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26.1 Introduction

This chapter is devoted to the homogenization of a stationary convection—
diffusion model problem in a thin rod structure. More precisely, we study
the asymptotic behavior of solutions to a boundary value problem for a
convection—diffusion equation defined in a thin cylinder that is the union of
two nonintersecting cylinders with a junction at the origin. We suppose that
in each of these cylinders the coefficients are rapidly oscillating functions that
are periodic in the axial direction, and that the microstructure period is of the
same order as the cylinder diameter. On the lateral boundary of the cylinder
we assume the Neumann boundary condition, while at the cylinder bases the
Dirichlet boundary conditions are posed.

Similar problems for the elasticity system have been intensively studied in
the existing literature. We quote here the works [KoPa92], [MuSi99], [Naz82],
[Naz99], [TuAg86], [TrVi87], [Ve95]. The contact problem of two heteroge-
neous bars was considered in [Pa94-I], [Pa96-1I], [Past02]. Elliptic equations
in divergence form have been addressed, for example, in [BaPa89] and [Pa05].
In contrast to the divergence-form operators, in the case of the convection-
diffusion equation the asymptotic behavior of solutions depends crucially on
the direction of what is called the effective convection, which is introduced in
Section 26.2. In this chapter we only consider the case when in each of the
two cylinders (being the constituents of the rod) the effective convection is
directed from the end of the cylinder towards the junction.

The asymptotic expansion of a solution includes the interior expansion, the
boundary layers in the neighborhoods of the cylinder ends, and the interior
boundary layer in the vicinity of the junction. Note that the leading term of the
asymptotics is described in terms of a pair of first order ordinary differential
equations. The construction of the interior expansions follows the classical
scheme. The analysis of boundary layers in the neighborhoods of the cylinder
ends relies on the results obtained in [PaPi09]. In order to build the interior
boundary layer we study a qualitative problem for the convection—diffusion
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equation in an infinite cylinder. This is done in Section 26.7. As far as the
authors are aware, no one has studied a convection—diffusion equation with
first order terms in an infinite cylinder. In the case under consideration, when
in each of the two cylinders the effective convection is directed from the end of
the cylinder towards the junction, we prove the existence of a solution for such
a problem and discuss its qualitative properties. In other cases the situation
is much more difficult (especially in the case when effective convections occur
in opposite directions) and outside the scope of the present work.

26.2 Problem Statement

Let @ be a bounded C?® domain in (d — 1)-dimensional Euclidean space
R4~! with points ' = (3, ...,x4). Denote G. = [-1,1] x (¢Q) C R? a thin
rod with the lateral boundary I, = [-1,1] X 9(eQ);x = (x1,z’). We study
the homogenization of a scalar elliptic equation with periodically oscillating
coefficients

*u® = —div (a*(z)Vu) — —i—(be(a:),VuE) == éf(:cl), T € G,

Ous
Bouf = — = g(x1), zel,, (26.1)
8naE ’ /
/T - ' T
'U,E(—].,.T/) =@ (?)7 u (17:6 ) = 90+(?)7 ' € EQ’

where the matrix-valued function a®(z) and the vector field b%(z) are given by
a(xz) = a(z/e), b°(x) = b(x/e), and € > 0 is a small parameter. In (26.1)
(-,+) stands for the standard scalar product in R%; 0u®/dng: = (a°Vu,n) is
the co-normal derivative of u®, and n is an external unit normal. Throughout
the chapter we denote

G = (—00,40) X Q, I' = (—00,+00) x 9Q;

GS=(a,f)xQ, —0<a<pB< +oo.
We suppose the following conditions to hold:

(H1) The coefficients a;j(y) € C*(G) and bj(y) € C%G) are periodic
outside some compact set K € G ;. More precisely,

a:;(y% Y1 > 17 bj—(y)’ Y1 > 17
az'j(y) &= &1](3/)7 |y1| S 17 b(y) = b](?/)? |Z/1l S 1a
a; (), 1< -1 by (¥), w1 < -1

where a*(y) and b*(y) are periodic in y;. Without loss of generality, we
assume that the period is equal to 1.
(H2) The matrices a*(y) are symmetric.
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(H3) We assume that a*(y) satisfy the uniform ellipticity condition; that is,
there exists a positive constant A such that, for almost all z € R,

d
AP <Y ety &g, VEER (26.2)

ij=1

(H4) ¢*(y') € H/*(Q).
(H5) Functions f(z1) and g(z,) are supposed to be smooth, namely, f(z;) €
C%(Ge) and g(z1) € C*(I%).

The goal of this work is to study the asymptotic behavior of u®(x), as
€ — 0. As was noted in the Introduction, in contrast to the case of an operator
in divergence form, the situation turns out to depend crucially on the signs
of the effective fluxes I—)li, the constants which are defined in terms of the
kernel of the adjoint periodic operators and coefficients of the equation. When
constructing boundary layer functions, we consider only one case: I_)f' < 0,

by > 0.

26.3 Formal Asymptotic Expansion

In the sequel we use the following notation:
Gt ={z=(21,2)€Ge:21>¢}, G ={x=(21,2') €G.:2, < —€};
A:ytv = —divy (a*(y)Vyv) — (bX(y),Vyv), yeY;
v

d
B;/t'U — 8 = Z ali:](y) 8y.1.'l)ni, y € Y,
Mot i,j=1

where Y = G x @, with &; a unit circle, denotes the cell of periodicity. In
what follows we identify y;-periodic functions with functions defined on Y.
Notice that 9Y = &; x 0Q.

In each half-cylinder G and G the inner asymptotic expansion of a
solution to equation (26.1) has the form (see, for example, [BaPa89], [BLP78])

ud, = vy (z1) + E[Nf(g) (vE) (z1) + v (1) + qit(g)g(f”l)]

+ &[N (2) (03" (@) + NE(Z) 0F) (@1) + vF (1) + a5 (3) /()]
(26.3)
The leading term of the asymptotics, véz, satisfies a first order ordinary dif-
ferential equation

BE (Y (21) = f(z1) + g(a1) / p*(y)doy, (26.4)
oY

where
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i = [ (@ 005* ) - 5 w) dy

is called the effective axial drift; and p*(y) belong to the kernels of adjoint
periodic operators defined on Y:

—div (at (y)Vp*) + div(bEpT) =0, yeV,
ap*

_ o _
Bns (b*,n)p™ =0, y € 0Y.

Throughout the chapter we will assume that
(H6) by >0 and b <.

Notice that since f(x1),g(z1) € C*([~1,1]), then vg (z1) € C3(e, 1), vy (z1) €
C3(-1, —¢).
One can see that necessarily the functions N li and qft satisfy the problems

{ A;thizay,aﬁ—i—bli—i—l_)f, y €Y, A?ytqli:—/ piday,yEY,
+ + Y
B;t NI = —a;;ng, y € 9Y; By:t qli =1, y € aY.
(26.5)

Obviously, by the definition of l_)li, the compatibility conditions for (26.5)

are satisfied; thus, these problems are uniquely (up to an additive constant)

solvable. Slnce we assumed that a;;(y) € Ch %(G) and b;(y) € C*(G), then

Nif(y) and ¢E(y) belong to C2>*(Y) (see, for example, [G1Tr98] [LaUr68]).
The equation for vli reads

bY (vE) (x1) = hf (vF)"(21) + ¢F ¢'(x1), (26.6)

where hgi and qli are constants given by the following expressions:

hf:/ (aﬁpi~a:—rlN1i(y)8y,.pi+bliNf:p +a1]8 Ni )dy;
Y

@ :/ (- af g5 0y p* +b1iqui+a1]ay,q1 p*) dy.
y

Let us note that v (z,), as a solution of (26.6), has continuous derivatives in
Y up to the second order.
One can see that N and ¢F satisfy the problems

{AiNQi:a11+0 (alei)+I’1 N:t—"_al]ay/Ni hi yey,

Bz:f N2 = _ail N1 Ni, y € 9Y;
(26.7)
Af gy =0y, (0 qF) + b of +aF0,,¢F — ¢, yev, (26.8)
B ¢f = —df; ¢ ni, y € 9Y.
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The compatibility conditions are satisfied and problems (26.7)—(26.8) are
uniquely solvable. The smoothness of the coefficients and the properties of
the functions N, ¢ imply that Ni(y), ¢ (y) € C>*(Y).

The equation for vf(zl) is the following:

bF (vF)'(z1) = hF (vF) P (z1) + b (vE)"(z1) + a5 ¢"(21), (26.9)

where

W= [ (GNP — ahNEO* +BENGDE + a0, N D) dy
Y

G = / (afy G p* — afiq3 0, p* + b e p* + af 0y, ¢ p*) dy.
Y

The function vi as a solution of (26.9) is a C1(Y) function.

Note that the infinite number of terms in series (26.3) can be constructed.
Interested readers can find in [Pa05] the description of the general method for
such a construction together with some applications and examples.

26.4 Boundary Layers Near the Rod Ends

The asymptotic series (26.3) does not satisfy the boundary conditions on the
bases of the rod, which is why we introduce the boundary layer functions in
the neighborhoods of Sy = {z € G. : 1 = £1, 2’ € eQ}:

1 F1 2’ ” z1F1 2 R
vi(e) = [ (2L, Z) - ] 4 eu (B2, Z) — gt

A € (26.10)
s Pl A T Ty ],

£ 3

Here wgt(y) are the solutions of homogeneous problems in semi-infinite cylin-
ders GY  and GF, respectively,

Afwf(y) =0, yeG®, Ajwy (y) =0, yeGF™,
B;wg:& yel?,, Bywg =0, yelIy™,
wg (0,9') = o+ (¥'), wy (0,9') = 0™ (¥').

(26.11)

As was proved in [PaPi09] (see Theorem 5.1), under assumptions (H1)—(H6),
problems (26.11) possess unique solutions stabilizing to constants zbat at an
exponential rate, as y; — Foo. As boundary conditions for voi we choose
+ _ ot
vy (£]) =y .
The functions wf satisfy the following problems:
A;wi(y)zo’ yeGgoo’ A;wl—(y) =0, yeca_oo’
Bfwi{ =0, yeI?,, B wy =0, yely™,
wi(0,y) = =Ny (6,9) (v ) (1) | wi(0,) = =Ny (=8,y) (v5)'(~1)
*qr(éﬁy/)g(l)a —‘h_(—&y/)g(—l),
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for some fixed § € [0,1) (4 is a fractional part of e~!). Taking into account that
bf < 0, by > 0, one can see that wi stabilize to uniquely defined constants

which we denote by wE (see [PaPi09]). Then we take the constant wF as

boundary conditions for vit(xl) as T1 = £1: v{(£1) = oF.

Turning back to (26.10), w3 solve the problems
Afwy =0, yeG (yeGF™),
Bfwy =0, yeI®, (yely™),
wy (0,y') = —N5 (£6,y/) (v5)"(£1)
=N Y) (0F)' (1) = 63 (0.9/) g/ (1),

(26.12)

in tend to constants u?f, as Y1 — Foo. As before, the existence and unique-
ness of solutions and the property of the exponential stabilization to constants
are ensured by Theorem 5.1 in [PaPi09]. Now we can choose a boundary con-
dition for the functions vy as z; = +1: vE(1) = wf.

26.5 Boundary Layer in the Middle of the Rod

Before constructing the boundary layer functions in the middle of the rod,
let us extend vd (z1) (keeping the same notation) to (—oco,€) as a solution of
equation (26.4) satisfying the boundary condition v (1) = w7 . In the same
way we can extend vy, v5 to (—00,€), and vy , vy, v to (—&,400) as solutions
to correspondmg ordinary differential equations. Periodic in y; functions NV; g
and q,c , k=1,2,3, we regard as defined everywhere in G = R x Q.

Obviously, it suffices to match the formal asymptotic series u}, defined
by (26.3) in G, with zero in the vicinity of S§ = {z € G. : z; = 0}. Then,
in the same way we can match u_ with zero, and, summing up the obtained
expressions, arrive at the final boundary layer corrector in the neighborhood
of S§. In order to do this, we are looking for a “corrected” solution in the
form

vE(z) = X5 () v5 (21) + € N () 6% () (v (1) + & xE, () () (z1)
+e¢i () 6 (W)g(1) + e Xip 9(x1) + XT () v (1)
+ €2 N3 (y) 6% (v) (v3)" (1) + €2 X531 () (V)" (1)
+ €2 N{ (y) 6% (v) (vF)' (z1) + €2 X35 (y) (vF)' (z1)
+e2q3 (1) $E ()9 (x1) + 2 xF5(v) o' (1) + 2 XF (W) vE(z1), y =a/e,
(26.13)

where the functions xi(y), Xi1(¥), XE2(), X51(¥): X32(¥), xFs(y), and
xf(y) are to be determined; ¢*(y) = ¢T(y1) is a smooth cut-off function
such that ¢ (y) =0ify; < —land ¢T(y) =1ify; > 1, ¢~ =1 —¢™.

Substituting (26.13) into (26.1) and collecting power-like termsrelated to
different powers of £, one gets equations for the unknown functions. Due to
lack of space, we do not produce the calculations here.
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{Ayxi=0’ yeG,

” (26.14)
Byx;, =0, yelI, m=0,1,2.

Ayxiy = —Ay(NE )6 (1)) + a1;(4) 0y, x5 (v)
+ 3y, (auxg () + b (@W)xp (v) b ¢*(y), veG;  (26.15)
ByX:1t,1 a5 X:0t Ng — Q5 ay_,-(Nli ¢i)ni, g &Ly

Aty = —Ay(¢EW)EE W) — ¢ () / pt(y)do,, yeG,
r (26.16)
Byxt, = —ai; 8y, (¢ (v) 61 () i + 6% (), yeT;

Problems (26.14)—-(26.16), stated in the infinite cylinder G, were derived by
formal calculations which, of course, do not imply the solvability of these
problems. Theorem 2, proved in Section 26.7, guarantees the existence of
solutions to problems (26.14)—(26.16) in proper classes and, moreover, gives an
additional qualitative information about the solutions. Indeed, we can choose
X,,in, m =0, 1,2, such that

+ + y
Xm y1—>+)oo L, X y1—>_—)oo 0;

; B (26.17)
Xm 07 Koy —F 1, m = 0, 1, 2.

Such a choice of x& and definitions of N¥(y) and ¢*(y) ensure the existence
of solutions X:It,l of problem (26.15), which stabilize to the constants at infinity.
For the functions xfl we assign zeros at infinity: X:lt,l — 0, y; — *oo.

Similarly, taking into account (26.5) and the definition of ¢*, one can
see that problems (26.16) are solvable. We also choose zeros as constants at
infinity for X1i,21 Xli;z -0, y — oo

In much the same way, we see that there exist Xf’ i sz, X;B stabilizing
to zero, as y; — £00, which solve the following problems:

Ay X_2+-,1 = _Ay(N2+ ¢*) +an X(;r +ayy ay_-i(NfL ¢*) + 0y, (an N1+ o)
+ b N1+ ot +ay 8y,v,-XT,1 + 9y, (an Xfl) + b1 X_1+:1 - h; ¢t, yeG,
By x5, = —By (NS ¢%) —aanixi, —aan: Nif ¢+, yeT;
(26.18)
Ay X;2 = —Ay(N{ ¢F) +ayy ay_;Xl+
+ Oy, (auxT) +bixi —bf ¢, yeG, (26.19)
By x3, = —By(N{ ¢%) —ainni xi, e I
Ayx3s=—Ay(qF &) + a1;0y,(¢f 1) + 8y, (e i ¢T) + brgf ¢F
+ ay; aijt'z + Oy, (ain Xiz) + b X{Q - (Jf- ¢t, yeG,

B, X{s = —By(¢3 ¢T) —ainn; th —ainigl ¢t, yel.
(26.20)
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Finally, taking into account the constructed inner formal asymptotic ex-
pansion and boundary layer correctors in the neighborhoods of Sy and Sy,
we arrive at the asymptotic solution of problem (26.1):

us, (z) = v (z) + v (z) + v (z) + vy (2), (26.21)
where v}, v7, and vj are defined by (26.13) and (26.10).

Remark 1. Adding the boundary layer functions v,:]li to the inner expansions
u¥ makes it possible to satisfy the boundary conditions on the bases of the
rod G, with an accuracy up to the third order in €. Representing (26.21) as

the sum of the inner expansions and the boundary layer functions
U = uky(z) + (vF (2) — ud(2)) + v ()
+ U () + (v7 (2) — uge(2)) + vy (z),
we make (v —ul) exponentially small (but not vanishing) on S%, as well as

v;; on 5S¢, and v,; on S5 ;. In order to satisfy exactly the boundary conditions,
one can replace (26.21) with

g, = ud,(z) + (v} (z) — ud(2)) d1(2) + vy (2) 1 (@)
+ ug(2) + (v7 (2) — uge(x)) da(2) + vy () 67 (),
where ¢1(x) =1 if |z1] < 1/3 and ¢1(z) = 0 otherwise;

1, = > 2/3, 1, 1< —2/3,
+ e o —
¢ (=) = { 0, m<i3 @ { 0, z>-1/3.

Substituting 4%, into (26.1), it is straightforward to check that the presence
of the cut-off functions results in the appearance of additional exponentially
small (with respect to £~ 1) terms on the right-hand side. Later on we will prove
a priori estimates (26.23) and (26.24) which ensure that the exponentially
small perturbation of the right-hand side leads to the exponentially small
perturbation of the solution, and, thus, is negligible in any polynomial in
€ expansion. To simplify the notation, we deal with (26.21) neglecting the
discrepancies on S%,; which are exponentially small with respect to 1.

26.6 Justification of the Procedure

Theorem 1. Let the conditions (H1)—(H6) hold true. Then the approzimate
solution u, given by formula (26.21) satisfies the estimates

HVugo — VUEHLz(GE) < 083/2 E(d_l)/z,

26.22
||ugo _ UE”L?(GE) < 053/2 E(d—l)/z’ ( )

where u®(x) is the exact solution to problem (26.1).
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Proof. First we obtain an a priori estimate for a solution to the problem
Afuf = fe(x), z € G,
Bfuf = ¢°(z), xz€ Iy,
ut(£l,z2') =0, 2’ €eQ

in terms of f°(x) and g°(z) (for the moment we do not specify the particular
structure of these functions). While proving Theorem 2 in Section 26.7, we
will show that the following estimates hold true:

IVullea.) < CVENfEllLze.) + CVellgfllLa(r)- (26.23)
Making use of the Friedrichs inequality for the function u® in G., we obtain
vl L2e.) < OVElfillLae.) + CVElS la(r)- (26.24)

Estimation of the L?(Ge)-norm of A*((vF + v) + (v +vy;) — u) and the
L2(I.)-norm of B*((v} +vj) + (v7 +vy;) —u®) will complete the justification
procedure. Due to lack of space, we have to drop these estimates and leave
them to the reader.

HAE((Uz' +uh) + (v +uy) — us) HLz(GE) < Ceeld-1)/2
1B (v + v) + (vZ +vig) = u)| o,y < C 2@/ (26.25)
Taking into account (26.23)—(26.25) we get (26.22).

Remark 2. The estimates (26.23)—(26.24) imply that we can take f(z;) €
L*(G.) and g(z1) € L*(I%).

26.7 Existence of a Solution in an Infinite Cylinder

We consider the following boundary value problem:

Ay u = —div(a(z) Vu(z)) — (b(z), Vu(z)) = f(x), =z€G,

26.26
Byus= Gl = g(z), zel. ( )

We assume that ~
(H5)' The functions f € C(G) and g € C(I") are such that

”f||L2(G;;+1) £ O 8%, ||9|lr2(r,;f'+1) <Ce™™", m>0,neR.

The goal of this section is to show that in the case b} < 0, by > 0, problem
(26.26) possesses a bounded (in a proper sense) solution, which stabilizes to
constants, as |z;| — oo.
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Definition 1. A weak solution u(zx) of problem (26.26) is said to be bounded
if

lull 2 gy < €
with a constant C independent of n.
The following theorem contains the main result of the section.

Theorem 2. Let conditions (H1) — (H3), (H5)', (H6) be fulfilled. Then for
any constants K, and K, there exists a bounded solution u(zx) of problem
(26.26) such that it converges at the exponential rate to these constants, as
T — $o0,

lw — Ko_o”L‘-’(c";) <COA+K3)e ™,

flu— K;HLE(G?‘) LOEF ELE™, 520,

and the following estimates hold:

lullp2gn+ry < C (1A + VIza]) fllez@y + 1+ VIzal) gllz2r);
IVullLey < C (11 + Viz1l) fllee) + 11+ v/ lz11) gllL2(ry)-

Proof. Let us consider the following sequence of auxiliary boundary value
problems in a growing family of finite cylinders:

Ay u, = f(x), z €GE,,
By ug = g(z), relk,, (26.27)
uk(—k,z') = ug(k,2') =0, 2z’ €Q.

Without loss of generality, we assume that f(z) > 0 and g(z) > 0. Moreover,
we assume that the functions f and g are equal to zero in the half-cylinder
GY ; that is, supp f,suppg C G{*. The case when the supports of f and
g belong to G°  can be considered similarly. Due to the regularity assump-
tions (H1), (H5)', the maximum principle and the boundary point lemma are
valid (see, e.g., [GiTr98]), and, consequently, a negative minimum cannot be
attended in the internal part of GF . and its lateral boundary; that is, ux > 0
in Gk s

In the cylinder G:L the function wu(z) is a solution of a homogeneous
equation. Since uy(—k,z’) = 0 and 131_ > 0, we have the following estimate:

ug(z) < |lukllp=(s_ "™, ze€ G:}C, v > 0.

The proof of this fact can be found in [PaPi09], Section 5, Theorem 5.5.

For the nonnegative function uy(z), the Harnack inequality is valid in the
fixed domain G%, with a constant o which depends only on d, |@Q|, and A4;
that is,

up(z) < a 1(1}(}111 up(z) e ™.
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Obviously, there exists £ > 1, independent of k, such that

1
uk(=€,2) < 5 minug(z). (26.28)

-1

In G& ¢» due to the linearity of the problem, we can represent uy as a sum
vk + wg, where vy is a solution of the homogeneous equation with nonzero
Dirichlet boundary condition vg(—¢,z") = ug(—£,2’); and wy, is a solution of
the nonhomogeneous equation with functions f and g on the right-hand side
and homogeneous Dirichlet boundary conditions on the bases. In view of the
maximum principle and (26.28) we obtain an estimate for vy (),

1 :
vp(x) < 5 r(l;l(lII;I ug(z), z¢€ G'LE. (26.29)

One can prove (see [PaPi09], Lemma 7.2, estimates (7.10), (7.11)) that the
following estimate for wy holds:

||wk”L2(G,’§“) <O+ /1) f”Lz(G;rx) +C (1 + vz1) 9”L2(1“(;“°°)' (26.30)
In this way, taking into account (26.29) and (26.30), one can see that
i < < L
gl(llflluk(ﬂﬁ) < lukllzzee,) < 5 g‘l‘inlluk(x) + lwll L2 g0 -

It follows from the last inequality that

anUinuk(:v) SO+ V) fllpzgge=y + CI(L+ VE1) gll o ri=).  (26.31)

1

In view of the Harnack inequality and (26.31), ux(—1,2") < C. Then, by the
maximum principle,

uk(z) < CIl(1+va1) fllzz) + C L+ vaED) glleery, © € Gy

Combining the last estimate with (26.29)—(26.31) and recalling the relation
up = Uk + Wk, We see that

lukll L2 gnery < CHA+ V1) fllzze) + ClIA + VED) gll2ry, N €Z,
where the constant C does not depend on k. Standard elliptic estimates imply
IVull L2 gn+ry < CIA+ V) fllee) + C I+ V) gl

Thus, up to a subsequence, uy(z) converges in H} (G) to some function u(z),
as k — oo. Passing to the limit in the integral identity, one can see that u(zx)
solves problem (26.26). The existence of a bounded solution to problem (26.1)
is proved. The result on the exponential stabilization to a constant at +oco
and —oo of a solution to problem (26.26) follows from the similar results for
equations stated in a semi-infinite cylinder (see [PaPi09], Theorem 7.6).
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