields
0% 0e(We — W) + A5 (W. — e71V0)
= e Ry(t,x1,&;0/e,6/e) 4+ €0y, Ry i(t, 21, €152 )€, €)€) )
+e2 Ro(t, 21,6152 /e,&/e) +€® R§(t, 11, €),
BE(W. — ¥ W) = e2ny Ry i(t, 21,615 /e, E)€),
where
Ri(t, 21, 6159,m) = pe(n)N(y)0:0s, Vo(t, 1, &1)
+po(n)N*(7)0:0¢, Vo + pe(n)0 Vi — afy (n)N(y)f?é Oz, Vo(t, 1,&1)
—aB (NN (), Vo(t, 21, &) — aPy (), Vi(t, a1, &)
—a5;(n)0e, Oy, Va(t, 1, &1y, m) — bT (1)De, Valt, 21, €159, m),
and
Ry i(t, 1, &159,m) = a) (n)de, Va(t, 21, &1 9,m),
Ro(t, 1, &159,m) = po O Va(t, w1, E13y,m) — afy (n)0F, Va(t, 1, E159,m),
R3(t, @1, 8) = po O Wy (t, 7, 6).

All cancellations on the right hand side of (47) are cladg&ee e.g. [7]) except for the
one due to the additional boundary layer corrector tethv; in the ansatz (33) for
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W.. Indeed, the coefficient in front of W, allows us to cancel the time derivative of
Vj5. By construction

8t‘/béi(t7'r7§) = _52 Agswlfl(tv'rvg)
and
(0 0 + AS) (e Vii(t, 2, ) + > Wi(t, 2, €)) = &° plg 9 Wiy (L, 2, €).

By linearity, we havelV. — e?~'V. = Vf + Vi, whereVy and Vs, for eachr € G-,
solve the following problems:

P% O VE + ASVE = e Ri(t, 21, &1 /e, €/€) + €0, Ry i(t, w1, €152/, € /) +
52 RQ(t,(El,gl;(E/E,g/E) +63 Rg(t7$17§)7 (t7§) S (OuT) X G67
BE—)‘;I6 = 62 ;g Rlyi(t,xl,fl;x/s,f/s), (tag) € (OvT) X 257
VE(t =0 te(0,T
1(,I,€)§1::t1 ) 6(7 )
VE(0,2,8) =0, £e€Gy

po Vs + ASVs =0, (t,€) € (0,T) x Ge,

BgVE =0, (t,€) € (0,T) x %,

5 (t = (We — 710, )(t t T

Vil =We-eTeteg| L te )

Ve (0,2,6) =0, £eq..

Step 3 We estimatdff using the a priori estimates (46) obtained in the first step. T
this end, we notice that, in view of (34) and (40),

/Rl(t,xl,&;y,n)dn =0.
Y

Thus, there exists &periodic with respect tg; vector-functiony = x (¢, z1,&1;y,1)

such that
—diVnX =R, ney,
x-n =0, n € JY.
Obviously,
Rl(tuxlugl;yﬂ?)‘ :_Edivfx(t7x17§1;yu é) +56§1X1(t7x17§1;y7n)’ )
n=¢&/e £ n=¢/e
and

Oy R i(t, w1, €15y, 77)‘ = 0¢, Ry i(t, 21,615, g)—ﬂ%él,z‘ (t,$17§1;y777)‘

n=¢§/e n:{/s'
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Considering (35) and (42), we see that

/|52R2(t,x1,§1;y, g) + Ryt 21, 8)Pde < Cete¥ ! 2 eI xeQ. (48)
Ge

With the help of (46) the above relations yield, foe I x Q),

/|Vf(t7$7§)|2 de <Ce*e® t>0, (49)
G.

with the constan€ depending od, A, Q, d only.

Step 4 We proceed with the estimatevff. Due to the presence of the boundary layer
correctorV,;, some cancellations occur and the axial boundary conditiead

Ws(tv'rvgla :l:l) - Ed_l‘/s(tv'rvgla :l:l) = WE(ta Iaglv :tl) - Ed_lq)s(tvxvgla :l:l)

- (52‘/2(ta:1717£1;y7 g) + 83W§l(t,x,§)) + ((I)i(tv'rvg) - Edilq)s(taxag))'

Taking into account (42) and the fact that, N*, No, N5 are Holder continuous
functions, we see that

whereC depends o, A, @, d only.
To estimate the other terfb; — e?~1®.) we consider separately small times
t <&, B €(0,2), and larger times > °. Fort < <% we have

|B5 — 71D, | < BF + 971D,

The first term on the right-hand side here is small by its vesfinition (27) while
we use Aronson’s estimates (see Lemma 3) for the second oamely, thanks to
(15)-(16), forz € I x eQ andt < &°

1B, (t,,+1,¢)| < O(e= /")

with some positive constaut.
For large timet > %, we use Lemma 4. Namely, far,¢ € G., the following
estimate holds true:

e D (t, 2, ) — B5(t, 2, )| < C¥32 VB >0,
with the constan€ independent of. On the other hand, in view of (26), for ahy> 0,
|®5(t, @, +1,¢) — 5 (t, 2, +1,¢)| < Ce?, ¢ €eQ, z el xeq,

with some constanf’ = C(I, A, Q, d). Finally, choosing small enough, we obtain
that, for anyt > 0,

led 1D, (t,x, +1,8) — 5 (¢, 2, £1,£")| < Ce?, ¢ €eQ, v el xeqQ,
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whereC depends oid, A, Q, d only.
Combining the last estimate with (50), we obtain that thertafauy conditions on
the bases of the rod are satisfied up to the second order in

\We(t,x,+1,6) — 1 (t,x,£1,&)| < Ce?, t>0, zcIxeQ  (51)
whereC depends o, A, Q, d. Thus, by the maximum principle, fare I x @,
Vi(t,z,8) <Ce, 20, ey, (52)

whereC depends o, A, Q, d.

Step 5 Recalling thatV, — ¢4V, = Vf + V;E, by summing (49) and (52), for any
t € [0, 7], we obtain

/|Ed*1V5 —W.?de < Ce*e?™l, zelxeq.
G

Itis easy to see thatfare I x Q,t > 0,

/’Ifg(t,xl,ﬁl;yé)’ngJr/|W§l(t,x7§)|2d§§05d—1.

Ge Ge
Consequently, last two estimates yield (44). Lemma 5 isgulov O

Lemma 5 provides afi? estimate for the discrepancy. By working harder we can
get anL*> estimate of the same order. Namely, we prove the followisglte

Lemma 6 Let V. be a solution of(21) and V be defined by (43) as a first-order
approximation of=?~ V.. Then, fort > 0,z € IT x eQ and¢ € I~ x @, the
following estimate is valid:

e Vet 2, 6) = Vi (t,2,6)| < Ce? (53)

wherel* € (—1,1], I~ € [-1,1); the constantC depends od ™, 71—, A, Q,d and is
independent of.

Remark 4 The same estimate holdstic I x cQ andz € I~ x Q.

Proof. Estimate in Lemma 5 is based on two auxiliary bounds, (49) @2).
Notice that estimate (52) gives a boundlif® norm and, thus, need not be improved.
Our goad is to modify the ansaiZ’© in order to obtain a greater power ofon the
right-hand side of (49). This will allow us to ude>® elliptic estimates.

Observe that adding interior higher order terms to the asgtigpexpansion (33)
(without adding additional boundary layer correctors)réases the power af in
estimate (49). More precisely, denote B¥ (¢, z, &) the k-order approximation for
Ed71%

k
W,?(t,x,{) = WE(taxag) + Z g"” Vn(taxlagﬂyan)

z
n=3 €

9
y=2 =%
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whereV,, (¢, 21, &1; y, 1) arel-periodic with respect tg;, n;. For the sake of brevity,
we do not specify the form of functionig, (for precise formulae see [7], [19]). Let us
substitutdV; —e94=1V. into (21) and then, represeiits — 41V, as a sumiv’y + Ws,
wherve solves nonhomogeneous problem with homogeneous Diritiolehdary
conditions at the rod ends (compare V\Efﬁ), andVT/zE is a solution of a homogeneous
problem with nonhomogeneous Dirichlet boundary condgiatt; = +1 (compare
with V). Arguing exactly like in Lemma 5, we see that

/|Wf|2dggcle“ed*1, t>0, z€lxeqQ, (54)
Gs

wherel € (—1,1); and by the maximum principle,
W5 (t,2,6)] < Coe?, >0,z € I xeQ, £ €Ge,

whereC1, Cs depend o, A, @, d.
Notice thatVy is Holder continuous, and by the Nash—De Giorgi estimatdké
rescaled cylinder, fof, ¢ € G,

Vet 2, 8) = Ve(t, 2z, Q) < Ce ¢ = (|%, t 20, z €I xeQ, (55)

where C, a depend onA, @, d and are independent af Indeed, let us change
the variablesr = t/e?,y = x/e,n = &/e in (21) and denotd/(r,y,n) =
V.(27, ey, en). By the maximum principle,

Ve(rym| <C 720, ne(—e e ) xQ, yee ' IxQ,

wherel € (—1,1). Due to the local Nash—De Giorgi estimates, for any Z, 7 > 0,
yee tIxQ

|‘7E(Tay7n) - ‘75(7'7%19” S C|77_19|a7 77319 € (nan+ 1) X Qv

for some0 < a < 1 andC depending on\, @, d. Changing back the variables in the
last inequality yields (55).

Due to the Holder continuity properties of, N*, No, NJ, regularity ofVy, the
function¥, is uniformly w.r.t.e Holder continuous. Indeed, for example, sii¢é is
Holder continuous, so i87*(¢/¢) and

|N*(§) _N*(gﬂ <SCe "€ =(|% &,6eCG, 0<a<l.

Thus,eN*(&/e)0¢, Vo(t, 1, &1) is Holder continuous uniformly with respect4o
By similar argumentsiy; andWs are Holder continuous functions, soiig . By
contradiction one can prove that, if (54) holds, then for séns (0, 1)

Wi (t,2,6)| < O,
whered depends o\, @, d. Thus, for sufficiently largé;,
le VLt 2, ) — Wi(t,2,6)| < Cse?, >0, E€Ge, z e xeQ,
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whereCs depends o, A, Q, d and is independent af Clearly, by regularity ol
(Wit @,6) = We(t,z,8)| < Cye?, €€ G, w €1 xeQ,

with Cy = C4(I, A, d, Q)

Combining the two last estimates implies a similar bound£6r' V. — W.) with
the constanC that depends oi, A, @, d only. Eventually, using (50) which proves
that (W. — Vy) is of orders? we obtain (53), at least for; in a compact subset of
(—1,1).

Now we extend this estimate to point I xeQ andé € I~ xeQ (oré € I xeQ
andz € I~ x Q). To this end, consideriny. (¢, z, £) as a solution of the equation in
(t,x) (for fixed £), we get a "symmetric” estimate

We(t,z,€) — e 'Valt,2,€)| < Cse®, £20, 2 €Ge, (€T xeQ,
with the constan€; depending o, A, @, d. In particular,

[We(t,z,€) — e ' Vo(t, 2, €| . Ce®, t>0, z€G. (56)

with the constan€ independent of, z, £, e. ConsideringV. (¢, z, &) — 4=V, (t, x, )

as a solution (w.r.tz, &, for fixed 2) of a nonhomogeneous initial boundary problem
stated first inf ~ x ¢Q and then inf+ x @, using estimate (56) and arguing as above
we obtain, forr € It x eQ andé € I~ xeQ (oré € I x eQ andx € I~ x £Q),

|Ed71‘/5(t,117,€)—Vf(t,il?,g” SO€23 tzov
with the constan€ depending od —, 1T, A, d, Q and independent cf. 0

2.2.4 Asymptotics forv® and main results

Recalling from (19) thaf. = . — V. and using the first order approximations (27)
and (43) obtained in the previous sections, we define a fidgr@pproximation of the
Green functionk’.

Kf(taxag) :(I)i(taxag)_vlg(taxag)
:Ko(t,I1,§1)+€N(§) Oz, Ko(t, 71,&1) (57)

+5N*(§) 6£1K0(t7xla§1) + EKl(taxlagl) - 5%7(t7x7§)1
whereK, = &y — 1} is the Green function of the one-dimensional effective fgob

8tK0 = aCff 831K07 (tvé.l) € (OaT) X (_17 1)5

Ko(t,l‘l, :|:1) =0, te (0, T), (58)
Ko(0,21,&) = 0(z1 — &), & e(=1,1),
K, = —V; with V1, the solution of (40), and the boundary layer corredtgris

defined by (37) and (39). By combining Lemmata 4 and 6, we imately obtain the
following statement.
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Lemma 7 Denote byl ™, I~ compact subsets ¢f1,1] and[—1, 1), respectively. Let
conditions(H1) — (H4) be fulfilled. Then, foreach € I x Q, ¢ € I~ x @, and
t > to > 0, there exists a constant depending o+, I, A, Q, d and independent
of ¢ such that

e KL (b, ®,6) — K (t,7,6)| < C 2. (59)

We can now state our main result.

Theorem 8 Let conditions(H1) — (H4) be fulfilled andb; > 0. Let© be the
maximum point ok, (¢) andpe the corresponding eigenfunction defined by Lemma 1.

1. Supposeyy € C'[—1,1] is such thatug(—1) # 0. The asymptotics of the
solutionu® of problem(2), for¢t > to > 0 andz € G., takes the form

_ MOt o= +1) x

u(t,x) =c%e "7 e = p@( ) [u(t,:z:l) +7’5(t,:17)],

g
wherew is the solution of the homogenized problem
du = a*" 02 u, (t,z1) € (0,T) x (—1,1),
u(t,£1) =0, te (0,7), (60)
uw(0,21) = =M ug(—1) 8 (z1 + 1), = € (-1,1),

where the effective coefficieat” is defined by(23), and the constanfi/ is
defined by

+oo
M= (21 4+ N*(2) + v (2)) po' (2) e © d2dz, (61)
I

with N*, solution of the adjoint cell problen25) and v—, solution of the
boundary layer problen{37). For some constan€ = C(IT,A,Q,d), the
remainder term satisfies the estimate

re(t, 2)| < Ce,
which is uniform fort > ¢ty > 0,z € I'™ x eQ, withI*T € (—1,1].

2. If ug € Ck*1(—1,1) is such thatu(()l)(—l) =0,1=0,---,k—1, and
uf)k)(—l) # 0, then

_ 2Ot O(x1+1) T
)

B2 et pe() [ultx) +7(t,1)],

u(t,z) =e""“e
whereu is the solution of the homogenized problem

ot = a° 8§1ﬂ, (t,z1) € (0,T) x (—1,1),

u(t,+1) =0, t€(0,7),

W(0,21) = —Mpul (1) &' (21 +1), a1 € (=1,1),



74 G. Allaire, I. Pankratova and A. Piatnitski

with the constanii/;, given by
T
My, = o / /(zl)k (21 + N*(z) + v_(z)) pe'(2) e 9% d2dz.
0 Q

The remainder term satisfié®® (¢, )| < C¢, and the estimate is uniform for
t>tyo>0,z€lt xeQ,withlt &€ (—1,1].

Remark 5 If the initial datau, is non-negative, then the effective initial data is non-
negative too. Indeed;d’(x1 + 1) is non-negative in distributional sense, and is
positive, because by the maximum princigle,+ N* + v ™) is positive.

The multiplicative constant/ depends explicitly on the boundary layer for
the left end pointz; = —1 (see formula (61)). It is quite surprinsing that such a
boundary layer (which is of lower order in classical homoigation theory) enters the
asymptotics ofic at the main order.

Note also that, if the initial data, had a compact support, then Theorem 5.2 in [4]
gives a similar asymptotic behaviour with a different ialitilata for the homogenized
problem, featuring a Dirac mass instead of the derivativthefDirac mass as i(60).

Remark 6 Theorem 8 provides the leading term of the asymptotics®of But, as
already explained in Remark 2, the error estimate for theaigher termr. is not
precise enough in the region of interest whefét, x) achieves its maximum. A better
ansatz with a better error estimate are given in Theorem @Wwdhgain, boundary
layers will be crucial).

Proof. Based on Lemma 7 we can compute the asymptotie$,afiven by (17) in
terms of the corresponding Green functi@p. Obviously, (17) can be rewritten in the
following form

Ed—lva(t7x) :/Kf(t’x’g)uo(gl)pél(g) e_w
G-
+/(5d_1Kg(t,=T,§) _Kf(taffaf))uo(&)pél(g) e_w de.
Ge )

Thanks to (59), forr € I x eQ, t > to > 0, we have

| [ ta6) - K5t ) i) pa! (£) 4 dg

Gs
—+oo
(&1 +1) a
< O e? /e*—l d¢é < Cre2€%Q) / e~ M dp, < Cedt?
Ge 0

with the change of variableg + 1 = ¢21, £ = ez’ and for some constants, C;
which do not depend on
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We proceed by evaluating the first integral in (62). We corameéparately the
contributions of each summand in (57). Expandiig andug into Taylor series in
the neighbourhood of; = —1, and recalling thaf{y(¢, 1, —1) = 0, we see that, for
t >t >0,

_ _o&+n
/Ko(taflaﬁl)uo(él)pel(g) e e
Gs
_ ECIGE)]
— (u0(-1) 2 Ko(t,o1,~1) + 0@)) [(& + D' (5) =+ a.
Gs
Performing again the change of variablgs+ 1 = ez, ¢ = ¢z’ and using the

periodicity ofpg yields

+oo
/ (€1 + 1)pal(§) e dg =t / / 2106 (2) e d2'dz + O(e"H?),
G. 0 Q

(63)
Recall that, for the simplicity of presentation, we assurftéd), namelye = 1/N,
N € Z,. Similarly, fort >ty > 0,

/N* aflKO(t Ia&)

uo(&1) CIGES

po(€/e)

dg

+
= ey (=1) 9, Ko(t, x1, — / / (2) e 97 d2'dz + O(e91?).
Z
0
On the contrary, since differentiating (58) with respectato does not affect the
homogeneous Dirichlet boundary conditions, we h&yeKy(t,z;,£1) = 0 and,
therefore, the following term can be neglected

g/N(g)amKo@,:cl,gl)w(&)pél(f)

Ge

0(€1+1)

df O( d+2).

The last summan¢e K1 — eV}3) in (57) is written as a sum of three terms. The first
one, sincek; (¢, 1, —1) — 0~ 0, Ko(t, 1, —1) = 0, gives a negligible contribution

a/(K1(t, z1,&1) — 07 0¢, Ko(t, 21, —1)) Uo(fl)pél(g) o

Ge

O1+1)
€

d¢ = O(e71?).

For the second one, performing a change of variables as alindvesing the periodicity
of pe yields

+1 ¢ _ e+
E/ (515 5 )8§1K0(t Il,—l)’UJQ(fl)pO (g)e € dg
Gs
= ey (=1) 9, Ko(t, x1, — / ;o j e 91 d2'dzy + O(e71?).

(=)

Q
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Thanks to (38), the third term containing the boundary lay@rector near the right
base of the rod:; = 1 is exponentially small. Combining (62)—(64) yields

vE(t, ) = 2 (M ug(—1) O, Ko(t, z1, —1) + O(¢)), (65)

whereO(e) is uniform fort > t, > 0 andz € I x Q.
The second statement of Theorem 8 can be proved in the sama&swhg first one
and we safely leave it to the reader. O

Theorem 8 provided the leading term of the asymptotica“of But, as already
explained in Remark 6, due to the presence of the exponlgnisiade factore® (@1 +1)/¢,
we are mostly interested in the asymptoticsubfin a e-neighbourhood of the right
end of the rod, where both, the leading and the correctorgdtogether with the
boundary layer corrector), are of the same order. Thergfzgecan not claim that, in
this localization zone, we haw® (@1 +1)/2 12 (¢, 2) < @10/ (¢, 21).

Due to similar reasons, we had to construct extra terms inaflyenptotics of
the Green functiori.. Indeed, because of the factor®@1+1)/c in (17), only the
behaviour ofK. in as-neighbourhood of the left end plays a significant part. Tawb
a precise asymptotics near the left end of the rod, we havstremted the corrector
terms forK .. Notice that the integrals (62)—(64) are of the same order.

In Theorem 9 below we construct the corrector f@t, that improves the
asymptotics ofu® near the right end of the rod and, therefore, makes the refult
Theorem 8 complete.

Theorem 9 Under the same assumptions as in Theorem 8, the refined asjcamif
the solutionu® of problem(2), fort > ¢, > 0 andx € G,, takes the form

MOt O(xzq1+1)

u(t,r) =e?e” " e = p@(g) [US(t,z) + Re(t, x)],
whereU* is given by
US(t,2) = u(t,z1) + £ N(Z) Opyu(t, x1)
i (66)
xr1 — 1 ,T_I

+eup(t,z1) + E{Ur(T, - ) - f)ﬂ Op u(t, 1),

whereu(t, z1) is the solution of the homogenized problggf), N solves(24), u; and
the boundary layer corrector;” are defined in(71) and (70), respectively. For some
constaniC = C(A, @, d), the remainder term satisfies the estimate

|R5(t,17)| S 05(1 - 'rl)a
which is uniform fort > ¢tg > 0,z € G..

Proof. In view of the factorization (10), it is sufficient to imprethe asymptotics
of v*. Because of (65), the function(t, 21 ), solution of (60), is in fact the leading
term of the asymptotics far—2v° (¢, x) for t > to > 0. Let us construct the corrector
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for e=2v°(t, z). Obviously, due to the semigroup property of the parabggierator,
one can represeat 2v¢ (¢, z) as a sum + 175, where

pe () 0,07 + AG0] = in (to,T) x Ge,
Bg ot =0, on(tg,T) x X,
(67)
05 (¢, +1,2") = 0, x' € (to,T) x eQ,
5i(t0,17) = U(to,Il), T € GE;
pe () 0,05 + AGD5 = in (to, T) x G,
Bgos =0, on(tog,T) x 3¢,
(68)
05(t, £1,2") = 0, ' € (tg,T) X €@,
5 (to, z) = e 20 (to, ) — u(to,21), = € Ge.
Itis easy to see that the asymptoticgipftakes the form
Us(t,z) = u(t, 1) + EN(g) Op u(t, z1)
z1—1 2
+Eu1(t, Il) + E[UJ(T7 ?) — 'D:’:| 8I1u(t, 1) (69)
1+2 o L
+E|: ( < ) E) _’U*:| 8m1u(t7_1)7

where the boundary layer correctars(y) and their asymptotic limits+ are defined
similarly to v*(y) and%* in (37), except that the adjoint operator and the adjoint
cell functions are replaced by the direct ones. In other wargl are solution in the
semi-infinite cylinder&s~ = (—o0,0) x Q andG™* = (0, +o0) x Q of

AGU* (y) = 07 AS G$a
Bevi(y) =0, yeXT, (70)
v (0,9) = —N(0,9).

The boundary layers? (y) stabilize at infinity to constant® exponentially fast, as
in (38).

In (69) the functionu, is designed so thal/¢ satisfy homogeneous boundary
conditions at;; = +1, namely it solves

uui(t,z1) = a™ 02 uy(t,x1) + f(t,z1), (t,m1) € (to, T) x (—1,1),

up(t, £1) = WF0,, u(t, £1), t € (to,T), (71)

ui(to, z1) =0, x1 € (—1,1),
where, N, being a solution of (36)f (¢, 1) is given by

[t 1) = 02 ult, :Cl)/ [ai0y, N2 + aDy N — b Na — a*™ pe N| dy.
v
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As in the proof of Theorem 8, one can prove that the followisteate holds
|05 — US| < Ce%, t > ty, = € Ge,

with the constan€ independent of. On the other hand, because of the exponential
stabilization of the boundary layer, we have

|US —Us|<Ce(l—xzy), t>ty, x€Ge,
whereUe is given by (66). This yields
|07 —U®| < Ce(l—m), t >ty, x € Ge. (72)

We proceed by estimating the solutiofof (68). Let¢® (¢, z) be a solution of the
following problem

05 (2) p® + AS65 =0, in (to, T) x G,

Bg¢® =0, on (to,T) x X,

(73)
o= (t,£1,2") =0, x' € (to,T) x eQ,
¢E(t01$):17 I'EGE.

Then, by the maximum principle,

|05 (t, x)| < @°(t, x) gé%x |a_2v5(t0,:c) —u(to,z1)], (t,x) € (to,T) X Ge.

In view of Theorem 8,

max |€721)E(t0, x) — u(to,z1)| < Ce,
zeG.

thus,
|17§(t,17)| Sca(ba(tv'r)v (t,I) € (thT) XGE-

By standard homogenization it easy to prove that
|¢°(t,2)| <C(L =), (t,2) € (260, T) x Ge.
Combining the last two estimates yields
|05 (t, )| < Ce(l—az1), (t,x)€ (2t0,T) x Ge. (74)

Estimates (72), (74) imply the statement of Theorem 9. Thefds complete. [
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3 The case of a layer

We now consider the case of a layerRd. More precisely, the domaifl is defined
asthe laye{z € R? : o/ = (zy1,--- ,24-1) € R —1 < x4 < 1} (see Figure 2).
Note that we change the notations from the previous sectiore s pointz € R?

is now denotedr = (', z4) with 2’ € R4~1. The boundary of2 consists of two
hyperplanes* = {z € R? : 24 = +1}. We study the homogenization of the
non-stationary convection-diffusion problem (1) whiahttie case of a layer, reads

Out + A uf =0, in(0,T)xQ,
ut=0, on(0,T)x (I'*ur-), (75)
uf(0,z) = up(x), in Q,

where, as before,
1
Aut = —div(aEVus) + gbs -Vus,

and the coefficients of the equation are still given by (3jnely a5, (z) = a;;(z/¢) and
b5 (x) = b;(z/e). Inthe case of a layer our main assumptions are slightlgidifit from
those in the previous section. We assume that the followamglicions are satisfied.

(A1) The coefficients of the equation;,b; € L>(Q) areY -periodic,Y = (0,1]¢
being the periodicity cell.

(A2) Thed x d matrixa(y) is symmetric and satisfies a uniform ellipticity condition
with a coercivity constank > 0.

(A3) The initial datauy has compact support with respectafo= (z1,--- ,x4-1),
namelyuo(z) € C¢(R*~1; C[-1,1)).

(A4) For simplicity we assume that= 1/N, N € Z™, so that an entire number of
periodicity cells fits in the thickness of the layer

As in the case of a thin rod, we study the asymptotic behawbsolutionsu® (¢, x) of
problem (75), as — 0.

3.1 Auxiliary spectral problems, factorization and main result.

In order to simplify the original problem, we make use of taetbrization principle, as
in Section 2 (with respect to, instead ofr ), and then construct the asymptotics of the
new unknown function. However, the main difference with pinevious case of a rod
is that we must use moving coordinates (see [3], [12], [18the directions parallel to
the layer. This makes the equation homogenizable at the firat the initial condition
becomes asymptotically singular. As before, we circumtieistdifficulty of singular
initial data by constructing the asymptotics of the Greencfion of the factorized
problem.
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8
-

Figure 2: The layef)

We recall that the cell operatet is defined by (4) and its adjoimt* by (5). For
0 € R, we introduce two families of spectral problems, similatGh

(76)

e AePVipy(y) = A(O) pe(y), inY,
y — pe(y) Y-periodic

efva A* e~ pi(y) = A(0) py(y), Y,
y — py(y) Y-periodic

By the Krein-Rutman theorem, for eaéhe R, the first eigenvalu@, (¢) of problem
(76) is real, simple, and the corresponding eigenfunctignandp; can be chosen
positive. Moreover, the statement of Lemma 1 remains vahd,we call® the unique
maximum point of\;(#). The eigenfunctiong, andpj are normalized by (7) as
above. Arguments similar to those in Section 2 yield

d\

0 lo—o / (bapj + aa; 0y, p5) dy = ba. (77)

Y

whereb, is called the normal effective drift (normal to the layer)ette,b; = 0 if
and only if© = 0. If the normal effective drift is zero, i.eby = 0, then the method
of homogenization in moving coordinates can be appliedctiirésee [3], [12], [18]).
Therefore, we assume thiat # 0 (or, equivalently® # 0).

In what follows we consider the cagg > 0, the other casé,; < 0 being
symmetric. Ifb; > 0, then we perform the change of unknown function as follows

MOt g+ x

u(t,z) =e 2 e = p@(g) v (t, ). (78)

Substituting (78) into (75), one obtains that the new unkméunctionv® solves the
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following problem
pg O + Agv® =0, (t,x) € (0,T) x Q,
v® =0, (t,x) IS (O,T) X (F"' U F_), (79)
v (0,2) =w(@)pg! (2) e ¢, weq,

wherepg (z) = po(z/¢),
Sy — —div(a® (" Loy,
oV = le(CL (E)Vv) + . b (5) Vo,
and the coefficients of the operator are given by
afj(y) = co(y) ai;(v), 0e(y) = pe(y) P5(Y),
b9 (y) = 00 (y) bily) — 2 0 (y) aia(y) © (80)

+aij(y) [pe(y) 0y,06 () — P (y) Dy, pe (y)]-

The matrixa® is positive definite since bothg andpy, are positive functions. The
vector-fieldb?, for eachd < R, is divergence-free, and the last component of the
vector-fieldb® has zero mean, that is

/b?(y) dy=0; divb?! =0, vo. (81)
Y

The averages of the other components are denoted by

ﬂf’:/b?(y)dy, i=1,.d. 82)

Y

The vector3® is called the effective convection (note that its formuldiféerent from
that of the normal effective drift; defined in (77)). Sincg9 = 0 because of (81),
the convection is parallel to the layer. When the effectivevection3® is not equal to
zero, contrary to the case of the rod, we cannot use classoabgenization methods
for (79), and, rather, we rely on the method of moving coaaités (see [3], [12], [18]).

Theorem 10 Suppose that condition@1)-(A4) are fulfilled, the normal effective
drift (defined by(77)) satisfiesy > 0 andug(-, —1) # 0. Then, fort >ty > 0, the
asymptotics of the solutioif of problem(75) takes the form

AL(©)t  O(zg+1) x

wt,z) =e’e” 2 e ¢ pel

) [u(tee — 224y o).
9 9
whereu(t, ) is the solution of the homogenized problem
Ou(t,z) = div(a*Vu(t,x)), (t,x) € (0,T) x Q,
u(t,z) =0, (t,x) € (0,T) x (0~ UTT), (83)

w(0,2) = =M ug(x', 1) 8 (xq + 1), x € 9,
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with a positive definite matrix°* defined by(88) and the constant/ defined by

+o0
M = / / [Zd + Nj(z)+ v~ (z)] p(f)l(z) e 9%dz,d (84)
(0,1]d71 0

whereN} is a solution of the cell problerf®0) and the boundary layer™ is defined
by (99). The remainder term satisfies, for ¢, > 0,

Ir(t,r)] < Ce foranyz € Qsuchthat, € It € (—1,1],
and the constant’ depends solely ofit, A, d.

Remark 7 In the caseug(z',—1) = -+ = 0f 'up(a/,~1) = 0 and
OF uo(a’, —1) # 0 for somek, the asymptotics of* takes the form

A0 O(egt) x ©
=

B
e = p@(g) [u(t,x - ?t) + Tg(t,l')},

uf(t,z) = e*tke

where|r.(t,z)] < Ce, fort > to > 0 andz € Q such thatzy € It € (-1,1] and
u(t, z) solves the problem

Ou(t,z) = div(a*"Vu(t,x)), (t,x) € (0,T) x Q,
u(t,z) =0, (t,z) € (0,T) x (0~ UTY),
u(0,2) = =My 0y uo (', ~1) 8'(wa = 1),  z€Q,

with the constani//;, given by

+oo
1 - e
M= [ [ e Vi) 4 o @] 6 e Oz
(0,1J¢=+ 0

Remark 8 Similarly to the case of a rod (see Remarks 2 and 6), the estmate
for the remainder term. is not precise enough in the region of interest wheté, x)
achieves its maximum. Indeed, the homogeneous Dirichletdsry condition for
u(t, z), together with the exponentiaiw shows that:® (¢, z) attains its maximum
at a distance of ordet from the pland'+: there, by a Taylor expansiont, z) is of
the order ofz, like the remainder term. (¢, «) which is thus not negligible. A better
ansatz with a better error estimate will be given in Theoréni&low.

3.2 Proof of Theorem 10

The proof is partly similar to that of Theorem 2 and reliestomrepresentation formula

for v
&, e+

vta) = [ Keltn ) ul€)pg! () =4 de, (@5)
Q
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where K. (t,z,€) is the Green function of problem (79). However, one major
difference with the previous case of a rod is that, as wasdyr@ointed out, in the
casef® # 0, the classical homogenization methods do not apply to prot§r9). To
overcome this difficulty, we shall use moving coordinates.

Recall that, for any, K. solves the adjoint problem

00 (8) DKLt 2,6) + A5 Kolt,2,6) =0, (1) € (0,T) x 9
K.(t,2,6) =0, (t.€) € (0,7) x (- ur),  (86)
KE(Oaxag):é(x_g)a 5691

AGtv = —div(a@(g)vv) — éb@(g) . Vo.

Sincebe is divergence-freed;° differs from Ag by the sign in front of the first-order
term. For any € (), K. solves the direct problem with respect(tox), but since we
are interested in the asymptoticsigf w.r.t. £, we prefer to interpret it from the very
beginning as a solution of adjoint problem (86).

We study the asymptotic behaviour &t, ase — 0, and then from (85) derive the
asymptotics fow©.

3.2.1 Asymptotic behaviour of K (¢, z, £)

As in the proof of Theorem 2, instead of analyzing direcly, we consider the
difference

‘/E(taxag) = (I)E(taxag) - Ks(tv'rvg)a

where®, is the fundamental solution iR?, that is, for anyz € R?, ®. solves the
problem

{ 00 (%) . + AT @ =0, (1,6) € (0.T) xR,
®.(0,7,8) = 6(x — &), ¢ eR%

In this way, for allz € Q, V; satisfies the problem

00 (2) AVe(t,8) + AFValt,0,6) =0, (1.6 € (0.T) x @,
Ve(t z,6) = ®c(t, 2, ), (t.& € (0,1) x (r-uT), (67
Va(0,2,6) =0, gen

We emphasize that. is a regular function of, for x such thate; # £1.
The asymptotics ofb. is easier to establish. First, we introduce its zero-order
approximationd, (¢, x, £), the fundamental solution of the effective problem

1@y = dive(aVedy), (t,€) € (0,T) x RY,
B(0,2,€) = 6(z — £), £eR?
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with a°* given by
it = / (a2 () + a9 (1)9y N3 () — b () N (3) + B2 po N3 (4)) dy

; 8)
— [ @5+ G2, N7 1) + 82 0) N7 1) = 5 o N; (o) .
Y

The vector functiongv and N* solve the following cell problems (direct and adjoint,
respectively)

{ —div(a®VN;) +b° - VN; = 9,00 (y) — b9 (y) + B2, inY,
(89)
y+— N; Y — periodic
{ ~div(a®VN}) = b° - YN} = 0,,a8(y) + b0 (y) - 87, in, 0
y— N} Y — periodic

Notice that, although the above cell problems (89) and (B®p&the same type as (24)
and (25), they contain additiondf term on the right-hand side. Observe that, by the
very definition of3€, the compatibility conditions for (89) and (90) are satisfie

We further introduce the second-order corrector functiZN@stj*, solutions of

Ao N} = 0y, (ap;N;) + a0, N; + a5
—by Nj + B¢ pe Nj — aiff pe, inY, (91)
2 . - -
— N;; is periodic

%szj* = 6’% (GS'N;) + agcaykN; + ag

T

+09 N7 — B po Ny — a5 po, inY, (92)

ij
y — N7 is periodic
whereAdg andAg are defined by (13) and (14), respectively.
Then we define the first- and second-order approximatioiis of

5 ~

o5 (t,2,8) = ¢O(t,x,§)+gzv(§) Vado(t,2,€) +2 N*(2) -Veo(t,2.£), (93)

5 (t, 2, &) = 5 (t,2,€) + 2 N2 (2) 8, 02, Do (£, 7, )

B
§ § p3

B (94)
g) 3&3&(1)0(15,%{) +e Nl(g) N;(g) 8931‘85]‘ (I)O(tvxlvg)’

HEENE
wheregis the moving coordinate defined by

_ e
§:§+%t. (95)
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Remark 9 The variablest and ¢ being dual, the moving coordinate faris defined
with the opposite velocity, namely

©
5:x—ﬂ—t.
€

By the same techniques, as in [1], one can prove

Lemma 11 Assume that condition®1)-(A2) are fulfilled. Then, for;,¢ € R? and
t > 2, the estimate holds

© €k+1

B
q)s(taxag)_q)i(taxag'i_?t)‘ Scma k=0,1,2,

where® is defined by82).

Turning back tdV, its zero-order approximation ig, defined for any: € , as a
solution of the homogenized problem

0,V = dive (aVVp), (t,€) € (0,T) x Q,
Volt,2,8) = Do(t,x,€), (t,€) € (0,T) x (I~ UTH),
VO(vaag):Ov 569

Note thatVp (¢, z, &) € C*([0,T] x Q x Q) and for (¢, £) € [0, T] x Q2 one has

C

= dist(K, (0— UT+))2htirmtd> * €K e

|0y 05 08" Vo (t, 2, €)

The first-order approximation df. is defined by

VE(t 2, &) = Vo(t,,€) + & N;(2) 0, Vo (t, 2, §)
: (96)

e N7 () 0 Vo (b2, 6) + VA (10,6 + 2 Vit ,6).

€
where§~ is the moving coordinate defined by (95), avid V5 are defined below. A
higher order asymptotic expansion fidr takes the form

W (t,2,€) = VE(t,2,8) + 2 V5 (t,2,€) + 6> oy (b, 2, €) + 205 (1, 2,€) - (97)
with
Vs (t,2,€) = N2 (2/€) 0z,00, Vo(t, 2, €)
+N7(E/2) 0,0, Vot @, €) + Nilw/e) Nj (§/2) 00,06, Vo t, @, €) (98)

+Ni('r/€) 8Ii‘/1(tv Iv&) + Nz*(g/a) 8§ivl(tv Iv&)
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In order to defind/; and the first boundary layer correctigf;, we consider auxiliary
problems in semi-infinite cylinder§™ = (0, 1]~ x (0, Foo):
,(4.?_)’[)i = 0, n S G:Fu
Ui(ﬁ/70) = _N;(nlvo)u (99)
7' — vE(n',na) is (0,1]¢71 — periodic

Since3; = 0, such functiong* exist, are uniquely defined and stabilize to some
constantgi* at an exponential rate, ag — Too (see [22]):

lvE (0 na) — 0% < Coe Ml Co,y > 0;
Vot L2 ((n-1,m)x@) < Ce ™, ¥n <0, (100)
VO™ |2 ((nnt1)x@) S Ce™ 7™, ¥n > 0.

The first boundary layer corrector is given by

. _& G+, 3°
Vilt,2,&) = [v7 (2, 20=) = 07| 06, (Vo — o) (b, — —) -
/ C]
(& Lzl oy — -2
+{U (57 E ) =0 }%(Vo Do) (t,x,& . t) I
(101)
Then,V4, for x € Q, is defined as the solution of
Vi = dive(a™ VW) + F(t, 2, 6), (t,€) € (0,T) x €,
Vi(t,,€) = 0% 0, (Vo — o) (t,7,€),  (1,€) € (0,T) x T'*, (102)
Vi(0,2,€) =0, § e,

where
F(t,2,8) = 0¢,0¢,0¢, Vo (t, 2, ) / (a0 N2

y
+ a?jN; + b?Nin* — B,?p@ij* — aj‘g-f Po N,ﬂ dn.

The second boundary layer correcigy, is defined as follows

(pgl(t,l',g)
! 1 —
= [or (&) - 6] 0 (0o - 20 (8] )

+ |:(pZ(€_’ gd—_l) - ¢Z:| afk (afd (VO - (I)O)(ta Iag)

9 9

fdzl) '

Remark that, sincéf? = 0, we havet; = gd and the above definition makes sense
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when we enforcé; = —1. The functionsof solve nonhomogeneous problems
ALt = 0y, (a8 (vF — %)) + a8, Oy, vF
+(OF = Bpe) (vt —0%),  neGT,
x (n',0) =0,
i o (' ma) is (0,1)% — periodic

The right-hand side of the above equation, due to (100), sxponentially decaying
function. Smce@i =0, the functionsap,iE exist, are uniquely defined and stabilize to
some constantg;- at an exponential rate, &g — Foo (see [22]). The correctas;,
is introduced to compensate the terms of oedawhich will appear on the right-hand
side after substitutingy;5; into the original equation.

The last boundary layer correctof, is defined by

’L/ng(t,fb,g)
_ & &+
= [wik(é S

e

[¢+ (5 gd ) - 7&:1;} afia'fk (8£d (VO - (I)O)(tv €, g)

) - 12)1_19} 8§i8§k (afd(‘/o - (I)O)(t,x,g)

fd:*l)
fdzl) '

The functionswi solve nonhomogeneous problems

5¥ik = (af — agjipe) (v — %) + 0y, (af (o — 1))
+a oy, o + (b — B (0r — ér™), n € GT,
i (',0) =0,

n' k(' na) is (0,147 — periodic

The right-hand side of the above equation is again an expiatigmecaying function.
Thus, the functiong’; exist, are uniquely defined and stabilize to some cons@ts
at an exponential rate, & — Foo. The boundary layer correctgr is designed in
order to compensate the terms of orden the right-hand side of equation (87) which
comes froml§ andyf, being substituted into this equation.

This completes the construction of the formal expansion. pigeeed with its
justification. Recall that the function§ andV/;, are introduced to satisfy the boundary
conditions on'* up to second order in, while the purpose ofs, 5, andys, is to
guarantee the required accuracy, and the latter termsotihrow up in the final result.

Proposition 12 Let V¢ be the first-order approximation df. defined by(96). Then,
for z such that; € I € (—1,1) and fort > 0, we have

[Iv-vipas<ce (103)

with the constan€’ depending only odist(z, '~ UT™), A andd.
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Proof. Let us substitute ansatz (97) into (87) and compute theepsoicy
p%at(Ws - Vs) + ASE(WE - Vs)

z

=R, Gyon) +edivy (@) VeValtn,Gym)| (104)

+€2R2(t,117,g;7']) +53R3(taxa&n)’y:£ nzé’

where¢ is the moving coordinate defined by (95) and
Ri(t,z,&y,n) = —pe(mdVi(t,z,&) — pe(n)N; (1)D40¢, Vo (t, x,€)
—pe (M) N;(y)0:0z,Vo(t, xf)—pe(n)ﬂfagj‘/z(t,x,g;y,n)
+dive(a® () Vi Va(t, 2, & y,m)) + dive (a® () Ve (N* (1) - VeVo(t, ,€))
+dive (a® () Ve(N(y) - Vo Vo(t, @, €)) + dive (a® () VeVa(t, 2, €))
+b7 ()0, Va(t, 2, &y, m),

and B
Ry (t,2, &) = { (a5 — a§ ) (r(n) - 41)

— 0, (@S (0) (Y (1) — Pir)) — @S (), ik ()
(89 = b9 ) (b (1) — ) }

X O ; O, Og,, (8501 (Vo — @) (tv T, g)

fd:1)7

Ry(t,2,&n) = (po(masi — af) (Wir(n) — Pur)

X Og, O; O, Og,, (%(VO — @) (t2,8)| )
€a=1
Notice that, in view of (98) and (102),

/Rl(t,:v,g;y,n) dn = 0.

Y
Thus, there exists (¢, =, & y, ), periodic inn, such that

—div,x = Ry (t,2,&y,n).

Consequently,

Ry (tuxug;yu g) = _EdiVEX(taxag;yu g) + Ediva(t7xaéy777)‘

n==
It is easy to see that, for sufficiently small

[t gnétac<c [ [ Raagon)] g
QY

Q



Homog. of a nonstatio. convection-diffusion eq. in a thin rod and in a layer 89

with the constan€ independent of. To estimate the norm on the right-hand side of
the last inequality, we notice that each ternfinis a product of the form

F(y,n) 0{0g Vo(t, z,€)

with a bounded periodic functiof'(y,n). It is a classical matter to show that the
derivativesV;, are exponentially decreasing at infinity. Consequently,

=~ 2

/[X(t,x,i;yé)] ¢ < C
Q

for x4 € 1. Then, multiplying equation (104) biy/. — V., integrating by parts taking

into account (81), the exponential decay of boundary lagedsofl;, we obtain

/|W5—V5|2d§§(}a4, t>0. (105)
Q

Note that due to the presence of the boundary layer corset¢har boundary conditions
onI't NI~ in (87) are satisfied up to the second ordez.ift remains to notice that
fort > 0andz € Qsuchthat, € I € (—1,1)

/|Ws(t,:c,£> CVE(ta,€)2de < O,
Q

whereVF is the first-order approximation df. defined by (96). Combining the last
two estimates finishes the proof of Proposition 12. O

Combining the previous estimates on the approximatiods ¢f. emma 11) and of
V. (Proposition 12), we deduce similar result for the asymgsaif the Green function
K.(t,z,£). We do not give the proofs of the two lemmas below since theywary
similar to their counterpart given in Section 2 in the casa odd.

Lemma 13 Assume that conditionA1) — (A2) are satisfied. Lef{. be the Green
function solving86). Fort > ¢, > 0 andx € Q) such that; € I € (—1,1), we have

©
[ 1Kett,) - K a6+ )i < 02
Q

where K is a first-order approximation of’. given by

~ ~ x ~
9

K (t,x,8) = Ko(t,2,&) + e N(=) - VoKo(t,z,€)

+€N(§) : ngo(t,.I',g) + EKl(taxag) - E‘/Ej(t,l',g),

(106)

gis the moving coordinate defined (86), Ko = ®o — 1} is the Green function of the
effective problent83), N, N* are the cell solutions 0{89), (90), respectively},; is
defined by(101)and K (¢, z, &) = —VA (¢, , &) with V4 the solution 0f(102)



90 G. Allaire, I. Pankratova and A. Piatnitski

Lemma 14 Denote byl ™, I~ compact subsets d¢f-1,1] and [-1, 1), respectively.
Let conditions(A1) — (A2) be fulfilled. Then, forr,¢ € Q such thatzy € I,
&g € I—,andt > ty > 0, the following estimate holds true:

|K.(t,2,8) — K5 (t,x — ?t,gﬂ <O (107)

with the constan€ depending od ™, I~ A, d and independent af

3.2.2 Asymptotics ofu® (¢, x)

Recall thatv® as a solution of (78), is represented in terms of the Greectifom K .
by (85). Obviously,

o o
vty z) = /Kf(tvff - B?tf) Uo(f)Pél(g) e
X (108)

e o
+/ (Ka(t’x’g) — Ki(t,z - % taf)) Uo(f)pél(g) o de,
Q

whereKs is the first order approximation @€, given by (106). Suppose that the initial
function is such thato (2, —1) # 0. The caseip(2/, —1) = --- = 6§d‘1u0(:v’, -1) =

0, 8§du0(:c’, —1) # 0 can be considered similarly. With the help of Lemma 14 we
estimate the second integral in (108).

© O (g4+1
’/(KJt,x,f)—Kf(t,x—%t@)) ’Lbo(g)pél(g) 67¥ dé'
Q
+oo

<Cé? / |u0(§',—1)|d§'/e‘azddzd§063.
Rd—1 0

To complete the proof it remains to compute asymptotics efitist integral in (108).
Denote

_8Egt+h)
£
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Then, by definition (106) ok’%,

©
/Klt:vé“UO &) de = /Kot:v—ﬂ—té“) () de

e
+5/N; >) 0, Ko (t.x - B—t ,€) v5(6) d€

! (S}
ve [ (M D ookl - g vias

£ a=—1

Q o (109)
ve [ 3Dy 0n, Kot — v vi(6)as
€
Q
6

—I—E/ (K1 (t,x — —t &) — 07 Og, Kotz — —t ,€) _71) vg(§) d€

Q

! ]

+5/ (U+ 5 fd — 0t 0, Ko (t, 2 — ﬁ_t €) . 1) vE (€) dé

Notice thatK (¢, z — ?t,g) = Ko(t,z,& + ?t) since3$ = 0 andQ is bounded
only in thex4-direction. Expandind{, andu into Taylor series with respect Q,
fort > to > 0, we obtain

ﬂ@
[ Eoltr = Tty v ae

B@
= / uo(§', —1) 9¢, Ko (t’x - ?t,S) gd:—1d§I
Ri-1
x/(£d+1)pél(§)e gy + 0(?)
e
o
=¢? / uo(&', —1) O, Ko (t,x — %t,{) fd:*1d§I

Rd—1

!/
0

The function

+oo

V(') = /deél(C/72d) e” 9% dzy,

0
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is (0,1]?!-periodic and belongs td7'((0,1]"!). By the classical mean-value
theorem, we deduce the asymptotic behavior of the first tarfh@9)

B@

Q
=¢? ' —1) 0, K, _£ d¢’
= uo(ga ) & O(t,l' c t7§) P 5
Rd—1 T
—+o0
X / / zdp(f)l(z', 2d) e~ 9% dz, d2 + 0(53).
(0,1]‘171 0

By similar arguments, the other terms in (109) admit theespntations

ﬂ@
/N ) e, Ko (tw = —t,€) v (€) de

©
= g2 / uo(g,—l)agdKo(t,x—ﬂ?t,f) o d¢’
Ra—1
+oo
- / / N;i(2) pg'(2) € O1dzq d' + O(c%)
(0,1]d71 0

and

/ S}
/ £, 5”1)%1%(1:x—%t,ﬁ)vé(s)dﬁ

9 9

e
= [ (e o Koftia - )| a¢
Rd—1 fa=
“+oo
X / / v (2) pg(2) e dzy d2’ + O(?).
(0,1]‘171 0
Noticing thatK|, _ | = o~ ¢,Kol|, __,, andd,,Ko|,,__, = 0, one can see that

the last three integrals in (109) are of ordér We emphasize that, in view of (100),
the terms containing boundary layer correctors dgaare negligible. Finally,

(C]
(t,x)=e*M / ug(€',—1) 9, Ko (t, x—%t,{) . d¢' + 0(e?),

fa=—1

—1

where the constarit/ is given by (84). This completes the proof of TheoremIO0.

As already said in Remark 8, Theorem 10 provides only theihggaigtrm of the
asymptotics ofu®. However, due to the presence of the exponentially largifac
e®@atl)/e "we are mostly interested in the asymptoticaubfin a e-neighbourhood
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of I't, whereu® is maximum and where both, the leading and the correctorsterm
(including the boundary layer corrector) are of the sameiord

In Theorem 15 below we construct the corrector terms®yr that improves
significantly the asymptotics aof® in the vicinity of ' and, therefore, makes the
result of Theorem 10 complete.

Let us define the first-order approximation icr by

Us(t,x) = u(t,x — —t) + e Np (=) Opu(t,z — —t)
€ € €
(110)
) c * E’ c * 1 y - rg=1

Hereu(t, x) is the solution of the homogenized problem (88),solves (89). The
boundary layer correctar; (y) are defined similarly ta* (y) (see (101)), except for
the fact that the adjoint operator is replaced with the dioee. Namelyy~ solves the
following problem inG~ = (0,1]¢~! x (—o0,0):
Aev =0, ye G,
Ur(y/70) = _Nd(y/10)7
y' = v (Y, yq) is (0,1]9! — periodic
Since 34 = 0, there exists a unique bounded solutigh and it stabilizes to some
constant]” at an exponential rate, s — —oo.
The functionus (¢, z) in (110) solves the following problem
Syuy = div(a®™ Vuy) + F(t, z), (t,x) € (0,T) x Q,
uy(t,z) = of Oy, u(t,z), (t,z) € (0,T) x (I-UTT),
up(0,z) =0, x € Q,
where
F(t,x) = (i)wkamiawju(t,x)/ [a?lamej

Y
+ a?ij - b?Nin + ﬂl?p@ij — a5 pe Ny dn.
Theorem 15 Let the assumptions of Theorem 10 be fulfilled. The refinedpteyics
of the solutionu® of problem(75), fort > ¢ty > 0 andx € 2, takes the form

_ M)t O(zg+1)

ua(t’x) =2 T2 e p@(g) [Ug(t,l') + Ra(t,:v)],

whereU* is given by110) and, for some constadt = C(A, d), the remainder term
satisfies the estimate
|R-(t,z)| < Ce(l —xyq),

which is uniform fort >ty > 0, z € Q.
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The proof of Theorem 15 is similar to that of Theorem 9 in theecaf a rod. We
leave it to the reader.
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