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Abstract

The paper deals with the homogenization of a non-stationaryconvection-
diffusion equation defined in a thin rod or in a layer with Dirichlet boundary
condition. Under the assumption that the convection term islarge, we describe
the evolution of the solution’s profile and determine the rate of its decay. The main
feature of our analysis is that we make no assumption on the support of the initial
data which may touch the domain’s boundary. This requires the construction of
boundary layer correctors in the homogenization process which, surprisingly, play
a crucial role in the definition of the leading order term at the limit. Therefore we
have to restrict our attention to simple geometries like a rod or a layer for which
the definition of boundary layers is easy and explicit.
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1 Introduction

The paper deals with the homogenization of a non-stationaryconvection-diffusion
equation with large convection stated either in a thin rod orin a layer. In the previous
work [4] the authors addressed a similar homogenization problem for an equation
defined in a general bounded domainΩ ⊂ Rd. Namely, the following initial-boundary
value problem has been considered:





∂tu
ε − div

(
a
(x
ε

)
∇uε

)
+

1

ε
b
(x
ε

)
· ∇uε = 0, in (0, T )× Ω,

uε(t, x) = 0, on (0, T )× ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

(1)

Received: Octuber 30, 2011. Accepted: December 27, 2012.

53



54 G. Allaire, I. Pankratova and A. Piatnitski

with periodic coefficientsaij , bj and a small parameterε. Notice that in the case of
a solenoidal vector-fieldb(y) with zero mean-value the problem can be studied by
the classical homogenization methods (see, for example, [8], [24]). In particular, the
sequence of solutions is bounded inL∞[0, T ;L2(Ω)]∩L2[0, T ;H1(Ω)] and converges,
asε → 0, to the solution of an effective or homogenized problem in which there is no
convective term. For more general vector fieldsb, a similar behaviour ofuε is observed
if the so-called effective drift (a suitable weighted average ofb) is equal to zero. The
behaviour of the solution changes essentially if the effective drift is nontrivial. Problem
(1) with nonzero effective drift has first been considered inthe whole spaceRd [3],
[12], [18], [21] by using the method of moving coordinates: the solution travels at a
large speed (equal to the effective drift divided byε) and its profile is given by the
solution of an homogenized diffusion equation. Recently the authors solved the same
problem in a bounded domainΩ under the crucial assumption that the initial function
u0 has a compact support inΩ [4]. In this case the initial profile moves towards
the boundary during a time of orderε, and then, upon reaching the boundary, starts
dissipating. As a result, the solution is asymptotically small for time t ≫ ε and our
paper [4] describes precisely the asymptotics ofuε, which is quite different from that
obtained in the case ofRd.

Without the assumption thatu0 has a compact support inΩ, one faces the necessity
to construct boundary layer correctors in the neighbourhood of ∂Ω. It is well known
that the construction of boundary layers for general domains is a difficult problem
which cannot be expressed in explicit form (see however the recent papers [13], [14]).
However, it is a feasible task if the periodic structure agrees with the geometry of the
boundary ofΩ. In the present paper we consider two types of domains which possess
this property. Namely, we study a convection-diffusionmodels in a thin rod (see Fig. 1)
and in a layer (see Fig. 2) inRd. We emphasize that, unlike classical homogenization,
the boundary layers we shall construct for (1) are not just corrector terms but, rather,
they play a crucial role in the definition of the leading orderterm in the asymptotic
analysis (for more details, see the discussion after Theorem 2).

In the case of a thin rod (Section 2) we impose homogeneous Neumann boundary
conditions on the lateral boundary of the rod and homogeneous Dirichlet boundary
conditions on its bases. As in the case of a general bounded domain [4], the solution
asymptotically vanishes for timet ≫ ε. Theorem 2 determines the rate of vanishing
of the solution and describes the evolution of its profile. Ifthe effective axial drift
is not zero (otherwise the problem is trivial), the rescaledsolution concentrates in
the vicinity of one of the rod ends, and the choice of the end depends on the sign
of the effective convection. In order to characterize the rate of decay we introduce a
1-parameter family of auxiliary cell spectral problems, similar to Bloch waves but with
real exponential argument (see [8], [9], [11]). The asymptotic behaviour of the solution
is then governed by the first eigenpair of the said family of spectral problems and by a
one-dimensional homogenized problem with a singular initial data.

In the case of a layer, addressed in Section 3, in addition to the factorization
principle, we also have to introduce moving coordinates [3], [12]. More precisely, we
use a parameterized cell spectral problem and factorization principle to suppress the
normal component of the effective drift (perpendicular to the layer boundary). While,
due to the presence of the longitudinal components of the effective convection, we have
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to introduce moving coordinates (parallel to the layer boundary). The main result in
this case is given by Theorem 10. The asymptotic behaviour ofuε is again governed
by the first eigenpair of the spectral cell problem and by a homogenized problem with
a singular initial data.

In both cases (rod or layer) the initial data of the homogenized problem, and thus
the asymptotic behavior of solutions to (1), differ from those obtained for the case
of a general domain in [4] (see again the discussion after Theorem 2). Among the
technical tools used in the paper, are factorization principle (see [16], [23], [24], [2],
[9]), dimension reduction arguments and qualitative results required for constructing
boundary layer correctors.

2 The case of a thin rod

This section is concerned with the homogenization of equation (1) stated in a thin
rodGε = (−1, 1) × εQ (see Figure 1). HereQ ⊂ Rd−1 is a bounded domain with
Lipschitz boundary∂Q, ε > 0 is a small parameter. Without loss of generality, we
assume thatQ has a unit(d − 1)-dimensional measure, i.e.|Q|d−1 = 1. Throughout
this section the points inRd are denotedx = (x1, x

′) with x′ ∈ Rd−1. The lateral
boundary of the rodGε is denotedΣε = (−1, 1)× ε∂Q. ForT > 0, we consider the
following model:





∂tu
ε(t, x) +Aε u

ε(t, x) = 0, in (0, T )×Gε,

Bεu
ε(t, x) = 0, on (0, T )× Σε,

uε(t,±1, x′) = 0, on (0, T )× εQ,

uε(0, x) = u0(x1), x ∈ Gε

(2)

with

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε; Bεu

ε = aε∇uε · n.

The coefficients of the equation are given by

aεij = aij
(x
ε

)
, bεj = bj

(x
ε

)
, 1 ≤ i , j ≤ d. (3)

Note that the fixed domainΩ in (1) is replaced in (2) byGε which has a vanishing cross-
section and that the Dirichlet boundary conditions are applied merely at the end bases
of the thin rod. If the rod had a square cross-section, the problem with the Neumann
boundary condition on the lateral boundaryΣε could be reduced to a problem with
periodic boundary conditions in a cylinder having in the cross-section the square of
double size. This gives us an idea that our results can be extended to the case of
periodic boundary conditions on the lateral boundary of therod. Indeed, the arguments
used in the paper also apply, with some simplifications, to the case of periodic boundary
conditions.

We assume that:
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Figure 1: The rodGε

(H1) The coefficients ofAε are measurable bounded functions, that isaij , bj ∈
L∞(R × Q). Moreover,aij(y1, y′), bj(y1, y′) are 1-periodic with respect to
y1.

(H2) Thed×dmatrixa(y) is symmetric and satisfies the uniform ellipticity condition,
that is there existsΛ > 0 such that

aij(y)ξiξj ≥ Λ|ξ|2, ∀x, ξ ∈ R
d.

(H3) The initial functionu0(x1) ∈ C1[−1, 1].

(H4) For simplicity, we assume thatε = 1/N ,N ∈ Z+.

Remark 1 In assumption(H2) the Einstein summation convention over repeated
indices is used, as well as later in this paper. Assumption(H4) means that the rod
is made up of a number of entire cells which are not cut at both ends.

Since the rod has a vanishing thickness andu0 is smooth, there is no fundamental
restriction in assuming thatu0 depends only onx1.

Under the stated assumptions we study the asymptotic behaviour of solutions
uε(t, x) of problem (2), asε→ 0.

2.1 Auxiliary spectral problems and main result

In what follows we denote

Au = −div(a∇u) + b · ∇u, Bu = a∇u · n; (4)

A∗u = −div(a∇u)− div(b u), B∗u = a∇u · n+ (b · n)u. (5)

Following [8], [9], for θ ∈ R, we introduce two parameterized families of spectral
problems (direct and adjoint) which are different from the usual Floquet-Bloch spectral
problems because the exponential factorθ is real instead of being purely imaginary.
They reads





e−θy1 Aeθy1 pθ(y) = λ(θ) pθ(y), in Y = T1 ×Q,

e−θy1 B eθy1 pθ(y) = 0, on∂Y = T1 × ∂Q,

y1 → pθ(y) 1-periodic,

(6)
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and 



eθy1 A∗ e−θy1 p∗θ(y) = λ(θ) p∗θ(y), in Y,

eθy1 B∗ e−θy1 p∗θ(y) = 0, on∂Y,

y1 → p∗θ(y) 1-periodic.

HereT1 is the 1-dimensional unit circle. Note that the exponentialtransform is applied
only with respect to the first space componenty1. The next result, based on the Krein-
Rutman theorem, has been proved in [9].

Lemma 1 For eachθ ∈ R, the first eigenvalueλ1(θ) of problem(6) is real, simple,
and the corresponding eigenfunctionspθ and p∗θ can be chosen positive. Moreover,
θ → λ1(θ) is twice differentiable, strictly concave and admits a maximum which is
obtained for a uniqueθ = Θ.

The eigenfunctionspθ andp∗θ defined by Lemma 1, are normalized by
∫

Y

|pθ(y)|2 dy = 1 and
∫

Y

pθ(y) p
∗
θ(y) dy = 1. (7)

Differentiating equation (6) with respect toθ, integrating againstp∗θ and writing down
the compatibility condition for the resulting equation, yield

dλ1
dθ

=

∫

Y

(
b1 pθ p

∗
θ + a1j(pθ ∂yj

p∗θ − p∗θ ∂yj
pθ)− 2 θ pθ p

∗
θ a11

)
dy. (8)

Noticing thatλ1(0) = 0 andpθ(y)|θ=0 = 1, one obtains

dλ1
dθ

∣∣∣
θ=0

=

∫

Y

(
a1j ∂yj

p∗ + b1 p
∗) dy ≡ b̄1, (9)

wherep∗(y) = p∗θ(y)|θ=0. The last expression is the so-called effective axial drift
b̄1 ∈ R.

In what follows we assume thatb̄1 > 0 (which is equivalent toΘ > 0). The case
b̄1 < 0 is symmetric and can be considered in the same way.

To avoid excessive technicalities, we first formulate our main result in a loose way.

Theorem 2 Let conditions(H1) − (H4) be fulfilled and̄b1 > 0 (see(9)). Suppose
that u0(−1) 6= 0. Then there exist constantsaeff andM such that, fort > 0 and
x ∈ Gε, the asymptotics of the solutionuε of problem(2) takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
u(t, x1) + rε(t, x)

]
,

whereu is a solution of the one-dimensional effective problem




∂tu = aeff ∂2x1
u, (t, x1) ∈ (0, T )× (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1).
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Hererε(t, x) is such that|rε(t, ·)| ≤ C ε for t ≥ t0 > 0, x ∈ I+ × εQ, I+ ⋐ (−1, 1],
and the constantC depends onI+,Λ, Q, d.

A more precise statement of Theorem 2 can be found below in Theorems 8 and 9.
The interpretation of Theorem 2 is that it is a result of both localization/concentration
and homogenization. Indeed, up to a multiplicative constant ε2, the solutionuε is
asymptotically equal to the product of two exponential terms, a periodically oscillating
function pΘ

(
x
ε

)
(which is uniformly positive and bounded) and the homogenized

function u(t, x1) (which is independent ofε). The first exponential terme−
λ1(Θ)t

ε2

indicates a fast decay in time, uniform in space. The second exponential term,e
Θ(x1+1)

ε ,
indicates a localization of the solution in a small neighborhood of the right end of the
rod, where the solution attains its maximum; everywhere else in(−1, 1) the solution is
exponentially smaller. The homogenized solutionu depends only on the value of the
initial datau0 at the opposite extremityx1 = −1 and it is proportional to the constant
M which depends on some homogenization boundary layers.

The role of boundary layers is thus crucial in the result of Theorem 2. Furthermore,
if the initial datau0 had a compact support[α, β] ⋐ (−1, 1) andu0(α) 6= 0, then
Theorem 5.2 in [4] gives a similar asymptotic behaviour except for the initial data of
the homogenized problem which would beu(0, x1) = M̃ u0(α) δ(x1 − α). In other
words, the derivative of the Dirac mass would be replaced with the Dirac mass itself.

Remark 2 The error estimate for the remainder termrε is not precise enough and
it shall be improved in Theorem 9. Indeed, the homogeneous Dirichlet boundary

condition for u(t, x1), together with the exponentiale
Θ(x1+1)

ε shows thatuε(t, x)
attains its maximum at a distance of orderε of the end pointx1 = 1: there, by a
Taylor expansion,u(t, x1) is of the order ofε, like the remainder termrε(t, x) which
is thus not negligible. A better ansatz with a better error estimate will be given in
Theorem 9 (again, boundary layers will be crucial).

The proof of Theorem 2 is performed in several steps. First, we make use of a
factorization principle in order to simplify the original problem. Then, we represent the
new unknown function in terms of the corresponding Green’s function. And, finally,
we study the asymptotic behaviour of the mentioned Green’s function, asε→ 0.

2.2 Proof of Theorem 2

2.2.1 Factorization

In order to simplify the original problem we perform the change of unknowns, as was
suggested in [3], [4], [10], [23].

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

)
vε(t, x). (10)
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Note that (10) is a proper definition ofvε sincepΘ is a positive function. Substituting
(10) into (2) yields the problem for the new unknown functionvε





ρΘ
(x
ε

)
∂tv

ε − div
(
aΘ
(x
ε

)
∇vε

)
+

1

ε
bΘ
(x
ε

)
· ∇vε = 0, in (0, T )×Gε,

aΘ
(x
ε

)
∇vε · n = 0, on (0, T )× Σε,

vε(t,±1, x′) = 0, x′ ∈ (0, T )× εQ,

vε(0, x) = u0(x1) p
−1
Θ

(x
ε

)
e−

Θ(x1+1)

ε , x ∈ Gε.

(11)
Here

ρΘ(y) = pΘ(y) p
∗
Θ(y), aΘ(y) = pΘ(y) p

∗
Θ(y) a(y),

bΘ(y) = pΘ(y) p
∗
Θ(y) b(y)− 2Θ pΘ(y) p

∗
Θ(y) a(y)e1

+a(y)
[
pΘ(y)∇yp

∗
Θ(y)− p∗Θ(y)∇ypΘ(y)

]
,

(12)

with e1 the first coordinate vector. For brevity, in what follows we denote

Aε
Θv = −div

(
aΘ
(x
ε

)
∇v
)
+

1

ε
bΘ
(x
ε

)
· ∇v, Bε

Θv = aΘ
(x
ε

)
∇v · n,

AΘv = −div(aΘ∇v) + bΘ · ∇v, BΘv = aΘ∇v · n, (13)

A∗,ε
Θ v = −div

(
aΘ
(x
ε

)
∇v
)
− 1

ε
bΘ
(x
ε

)
· ∇v,

A∗
Θv = −div(aΘ∇v)− bΘ · ∇v. (14)

Straightforward calculations yield that, for anyθ ∈ R,

divyb
θ(y) = 0 in Y, bθ · n = 0 on ∂Y. (15)

Taking into account the fact thatΘ is the maximum point ofλ1 and equality (8), we
obtain that the first component ofbΘ has zero mean:

∫

Y

bΘ1 (y) dy = 0. (16)

Due to (15), (16), the partial differential equation in (11)could be homogenized
by standard methods [7], [8] if the initial data were independent of ε. However,
the presence of an asymptotically singular initial condition in (11) brings some
difficulties into the homogenization procedure. In particular, the classical approach
of homogenization (based on energy estimates in Sobolev spaces) cannot be applied
since the initial data is not uniformly bounded inL2(Gε).

In order to study the asymptotic behaviour ofvε, following our previous work [4],
we use its representation in terms of the corresponding Green’s functionKε(t, x, ξ)

vε(t, x) =

∫

Gε

Kε(t, x, ξ)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ. (17)
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HereKε, as a function oft andx, for eachξ ∈ Gε, solves the problem




ρεΘ ∂tKε +Aε
ΘKε = 0, (t, x) ∈ (0, T )×Gε,

Bε
ΘKε = 0, (t, x) ∈ (0, T )× Σε,

Kε(t, x, ξ)
∣∣∣
x1=±1

= 0, (t, x′) ∈ (0, T )× εQ,

Kε(0, x, ξ) = δ(x − ξ), x ∈ Gε.

(18)

Note thatKε with respect to(t, ξ) is a solution of the formally adjoint problem, which
differs from (18) by the sign in front of the first-order terms.

Because of the presence of the delta-function in the initialcondition, it is difficult
to construct the asymptotics forKε directly. Let us introduce a function

Vε(t, x, ξ) = Φε(t, x, ξ)−Kε(t, x, ξ), (19)

whereΦε stands for the Green function in the infinite cylinderGε = R × εQ. As a
function oft andξ, it is a solution to the following problem





ρεΘ(ξ) ∂tΦε +A∗,ε
Θ Φε = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘΦε = 0, (t, ξ) ∈ (0, T )× Γε,

Φε(0, x, ξ) = δ(x − ξ), ξ ∈ Gε.

(20)

By Γε we denote the lateral boundaryR×∂(εQ) of the cylinderGε. For eachx ∈ Gε,
Vε as a function oft andξ solves the problem





ρεΘ(ξ) ∂tVε +A∗,ε
Θ Vε = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘVε = 0, (t, ξ) ∈ (0, T )× Σε,

Vε(t, x, ξ)
∣∣∣
ξ1=±1

= Φε(t, x, ξ)
∣∣∣
ξ1=±1

, (t, ξ) ∈ (0, T )× εQ,

Vε(0, x, ξ) = 0, ξ ∈ Gε.

(21)

In the following subsection we construct an asymptotic expansion forΦε which is a
relatively easy task because it is defined in an infinite cylinder (thus not requiring any
boundary layers). Subsection 2.2.3 will be devoted to the approximation ofVε which is
delicate because of the necessity of defining boundary layers but still possible since the
boundary condition forVε is smooth forx 6= ±1. The final subsection will combine
these two results to get an ansatz forKε and, using (17), to prove Theorem 2.

2.2.2 Asymptotics forΦε(t, x, ξ)

The goal of this section is to compute an asymptotic expansion for the Green function
Φε with a bound on the error term (see Lemma 4 below). Denote byΦ0 a fundamental
solution of the 1-dimensional homogenized problem

{
∂tΦ0 = aeff ∂2ξ1Φ0(t, x1, ξ1), (t, ξ1) ∈ (0, T )× R, x1 ∈ R,

Φ0(0, x1, ξ1) = δ(x1 − ξ1), ξ1, x1 ∈ R.
(22)
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Here the effective coefficientaeff is given by one of the two equivalent formulae

aeff =

∫

Y

(aΘ11 + aΘ1j∂yj
N − bΘ1 N) dy =

∫

Y

(aΘ11 + aΘ1j∂yj
N∗ + bΘ1 N

∗) dy, (23)

where the1-periodic iny1 functionsN andN∗ solve the standard cell problems (direct
and adjoint, respectively):

{
AΘN(y) = ∂yj

aΘj1(y)− bΘ1 (y), y ∈ Y,

BΘN(y) = 0, y ∈ ∂Y ;
(24)

{
A∗

ΘN
∗(η) = ∂ηj

aΘj1(η) + bΘ1 (η), η ∈ Y,

BΘN
∗(η) = 0, η ∈ ∂Y.

(25)

Of course, (22) is the homogenized problem for (20) and it canbe shown thataeff > 0.
Note thatN andN∗ are Hölder continuous functions (see [15]). The fundamental
solutionΦ0 admits the explicit formula

Φ0(t, x1, ξ1) =
1

2
√
π t

1

aeff
e−

|x1−ξ1|2

4aeff t . (26)

We also introduce the first- and second-order approximations ofΦε by

Φε
1(t, x, ξ) = Φ0(t, x1, ξ1) + εN

(x
ε

)
∂x1Φ0(t, x1, ξ1)

+εN∗(ξ
ε

)
∂ξ1Φ0(t, x1, ξ1),

(27)

Φε
2(t, x, ξ) = Φε

1(t, x, ξ) + ε2N2

(x
ε

)
∂2x1

Φ0(t, x1, ξ1)

+ε2N∗
2

(ξ
ε

)
∂2ξ1Φ0(t, x1, ξ1) + ε2N

(x
ε

)
N∗(ξ

ε

)
∂x1∂ξ1Φ0(t, x1, ξ1).

(28)

The functionsN2 andN∗
2 are defined later on in Section 2.2.3, see formula (36).

Our further analysis relies on Aronson type upper bound forΦε. Consider the Green
functionΦ(t, y, η) of the following initial boundary problem in the infinite rescaled
cylinderG = R×Q with lateral boundaryΣ:





ρΘ(y) ∂tΦ +AΘΦ = 0, (t, y) ∈ (0,∞)×G,

BΘΦ = 0, (t, y) ∈ (0,∞)× Σ,

Φ(0, y, η) = δ(y − η), y ∈ G.

(29)

Lemma 3 The Green functionΦ, solution of(29), satisfies the following Aronson type
estimate

0 < Φ(t, y, η) ≤ C1 max
(
t−d/2, t−1/2

)
exp

(
− c

|y − η|2
t

)
. (30)

with positive constantsC1 andc.
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Remark 3 In the right hand side of estimate(30) the factort−d/2 takes care of the
short times (for which there is no difference between the cylinderG and the full space
Rd) while the other factort−1/2 is valid for the longer times (for which the cylinderG
behaves as a 1-d line).

Proof. We only briefly sketch this proof. The idea is to derive (30) from the
classical Aronson estimate inRd (see [5]) for divergence form operators. Let us
check first that the operatorAΘ can be rewritten in divergence form. SincebΘ is a
divergence-free vector field and the average of its first component is zero, there is a
skew-symmetric periodic iny1 matrixS(y) with bounded entries such thatbΘ = divS
(see e.g. [9]). Then

AΘφ = −div
(
(aΘ − S)∇φ

)
.

Assume for a moment that the cross sectionQ is the unit cube inRd−1. We duplicate
the cube by symmetric reflection of the operator coefficientsand the solutionΦ(t, y, η)
of (29) with respect to each direction orthogonal to its faces. The resulting problem
is now periodic with period2 in each coordinate direction. It should be noted that the
initial condition on each period is the sum of2d−1 delta functions iny at the pointη
and its symmetric reflections. We denote these points by{ηk(η)}2

d−1

k=1 with η1(η) = η.
Then the solutioñΦ(t, y, η) of the introduced above2Q-periodic problem coincides
with Φ(t, y, η) onQ.

Due to the linearity of the problem

Φ̃(t, y, η) =

2d−1∑

k=1

G#(t, y, ηk(η)),

whereG#(t, y, η) is the Green function of the corresponding2Q-periodic operator.
Clearly, G#(t, y, η) is constructed from the fundamental solutionG(t, y, η) in the
whole space by summing over the square periodic network of period 2Q. Namely,

G#(t, y, η) =
∑

n∈Zd−1

G(t, y, η + 2n).

Making use of the classical Aronson estimate for the fundamental solutionG(t, y, η)
in Rd, we get

G#(t, y, η) =
∑

n∈Zd−1

G(t, y, η + 2n)

≤ C

td/2

∑

n∈Zd−1

e−C0
|y1−η1|2

t e−C0
|y′−η′−2n|2

t ,
(31)

for some positive constantsC,C0. For small time the contributions of the distant cells
are negligible because of the exponential decay, and the main contribution is given by
the term withn = 0. Consequently, for small time

G#(t, y, η) ≤
C̃

td/2
e−C̃0

|y−η|2

t ,
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with some positive constants̃C, C̃0. For large timet all the terms in (31) contribute.
Indeed, after making the change of variables

t =
τ

δ2
, y =

ỹ

δ
, η =

η̃

δ
, n =

ñ

δ
,

for smallδ > 0, we get

G#(
τ

δ2
,
ỹ

δ
,
η̃

δ
) ≤ C δd

τd/2
e−C0

|ỹ1−η̃1|2

τ

∑

ñ∈(δZ)d−1

e−C0
|ỹ′−η̃′−ñ|2

τ

≤ C1 δ

τd/2
e−C0

|ỹ1−η̃1|2

τ

∫

Rd−1

e−C0
|ỹ′−η̃′−ñ|2

τ dñ ≤ C̃1 δ

τ1/2
e−C0

|ỹ1−η̃1|2

τ .

Changing back the variables we have

G#(t, y, η) ≤
C1√
t
e−C0

|y1−η1|2

t

for any timet such thatt ≥ t0 > 0. Thus, estimate (30) is satisfied whenQ is the unit
cube.

Finally, if Q is not a cube, we first map it to the unit cube by a Lipschitz
diffeomorphism which preserves the divergence form and elliptic character of the
operator with uniformly bounded coefficients. �

Using Lemma 3, we can paraphrase the upper bound, announced in [24] (see
Chapter II, page 85) and then proved rigorously in [1] (similar results were proved
in [6]). The difference is that we address the case of an infinite cylinder instead of the
whole space as in these previous references.

Lemma 4 For anyx, ξ ∈ Gε andt ≥ ε2,

|εd−1Φε(t, x, ξ)− Φε
k(t, x1, ξ1)| ≤ C

εk+1

t(k+2)/2
, k = 0, 1, 2, (32)

whereΦε
0 ≡ Φ0, Φε

1 is defined by(27)andΦε
2 by (28).

We do not give the details of the proof of Lemma 4 which is completely similar to
that in [1]. It relies on two arguments. The first one is the Bloch decomposition and
m-sectorial property of the decomposition of the operatorAΘ in Y which still holds
true in the present case. The second one is the Aronson estimate which is granted by
Lemma 3. Estimate (32) holds true if|Q|d−1 = 1. Otherwise, the multiplier|Q|d−1

appears in front ofεd−1Φε(t, x, ξ).

2.2.3 Asymptotics forVε(t, x, ξ)

The goal of this section is to construct an asymptotic expansion for the differenceVε,
defined by (19), with a bound on the remainder term (see Lemmas5 and 6 below).
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Bearing in mind estimate (32), it isεd−1Vε, rather thanVε, which has a limit. The
formal asymptotic expansion forεd−1 Vε takes the form (see e.g. [7], [19])

Wε(t, x, ξ) = V0(t, x1, ξ1) + εN
(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ)

+ε2 V2
(
t, x1, ξ1;

x

ε
,
ξ

ε

)
+ ε3W ε

bl(t, x, ξ),

(33)

whereV0, for eachx1, is the solution of the homogenized problem





∂tV0 = aeff ∂2ξ1V0, (t, ξ1) ∈ (0, T )× (−1, 1),

V0(t, x1,±1) = Φ0(t, x1,±1), t ∈ (0, T ),

V0(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1)

(34)

with the effective coefficientaeff defined by (23). Recall thatN andN∗ are solutions
of (24) and (25), respectively. The other terms in (33) are defined as follows.

The functionV2 is defined by

V2(t, x1, ξ1; y, η) = N2(y) ∂
2
x1
V0(t, x1, ξ1)

+N∗
2 (η) ∂

2
ξ1V0(t, x1, ξ1) +N(y)N∗(η) ∂x1∂ξ1V0(t, x1, ξ1)

+N(y) ∂x1V1(t, x1, ξ1) +N∗(η) ∂ξ1V1(t, x1, ξ1)

(35)

where the functionsN2(y) andN∗
2 (η) (1-periodic with respect to their first variable)

solve the following problems:





AΘN2 = ∂yi
(aΘi1N) + aΘ1j∂yj

N + aΘ11 − bΘ1 N − aeff ρΘ, in Y,

BΘN2 = −aΘi1 niN, on ∂Y,
(36)

and




A∗
ΘN

∗
2 = ∂ηi

(aΘi1N
∗) + aΘ1j∂ηj

N∗ + aΘ11 + bΘ1 N
∗ − aeff ρΘ, in Y,

BΘN
∗
2 = −aΘi1 niN

∗, on ∂Y.

In order to defineV1 and the boundary layer correctorV ε
bl in (33), we introduce two

functionsv± defined in semi-infinite cylinders,v− in G+ = (0,+∞) ×Q andv+ in
G− = (−∞, 0)×Q: 




A∗
Θv

±(η) = 0, η ∈ G
∓,

BΘv
±(η) = 0, η ∈ Σ∓,

v±(0, η′) = −N∗(0, η′),

(37)
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whereΣ± are the lateral boundaries ofG±. It has been proved in [20] that bounded
solutionsv± exist, are uniquely defined and stabilize to some constantsv̂± at an
exponential rate, asη1 → ±∞:

|v±(η1, η′)− v̂±| ≤ C0 e
−γ |η1|, C0, γ > 0;

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0,

‖∇v+‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n > 0.

(38)

Then the first boundary layer corrector is given by

V ε
bl(t, x, ξ) =

[
v−
(ξ1 + 1

ε
,
ξ′

ε

)
− v̂−

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
v+
(ξ1 − 1

ε
,
ξ′

ε

)
− v̂+

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1),

(39)

andV1, for x1 ∈ (−1, 1), satisfies the problem





∂tV1 = aeff ∂2ξ1V1 + F (t, x1, ξ1), (t, ξ1) ∈ (0, T )× (−1, 1),

V1(t, x1,±1) = v̂± ∂ξ1 (V0 − Φ0)
∣∣∣
ξ1=±1

, t ∈ (0, T ),

V1(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1),

(40)

where

F (t, x1, ξ1) = ∂3ξ1V0(t, x1, ξ1)

∫

Y

(
aΘ1j(η)∂ηj

N∗
2 (η)

+ aΘ11(η)N
∗(η) + bΘ1 (η)N

∗
2 (η)− aeff ρΘ(η)N

∗(η)
)
dη.

(41)

Finally, the second boundary layer correctorW ε
bl is designed to compensate the time

derivative ofV ε
bl and is defined by

W ε
bl(t, x, ξ) =

[
w−(ξ1 + 1

ε
,
ξ′

ε

)
− ŵ−

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
w+
(ξ1 − 1

ε
,
ξ′

ε

)
− ŵ+

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1).

The functionsw± solve nonhomogeneous problems





A∗
Θw

±(η) = (v̂± − v±(η)) ρΘ(η), η ∈ G
∓,

BΘw
±(η) = 0, η ∈ Σ∓,

w±(0, η′) = 0.

Bounded solutionsw± exist, are uniquely defined and stabilize to some constantsŵ±

at an exponential rate, asη1 → ±∞ (see [20]).
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Using the standard elliptic estimates one can easily show that, for x1 6= ±1,
the functionV0 belongs toC∞([0, T ] × (−1, 1) × [−1, 1]), and for t ∈ [0, T ],
x1 ∈ I ⋐ (−1, 1), ξ1 ∈ [−1, 1], we have

|∂kt ∂lx1
∂mξ1 V0(t, x1, ξ1)| ≤

C

min{|x1 − 1|, |x1 + 1|}2k+l+m+1
. (42)

ThenV1 is also a smooth function of its variables forx ∈ I ⋐ (−1, 1). Notice finally
thatN2 andN∗

2 are Hölder continuous. Indeed, it is straightforward to check that the
equation and the boundary conditions in (36) can be rewritten in the form





AΘ(N2 + y1N +
1

2
y21) = −aeffρΘ, y ∈ Y,

BΘ(N2 + y1N +
1

2
y21) = 0, y ∈ ∂Y.

SinceaeffρΘ ∈ L∞(Y ), then it is known that the corresponding solution is Hölder
continuous (see [15]). The Hölder continuity ofN∗

2 can be justified in a similar way.
We denote byV ε

1 the first-order approximation ofεd−1Vε

V ε
1 (t, x, ξ) = V0(t, x1, ξ1) + εN

(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ).

(43)

By construction, its trace at the cylinder ends coincide with that ofΦε
1, namely

{
V ε
1 (t, x, ξ)

}∣∣∣
ξ1=±1

= Φε
1(t, x, ξ)

∣∣∣
ξ1=±1

,

whereΦε
1 is defined by (27). Of course,V ε

1 is also the first-order approximation ofWε,
defined by (33). It turns out that all terms inV ε

1 will contribute to the leading term of
the asymptotics ofεd−1Vε, while the other terms,V2 andW ε

bl, in (33) are constructed
in order to guarantee the required accuracy.

Lemma 5 Let Vε be defined by(19), or equivalently be a solution of(21). Let V ε
1

be defined by(43). Then, there exists a constantC, depending onI,Λ, Q, d and
independent ofε, such that, forx ∈ I × εQ andt ≥ 0, I ⋐ (−1, 1),

∫

Gε

|εd−1Vε − V ε
1 |2 dξ ≤ C ε4 εd−1. (44)

Proof . The strategy of the proof is the following: we plug the difference
Wε − εd−1Vε into the boundary value problem (21) and calculate the righthand sides
in the equation and in the boundary condition. The terms of the asymptotic expansion
Wε were designed in a such a way that these right-hand sides are small. Thus, by a
priori estimates, the differenceWε − εd−1Vε is small in an appropriate norm. For the
sake of clarity, we divide the proof into several steps.
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Step 1. We first prove a priori estimates for the following problem:




ρεΘ∂tw
ε +A∗,ε

Θ wε = f(t, x) + divF (t, x), in (0, T )×Gε,

Bε
Θ w

ε = εg(t, x)− F · n, on (0, T )× Σε,

wε(t,±1, x′) = 0, (t, x′) ∈ (0, T )×Q,

wε(0, x) = 0, x ∈ Gε.

(45)

Since by (15)div bεΘ = 0 andbεΘ · n = 0 on the lateral boundary, a priori estimates are
obtained in a standard way. Multiplying the equation in (45)bywε and integrating by
parts and exploiting the Cauchy-Bunyakovsky inequality and Grönwall’s lemma, we
obtain for anyt ≤ T

∫

Gε

|wε(t)|2 dx +

t∫

0

∫

Gε

|∇wε|2 dx dτ

≤ C eC1t
(
‖f‖2L2((0,T )×Gε)

+ ε2‖g‖2L2((0,T )×Σε)
+ ‖F‖2L2((0,T )×Gε)

)
,

(46)

where the constantsC,C1 are independent ofε andt.

Step 2. To estimate theL2(Gε) norm ofWε−εd−1Vε, we first substituteWε−εd−1Vε
for wε in (45). This yields

ρεΘ ∂t(Wε − εd−1Vε) +A∗ε
Θ (Wε − εd−1Vε)

= εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi
R̃1,i(t, x1, ξ1;x/ε, ξ/ε)

+ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ),

Bε
Θ(Wε − εd−1Vε) = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε),

(47)

where

R1(t, x1, ξ1; y, η) = ρΘ(η)N(y)∂t∂x1V0(t, x1, ξ1)

+ρΘ(η)N
∗(η)∂t∂ξ1V0 + ρΘ(η)∂tV1 − aΘ11(η)N(y)∂2ξ1∂x1V0(t, x1, ξ1)

−aΘ11(η)N∗(η)∂3ξ1V0(t, x1, ξ1)− aΘ11(η)∂
2
ξ1V1(t, x1, ξ1)

−aΘ1j(η)∂ξ1∂ηj
V2(t, x1, ξ1; y, η)− bΘ1 (η)∂ξ1V2(t, x1, ξ1; y, η),

and

R̃1,i(t, x1, ξ1; y, η) = aΘi1(η)∂ξ1V2(t, x1, ξ1; y, η),

R2(t, x1, ξ1; y, η) = ρΘ ∂tV2(t, x1, ξ1; y, η)− aΘ11(η)∂
2
ξ1V2(t, x1, ξ1; y, η),

Rε
3(t, x1, ξ) = ρεΘ ∂tW

ε
bl(t, x, ξ).

All cancellations on the right hand side of (47) are classical (see e.g. [7]) except for the
one due to the additional boundary layer corrector termε3W ε

bl in the ansatz (33) for
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Wε. Indeed, the coefficientε3 in front ofW ε
bl allows us to cancel the time derivative of

V ε
bl. By construction

∂tV
ε
bl(t, x, ξ) = −ε2A∗,ε

Θ W ε
bl(t, x, ξ)

and

(ρεΘ ∂t +A∗ε
Θ ) (ε V ε

bl(t, x, ξ) + ε3W ε
bl(t, x, ξ)) = ε3 ρεΘ ∂tW

ε
bl(t, x, ξ).

By linearity, we haveWε − εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , whereṼ ε
1 andṼ ε

2 , for eachx ∈ Gε,
solve the following problems:





ρεΘ ∂tṼ
ε
1 +A∗ε

Θ Ṽ
ε
1 = εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi

R̃1,i(t, x1, ξ1;x/ε, ξ/ε)+

ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ), (t, ξ) ∈ (0, T )×Gε,

Bε
ΘṼ

ε
1 = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε), (t, ξ) ∈ (0, T )× Σε,

Ṽ ε
1 (t, x, ξ)

∣∣∣
ξ1=±1

= 0, t ∈ (0, T )

Ṽ ε
1 (0, x, ξ) = 0, ξ ∈ Gε;





ρεΘ ∂tṼ
ε
2 +A∗ε

Θ Ṽ
ε
2 = 0, (t, ξ) ∈ (0, T )×Gε,

Bε
ΘṼ

ε
2 = 0, (t, ξ) ∈ (0, T )× Σε,

Ṽ ε
2 (t, x, ξ)

∣∣∣
ξ1=±1

= (Wε − εd−1Φε)(t, x, ξ)
∣∣∣
ξ1=±1

, t ∈ (0, T )

Ṽ ε
2 (0, x, ξ) = 0, ξ ∈ Gε.

Step 3. We estimateṼ ε
1 using the a priori estimates (46) obtained in the first step. To

this end, we notice that, in view of (34) and (40),
∫

Y

R1(t, x1, ξ1; y, η) dη = 0.

Thus, there exists a1-periodic with respect toη1 vector-functionχ = χ(t, x1, ξ1; y, η)
such that {

−divηχ = R1 η ∈ Y,
χ · n = 0, η ∈ ∂Y.

Obviously,

R1(t, x1, ξ1; y, η)
∣∣∣
η=ξ/ε

= −εdivξχ
(
t, x1, ξ1; y,

ξ

ε

)
+ ε∂ξ1χ1

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

,

and

∂ηi
R̃1,i(t, x1, ξ1; y, η)

∣∣∣
η=ξ/ε

= ε∂ξiR̃1,i(t, x1, ξ1; y,
ξ

ε
)−ε∂ξiR̃1,i

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

.
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Considering (35) and (42), we see that
∫

Gε

|ε2R2(t, x1, ξ1; y,
ξ

ε
) + ε3Rε

3(t, x1, ξ)|2 dξ ≤ C ε4 εd−1, x ∈ I × εQ. (48)

With the help of (46) the above relations yield, forx ∈ I × εQ,
∫

Gε

|Ṽ ε
1 (t, x, ξ)|2 dξ ≤ C ε4 εd−1, t ≥ 0, (49)

with the constantC depending onI,Λ, Q, d only.

Step 4. We proceed with the estimate of̃V ε
2 . Due to the presence of the boundary layer

correctorV ε
bl, some cancellations occur and the axial boundary conditions read

Wε(t, x, ξ
′,±1)− εd−1Vε(t, x, ξ

′,±1) =Wε(t, x, ξ
′,±1)− εd−1Φε(t, x, ξ

′,±1)

=
(
ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
)
+
(
Φε

1(t, x, ξ)− εd−1Φε(t, x, ξ)
)
.

Taking into account (42) and the fact thatN,N∗, N2, N
∗
2 are Hölder continuous

functions, we see that
∣∣∣ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
∣∣∣ ≤ C ε2, t ≥ 0, ξ ∈ Gε, x ∈ I × εQ, (50)

whereC depends onI,Λ, Q, d only.
To estimate the other term(Φε

1 − εd−1Φε) we consider separately small times
t ≤ εβ, β ∈ (0, 2), and larger timest > εβ . Fort ≤ εβ we have

|Φε
1 − εd−1Φε| ≤ Φε

1 + εd−1Φε.

The first term on the right-hand side here is small by its very definition (27) while
we use Aronson’s estimates (see Lemma 3) for the second one. Namely, thanks to
(15)-(16), forx ∈ I × εQ andt ≤ εβ

|Φε(t, x,±1, ξ′)| ≤ O(e−C/εβ )

with some positive constantC.
For large timet ≥ εβ , we use Lemma 4. Namely, forx, ξ ∈ Gε, the following

estimate holds true:

|εd−1Φε(t, x, ξ) − Φε
2(t, x, ξ)| ≤ C ε3−3β/2, ∀β > 0,

with the constantC independent ofε. On the other hand, in view of (26), for anyt ≥ 0,

|Φε
2(t, x,±1, ξ′)− Φε

1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,

with some constantC = C(I,Λ, Q, d). Finally, choosing small enoughβ, we obtain
that, for anyt ≥ 0,

|εd−1Φε(t, x,±1, ξ′)− Φε
1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,



70 G. Allaire, I. Pankratova and A. Piatnitski

whereC depends onI,Λ, Q, d only.
Combining the last estimate with (50), we obtain that the boundary conditions on

the bases of the rod are satisfied up to the second order inε:

|Wε(t, x,±1, ξ′)− εd−1Φε(t, x,±1, ξ′)| ≤ C ε2, t ≥ 0, x ∈ I × εQ (51)

whereC depends onI,Λ, Q, d. Thus, by the maximum principle, forx ∈ I × εQ,

|Ṽ ε
2 (t, x, ξ)| ≤ C ε2, t ≥ 0, ξ ∈ Gε, (52)

whereC depends onI,Λ, Q, d.

Step 5. Recalling thatWε − εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , by summing (49) and (52), for any
t ∈ [0, T ], we obtain

∫

Gε

|εd−1Vε −Wε|2 dx ≤ C ε4 εd−1, x ∈ I × εQ.

It is easy to see that forx ∈ I × εQ, t ≥ 0,
∫

Gε

∣∣∣V2
(
t, x1, ξ1; y,

ξ

ε

)∣∣∣
2

dξ +

∫

Gε

|W ε
bl(t, x, ξ)|2 dξ ≤ C εd−1.

Consequently, last two estimates yield (44). Lemma 5 is proved. �

Lemma 5 provides anL2 estimate for the discrepancy. By working harder we can
get anL∞ estimate of the same order. Namely, we prove the following result.

Lemma 6 Let Vε be a solution of(21) and V ε
1 be defined by (43) as a first-order

approximation ofεd−1Vε. Then, fort ≥ 0, x ∈ I+ × εQ and ξ ∈ I− × εQ, the
following estimate is valid:

|εd−1Vε(t, x, ξ) − V ε
1 (t, x, ξ)| ≤ C ε2 (53)

whereI+ ⋐ (−1, 1], I− ⋐ [−1, 1); the constantC depends onI+, I−,Λ, Q, d and is
independent ofε.

Remark 4 The same estimate holds ifξ ∈ I+ × εQ andx ∈ I− × εQ.

Proof. Estimate in Lemma 5 is based on two auxiliary bounds, (49) and (52).
Notice that estimate (52) gives a bound inL∞ norm and, thus, need not be improved.
Our goad is to modify the ansatzW ε in order to obtain a greater power ofε on the
right-hand side of (49). This will allow us to useL∞ elliptic estimates.

Observe that adding interior higher order terms to the asymptotic expansion (33)
(without adding additional boundary layer correctors) increases the power ofε in
estimate (49). More precisely, denote byW ε

k (t, x, ξ) the k-order approximation for
εd−1Vε

W ε
k (t, x, ξ) =Wε(t, x, ξ) +

k∑

n=3

εn Vn(t, x1, ξ1; y, η)
∣∣∣
y= x

ε
,η= ξ

ε

,
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whereVn(t, x1, ξ1; y, η) are1-periodic with respect toy1, η1. For the sake of brevity,
we do not specify the form of functionsVn (for precise formulae see [7], [19]). Let us
substituteW ε

k −εd−1Vε into (21) and then, representW ε
k −εd−1Vε as a sumW̃ ε

1 +W̃
ε
2 ,

whereW̃ ε
1 solves nonhomogeneous problem with homogeneous Dirichletboundary

conditions at the rod ends (compare withṼ ε
1 ), andW̃ ε

2 is a solution of a homogeneous
problem with nonhomogeneous Dirichlet boundary conditions atξ1 = ±1 (compare
with Ṽ ε

2 ). Arguing exactly like in Lemma 5, we see that
∫

Gε

|W̃ ε
1 |2 dξ ≤ C1 ε

2 k εd−1, t ≥ 0, x ∈ I × εQ, (54)

whereI ⋐ (−1, 1); and by the maximum principle,

|W̃ ε
2 (t, x, ξ)| ≤ C2 ε

2, t ≥ 0, x ∈ I × εQ, ξ ∈ Gε,

whereC1, C2 depend onI,Λ, Q, d.
Notice thatVε is Hölder continuous, and by the Nash–De Giorgi estimates in the

rescaled cylinder, forξ, ζ ∈ Gε

|Vε(t, x, ξ)− Vε(t, x, ζ)| ≤ C ε−α|ξ − ζ|α, t ≥ 0, x ∈ I × εQ, (55)

whereC,α depend onΛ, Q, d and are independent ofε. Indeed, let us change
the variablesτ = t/ε2, y = x/ε, η = ξ/ε in (21) and denotẽVε(τ, y, η) =
Vε(ε

2τ, εy, εη). By the maximum principle,

|Ṽε(τ, y, η)| ≤ C τ ≥ 0, η ∈ (−ε−1, ε−1)×Q, y ∈ ε−1I ×Q,

whereI ⋐ (−1, 1). Due to the local Nash–De Giorgi estimates, for anyn ∈ Z, τ ≥ 0,
y ∈ ε−1I ×Q

|Ṽε(τ, y, η)− Ṽε(τ, y, ϑ)| ≤ C |η − ϑ|α, η, ϑ ∈ (n, n+ 1)×Q,

for some0 < α < 1 andC depending onΛ, Q, d. Changing back the variables in the
last inequality yields (55).

Due to the Hölder continuity properties ofN,N∗, N2, N
∗
2 , regularity ofV0, the

functionWε is uniformly w.r.t.ε Hölder continuous. Indeed, for example, sinceN∗ is
Hölder continuous, so isN∗(ξ/ε) and

|N∗(ξ
ε

)
−N∗(ζ

ε

)
| ≤ C ε−α |ξ − ζ|α, ξ1, ξ2 ∈ Gε, 0 < α < 1.

Thus,εN∗(ξ/ε)∂ξ1V0(t, x1, ξ1) is Hölder continuous uniformly with respect toε.
By similar arguments,W ε

k andW̃ ε
2 are Hölder continuous functions, so is̃W ε

1 . By
contradiction one can prove that, if (54) holds, then for someδ ∈ (0, 1)

|W̃ ε
1 (t, x, ξ)| ≤ C εδ (k−α),

whereδ depends onΛ, Q, d. Thus, for sufficiently largek,

|εd−1Vε(t, x, ξ)−W ε
k (t, x, ξ)| ≤ C3 ε

2, t ≥ 0, ξ ∈ Gε, x ∈ I × εQ,
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whereC3 depends onI,Λ, Q, d and is independent ofε. Clearly, by regularity ofV0

|W ε
k (t, x, ξ) −Wε(t, x, ξ)| ≤ C4 ε

2, ξ ∈ Gε, x ∈ I × εQ,

with C4 = C4(I,Λ, d,Q).
Combining the two last estimates implies a similar bound for(εd−1Vε −Wε) with

the constantC that depends onI,Λ, Q, d only. Eventually, using (50) which proves
that (Wε − V ε

1 ) is of orderε2 we obtain (53), at least forx1 in a compact subset of
(−1, 1).

Now we extend this estimate to pointx ∈ I+×εQ andξ ∈ I−×εQ (orξ ∈ I+×εQ
andx ∈ I− × εQ). To this end, consideringVε(t, x, ξ) as a solution of the equation in
(t, x) (for fixedξ), we get a ”symmetric” estimate

|Wε(t, x, ξ) − εd−1Vε(t, x, ξ)| ≤ C5 ε
2, t ≥ 0, x ∈ Gε, ξ ∈ I × εQ,

with the constantC5 depending onI,Λ, Q, d. In particular,

|Wε(t, x, ξ)− εd−1Vε(t, x, ξ)|
∣∣∣
ξ1=0

≤ C ε2, t ≥ 0, x ∈ Gε (56)

with the constantC independent oft, x, ξ, ε. ConsideringWε(t, x, ξ)−εd−1Vε(t, x, ξ)
as a solution (w.r.t.t, ξ, for fixedx) of a nonhomogeneous initial boundary problem
stated first inI− × εQ and then inI+ × εQ, using estimate (56) and arguing as above
we obtain, forx ∈ I+ × εQ andξ ∈ I− × εQ (or ξ ∈ I+ × εQ andx ∈ I− × εQ),

|εd−1Vε(t, x, ξ)− V ε
1 (t, x, ξ)| ≤ C ε2, t ≥ 0,

with the constantC depending onI−, I+,Λ, d,Q and independent ofε. �

2.2.4 Asymptotics forvε and main results

Recalling from (19) thatKε = Φε − Vε and using the first order approximations (27)
and (43) obtained in the previous sections, we define a first order approximation of the
Green functionKε

Kε
1(t, x, ξ) = Φε

1(t, x, ξ)− V ε
1 (t, x, ξ)

= K0(t, x1, ξ1) + εN
(x
ε

)
∂x1K0(t, x1, ξ1)

+εN∗(ξ
ε

)
∂ξ1K0(t, x1, ξ1) + εK1(t, x1, ξ1)− ε V ε

bl(t, x, ξ),

(57)

whereK0 = Φ0 − V0 is the Green function of the one-dimensional effective problem




∂tK0 = aeff ∂2ξ1K0, (t, ξ1) ∈ (0, T )× (−1, 1),

K0(t, x1,±1) = 0, t ∈ (0, T ),

K0(0, x1, ξ1) = δ(x1 − ξ1), ξ1 ∈ (−1, 1),

(58)

K1 = −V1 with V1, the solution of (40), and the boundary layer correctorV ε
bl is

defined by (37) and (39). By combining Lemmata 4 and 6, we immediately obtain the
following statement.
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Lemma 7 Denote byI+, I− compact subsets of(−1, 1] and[−1, 1), respectively. Let
conditions(H1)− (H4) be fulfilled. Then, for eachx ∈ I+ × εQ, ξ ∈ I− × εQ, and
t ≥ t0 > 0, there exists a constantC depending onI+, I−,Λ, Q, d and independent
of ε such that

|εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ)| ≤ C ε2. (59)

We can now state our main result.

Theorem 8 Let conditions(H1) − (H4) be fulfilled andb̄1 > 0. Let Θ be the
maximum point ofλ1(θ) andpΘ the corresponding eigenfunction defined by Lemma 1.

1. Supposeu0 ∈ C1[−1, 1] is such thatu0(−1) 6= 0. The asymptotics of the
solutionuε of problem(2), for t ≥ t0 > 0 andx ∈ Gε, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
u(t, x1) + rε(t, x)

]
,

whereu is the solution of the homogenized problem




∂tu = aeff ∂2x1
u, (t, x1) ∈ (0, T )× (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1),

(60)

where the effective coefficientaeff is defined by(23), and the constantM is
defined by

M =

+∞∫

0

∫

Q

(z1 +N∗(z) + v−(z)) p−1
Θ (z) e−Θz1 dz′dz1, (61)

with N∗, solution of the adjoint cell problem(25) and v−, solution of the
boundary layer problem(37). For some constantC = C(I+,Λ, Q, d), the
remainder term satisfies the estimate

|rε(t, x)| ≤ C ε,

which is uniform fort ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].

2. If u0 ∈ Ck+1(−1, 1) is such thatu(l)0 (−1) = 0, l = 0, · · · , k − 1, and

u
(k)
0 (−1) 6= 0, then

uε(t, x) = εk+2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
ũ(t, x) + r̃ε(t, x)

]
,

whereũ is the solution of the homogenized problem




∂tũ = aeff ∂2x1
ũ, (t, x1) ∈ (0, T )× (−1, 1),

ũ(t,±1) = 0, t ∈ (0, T ),

ũ(0, x1) = −Mk u
(k)
0 (−1) δ′(x1 + 1), x1 ∈ (−1, 1),
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with the constantMk given by

Mk =
1

k!

+∞∫

0

∫

Q

(z1)
k
(
z1 +N∗(z) + v−(z)

)
p−1
Θ (z) e−Θz1 dz′dz1.

The remainder term satisfies|r̃ε(t, x)| ≤ C ε, and the estimate is uniform for
t ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].

Remark 5 If the initial datau0 is non-negative, then the effective initial data is non-
negative too. Indeed,−δ′(x1 + 1) is non-negative in distributional sense, andM is
positive, because by the maximum principle,(z1 +N∗ + v−) is positive.

The multiplicative constantM depends explicitly on the boundary layerv− for
the left end pointx1 = −1 (see formula (61)). It is quite surprinsing that such a
boundary layer (which is of lower order in classical homogenization theory) enters the
asymptotics ofuε at the main order.

Note also that, if the initial datau0 had a compact support, then Theorem 5.2 in [4]
gives a similar asymptotic behaviour with a different initial data for the homogenized
problem, featuring a Dirac mass instead of the derivative ofthe Dirac mass as in(60).

Remark 6 Theorem 8 provides the leading term of the asymptotics ofuε. But, as
already explained in Remark 2, the error estimate for the remainder termrε is not
precise enough in the region of interest whereuε(t, x) achieves its maximum. A better
ansatz with a better error estimate are given in Theorem 9 below (again, boundary
layers will be crucial).

Proof. Based on Lemma 7 we can compute the asymptotics ofvε, given by (17) in
terms of the corresponding Green functionKε. Obviously, (17) can be rewritten in the
following form

εd−1vε(t, x) =

∫

Gε

Kε
1(t, x, ξ)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

+

∫

Gε

(εd−1Kε(t, x, ξ)−Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.

(62)
Thanks to (59), forx ∈ I+ × εQ, t ≥ t0 > 0, we have

∣∣∣
∫

Gε

(εd−1Kε(t, x, ξ)−Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

∣∣∣

≤ C1 ε
2

∫

Gε

e−
Θ(ξ1+1)

ε dξ ≤ C1 ε
2 εd|Q|

+∞∫

0

e−Θ η1 dη1 ≤ C εd+2

with the change of variablesξ1 + 1 = εz1, ξ′ = εz′ and for some constantsC,C1

which do not depend onε.
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We proceed by evaluating the first integral in (62). We compute separately the
contributions of each summand in (57). ExpandingK0 andu0 into Taylor series in
the neighbourhood ofξ1 = −1, and recalling thatK0(t, x1,−1) = 0, we see that, for
t ≥ t0 > 0,

∫

Gε

K0(t, x1, ξ1)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

=
(
u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)

) ∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ.

Performing again the change of variablesξ1 + 1 = εz1, ξ′ = εz′ and using the
periodicity ofpΘ yields

∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = εd+1

+∞∫

0

∫

Q

z1 p
−1
Θ (z) e−Θz1 dz′dz1 +O(εd+2).

(63)
Recall that, for the simplicity of presentation, we assumed(H4), namelyε = 1/N ,
N ∈ Z+. Similarly, for t ≥ t0 > 0,

ε

∫

Gε

N∗(ξ
ε

)
∂ξ1K0(t, x, ξ)

u0(ξ1)

pΘ(ξ/ε)
e−

Θ(ξ1+1)
ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

N∗(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).

On the contrary, since differentiating (58) with respect tox1 does not affect the
homogeneous Dirichlet boundary conditions, we have∂x1K0(t, x1,±1) = 0 and,
therefore, the following term can be neglected

ε

∫

Gε

N
(x
ε

)
∂x1K0(t, x1, ξ1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = O(εd+2).

The last summand(εK1 − εV ε
bl) in (57) is written as a sum of three terms. The first

one, sinceK1(t, x1,−1)− v̂−∂ξ1K0(t, x1,−1) = 0, gives a negligible contribution

ε

∫

Gε

(K1(t, x1, ξ1)− v̂−∂ξ1K0(t, x1,−1))u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ = O(εd+2).

For the second one, performing a change of variables as aboveand using the periodicity
of pΘ yields

ε

∫

Gε

v−
(ξ1 + 1

ε
,
ξ′

ε

)
∂ξ1K0(t, x1,−1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

v−(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).

(64)
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Thanks to (38), the third term containing the boundary layercorrector near the right
base of the rodx1 = 1 is exponentially small. Combining (62)–(64) yields

vε(t, x) = ε2 (M u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)), (65)

whereO(ε) is uniform fort ≥ t0 > 0 andx ∈ I+ × εQ.
The second statement of Theorem 8 can be proved in the same wayas the first one

and we safely leave it to the reader. �

Theorem 8 provided the leading term of the asymptotics ofuε. But, as already
explained in Remark 6, due to the presence of the exponentially large factoreΘ(x1+1)/ε,
we are mostly interested in the asymptotics ofuε in a ε-neighbourhood of the right
end of the rod, where both, the leading and the corrector terms (together with the
boundary layer corrector), are of the same order. Therefore, we can not claim that, in
this localization zone, we haveeΘ(x1+1)/ε rε(t, x) ≪ eΘ(x1+1)/ε u(t, x1).

Due to similar reasons, we had to construct extra terms in theasymptotics of
the Green functionKε. Indeed, because of the factore−Θ(x1+1)/ε in (17), only the
behaviour ofKε in aε-neighbourhood of the left end plays a significant part. To obtain
a precise asymptotics near the left end of the rod, we have constructed the corrector
terms forKε. Notice that the integrals (62)–(64) are of the same order.

In Theorem 9 below we construct the corrector foruε, that improves the
asymptotics ofuε near the right end of the rod and, therefore, makes the resultof
Theorem 8 complete.

Theorem 9 Under the same assumptions as in Theorem 8, the refined asymptotics of
the solutionuε of problem(2), for t ≥ t0 > 0 andx ∈ Gε, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ
(x
ε

) [
Uε(t, x) + Rε(t, x)

]
,

whereUε is given by

Uε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+∗
(x1 − 1

ε
,
x′

ε

)
− v̂+∗

]
∂x1u(t, 1),

(66)

whereu(t, x1) is the solution of the homogenized problem(60),N solves(24), u1 and
the boundary layer correctorv+∗ are defined in(71) and (70), respectively. For some
constantC = C(Λ, Q, d), the remainder term satisfies the estimate

|Rε(t, x)| ≤ C ε(1− x1),

which is uniform fort ≥ t0 > 0, x ∈ Gε.

Proof. In view of the factorization (10), it is sufficient to improve the asymptotics
of vε. Because of (65), the functionu(t, x1), solution of (60), is in fact the leading
term of the asymptotics forε−2vε(t, x) for t ≥ t0 > 0. Let us construct the corrector
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for ε−2vε(t, x). Obviously, due to the semigroup property of the parabolic operator,
one can representε−2vε(t, x) as a sum̃vε1 + ṽε2, where





ρεΘ(x) ∂tṽ
ε
1 +Aε

Θṽ
ε
1 = 0, in (t0, T )×Gε,

Bε
Θṽ

ε
1 = 0, on (t0, T )× Σε,

ṽε1(t,±1, x′) = 0, x′ ∈ (t0, T )× εQ,

ṽε1(t0, x) = u(t0, x1), x ∈ Gε;

(67)





ρεΘ(x) ∂tṽ
ε
2 +Aε

Θṽ
ε
2 = 0, in (t0, T )×Gε,

Bε
Θṽ

ε
2 = 0, on (t0, T )× Σε,

ṽε2(t,±1, x′) = 0, x′ ∈ (t0, T )× εQ,

ṽε2(t0, x) = ε−2vε(t0, x)− u(t0, x1), x ∈ Gε.

(68)

It is easy to see that the asymptotics ofṽε1 takes the form

Ũε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+∗
(x1 − 1

ε
,
x′

ε

)
− v̂+∗

]
∂x1u(t, 1)

+ε
[
v−∗
(1 + x1

ε
,
x′

ε

)
− v̂−∗

]
∂x1u(t,−1),

(69)

where the boundary layer correctorsv±∗ (y) and their asymptotic limitŝv±∗ are defined
similarly to v±(y) and v̂± in (37), except that the adjoint operator and the adjoint
cell functions are replaced by the direct ones. In other words, v±∗ are solution in the
semi-infinite cylindersG− = (−∞, 0)×Q andG+ = (0,+∞)×Q of





AΘv
±
∗ (y) = 0, y ∈ G

∓,

BΘv
±
∗ (y) = 0, y ∈ Σ∓,

v+∗ (0, y
′) = −N(0, y′).

(70)

The boundary layersv±∗ (y) stabilize at infinity to constantŝv±∗ exponentially fast, as
in (38).

In (69) the functionu1 is designed so that̃Uε satisfy homogeneous boundary
conditions atx1 = ±1, namely it solves




∂tu1(t, x1) = aeff ∂2x1
u1(t, x1) + f(t, x1), (t, x1) ∈ (t0, T )× (−1, 1),

u1(t,±1) = ŵ±∂x1u(t,±1), t ∈ (t0, T ),

u1(t0, x1) = 0, x1 ∈ (−1, 1),

(71)

where,N2 being a solution of (36),f(t, x1) is given by

f(t, x1) = ∂3ξ1u(t, x1)

∫

Y

[
aΘ1j∂yj

N2 + aΘ11N − bΘ1 N2 − aeff ρΘN
]
dy.
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As in the proof of Theorem 8, one can prove that the following estimate holds

|ṽε1 − Ũε| ≤ C ε2, t ≥ t0, x ∈ Gε,

with the constantC independent ofε. On the other hand, because of the exponential
stabilization of the boundary layerv−∗ , we have

|Ũε − Uε| ≤ C ε (1− x1), t ≥ t0, x ∈ Gε,

whereUε is given by (66). This yields

|ṽε1 − Uε| ≤ C ε (1− x1), t ≥ t0, x ∈ Gε. (72)

We proceed by estimating the solutionṽε2 of (68). Letφε(t, x) be a solution of the
following problem





ρεΘ(x) ∂tφ
ε +Aε

Θφ
ε = 0, in (t0, T )×Gε,

Bε
Θφ

ε = 0, on (t0, T )× Σε,

φε(t,±1, x′) = 0, x′ ∈ (t0, T )× εQ,

φε(t0, x) = 1, x ∈ Gε.

(73)

Then, by the maximum principle,

|ṽε2(t, x)| ≤ φε(t, x) max
x∈Gε

|ε−2vε(t0, x) − u(t0, x1)|, (t, x) ∈ (t0, T )×Gε.

In view of Theorem 8,

max
x∈Gε

|ε−2vε(t0, x)− u(t0, x1)| ≤ C ε,

thus,

|ṽε2(t, x)| ≤ C εφε(t, x), (t, x) ∈ (t0, T )×Gε.

By standard homogenization it easy to prove that

|φε(t, x)| ≤ C (1− x1), (t, x) ∈ (2 t0, T )×Gε.

Combining the last two estimates yields

|ṽε2(t, x)| ≤ C ε (1− x1), (t, x) ∈ (2 t0, T )×Gε. (74)

Estimates (72), (74) imply the statement of Theorem 9. The proof is complete. �
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3 The case of a layer

We now consider the case of a layer inRd. More precisely, the domainΩ is defined
as the layer{x ∈ Rd : x′ = (x1, · · · , xd−1) ∈ Rd−1, −1 ≤ xd ≤ 1} (see Figure 2).
Note that we change the notations from the previous section since a pointx ∈ R

d

is now denotedx = (x′, xd) with x′ ∈ Rd−1. The boundary ofΩ consists of two
hyperplanesΓ± = {x ∈ Rd : xd = ±1}. We study the homogenization of the
non-stationary convection-diffusion problem (1) which, in the case of a layer, reads





∂tu
ε +Aε u

ε = 0, in (0, T )× Ω,

uε = 0, on (0, T )× (Γ+ ∪ Γ−),

uε(0, x) = u0(x), in Ω,

(75)

where, as before,

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε,

and the coefficients of the equation are still given by (3), namelyaεij(x) = aij(x/ε) and
bεi (x) = bi(x/ε). In the case of a layer our main assumptions are slightly different from
those in the previous section. We assume that the following conditions are satisfied.

(A1) The coefficients of the equationaij , bj ∈ L∞(Ω) areY -periodic,Y = (0, 1]d

being the periodicity cell.

(A2) Thed × d matrixa(y) is symmetric and satisfies a uniform ellipticity condition
with a coercivity constantΛ > 0.

(A3) The initial datau0 has compact support with respect tox′ = (x1, · · · , xd−1),
namelyu0(x) ∈ C1

0 (R
d−1;C1[−1, 1]).

(A4) For simplicity we assume thatε = 1/N , N ∈ Z+, so that an entire number of
periodicity cells fits in the thickness of the layerΩ.

As in the case of a thin rod, we study the asymptotic behaviourof solutionsuε(t, x) of
problem (75), asε→ 0.

3.1 Auxiliary spectral problems, factorization and main result.

In order to simplify the original problem, we make use of the factorization principle, as
in Section 2 (with respect toxd instead ofx1), and then construct the asymptotics of the
new unknown function. However, the main difference with theprevious case of a rod
is that we must use moving coordinates (see [3], [12], [18]) in the directions parallel to
the layer. This makes the equation homogenizable at the price that the initial condition
becomes asymptotically singular. As before, we circumventthis difficulty of singular
initial data by constructing the asymptotics of the Green function of the factorized
problem.
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Figure 2: The layerΩ

We recall that the cell operatorA is defined by (4) and its adjointA∗ by (5). For
θ ∈ R, we introduce two families of spectral problems, similar to(6),

{
e−θ yd Aeθ yd pθ(y) = λ(θ) pθ(y), in Y,

y → pθ(y) Y-periodic,
(76)

{
eθ yd A∗ e−θ yd p∗θ(y) = λ(θ) p∗θ(y), in Y,

y → p∗θ(y) Y-periodic.

By the Krein-Rutman theorem, for eachθ ∈ R, the first eigenvalueλ1(θ) of problem
(76) is real, simple, and the corresponding eigenfunctionspθ andp∗θ can be chosen
positive. Moreover, the statement of Lemma 1 remains valid,and we callΘ the unique
maximum point ofλ1(θ). The eigenfunctionspθ and p∗θ are normalized by (7) as
above. Arguments similar to those in Section 2 yield

dλ1
dθ

∣∣∣
θ=0

=

∫

Y

(
bd p

∗
θ + adj ∂yj

p∗θ
)
dy = b̄d, (77)

whereb̄d is called the normal effective drift (normal to the layer). Hence,̄bd = 0 if
and only ifΘ = 0. If the normal effective drift is zero, i.e.,̄bd = 0, then the method
of homogenization in moving coordinates can be applied directly (see [3], [12], [18]).
Therefore, we assume thatb̄d 6= 0 (or, equivalently,Θ 6= 0).

In what follows we consider the casēbd > 0, the other casēbd < 0 being
symmetric. Ifb̄d > 0, then we perform the change of unknown function as follows

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

)
vε(t, x). (78)

Substituting (78) into (75), one obtains that the new unknown functionvε solves the
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following problem




ρεΘ ∂tv
ε +Aε

Θ v
ε = 0, (t, x) ∈ (0, T )× Ω,

vε = 0, (t, x) ∈ (0, T )× (Γ+ ∪ Γ−),

vε(0, x) = u0(x) p
−1
Θ

(x
ε

)
e−

Θ (xd+1)

ε , x ∈ Ω,

(79)

whereρεΘ(x) = ̺Θ(x/ε),

Aε
Θv = −div

(
aΘ
(x
ε

)
∇v
)
+

1

ε
bΘ
(x
ε

)
· ∇v,

and the coefficients of the operator are given by

aΘij(y) = ̺Θ(y) aij(y), ̺Θ(y) = pΘ(y) p
∗
Θ(y),

bΘi (y) = ̺Θ(y) bi(y)− 2 ̺Θ(y) aid(y)Θ

+aij(y)
[
pΘ(y) ∂yj

p∗Θ(y)− p∗Θ(y) ∂yj
pΘ(y)

]
.

(80)

The matrixaΘ is positive definite since bothpΘ andp∗Θ are positive functions. The
vector-fieldbθ, for eachθ ∈ R, is divergence-free, and the last component of the
vector-fieldbΘ has zero mean, that is

∫

Y

bΘd (y) dy = 0; div bθ = 0, ∀ θ. (81)

The averages of the other components are denoted by

βΘ
i =

∫

Y

bΘi (y) dy, i = 1, · · · , d. (82)

The vectorβΘ is called the effective convection (note that its formula isdifferent from
that of the normal effective drift̄bd defined in (77)). SinceβΘ

d = 0 because of (81),
the convection is parallel to the layer. When the effective convectionβΘ is not equal to
zero, contrary to the case of the rod, we cannot use classicalhomogenization methods
for (79), and, rather, we rely on the method of moving coordinates (see [3], [12], [18]).

Theorem 10 Suppose that conditions(A1)-(A4) are fulfilled, the normal effective
drift (defined by(77)) satisfies̄bd > 0 andu0(·,−1) 6= 0. Then, fort ≥ t0 > 0, the
asymptotics of the solutionuε of problem(75) takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

) [
u
(
t, x− βΘ

ε
t
)
+ rε(t, x)

]
,

whereu(t, x) is the solution of the homogenized problem




∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× (Γ− ∪ Γ+),

u(0, x) = −M u0(x
′,−1) δ′(xd + 1), x ∈ Ω,

(83)
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with a positive definite matrixaeff defined by(88)and the constantM defined by

M =

∫

(0,1]d−1

+∞∫

0

[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′, (84)

whereN∗
d is a solution of the cell problem(90) and the boundary layerv− is defined

by (99). The remainder term satisfies, fort ≥ t0 > 0,

|rε(t, x)| ≤ C ε for anyx ∈ Ω such thatxd ∈ I+ ⋐ (−1, 1],

and the constantC depends solely onI+,Λ, d.

Remark 7 In the case u0(x′,−1) = · · · = ∂k−1
ξd

u0(x
′,−1) = 0 and

∂kxd
u0(x

′,−1) 6= 0 for somek, the asymptotics ofuε takes the form

uε(t, x) = ε2+k e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

) [
u(t, x− βΘ

ε
t) + rε(t, x)

]
,

where|rε(t, x)| ≤ C ε, for t ≥ t0 > 0 andx ∈ Ω such thatxd ∈ I+ ⋐ (−1, 1] and
u(t, x) solves the problem





∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ (0, T )× (Γ− ∪ Γ+),

u(0, x) = −Mk ∂
k
xd
u0(x

′,−1) δ′(xd − 1), x ∈ Ω,

with the constantMk given by

Mk =
1

k!

∫

(0,1]d−1

+∞∫

0

(zd)
k
[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′.

Remark 8 Similarly to the case of a rod (see Remarks 2 and 6), the error estimate
for the remainder termrε is not precise enough in the region of interest whereuε(t, x)
achieves its maximum. Indeed, the homogeneous Dirichlet boundary condition for

u(t, x), together with the exponentiale
Θ(xd+1)

ε shows thatuε(t, x) attains its maximum
at a distance of orderε from the planeΓ+: there, by a Taylor expansion,u(t, x) is of
the order ofε, like the remainder termrε(t, x) which is thus not negligible. A better
ansatz with a better error estimate will be given in Theorem 15 below.

3.2 Proof of Theorem 10

The proof is partly similar to that of Theorem 2 and relies on the representation formula
for vε

vε(t, x) =

∫

Ω

Kε(t, x, ξ)u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ, (85)
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whereKε(t, x, ξ) is the Green function of problem (79). However, one major
difference with the previous case of a rod is that, as was already pointed out, in the
caseβΘ 6= 0, the classical homogenization methods do not apply to problem (79). To
overcome this difficulty, we shall use moving coordinates.

Recall that, for anyx,Kε solves the adjoint problem





̺Θ
(ξ
ε

)
∂tKε(t, x, ξ) +A∗,ε

Θ Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× Ω,

Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

Kε(0, x, ξ) = δ(x− ξ), ξ ∈ Ω,

(86)

A∗,ε
Θ v = −div

(
aΘ
(x
ε

)
∇v
)
− 1

ε
bΘ
(x
ε

)
· ∇v.

SincebΘ is divergence-free,A∗,ε
Θ differs fromAε

Θ by the sign in front of the first-order
term. For anyξ ∈ Ω,Kε solves the direct problem with respect to(t, x), but since we
are interested in the asymptotics ofKε w.r.t. ξ, we prefer to interpret it from the very
beginning as a solution of adjoint problem (86).

We study the asymptotic behaviour ofKε, asε→ 0, and then from (85) derive the
asymptotics forvε.

3.2.1 Asymptotic behaviour ofKε(t, x, ξ)

As in the proof of Theorem 2, instead of analyzing directlyKε, we consider the
difference

Vε(t, x, ξ) = Φε(t, x, ξ)−Kε(t, x, ξ),

whereΦε is the fundamental solution inRd, that is, for anyx ∈ Rd, Φε solves the
problem 




̺Θ
(ξ
ε

)
∂tΦε +A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T )× R
d,

Φε(0, x, ξ) = δ(x − ξ), ξ ∈ R
d.

In this way, for allx ∈ Ω, Vε satisfies the problem





̺Θ
(ξ
ε

)
∂tVε(t, x, ξ) +A∗,ε

Θ Vε(t, x, ξ) = 0, (t, ξ) ∈ (0, T )× Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

Vε(0, x, ξ) = 0, ξ ∈ Ω.

(87)

We emphasize thatVε is a regular function ofξ, for x such thatxd 6= ±1.
The asymptotics ofΦε is easier to establish. First, we introduce its zero-order

approximationΦ0(t, x, ξ), the fundamental solution of the effective problem





∂tΦ0 = divξ(a
eff∇ξΦ0), (t, ξ) ∈ (0, T )× R

d,

Φ0(0, x, ξ) = δ(x− ξ), ξ ∈ R
d
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with aeff given by

aeff

ij =

∫

Y

(aΘij(y) + aΘik(y)∂yk
Nj(y)− bΘi (y)Nj(y) + βΘ

j ρΘNj(y)) dy

=

∫

Y

(aΘij(η) + aΘik(η)∂yk
N∗

j (η) + bΘi (η)N
∗
j (η)− βΘ

j ρΘN
∗
j (η)) dη.

(88)

The vector functionsN andN∗ solve the following cell problems (direct and adjoint,
respectively)

{ −div(aΘ∇Ni) + bΘ · ∇Ni = ∂yj
aΘij(y)− bΘi (y) + βΘ

i , in Y,

y 7→ Ni Y − periodic;
(89)

{ −div(aΘ∇N∗
i )− bΘ · ∇N∗

i = ∂yj
aΘij(y) + bΘi (y)− βΘ

i , in Y,

y 7→ N∗
i Y − periodic.

(90)

Notice that, although the above cell problems (89) and (90) are of the same type as (24)
and (25), they contain additionalβΘ

i term on the right-hand side. Observe that, by the
very definition ofβΘ, the compatibility conditions for (89) and (90) are satisfied.

We further introduce the second-order corrector functionsN2
ij , N

2∗
ij , solutions of





AΘN
2
ij = ∂yk

(aΘkiNj) + aΘik∂yk
Nj + aΘij

−bΘi Nj + βΘ
i ρΘNj − aeff

ij ρΘ, in Y,

y 7→ N2
ij is periodic;

(91)





A∗
ΘN

2∗
ij = ∂yk

(aΘkiN
∗
j ) + aΘik∂yk

N∗
j + aΘij

+bΘi N
∗
j − βΘ

i ρΘN
∗
j − aeff

ij ρΘ, in Y,

y 7→ N2∗
ij is periodic,

(92)

whereAΘ andA∗
Θ are defined by (13) and (14), respectively.

Then we define the first- and second-order approximations ofΦε

Φε
1

(
t, x, ξ̃

)
= Φ0

(
t, x, ξ̃

)
+εN

(x
ε

)
·∇xΦ0

(
t, x, ξ̃

)
+εN∗(ξ

ε

)
·∇ξ̃Φ0

(
t, x, ξ̃

)
, (93)

Φε
2

(
t, x, ξ̃

)
= Φε

1

(
t, x, ξ̃

)
+ ε2N2

ij

(x
ε

)
∂xi

∂xj
Φ0(t, x, ξ̃)

+ε2N2∗
ij

(ξ
ε

)
∂ξi∂ξjΦ0(t, x, ξ̃) + ε2Ni

(x
ε

)
N∗

j

(ξ
ε

)
∂xi

∂ξjΦ0(t, x1, ξ̃),

(94)

whereξ̃ is the moving coordinate defined by

ξ̃ = ξ +
βΘ

ε
t. (95)
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Remark 9 The variablesx andξ being dual, the moving coordinate forx is defined
with the opposite velocity, namely

x̃ = x− βΘ

ε
t.

By the same techniques, as in [1], one can prove

Lemma 11 Assume that conditions(A1)-(A2) are fulfilled. Then, forx, ξ ∈ Rd and
t ≥ ε2, the estimate holds

∣∣∣Φε(t, x, ξ)− Φε
k

(
t, x, ξ +

βΘ

ε
t
)∣∣∣ ≤ C

εk+1

t(d+k+1)/2
, k = 0, 1, 2,

whereβΘ is defined by(82).

Turning back toVε, its zero-order approximation isV0, defined for anyx ∈ Ω, as a
solution of the homogenized problem





∂tV0 = divξ(a
eff∇ξV0), (t, ξ) ∈ (0, T )× Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, ξ) ∈ (0, T )× (Γ− ∪ Γ+),

V0(0, x, ξ) = 0, ξ ∈ Ω.

Note thatV0(t, x, ξ) ∈ C∞([0, T ]× Ω× Ω) and for(t, ξ) ∈ [0, T ]× Ω one has

|∂kt ∂lx ∂mξ V0(t, x, ξ)| ≤
C

dist(K, (Γ− ∪ Γ+))2k+l+m+d
, x ∈ K ⋐ Ω.

The first-order approximation ofVε is defined by

V ε
1 (t, x, ξ) = V0

(
t, x, ξ̃

)
+ εNj

(x
ε

)
∂xj

V0
(
t, x, ξ̃

)

+εN∗
j

(ξ
ε

)
∂ξjV0

(
t, x, ξ̃

)
+ ε V1

(
t, x, ξ̃

)
+ ε V ε

bl(t, x, ξ),

(96)

whereξ̃ is the moving coordinate defined by (95), andV1, V ε
bl are defined below. A

higher order asymptotic expansion forVε takes the form

Wε

(
t, x, ξ

)
= V ε

1 (t, x, ξ) + ε2 V ε
2 (t, x, ξ) + ε2 ϕε

bl(t, x, ξ) + ε3 ψε
bl(t, x, ξ) (97)

with

V ε
2 (t, x, ξ) = N2

ij(x/ε) ∂xi
∂xj

V0(t, x, ξ̃)

+N2∗
ij (ξ/ε) ∂ξi∂ξjV0(t, x, ξ̃) +Ni(x/ε)N

∗
j (ξ/ε) ∂xi

∂ξjV0(t, x, ξ̃)

+Ni(x/ε) ∂xi
V1(t, x, ξ̃) +N∗

i (ξ/ε) ∂ξiV1(t, x, ξ̃).

(98)
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In order to defineV1 and the first boundary layer correctorV ε
bl, we consider auxiliary

problems in semi-infinite cylindersG∓ = (0, 1]d−1 × (0,∓∞):





A∗
Θv

± = 0, η ∈ G
∓,

v±(η′, 0) = −N∗
d (η

′, 0),

η′ 7→ v±(η′, ηd) is (0, 1]d−1 − periodic.

(99)

Sinceβd = 0, such functionsv± exist, are uniquely defined and stabilize to some
constantŝv± at an exponential rate, asηd → ∓∞ (see [22]):

|v±(η′, ηd)− v̂±| ≤ C0 e
−γ |ηd|, C0, γ > 0;

‖∇v+‖L2((n−1,n)×Q) ≤ C e−γ n, ∀n < 0,

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0.

(100)

The first boundary layer corrector is given by

V ε
bl(t, x, ξ) =

[
v−
(ξ′
ε
,
ξd + 1

ε

)
− v̂−

]
∂ξd(V0 − Φ0)

(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=−1

+
[
v+
(ξ′
ε
,
ξd − 1

ε

)
− v̂+

]
∂ξd(V0 − Φ0)

(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=1
.

(101)
Then,V1, for x ∈ Ω, is defined as the solution of





∂tV1 = divξ(a
eff ∇ξV1) + F (t, x, ξ), (t, ξ) ∈ (0, T )× Ω,

V1(t, x, ξ) = v̂± ∂ξd (V0 − Φ0)(t, x, ξ), (t, ξ) ∈ (0, T )× Γ±,

V1(0, x, ξ) = 0, ξ ∈ Ω,

(102)

where

F (t, x, ξ) = ∂ξk∂ξi∂ξjV0(t, x, ξ)

∫

Y

[
aΘkl∂ηl

N2∗
ij

+ aΘijN
∗
k + bΘkN

2∗
ij − βΘ

k ρΘN
2∗
ij − aeff

ij ρΘN
∗
k

]
dη.

The second boundary layer correctorϕε
bl is defined as follows

ϕε
bl(t, x, ξ)

=
[
ϕ−
k

(ξ′
ε
,
ξd + 1

ε

)
− ϕ̂−

k

]
∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ϕ+
k

(ξ′
ε
,
ξd − 1

ε

)
− ϕ̂+

k

]
∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=1

)
.

Remark that, sinceβΘ
d = 0, we haveξd = ξ̃d and the above definition makes sense
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when we enforceξd = −1. The functionsϕ±
k solve nonhomogeneous problems





A∗
Θϕ

±
k = ∂ηi

(aΘik(v
± − v̂±)) + aΘik ∂ηi

v±

+(bΘk − βΘ
k ρΘ)(v

± − v̂±), η ∈ G
∓,

ϕ±
k (η

′, 0) = 0,

η′ 7→ ϕ±
k (η

′, ηd) is (0, 1]d−1 − periodic.

The right-hand side of the above equation, due to (100), is anexponentially decaying
function. SinceβΘ

d = 0, the functionsϕ±
k exist, are uniquely defined and stabilize to

some constantŝϕ±
k at an exponential rate, asηd → ±∞ (see [22]). The correctorϕε

bl

is introduced to compensate the terms of orderε0 which will appear on the right-hand
side after substitutingV ε

bl into the original equation.
The last boundary layer correctorψε

bl is defined by

ψε
bl(t, x, ξ)

=
[
ψ−
ik

( ξ′
ε
,
ξd + 1

ε

)
− ψ̂−

ik

]
∂ξi∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ψ+
ik

(ξ′
ε
,
ξd − 1

ε

)
− ψ̂+

ik

]
∂ξi∂ξk

(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=1

)
.

The functionsψ±
ik solve nonhomogeneous problems





A∗
Θψ

±
ik = (aΘik − aeff

ikρΘ)(v
± − v̂±) + ∂ηi

(aΘij(ϕ
±
k − ϕ̂k

±))

+aΘij∂ηj
ϕ±
k + (bΘi − βΘ

i )(ϕ
±
k − ϕ̂k

±), η ∈ G
∓,

ψ±
ik(η

′, 0) = 0,

η′ 7→ ψ±
ik(η

′, ηd) is (0, 1]d−1 − periodic.

The right-hand side of the above equation is again an exponentially decaying function.
Thus, the functionsψ±

ik exist, are uniquely defined and stabilize to some constantsψ̂±
j

at an exponential rate, asηd → ∓∞. The boundary layer correctorψε
bl is designed in

order to compensate the terms of orderε on the right-hand side of equation (87) which
comes fromV ε

bl andϕε
bl being substituted into this equation.

This completes the construction of the formal expansion. Weproceed with its
justification. Recall that the functionsV1 andV ε

bl are introduced to satisfy the boundary
conditions onΓ± up to second order inε, while the purpose ofV ε

2 , ϕ
ε
bl andψε

bl is to
guarantee the required accuracy, and the latter terms will not show up in the final result.

Proposition 12 Let V ε
1 be the first-order approximation ofVε defined by(96). Then,

for x such thatxd ∈ I ⋐ (−1, 1) and fort ≥ 0, we have
∫

Ω

|Vε − V ε
1 |2 dx ≤ C ε4 (103)

with the constantC depending only ondist(x,Γ− ∪ Γ+),Λ andd.
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Proof. Let us substitute ansatz (97) into (87) and compute the discrepancy

ρεΘ∂t(Wε − Vε) +A∗,ε
Θ (Wε − Vε)

= εR1

(
t, x, ξ̃; y, η

)
+ ε divη(a

Θ(η)∇ξ̃V2(t, x, ξ̃; y, η))
∣∣∣
y= x

ε
,η= ξ

ε

+ε2R2

(
t, x, ξ̃; η

)
+ ε3R3

(
t, x, ξ̃; η

)∣∣∣
y= x

ε
,η= ξ

ε

,

(104)

whereξ̃ is the moving coordinate defined by (95) and

R1

(
t, x, ξ̃; y, η

)
= −ρΘ(η)∂tV1(t, x, ξ̃)− ρΘ(η)N

∗
j (η)∂t∂ξjV0(t, x, ξ̃)

−ρΘ(η)Nj(y)∂t∂xj
V0(t, x, ξ̃)− ρΘ(η)β

Θ
j ∂ξ̃jV2(t, x, ξ̃; y, η)

+divξ(a
Θ(η)∇ηV2(t, x, ξ̃; y, η)) + divξ(a

Θ(η)∇ξ(N
∗(η) · ∇ξV0(t, x, ξ̃))

+divξ(a
Θ(η)∇ξ(N(y) · ∇xV0(t, x, ξ̃)) + divξ(a

Θ(η)∇ξV1(t, x, ξ̃))

+bΘj (η)∂ξjV2(t, x, ξ̃; y, η),

and
R2

(
t, x, ξ̃; η

)
=
{
(aeff

ij − aΘij(η))(ϕk(η)− ϕ̂k)

−∂ηj
(aΘjl(η)(ψik(η)− ψ̂ik))− aΘjl(η)∂ηl

ψik(η)

+(βΘ
j − bΘj (η))(ψik(η)− ψ̂ik)

}

×∂ξj∂ξi∂ξk
(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=1

)
;

R3

(
t, x, ξ̃; η

)
= (ρΘ(η)a

eff

jl − aΘjl)(ψik(η)− ψ̂ik)

×∂ξl∂ξj∂ξi∂ξk
(
∂ξd(V0 − Φ0)

(
t, x, ξ̃

)∣∣∣
ξd=1

)
.

Notice that, in view of (98) and (102),
∫

Y

R1

(
t, x, ξ̃; y, η

)
dη = 0.

Thus, there existsχ
(
t, x, ξ̃; y, η

)
, periodic inη, such that

−divηχ = R1

(
t, x, ξ̃; y, η

)
.

Consequently,

R1

(
t, x, ξ̃; y,

ξ

ε

)
= −εdivξχ

(
t, x, ξ̃; y,

ξ

ε

)
+ εdivξχ

(
t, x, ξ̃; y, η

)∣∣∣
η= ξ

ε

.

It is easy to see that, for sufficiently smallε,
∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ C

∫

Ω

∫

Y

[
R1

(
t, x, ξ; y, η

)]2
dη dξ
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with the constantC independent ofε. To estimate the norm on the right-hand side of
the last inequality, we notice that each term inR1 is a product of the form

F (y, η) ∂rt ∂
m
ξjV0(t, x, ξ̃)

with a bounded periodic functionF (y, η). It is a classical matter to show that the
derivativesV0 are exponentially decreasing at infinity. Consequently,

∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ C

for xd ∈ I. Then, multiplying equation (104) byWε − Vε, integrating by parts taking
into account (81), the exponential decay of boundary layersand ofV0, we obtain

∫

Ω

|Wε − Vε|2 dξ ≤ C ε4, t ≥ 0. (105)

Note that due to the presence of the boundary layer correctors, the boundary conditions
onΓ+ ∩ Γ− in (87) are satisfied up to the second order inε. It remains to notice that
for t ≥ 0 andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1)

∫

Ω

|Wε(t, x, ξ)− V ε
1 (t, x, ξ)|2dξ ≤ C ε4,

whereV ε
1 is the first-order approximation ofVε defined by (96). Combining the last

two estimates finishes the proof of Proposition 12. �

Combining the previous estimates on the approximations ofΦε (Lemma 11) and of
Vε (Proposition 12), we deduce similar result for the asymptotics of the Green function
Kε(t, x, ξ). We do not give the proofs of the two lemmas below since they are very
similar to their counterpart given in Section 2 in the case ofa rod.

Lemma 13 Assume that conditions(A1) − (A2) are satisfied. LetKε be the Green
function solving(86). For t ≥ t0 > 0 andx ∈ Ω such thatxd ∈ I ⋐ (−1, 1), we have

∫

Ω

|Kε(t, x, ξ)−Kε
1

(
t, x, ξ +

βΘ

ε
t
)
|2dξ ≤ C ε4,

whereKε
1 is a first-order approximation ofKε given by

Kε
1

(
t, x, ξ̃

)
= K0

(
t, x, ξ̃

)
+ εN

(x
ε

)
· ∇xK0

(
t, x, ξ̃

)

+εN
(ξ
ε

)
· ∇ξK0

(
t, x, ξ̃

)
+ εK1(t, x, ξ̃)− ε V ε

bl(t, x, ξ̃),
(106)

ξ̃ is the moving coordinate defined by(95),K0 = Φ0 − V0 is the Green function of the
effective problem(83), N,N∗ are the cell solutions of(89), (90), respectively,V ε

bl is
defined by(101)andK1(t, x, ξ) = −V1(t, x, ξ) with V1 the solution of(102).
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Lemma 14 Denote byI+, I− compact subsets of(−1, 1] and [−1, 1), respectively.
Let conditions(A1)− (A2) be fulfilled. Then, forx, ξ ∈ Ω such thatxd ∈ I+,
ξd ∈ I−, andt ≥ t0 > 0, the following estimate holds true:

|Kε(t, x, ξ) −Kε
1

(
t, x− βΘ

ε
t, ξ
)
| ≤ C ε2, (107)

with the constantC depending onI+, I−,Λ, d and independent ofε.

3.2.2 Asymptotics ofuε(t, x)

Recall thatvε as a solution of (78), is represented in terms of the Green functionKε

by (85). Obviously,

vε(t, x) =

∫

Ω

Kε
1

(
t, x− βΘ

ε
t, ξ
)
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ

+

∫

Ω

(
Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ
))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ,

(108)

whereKε
1 is the first order approximation ofKε given by (106). Suppose that the initial

function is such thatu0(x′,−1) 6= 0. The caseu0(x′,−1) = · · · = ∂k−1
ξd

u0(x
′,−1) =

0, ∂kξdu0(x
′,−1) 6= 0 can be considered similarly. With the help of Lemma 14 we

estimate the second integral in (108).

∣∣∣
∫

Ω

(
Kε(t, x, ξ)−Kε

1

(
t, x− βΘ

ε
t, ξ
))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ
∣∣∣

≤ C ε3
∫

Rd−1

|u0(ξ′,−1)| dξ′
+∞∫

0

e−Θzd dzd ≤ C ε3.

To complete the proof it remains to compute asymptotics of the first integral in (108).
Denote

vε0(ξ) = u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε .
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Then, by definition (106) ofKε
1 ,

∫

Ω

Kε
1(t, x, ξ) v

ε
0(ξ) dξ =

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

N∗
j

(ξ
ε

)
∂ξjK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
vε0(ξ) dξ

+ε

∫

Ω

Nj

(x
ε

)
∂xj

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

+ε

∫

Ω

(
K1

(
t, x− βΘ

ε
t, ξ
)
− v̂− ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1

)
vε0(ξ) dξ

+ε

∫

Ω

(
v+
(ξ′
ε
,
ξd − 1

ε

)
− v̂+ ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=1

)
vε0(ξ) dξ.

(109)

Notice thatK0

(
t, x − βΘ

ε t, ξ
)
= K0

(
t, x, ξ + βΘ

ε t
)

sinceβΘ
d = 0 andΩ is bounded

only in thexd-direction. ExpandingK0 andu0 into Taylor series with respect toξd,
for t ≥ t0 > 0, we obtain

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

=

∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
1∫

−1

(ξd + 1) p−1
Θ

( ξ
ε

)
e−

Θ(ξd+1)

ε dξd +O(ε3)

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
+∞∫

0

zd p
−1
Θ

(ξ′
ε
, zd
)
e−Θzddzd +O(ε3).

The function

ψ(ζ′) =

+∞∫

0

zd p
−1
Θ

(
ζ′, zd

)
e−Θzddzd,
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is (0, 1]d−1-periodic and belongs toH1((0, 1]d−1). By the classical mean-value
theorem, we deduce the asymptotic behavior of the first term in (109)

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

zd p
−1
Θ (z′, zd) e

−Θzddzd dz
′ +O(ε3).

By similar arguments, the other terms in (109) admit the representations

∫

Ω

N∗
j

(ξ
ε

)
∂ξjK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

N∗
d (z) p

−1
Θ (z) e−Θzddzd dz

′ +O(ε3)

and ∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξdK0

(
t, x− βΘ

ε
t, ξ
)
vε0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′

×
∫

(0,1]d−1

+∞∫

0

v−(z) p−1
Θ (z) e−Θzddzd dz

′ +O(ε3).

Noticing thatK1

∣∣
ξd=−1

= v̂−∂ξdK0

∣∣
ξd=−1

, and∂xj
K0

∣∣
ξd=−1

= 0, one can see that

the last three integrals in (109) are of orderε3. We emphasize that, in view of (100),
the terms containing boundary layer correctors nearΓ+ are negligible. Finally,

vε(t, x) = ε2M

∫

Rd−1

u0(ξ
′,−1) ∂ξdK0

(
t, x− βΘ

ε
t, ξ
)∣∣∣

ξd=−1
dξ′ +O(ε3),

where the constantM is given by (84). This completes the proof of Theorem 10.�

As already said in Remark 8, Theorem 10 provides only the leading term of the
asymptotics ofuε. However, due to the presence of the exponentially large factor
eΘ(xd+1)/ε, we are mostly interested in the asymptotics ofuε in a ε-neighbourhood
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of Γ+, whereuε is maximum and where both, the leading and the corrector terms
(including the boundary layer corrector) are of the same order.

In Theorem 15 below we construct the corrector terms foruε, that improves
significantly the asymptotics ofuε in the vicinity of Γ+ and, therefore, makes the
result of Theorem 10 complete.

Let us define the first-order approximation foruε by

Uε(t, x) = u
(
t, x− βΘ

ε
t
)
+ εNk

(x
ε

)
∂xk

u
(
t, x− βΘ

ε
t
)

+εu1
(
t, x− βΘ

ε
t
)
+ ε
[
v+∗
(x′
ε
,
xd − 1

ε

)
− v̂+∗

]
∂x1u

(
t, x− βΘ

ε
t
)∣∣∣

xd=1
.

(110)

Hereu(t, x) is the solution of the homogenized problem (83),N solves (89). The
boundary layer correctorv+∗ (y) are defined similarly tov+(y) (see (101)), except for
the fact that the adjoint operator is replaced with the direct one. Namely,v+∗ solves the
following problem inG− = (0, 1]d−1 × (−∞, 0):





AΘv
+
∗ = 0, y ∈ G

−,

v+∗ (y
′, 0) = −Nd(y

′, 0),

y′ 7→ v+∗ (y
′, yd) is (0, 1]d−1 − periodic.

Sinceβd = 0, there exists a unique bounded solutionv+∗ and it stabilizes to some
constant̂v+∗ at an exponential rate, asyd → −∞.

The functionu1(t, x) in (110) solves the following problem




∂tu1 = div(aeff ∇u1) + F (t, x), (t, x) ∈ (0, T )× Ω,

u1(t, x) = v̂+∗ ∂xd
u(t, x), (t, x) ∈ (0, T )× (Γ− ∪ Γ+),

u1(0, x) = 0, x ∈ Ω,

where

F (t, x) = ∂xk
∂xi

∂xj
u(t, x)

∫

Y

[
aΘkl∂ηl

N2
ij

+ aΘijNk − bΘkN
2
ij + βΘ

k ρΘN
2
ij − aeff

ij ρΘNk

]
dη.

Theorem 15 Let the assumptions of Theorem 10 be fulfilled. The refined asymptotics
of the solutionuε of problem(75), for t ≥ t0 > 0 andx ∈ Ω, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ
(x
ε

) [
Uε(t, x) +Rε(t, x)

]
,

whereUε is given by(110), and, for some constantC = C(Λ, d), the remainder term
satisfies the estimate

|Rε(t, x)| ≤ C ε(1− xd),

which is uniform fort ≥ t0 > 0, x ∈ Ω.



94 G. Allaire, I. Pankratova and A. Piatnitski

The proof of Theorem 15 is similar to that of Theorem 9 in the case of a rod. We
leave it to the reader.
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[18] (2156660) E. Marušić-Paloka, A. Piatnitski,Homogenization of a nonlinear
convection-diffusion equation with rapidly oscillating coefficients and strong
convection, Journal of London Math. Soc., Vol. 72 (2005), No. 2, p. 391-409.

[19] (2133084) G. Panasenko, Multi-Scale Modelling for Structures and Composites,
Springer, Dordrecht, 2005.

[20] (2505654) I.Pankratova, A.Piatnitski,On the behaviour at infinity of solutions to
stationary convection-diffusion equation in a cylinder,DCDS-B,11 (4) (2009).

[21] (1366209) G. C. Papanicolaou,Diffusion in random media,Surveys in applied
mathematics, Vol. 1, 205–253, Plenum, New York, 1995.

[22] (0699735) A.Piatnitski, Averaging of a singularly perturbed equation with
rapidly oscillating coefficients in a layerMath. USSR-Sb.49 (1984), no. 1, 19–
40.

[23] (0635561) M. Vanninathan, Homogenization of eigenvalue problems in
perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90:239-271 (1981).

[24] (1329546) V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of
differential operators and integral functionals, Springer-Verlag, Berlin, 1994.


