
Proceedings of the Royal Society of Edinburgh, 136A, 1131–1155, 2006

Homogenization of a class of quasilinear elliptic
equations in high-contrast fissured media

B. Amaziane
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Université de Pau, Av. de l’Université, 64000 Pau, France
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The aim of the paper is to study the asymptotic behaviour of the solution of a
quasilinear elliptic equation of the form

− div(aε(x)|∇uε|p−2∇uε) + g(x)|uε|p−2uε = Sε(x) in Ω,

with a high-contrast discontinuous coefficient aε(x), where ε is the parameter
characterizing the scale of the microstucture. The coefficient aε(x) is assumed to
degenerate everywhere in the domain Ω except in a thin connected microstructure of
asymptotically small measure. It is shown that the asymptotical behaviour of the
solution uε as ε → 0 is described by a homogenized quasilinear equation with the
coefficients calculated by local energetic characteristics of the domain Ω.

1. Introduction

In this paper, we study the homogenization of the following quasilinear elliptic
problem:

− div(aε(x)|∇uε|p−2∇uε) + g(x)|uε|p−2uε = Sε(x) in Ω, (1.1)

where Ω ⊂ R
n is a bounded Lipschitz domain and ε is a parameter tending to zero.

We assume that aε(x) does not degenerate along a thin connected microstructure Ωε
f

(called the fracture part), while in the complement to the fracture part Ωε
m (called

the matrix part) aε(x) is a positive function vanishing asymptotically as ε → 0.
The rate of degeneration will be specified later.
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The basic set of equations considered here arises, for example, from compressible
flows in porous media, and non-Newtonian flow, etc., through thin fissures. This
problem is closely related to the so-called double-porosity homogenization models
widely discussed in the mathematical literature (see, for example, [17]). The linear
double-porosity model was first studied in [4], and was then revisited in the math-
ematical literature by many other authors (see, for example, [17] for a review).
Nonlinear models were treated in [10, 24]. Then a general non-periodic model and
a random model were considered in [6] and [7], respectively. Note also that the
homogenization of nonlinear elliptic equations is a long-standing problem and a
number of methods have been developed. There is an extensive literature on this
subject. We will not attempt a review of the literature here, but merely mention a
few references (see, for example, [9,11,12,14,15,21,22] and the references therein).

In contrast with the works mentioned above, where the measure of the fracture
part remains uniformly positive, in our model we will assume that the measure
of the fracture part is asymptotically small. This problem, in the linear case, was
considered in [1, 2, 5, 25]; the singular double-porosity model was studied in [8].

In this paper we deal with a quasilinear elliptic problem in a domain with an
asymptotically small fissure part. Following the approach introduced in [18], instead
of a classical periodicity assumption, we impose certain conditions on the so-called
local energetic characteristics associated with the boundary-value problem (1.1).
These characteristics include a penalization term. Following the scheme developed
in [1,25], we obtain the homogenization result by combining the local characteristics
method with an appropriate extension condition from the fracture part to the whole
domain Ω.

Since the measure of the fracture part is small, we cannot use the usual notions
of convergence and compactness. Instead we introduce the convergence and com-
pactness adapted to the singularity of the fracture measure.

The homogenized equation takes the form

−∂xi
ai(x,∇u) + B(x)|u|p−2u = ρ(x)S(x) in Ω,

where the functions ai, i = 1, 2, . . . , n, and B(x) are defined in terms of the local
characteristics mentioned above.

The paper is organized as follows. In § 2 all necessary mathematical notation is
defined, the microscopic problem is formulated and the general assumptions are
stated. In § 3 we introduce the notions of convergence and compactness in domains
of asymptotically degenerating measure. The main result of the paper is formu-
lated in § 4. It will then be proved in §§ 5 and 6. Finally, in § 7 we present two-
and three-dimensional periodic examples. In these examples the coefficients of the
homogenized problem are calculated explicitly.

2. Statement of the problem and assumptions

In this section, we describe a microscopic model for a quasilinear elliptic equation
in high-contrast fissured media. Let Ω = Ωε

f ∪ Ω̄ε
m be a bounded domain in R

n,
n = 2, 3, with piecewise smooth boundary ∂Ω, and let

meas Ωε
f → 0 as ε → 0. (2.1)
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Moreover, throughout the paper we assume that the set Ωε
f is asymptotically dis-

tributed in a regular way in the domain Ω, i.e. there exists a constant C > 0 such
that, for any ball V (y, r) = {x : |x− y| < r} of radius r centred at y ∈ Ω and ε > 0
small enough (ε � ε0(r)),

C−1rn � µε meas(Ωε
f ∩ V (x, r)) � Crn, (2.2)

where

µε =
meas Ω

meas Ωε
f
. (2.3)

We consider the variational problem

µε

∫
Ω

{aε(x)|∇uε|p + g(x)|uε|p − pSε(x)uε} dx → inf, uε ∈ W 1,p(Ω), (2.4)

where p > 1, g is a smooth positive function in Ω̄ such that g(x) � C > 0,

Sε(x) = 1ε
f (x)S(x) (2.5)

with S ∈ Lp′
(Ω), where p′ satisfies (1/p) + (1/p′) = 1 and 1ε

f = 1ε
f (x) is the char-

acteristic function of the set Ωε
f , aε = aε(x) is a measurable function such that

0 < a0 � aε(x) � a−1
0 in Ωε

f , (2.6)
0 < a1(ε) � aε(x) � a2(ε) in Ωε

m, (2.7)

with
µεa2(ε) → 0 as ε → 0. (2.8)

It is known (see, for example, [19]) that, for any ε > 0, there exists a unique
solution uε ∈ W 1,p(Ω) of the variational problem (2.4), and that uε solves the
Neumann boundary-value problem for the corresponding Euler equation:

− div(aε(x)|∇uε|p−2∇uε) + g(x)|uε|p−2uε = Sε(x) in Ω.

3. Convergence in domains of degenerating measure

Due to the vanishing measure of the fissure part, we should define the convergence
of sequences according to the singularity of the fissure measure. Assume that the
family of domains Ωε

f ⊂ Ω, ε > 0, satisfies (2.1) and (2.2). In this section, follow-
ing [25] (see also [20] or [27] for similar considerations), we introduce the concept
of convergence in domains Ωε

f as ε → 0.
We adopt the following notation: ‖ · ‖Ω and ‖ · ‖1,Ω are the norms in the spaces

Lp(Ω) and W 1,p(Ω), 1 < p < +∞, respectively; Lip(M, Ω) is the class of contin-
uous functions u in Ω such that |u(x)| � M and |u(x) − u(y)| � M |x − y| for any
x, y ∈ Ω.

Definition 3.1. A sequence of functions {uε ∈ Lp(Ωε
f )} is said to Dp

Ωε
f
-converge

to a function u ∈ Lp(Ω) if there exists an approximating sequence

{uM ∈ Lip(M, Ω), M = 1, 2, . . . }
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converging strongly in Lp(Ω) to u as M → ∞, and

lim
M→∞

lim sup
ε→0

1
meas Ωε

f
‖uε − uM‖p

Ωε
f

= 0. (3.1)

Note that under condition (2.2) the limiting function u in definition 3.1 is inde-
pendent of the approximating sequence {uM , M = 1, 2, . . . }.

Remark 3.2. If in definition 3.1 u is a smooth function in Ω, then (3.1) may be
rewritten as follows:

lim sup
ε→0

1
meas Ωε

f
‖uε − u‖p

Ωε
f

= 0. (3.2)

In a natural way one defines the notion of compactness with respect to the Dp
Ωε

f
-

convergence.

Definition 3.3. A sequence {uε ∈ Lp(Ωε
f )} is a Dp

Ωε
f
-compact set if one can extract

from any its subsequence a Dp
Ωε

f
-convergent subsequence.

In what follows, we mainly deal with sequences of functions uε ∈ W 1,p(Ωε
f ) such

that
‖uε‖p

1,Ωε
f

� C meas Ωε
f . (3.3)

From now on, C is a generic constant independent of ε. Furthermore, in this paper
we restrict ourselves to domains Ωε

f satisfying the so-called ‘strong connectedness’
condition (the SC condition).

Definition 3.4. A family of domains Ωε
f is said to satisfy the SC condition if for

any sequence {uε ∈ C1(Ωε
f )} satisfying (3.3), and any M , M = 1, 2, . . . , there exists

a family of subsets Gε
M ⊂ Ωε

f such that uε ∈ Lip(M, Ωε
f \ Gε

M ) and

meas Gε
M =

φ(M)
Mp

meas Ωε
f , ‖uε‖p

Gε
M

= φ(M) meas Ωε
f

for all ε, ε � ε0(M), where limM→∞ φ(M) = 0.

We now formulate a sufficient condition for Dp
Ωε

f
-compactness in the class of

domains Ωε
f satisfying (2.2) and the SC condition. The following theorem holds

(see [3, 27]).

Theorem 3.5. Let Ωε
f ⊂ Ω be a family of domains satisfying the SC condition.

Then, any sequence {uε ∈ W 1,p(Ωε
f )} satisfying (3.3) is a Dp

Ωε
f
-compact set.

Remark 3.6. In the proof of theorem 3.5 we construct the sequence {uε
M} such that

uε
M (x) = uε(x) for x ∈ Ωε

M , where Ωε
M = Ωε

f \ Ḡε
M . The functions uε

M satisfy the
Lipschitz condition and it follows from Witney’s theorem [26] that these functions
can be extended from Ωε

M to the whole Ω. This means that the SC condition could
be formulated as an extension condition for the functions defined in the domain Ωε

f
to the domain Ω with some distortion on the set Gε

M whose measure is small with
respect to the measure of the set Ωε

f .
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4. Formulation of the main result

In this section we introduce the local energy characteristics of the sets Ωε
f and Ωε

m
associated with the variational problem (2.4), and formulate the main result of
the paper. We study the asymptotic behaviour of uε solutions of the variational
problem (2.4) as ε → 0. The classical periodicity assumption is here substituted by
an abstract one covering a variety of concrete behaviours such as the periodicity,
the almost periodicity, and many more besides. For this, we assume that Ωε

f ⊂ Ω
is a disperse medium, i.e. the following assumptions hold.

Assumption 4.1. There exists a continuous function ρ(x) > 0 in Ω̄ such that

lim
h→0

lim
ε→0

µεh−n meas[Ωε
f ∩ Kx

h ] = ρ(x),

for any open cube Kx
h centred at x ∈ Ω with lengths equal to h > 0.

Assumption 4.2. The family of domains Ωε
f , ε > 0, satisfies the SC condition (see

definition 3.4).

Instead of the classical periodicity assumption on the microstructure of the dis-
perse media, we impose certain conditions on local energy characteristics of the
subdomains Ωε

f and Ωε
m.

For z ∈ Ω we define:

(i) the functional associated with the energy in Ωε
f , by

Eε,h(z; q) = inf
vε

µε

∫
Kz

h∩Ωε
f

{aε(x)|∇vε|p + h−p−γ |vε − (x − z, q)|p} dx, (4.1)

where p > γ > 0, q = {q1, q2, . . . , qn} ∈ R
n, and where the infimum is taken

over vε ∈ W 1,p(Kz
h ∩ Ωε

f );

(ii) the functional associated with the exchange between the matrix and the fissure
system, by

bε,h(z) = inf
wε

µε

∫
Kz

h

{aε(x)|∇wε|p+g(x)1ε
m(x)|wε|p+h−p−γ1ε

f (x)|wε−1|p} dx,

(4.2)
where 1ε

m = 1ε
m(x), 1ε

f = 1ε
f (x) are the characteristic functions of the sets Ωε

m
and Ωε

f , respectively, and where the infimum is taken over wε ∈ W 1,p(Kz
h).

We make the following further assumptions.

Assumption 4.3. For any x ∈ Ω there exist the limits

lim
h→0

lim inf
ε→0

h−nEε,h(x; q) = lim
h→0

lim sup
ε→0

h−nEε,h(x; q) = A(x, q),

with the function A(x, q) such that A(x, ·) ∈ C2+β(Rn), β > 0 and A(·, q) ∈ C(Ω).
Moreover,

C1|q|p−2|ξ|2 � Apipj ξiξj � C2|q|p−2|ξ|2, C1, C2 > 0, (4.3)

A(x, q) � C3(|q|p − 1), C3 > 0. (4.4)
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Assumption 4.4. For any x ∈ Ω there exist the limits

lim
h→0

lim inf
ε→0

h−nbε,h(x) = lim
h→0

lim sup
ε→0

h−nbε,h(x) = b(x),

where b ∈ C(Ω).

We are now in a position to formulate the main result of this paper.

Theorem 4.5. Let assumptions 4.1–4.4 hold. The solution uε of problem (2.4) then
Dp

Ωε
f
-converges to u the solution of the problem

Jhom[u] ≡
∫

Ω

{A(x,∇u)+B(x)|u|p −pρ(x)S(x)u} dx → inf, u ∈ W 1,p(Ω), (4.5)

where B(x) = g(x)ρ(x) + b(x).

5. Preliminary results

In this section we construct a convenient approximation for the solution of the
variational problem (2.4) in the subdomains Ωε

m, Ωε
f ⊂ Ω. To this end, we first

introduce the following notation.
Let {xα} be a periodic grid in Ω with a period h′ := h − h1+γ/p, ε 
 h 
 1. Let

us cover the domain Ω by the cubes Kα
h of length h > 0 centred at the points xα. We

associate with this covering a partition of unity {ϕα} : 0 � ϕα(x) � 1; ϕα(x) = 0 for
x �∈ Kα

h , ϕα(x) = 1 for x ∈ Kα
h \

⋃
β �=α Kβ

h ,
∑

α ϕα(x) = 1 for x ∈ Ω, |∇ϕα(x)| �
Ch−1−γ/p.

Denote by Kα
h′ and Πα

h the cube of side length h′ centred at the point xα, and
the set Kα

h \ Kα
h′ , respectively.

Lemma 5.1. Imagine that assumptions 4.1 and 4.4 hold. Then, for each h > 0,
there exist sets Bε

h ⊂ Ωε
f and functions Y ε

h such that:

(i) 0 � Y ε
h (x) � 1 in Ω;

(ii) Y ε
h (x) = 1 in Ωε

f \ Bε
h;

(iii) lim supε→0 µε meas Bε
h = O(hγ) as h → 0;

(iv) for any function w ∈ C1(Ω), we have

lim sup
ε→0

µε

∫
Ω

{aε(x)|∇Y ε
h |p + g(x)|Y ε

h |p}|w|p dx �
∫

Ω

B(x)|w|p dx + o(1),

(5.1)
as h → 0.

Proof of lemma 5.1. Let wε,α
h be a minimizer of the functional in (4.2) with z = xα.

It follows from assumption 4.4 that, as h → 0,

lim sup
ε→0

µε

∫
Πα

h

{aε(x)|∇wε,α
h |p + g(x)1ε

m(x)|wε,α
h |p} dx = o(hn), (5.2)

lim sup
ε→0

µε

∫
Πα

h

1ε
f (x)|wε,α

h − 1|p dx = o(hn+p+γ). (5.3)
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In addition, using assumptions 4.1 and 4.4, we obtain

lim sup
ε→0

µε

∫
Kα

h

{aε(x)|∇wε,α
h |p + g(x)|wε,α

h |p} dx � hnB(xα) + o(hn) as h → 0.

(5.4)
Besides, since wε,α

h minimizes the functional in (4.2) we obtain 0 � wε,α
h (x) � 1 and

lim sup
ε→0

µε meas Bε,α
h � Chn+γ , (5.5)

where Bε,α
h = {x ∈ Kα

h ∩ Ωε
f : wε,α

h � 1 − h}. The inequality (5.5) means that the
measure of the set Bε,α

h , where the function wε,α
h minimizing the functional in (4.2)

is not close to 1, is small with respect to the measure of the set Ωε
f ∩ Kα

h .
Let us introduce the function

W ε,α
h =

{
1, if wε,α

h � 1 − h,

(1 − h)−1wε,α
h , otherwise.

(5.6)

It is clear that |W ε,α
h − 1| � |wε,α

h − 1|. One can easily show that the function W ε,α
h

satisfy the estimates (5.2)–(5.4). We set

Bε
h =

⋃
α

Bε,α
h , Y ε

h (x) =
∑
α

W ε,α
h (x)ϕα(x).

Then, using the properties of the functions W ε,α
h and {ϕα} and taking into account

the estimate (5.5), it is easy to show that the functions Y ε
h (x) and the sets Bε

h

satisfy lemma 5.1(i)–(iv). This completes the proof of lemma 5.1.

Lemma 5.2. Let assumptions 4.2 and 4.3 hold and let w be a smooth function in Ω.
Then, for any h > 0 and M ∈ {1, 2, . . . }, there exist functions W ε

Mh ∈ W 1,p(Ω),
such that:

(i) |W ε
Mh(x) − w(x)| � CMh in Ω;

(ii) |W ε
Mh(x) − W ε

Mh(y)| � CM |x − y| for any x, y ∈ Ω;

(iii) the inequality

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Ωε

f

aε(x)|∇W ε
Mh|p dx �

∫
Ω

A(x,∇w) dx

holds.

Proof of lemma 5.2. Let w be a smooth function in Ω and let vε,α
h be a minimizer

of the functional in (4.1) for z = xα and q = ∇w(xα). Since vε,α
h minimizes the

functional in (4.1), we have

sup
x∈Kα

h ∩Ωε
f

|vε,α
h (x)| � 1

2h. (5.7)
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Besides, by virtue of assumption 4.3, for ε small enough (ε � ε̂(h)), we have

µε

∫
Πα

h ∩Ωε
f

|∇vε,α
h |p dx = o(hn), (5.8)

µε

∫
Πα

h ∩Ωε
f

|vε,α
h − (x − xα,∇w(xα))|p dx = o(hn+p+γ), (5.9)

µε

∫
Kα

h ∩Ωε
f

aε(x)|∇vε,α
h |p dx � hnA(xα,∇w(xα)) + o(hn) (5.10)

as h → 0. The estimates (5.8)–(5.10) are uniform with respect to xα on any compact
subset of Ω.

Let us consider the function

wε
h(x) =

∑
α

{w(x) + vε,α
h (x) − (x − xα,∇w(xα))}ϕα(x). (5.11)

Then, using (5.8)–(5.10) and the properties of the functions ϕα, we obtain

µε

∫
Ωε

f

aε(x)|∇wε
h|p dx �

∫
Ω

A(x,∇w) dx + o(1) (5.12)

as ε � ε̂(h) and h → 0. Besides, according to (5.7) and (5.11), we have

sup
x∈Ωε

f

|wε
h(x) − w(x)| � Ch. (5.13)

Since the domains Ωε
f satisfy the SC condition (see definition 3.4), for any M =

1, 2, . . . , there exist sets Qε
Mh and functions W ε

Mh ∈ Lip(M, Ω) such that W ε
Mh =

wε
h in Ωε

f \ Qε
Mh, and

lim sup
M→∞

Mp lim sup
h→0

lim sup
ε→0

µε meas Qε
Mh = 0. (5.14)

Now the statements of the lemma follow from (5.12), (5.13) and the properties of
the functions W ε

Mh. Lemma 5.2 is proved.

Lemma 5.3. Let assumptions 4.1 and 4.4 hold. For any function w ∈ W 1,p(Ω),
there then exists a sequence {wε ∈ C1(Ω)} that Dp

Ωε
f
-converges to w and such that

lim sup
ε→0

Iε[wε] ≡ lim sup
ε→0

µε

∫
Ω

{aε(x)|∇wε|p + g(x)|wε|p} dx � C0‖w‖p
1,Ω , (5.15)

where C0 > 0 is independent of w.

Proof of lemma 5.3. The proof of the lemma will be given in two steps.

Step 1. Let us first assume that w ∈ C∞(Ω). We then construct a sequence {wε}
as follows. Consider the function wε

h(x) = w(x)Y ε
h (x), where Y ε

h (x) is defined in
lemma 5.1. According to lemma 5.1, there exist sets Bε

h ⊂ Ωε
f with meas Bε

h �
Chγ meas Ωε

f (here ε is sufficiently small; ε � ε̃(h)), such that wε
h = w in Ωε

f \ Bε
h

and ∫
Bε

h

|wε
h − w|p dx �

∫
Bε

h

|w|p dx. (5.16)
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Consider now the integral Iε[wε
h] (see (5.15)). Using (2.6) it is easy to show that

Iε[wε
h] � a−1

0 µε

∫
Ωε

f

|∇w|p dx + 2p−1µε

∫
Ω

{aε(x)|∇Y ε
h |p + g(x)|Y ε

h |p}|w|p dx

+ 2p−1µε

∫
Bε

h∪Ωε
m

aε(x)|Y ε
h |p|∇w|p dx. (5.17)

Moreover, it follows from condition (2.7) and lemma 5.1 that

lim sup
ε→0

µε

∫
Bε

h∪Ωε
m

aε(x)|Y ε
h |p|∇w|p dx = O(hγ)

as h → 0. On the other hand, assumption 4.1 and equation (2.2) imply the conver-
gence

µε

∫
Ωε

f

|∇w|p dx →
∫

Ω

ρ(x)|∇w|p dx, as ε → 0. (5.18)

Define a sequence {ε̂j}, ε̂j ↓ 0, such that for each hj = 1/j, it holds that ε̂j � ε̂(hj)
and set

wε = wε
h|h=1/j when ε̂j � ε > ε̂j+1.

It follows from (5.17), (5.18) and lemma 5.1(iv) that {wε} satisfies (5.15) with
C0 = max{a−1

0 maxx∈Ω ρ(x), 2m−1 maxx∈Ω B(x)}. From the definition of the func-
tion wε and (5.16) we also get

lim
ε→0

1
meas Ωε

f

∫
Ωε

f

|wε − w|p dx = 0. (5.19)

This means that the sequence {wε} Dp
Ωε

f
-converges to the function w (see remark

3.2).
Clearly, the functions wε can be approximated by smooth functions in such a

way that, for the approximation sequence, (5.15) and (5.19) hold true.

Step 2. Now consider an arbitrary function w ∈ W 1,p(Ω), and approximate w by
the smooth functions wM ∈ Lip(M, Ω), M = 1, 2, . . . , such that

‖w − wM‖1,Ω � 1
k(M)

with k(M) → +∞ as M → +∞. (5.20)

According to step 1, there is a sequence {wε
M} such that

1
meas Ωε

f

∫
Ωε

f

|wε
M − wM |p dx � 1

M
, (5.21)

and
Iε[wε

M ] � C1‖w‖p
1,Ω ,

where ε is sufficiently small, ε � δ(M), C1 does not depend on ε and M . Here
δ(M) → 0 as M → ∞. Moreover, in view of (2.2), δ(M) can be chosen in such a
way that, as ε � δ(M),

1
meas Ωε

f

∫
Ωε

f

|wM − wL|p dx � C2‖wM − wL‖p
Ω , for all L = 1, . . . , M − 1, (5.22)
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with a constant C2 independent of ε and M . We choose a sequence {δ̂j}j=1,2,...,
δj ↓ 0, such that δj � δ(j) and set

wε = wε
M for ε ∈ ]δ̂M+1, δ̂M ].

It is easy to see that the sequence {wε} satisfies (5.15). Moreover,

1
meas Ωε

f

∫
Ωε

f

|wε − wM0 |p dx � 2
meas Ωε

f

∫
Ωε

f

|wε
M − wM |p dx + 2C2‖wM − wM0‖

p
Ω

for any M0 and ε ∈ ]δ̂M+1, δ̂M ]. Therefore, according to (5.20)–(5.22), the sequence
{wε} Dp

Ωε
f
-converges to w. Lemma 5.3 is proved.

Lemma 5.4. Let assumptions 4.1–4.3 hold, and let {vε ∈ C1(Ωε
f )} be a sequence

satisfying (3.3). There then exists a family of continuous functions {vε
M}, M =

1, 2, . . . , in Ω such that the following conditions apply.

(i) lim
M→∞

Mp lim sup
ε→0

µε meas{x ∈ Ωε
f : vε(x) �= vε

M (x)} = 0.

(ii) vε
M ∈ Lip(CM, Ω) with a constant C > 0 independent of ε and M .

(iii) For any M , there exists a subsequence {v
εj

M}, εj → 0, converging uniformly
in Ω to a function vM ∈ Lip(CM, Ω).

(iv) For any sequence of sets Qε
M ⊂ Ωε

f such that

lim
M→∞

Mp lim sup
ε→0

µε meas Qε
M = 0, (5.23)

we have

lim inf
ε=εj→0

{
µε

∫
Ωε

f \Qε
M

aε(x)|∇vε|p dx −
∫

Ω

A(x,∇vM ) dx

}
= o(1), (5.24)

as M → ∞. Moreover,

lim
M→∞

lim sup
ε→0

µε‖vε‖p
Qε

M
= 0. (5.25)

Proof of lemma 5.4. Using 4.2 we have that there is a set Gε
M such that

µε meas Gε
M = M−pφ(M) and µε‖vε‖p

Gε
M

= φ(M)

for ε � ε0(M) with φ(M) → 0 as M → ∞ and vε ∈ Lip(M, Ωε
f \ Gε

M ). This implies
that (5.25) holds. Moreover, according to Witney’s theorem [26], the functions vε

can be extended to Ω so that vε
M ∈ Lip(CM, Ω) and vε = vε

M in Ωε
f \ Gε

M , where
C > 0 is independent of ε and M . Then, for any fixed M , {vε

M} is a compact set
in C(Ω̄). Therefore, there is a subsequence {v

εj

M}, εj → 0, converging uniformly
in Ω to a function vM ∈ Lip(CM, Ω). Thus, the family {vε

M} satisfies assertions
(i)–(iii) of lemma 5.4.

It remains to prove lemma 5.4(iv). Let vMδ be a smooth function in Ω such that

‖vMδ − vM‖1,Ω < δ. (5.26)
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We want to construct a sequence {vε
Mδ} satisfying

lim sup
ε→0

µε‖vε
Mδ‖

p
1,Ωε

f
� Cδp and lim sup

ε→0
µε‖vε

Mδ − (vMδ − vM )‖p
Ωε

f
= 0. (5.27)

For this we introduce a sequence of smooth functions wk such that, for any k =
1, 2, . . . , ∫

Ω

|∇wk|p dx � δp +
1
k

and
∫

Ω

|wk − (vMδ − vM )|p dx � 1
k

.

Then, since wk, |∇wk|, vMδ and vM are continuous functions in Ω, from (2.2)
and assumption 4.1 we obtain

lim
ε→0

µε

∫
Ωε

f

|∇wk|p dx =
∫

Ω

|∇wk|pρ(x) dx,

lim
ε→0

µε

∫
Ωε

f

|wk − (vMδ − vM )|p dx =
∫

Ω

|wk − (vMδ − vM )|pρ(x) dx.

This implies that there exists a sequence {ε̂k}, ε̂k ↓ 0, such that

µε

∫
Ωε

f

|∇wk|p dx � C

(
δp +

1
k

)
, µε

∫
Ωε

f

|wk − (vMδ − vM )|p dx � C

k
,

as ε < ε̂k. For ε̂k+1 � ε < ε̂k we set vε
Mδ = wk. Then the sequence {vε

Mδ} satis-
fies (5.27).

In order to prove (5.24) we first note that
∫

Ωε
f

aε(x)|∇vε
M |p dx =

∫
Ωε

f

aε(x)|∇(vε
M + vε

Mδ)|p dx

+
∫

Ωε
f

aε(x){|∇vε
M |p − |∇(vε

M + vε
Mδ)|p} dx.

Then, according to (5.27) we have

lim inf
ε→0

µε

∫
Ωε

f

aε(x)|∇vε
M |p dx � lim inf

ε→0
µε

∫
Ωε

f

aε(x)|∇(vε
M + vε

Mδ)|p dx + ξ1(δ),

(5.28)
where ξ1(δ) → 0 as δ → 0.

Now we cover the domain Ω by cubes Kα
h = {x ∈ Ω : |xl − yα

l | � h/2} with non-
intersecting interiors. Consider an arbitrary cube Kα

h such that Kα
h ∩ ∂Ω = ∅. We

set
ψε

Mδ(x) = vε
M (x) + vε

Mδ(x) − vMδ(yα).

The sequence {v
εj

M} converges uniformly in Ω to vM as εj → 0. Then (5.27) implies
that
∫

Ωε
f ∩Kα

h

aε(x)|∇ψε
Mδ|p dx

=
∫

Ωε
f ∩Kα

h

{aε(x)|∇ψε
Mδ|p + h−p−γ |ψε

Mδ − (∇vMδ(yα), x − yα)|p} dx − ξα
2 (ε, h, M)
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with lim supε=εj→0 ξα
2 (ε, h, M) = O(hn+p−γ) as h → 0. Therefore, it follows from

assumption 4.3 that

lim inf
ε=εj→0

µε

∫
Ωε

f

aε(x)|∇(vε
M + vε

Mδ)|p dx = lim inf
ε=εj→0

µε

∫
Ωε

f

aε(x)|∇ψε
Mδ|p dx

�
∫

Ω

A(x,∇vMδ) dx. (5.29)

Now, passing to the limit in (5.29) as δ → 0 and using (5.26), (5.28) we obtain

lim inf
ε=εj→0

µε

∫
Ωε

f

aε(x)|∇vε
M |p dx �

∫
Ω

A(x,∇vM ) dx. (5.30)

Finally, it is easy to see that

lim inf
ε=εj→0

µε

∫
Ωε

f \Gε
M

aε(x)|∇vε|p dx � lim inf
ε=εj→0

µε

∫
Ωε

f

aε(x)|∇vε
M |p dx − ξ(M), (5.31)

where

ξ(M) = lim sup
ε→0

µε

∫
Gε

M ∪Qε
M

aε(x)|∇vε
M |p dx = o(1) as M → ∞.

Assertion (iv) of Lemma 5.4 follows from (5.30) and (5.31). This completes the
proof of Lemma 5.4.

6. Proof of theorem 4.5

We begin this section by obtaining a priori estimates for the minimizer of prob-
lem (2.4):

Jε[uε] ≡ µε

∫
Ω

{aε(x)|∇uε|p + g(x)|uε|p − pSε(x)uε} dx → inf, uε ∈ W 1,p(Ω),

(6.1)
Since Jε[uε] � Jε[0] = 0, by virtue of the Young inequality and (2.5) we have

µε

∫
Ω

{aε(x)|∇uε|p + g(x)|uε|p} dx � C1µ
ε‖S‖p′

Ωε
f

� C2, (6.2)

where the constants C1 and C2 do not depend on ε. It then follows from (6.2) that

µε‖uε‖p
1,Ωε

f
� C. (6.3)

Hence, {uε} is a Dp
Ωε

f
-compact set and one can extract a subsequence (still denoted

by {uε}) Dp
Ωε

f
-converging to a function u ∈ Lp(Ω). Let us show that u = u(x) is a

solution of the variational problem (4.5). This will be done in two steps.

6.1. Step 1. Upper bound

Let w = w(x) be an arbitrary smooth function in Ω and let Y ε
h , W ε

Mh, Bε
h be the

same as in lemmas 5.1 and 5.2. We set

ϑε
Mh(x) = Y ε

h (x)W ε
Mh(x).

It is clear that ϑε
Mh ∈ W 1,p(Ω).
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First we prove that

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

Jε[ϑε
Mh] � Jhom[w], (6.4)

where
Jhom[w] =

∫
Ω

{A(x,∇w) + B(x)|w|p − pρ(x)S(x)w} dx (6.5)

with B(x) = (gρ + b)(x). We have

Jε[ϑε
Mh] = µε

∫
Ω

{aε(x)|∇ϑε
Mh|p + g(x)|ϑε

Mh|p − pSε(x)ϑε
Mh} dx. (6.6)

Consider the third term in (6.6). It follows from assumption 4.1, (2.5), lemmas 5.1(i),
(ii), and 5.2(i) that

lim
M→∞

lim
h→0

lim sup
ε→0

µε

∫
Ω

Sε(x)ϑε
Mh(x) dx =

∫
Ω

S(x)w(x)ρ(x) dx. (6.7)

Consider the second term in (6.6). We have

µε

∫
Ω

g(x)|ϑε
Mh|p dx = µε

∫
Ω

g(x)|Y ε
h |p|w|p dx+µε

∫
Ω

g(x)|Y ε
h |p{|W ε

Mh|p−|w|p} dx.

(6.8)
By lemmas 5.1(iv) and 5.2(i) we obtain

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Ω

g(x)|Y ε
h |p{|W ε

Mh|p − |w|p} dx = 0. (6.9)

For the first term in (6.6) we have

µε

∫
Ω

aε(x)|∇ϑε|p dx = µε

∫
Ωε

f \Bε
h

aε(x)|∇W ε
Mh|p dx

+ µε

∫
Bε

h

aε(x)|∇Y ε
h W ε

Mh + ∇W ε
MhY ε

h |p dx

+ µε

∫
Ωε

m

aε(x)|∇Y ε
h W ε

Mh + ∇W ε
MhY ε

h |p dx. (6.10)

Assertion (iii) of lemma 5.2 implies that the following limit relation holds:

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Ωε

f \Bε
h

aε(x)|∇W ε
Mh|p dx �

∫
Ω

A(x,∇w) dx. (6.11)

It is clear that

µε

∫
Bε

h

aε|∇Y ε
h W ε

Mh + ∇W ε
MhY ε

h |p dx

= µε

∫
Bε

h

aε|∇Y ε
h |p|w|p dx

+ µε

∫
Bε

h

aε|∇Y ε
h |p{|W ε

Mh|p − |w|p} dx

+ µε

∫
Bε

h

aε{|∇ϑε
Mh|p − |∇Y ε

h W ε
Mh|p} dx. (6.12)
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Lemmas 5.1(iv) and 5.2(i) imply that

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Bε

h

aε(x)|∇Y ε
h |p{|W ε

Mh|p − |w|p} dx = 0. (6.13)

Assertions (i), (iii) and (iv) of lemma 5.1 and (i) and (ii) of lemma 5.2 imply that

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Bε

h

aε(x){|∇ϑε
Mh|p − |∇Y ε

h W ε
Mh|p} dx = 0. (6.14)

For the third term on the right-hand side of (6.10) we have

µε

∫
Ωε

m

aε|∇Y ε
h W ε

Mh + ∇W ε
MhY ε

h |p dx

= µε

∫
Ωε

m

aε|∇Y ε
h |p|w|p dx

+ µε

∫
Ωε

m

aε|∇Y ε
h |p{|W ε

Mh|p − |w|p} dx

+ µε

∫
Ωε

m

aε{|∇ϑε
Mh|p − |∇Y ε

h W ε
Mh|p} dx (6.15)

and by the condition (2.7) and lemmas 5.1(i), (iv), and 5.2(i), (ii), we obtain

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Ωε

m

aε(x)|∇Y ε
h |p{|W ε

Mh|p − |w|p} dx = 0 (6.16)

and

lim sup
M→∞

lim sup
h→0

lim sup
ε→0

µε

∫
Ωε

m

aε(x){|∇ϑε
Mh|p − |∇Y ε

h W ε
Mh|p} dx = 0. (6.17)

We now obtain (6.4) from (6.7)–(6.17) and assertion (iv) of lemma 5.1. Since uε

minimizes the functional Jε, it follows from (6.4) that

lim sup
ε→0

Jε[uε] � Jhom[w] (6.18)

for any smooth function w. By density arguments, (6.18) also holds for any function
w ∈ W 1,p(Ω).

6.2. Step 2. Lower bound

Let {uε} be a sequence of solutions of the variational problem (6.1) which Dp
Ωε

f
-

converges to a function u. We want to show that

lim inf
ε→0

Jε[uε] � Jhom[u]. (6.19)

According to lemma 5.4 there exists a family of functions

{uε
M ∈ Lip(CM, Ω), M = 1, 2, . . . }

such that
lim

M→∞
lim sup

ε→0
µε‖uε − uε

M‖p
Ωε

f
= 0. (6.20)
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Moreover, for any M , there is a subsequence {u
εj

M}, εj → 0, converging uniformly
in Ω to a function uM , and

lim inf
ε=εj→0

µε

∫
Ωε

f

aε(x)|∇uε|p dx � lim sup
M→∞

∫
Ω

A(x,∇uM ) dx − ξ(M), (6.21)

where ξ(M) → 0 as M → ∞. Since the sequence {uε} Dp
Ωε

f
-converges to u and

{u
εj

M} converges uniformly to uM , (6.20) implies that the functions uM converge
in Lp(Ω) to u as M → ∞. In addition, it follows from (6.21) and (4.4) that the
sequence {uM} is bounded in W 1,p(Ω). Thus, u ∈ W 1,p(Ω).

Let us approximate u by smooth functions uδ(x), δ > 0, in Ω,

‖uδ − u‖p
1,Ω � δ, (6.22)

and set wδ(x) = uδ(x) − u(x). By virtue of lemma 5.3 there exists a sequence {wε
δ}

that Dp
Ωε

f
-converges to wδ and satisfies the bound

lim sup
ε→0

Iε[wε
δ ] � Cδ, (6.23)

where C does not depend on uδ, and the functional Iε is defined by (5.15). We set

uε
δ = wε

δ + uε. (6.24)

The sequence {uε
δ} Dp

Ωε
f
-converges to uδ and according to (6.23),

lim
ε→0

Jε[uε
δ] � lim inf

ε→0
Jε[uε] + iε(δ), (6.25)

where iε(δ) → 0 as δ → 0 (by passing, if necessary, to a subsequence we can assume
that the limit on the right-hand side of (6.25) exists).

Since uδ(x) is a smooth function, from remark 3.2 we may deduce that

lim
ε→0

µε‖uε
δ − uδ‖p

Ωε
f

= 0. (6.26)

Inequality (6.25) and lemma 5.4 imply the existence of functions

uε
δM ∈ Lip(CM, Ω), M = 1, 2, . . . ,

and sets Qε
M such that uε

δM (x) = uε
δ(x) for x ∈ Ωε

f \ Qε
M and

µε meas Qε
M = M−pφ(M), µε‖uε

δ‖
p
Qε

M
= φ(M)

for ε � ε̂(M) and φ(M) → 0 as M → ∞. Moreover, for any M ∈ {1, 2, . . . } fixed,
one can extract a subsequence {u

εj

δM}, εj → 0, converging uniformly in Ω to a
function uδM ∈ Lip(CM, Ω). At the same time, due to condition (2.2), functions
uδM converge in Lp(Ω) to uδ as M → ∞, since
∫

Ω

|uδM − uδ|p dx

� C lim sup
ε=εj→0

µε

∫
Ωε

f

{|uδM − uε
δM |p + |uε

δM − uε
δ|p + |uε

δ − uδ|p} dx −−−−→
M→∞

0.
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It follows from (6.26) that there exist a sequence {rε > 0}, rε → 0, and sets Bε
M

such that

lim
ε→0

µε meas Bε
M = 0 and |uε

δM (x) − uδ(x)| � rε in Ωε
f \ Zε

M ,

where Zε
M = Qε

M ∪ Bε
M . Let us define the functions

vε
δM (x) =

⎧⎪⎨
⎪⎩

uδ(x) + rε, if uε
δM (x) > uδ(x) + rε,

uε
δM (x), if |uε

δM (x) − uδ(x)| � rε,

uδ(x) − rε, if uε
δM (x) < uδ(x) − rε.

(6.27)

Clearly, vε
δM ∈ Lip(CM, Ω). Moreover, the functions vε

δM converge uniformly in Ω
to uδ as ε → 0.

We set V ε
δM = uε

δ − vε
δM and consider the left-hand side of the inequality (6.25).

Since vε
δM (x) = uε

δ(x) for x ∈ Ωε
f \ Zε

M , we have

Iε[uε
δ] = µε

(∫
Ωε

f

aε(x)|∇V ε
δ |p dx +

∫
Ωε

m

{aε(x)|∇uε
δ|p + g(x)|uε

δ|p} dx

)

+ µε

(∫
Ωε

f \Zε
M

aε(x)|∇uε
δ|p dx +

∫
Ωε

f

g(x)|uε
δ|p dx

)

+ µε

(∫
Ωε

f ∩Zε
M

aε(x)|∇uε
δ|p dx −

∫
Ωε

f ∩Zε
M

aε(x)|∇(uε
δ − vε

δM )|p dx

)

≡ θ1 + θ2 + θ3. (6.28)

Consider the first term on the right-hand side of (6.28). First we define Ωζ ⊂ Ω:

Ωζ = {x ∈ Ω : |uδ(x)| > 2ζ},

where ζ > 0. Let us cover Ωζ by cubes Kα
h of length h centred at xα with non-

intersecting interiors. For ε and h sufficiently small, we have |vε
δM | > ζ in Kα

h . One
can show that for x ∈ Ωε

f ∩ Kα
h we have

(1 + A1h
p/p−1)aε(x)|∇(uε

δ − vε
δM )|p

� aε(x)|vε
δM |p

∣∣∣∣∇
(

uε
δ

vε
δM

)∣∣∣∣
p

− a−1
0 A2

(
1 +

1
hp

)
|uε

δ − vε
δM |p |∇vε

δM |p
|vε

δM |p , (6.29)

where A1 and A2 are positive constants independent of ε, δ and M . In a similar
way, for x ∈ Ωε

f ∩ Kα
h we have

(1 + A1h
p/p−1)aε(x)|∇uε

δ|p

� aε(x)|vε
δM |p

∣∣∣∣∇
(

uε
δ

vε
δM

)∣∣∣∣
p

− a2(ε)A2

(
1 +

1
hp

)
|uε

δ|p
|∇vε

δM |p
|vε

δM |p , (6.30)

where a2(ε) is defined in (2.7).
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Now we make use of (6.26) and of the definition of the function vε
δM (x) and its

properties. For any Kα
h ⊂ Ωζ , we obtain

µε

∫
Kα

h ∩Ωε
f

aε(x)|∇V ε
δM |p dx + µε

∫
Kα

h ∩Ωε
m

{aε(x)|∇uε
δ|p + g(x)|uε

δ|p} dx

� |uδ(xα)|pµε

{∫
Kα

h

aε(x)
∣∣∣∣∇

(
uε

δ

vε
δM

)∣∣∣∣
p

dx +
∫

Kα
h ∩Ωε

m

g(x)
∣∣∣∣ uε

δ

vε
δM

∣∣∣∣
p

dx

}
+ o(hn),

(6.31)

for ε small enough (ε � ε̂(h)) and h → 0. Assumption 4.4 implies that

lim inf
ε→0

µε

{∫
Kα

h

aε(x)
∣∣∣∣∇

(
uε

δ

vε
δM

)∣∣∣∣
p

dx +
∫

Kα
h ∩Ωε

m

g(x)
∣∣∣∣ uε

δ

vε
δM

∣∣∣∣
p

dx

}
� hnb(xα) + o(hn)

(6.32)
as h → 0. It now follows from (6.31) and (6.32) that

lim inf
ε→0

θ1 �
∫

Ωζ

b(x)|uδ|p dx. (6.33)

Taking into account the definition of Ωζ and passing to the limit as ζ → 0 in (6.33),
we get

lim inf
ε→0

θ1 �
∫

Ω

b(x)|uδ|p dx. (6.34)

In order to estimate θ2 from below in (6.28) we argue as follows. Using lemma 5.4,
(6.26) and assumption 4.1, we obtain

lim inf
ε=εj→0

θ2 �
∫

Ω

A(x,∇uδM ) dx +
∫

Ω

g(x)|uδ|pρ(x) dx + o(1) (6.35)

as M → ∞. Since the first term on the right-hand side of (6.35) is a weakly lower
semi-continuous functional in W 1,p(Ω), and functions uδM converge in Lp(Ω) to uδ

as M → ∞, we have

lim inf
M→∞

lim inf
ε=εj→0

θ2 �
∫

Ω

{A(x,∇uδ) + g(x)ρ(x)|uδ|p} dx. (6.36)

Finally, we consider the third term on the right-hand side of (6.28). Using (6.27)
and (2.6) we get

|θ3| � C1µ
ε

∫
Ωε

f ∩Zε
M

|∇uδ|{|∇uε
δ|p−1 + |∇uδ|p−1} dx,

where C1 is a constant independent of ε, δ and M . Since uδ(x) is a smooth function
in Ω, we finally get

|θ3| � C2µ
ε

∫
Ωε

f ∩Zε
M

{1 + |∇uε
δ|p−1} dx, (6.37)

where C2 is a constant independent of ε and M . It is now easy to see that the
definition of the function uε

δ, (6.24), (6.3), (6.23), the estimate for the measure
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of Zε
M , and Hölder’s inequality yield

lim
M→∞

lim sup
ε→0

|θ3| = 0. (6.38)

Thus, it follows from (6.34), (6.36), (6.38), (2.5) and assumption 4.1 that

lim inf
ε→0

Jε[uε
δ] � Jhom[uδ]. (6.39)

This inequality, (6.22), and (6.25) immediately yield (6.19).
Inequalities (6.18), (6.19) mean that if a subsequence of solutions of problem

(6.1) Dp
Ωε

f
-converges to a function u = u(x), then u minimizes the functional Jhom

in W 1,p(Ω), i.e. u is a solution of the problem (4.5). Since b(x) � 0, this prob-
lem has a unique solution and the whole sequence of solutions of problem (6.1)
Dp

Ωε
f
-converges to the function u. This completes the proof of theorem 4.5.

7. Periodic examples

As an application of the previous general result, we now give two examples of
fissured media, where the distribution of the fracture part is specified.

Theorem 4.5 of § 4 provides sufficient conditions for the existence of the homog-
enized problem (4.5). The goals of this section are to prove that, for appropriate
periodic examples, all the conditions of theorem 4.5 are satisfied and to compute the
coefficients of the homogenized problem (4.5) explicitly. We will study the following
variational problem:

µε

∫
Ω

{aε(x)|∇uε|p + g|uε|p − pSε(x)uε} dx → inf, uε ∈ W 1,p(Ω), (7.1)

where p � 2 and

aε(x) = αf1ε
f (x) + αmεθ1ε

m(x), Sε(x) = 1ε
f (x)S(x), (7.2)

with S ∈ Lp′
(Ω), g, αf and αm are strictly positive constants and θ > 0 is a param-

eter.
In the following subsections we study a periodic thin connected microstructure Ωε

f
of two different types.

7.1. Two-dimensional periodic example

Let Ω = Ωε
f ∪ Ω̄ε

m be a bounded domain in R
2 with piecewise smooth bound-

ary ∂Ω. We define the set Ωε
f as follows. Let Pε ⊂ R

2 be the simplest lattice struc-
ture consisting of two ε-periodic systems of thin strips oriented in the coordinate
directions. The width of the strips is equal to dε, given by

dε = dεθ/p, d > 0, θ > p � 2. (7.3)

This case describes the critical thickness of the fissures when the exchange process
between the matrix and the fissures is not negligible. We set Ωε

f = Ω ∩ Pε. Then
Ωε

m is made of periodically (with period ε) distributed squares Mε
i with centres at

xi,ε ∈ Ω.
Let us formulate the homogenization result for this example.
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Theorem 7.1. Let {uε} be the sequence of solutions of problem (7.1), (7.2). {uε}
then Dp

Ωε
f
-converges to u the solution of the problem:

∫
Ω

{ 1
2αf(|ux1 |p + |ux2 |p) + B|u|p − pS(x)u} dx → inf, u ∈ W 1,p(Ω), (7.4)

where

B = g +
2(αm)1/p

d

(
g

p − 1

)(p−1)/p

. (7.5)

7.1.1. Proof of theorem 7.1

We must verify assumptions 4.1–4.4 and calculate the functions ρ(x), A(x, q),
and b(x). For this example, the main difficulty is the verification of assumption 4.4.

First, it is easy to see that meas Ωε
f = 2dεε

−1 meas Ω + o(1) as ε → 0 and, con-
sequently,

µε =
ε

2dε
+ o(1), ε → 0. (7.6)

Now let Kz
h be an open square with length h (0 < ε 
 h < 1) centred at z ∈ Ω.

First we check assumption 4.1. Since meas(Kz
h ∩ Ωε

f ) ∼ 2dεε
−1h2, it is clear that

assumption 4.1 is satisfied and
ρ(x) = 1. (7.7)

The fact that the family of domains {Ωε
f } satisfies assumption 4.2 (the SC con-

dition) is known from [27] (see also [20]).
Assumption 4.3 was considered in [3, 23] in a more general situation. Applying

the results of [23] we get

A(x, q) = 1
2αf(|q1|p + |q2|p). (7.8)

It remains to check assumption 4.4. Denote by M the unit square in the space R
2,

M = {x ∈ R
2 : |xi| < 1

2}. Consider the following boundary-value problem:

∆pW
ε + βε|W ε|p−2W ε = 0 in M,

W ε = 1 on ∂M,

}
(7.9)

where ∆p denotes the p-Laplacian and

βε =
g

αm

(ε − dε)p

εθ
. (7.10)

The functional bε,h(z) in our case has the form:

bε,h(z) = inf
wε

µε

∫
Kz

h

{aε(x)|∇wε|p + g1ε
m|wε|p + h−p−γ1ε

f |wε − 1|p} dx, (7.11)

where aε is defined in (7.2) and the infimum is taken over wε ∈ W 1,p(Kz
h). We seek

for a function wε minimizing (7.11) in the form

wε(x) = ϑε(x) + ζε(x), (7.12)



1150 B. Amaziane, L. Pankratov and A. Piatnitski

where

ϑε(x) =

⎧⎨
⎩

W ε

(
x − xi,ε

ε − dε

)
in Mε

i ∩ Kz
h,

1 in Ωε
f ∩ Kz

h.

(7.13)

Then

bε,h(z) = µε

∫
Kz

h

{aε(x)|∇ϑε + ∇ζε|p + g1ε
m|ϑε + ζε|p + h−p−γ1ε

f |ϑε + ζε − 1|p} dx.

(7.14)
We will prove that the function ζε gives a vanishing contribution (as ε → 0 and

h → 0) in (7.11). Since the function wε = ϑε + ζε minimizes the functional (7.11),
and ϑε = 1 in Ωε

f , we have

bε,h(z) � µε

∫
Kz

h

{aε(x)|∇ϑε|p + g1ε
m|ϑε|p} dx ≡ Θε,h(z). (7.15)

Now let us estimate the functional (7.11) from below. To this end we make use of

|ξ1 + ξ2|p � |ξ1|p + δp|ξ2|p + p|ξ1|p−2(ξ1, ξ2), (7.16)

where ξ1 and ξ2 are arbitrary vectors from the space R
n, n = 2, 3, 0 < δp � 1

(δp = 1 when p = 2). We have

bε,h(z) � Θε,h(z) + δpµ
ε

∫
Kz

h

{aε(x)|∇ζε|p + g1ε
m|ζε|p + h−p−γ1ε

f |ζε|m} dx

+ pµε

∫
Kz

h

{aε(x)|∇ϑε|p−2(∇ϑε,∇ζε) + g1ε
mϑε|∇ϑε|p−2ζε} dx. (7.17)

It now follows from (7.9), (7.15) and (7.17) that

Υ ε,h[ζε] ≡ µε

∫
Kz

h

{aε(x)|∇ζε|p + g1ε
m|ζε|p + h−p−γ1ε

f |ζε|p} dx

� αmpεθµε

δp

∫
Kz

h∩∂Ωε
m

∣∣∣∣∂ϑε

∂ν

∣∣∣∣|∇ϑε|p−2|ζε| dσ. (7.18)

It is easy to see that, for any v ∈ W 1,p(Ω), the following inequality holds:∫
Kz

h∩∂Ωε
m

|v|pdσ � C

{
1
dε

∫
Kz

h∩Ωε
f

|v|p dx + dp−1
ε

∫
Kz

h∩Ωε
f

|∇v|p dx

}
, (7.19)

where C is a constant independent of ε. Then, from (7.18), (7.19) and Hölder’s
inequality, we obtain

Υ ε,h[ζε] � Cµεεθ

(∑
i

∫
Kz

h∩∂Mε
i

{∣∣∣∣∂ϑε

∂ν

∣∣∣∣|∇ϑε|p−2
}p/p−1

dσ

)(p−1)/p

×
(

1
dε

∫
Kz

h∩Ωε
f

|ζε|p dx + dp−1
ε

∫
Kz

h∩Ωε
f

|∇ζε|p dx

)1/p

. (7.20)

The estimate of the first factor on the right-hand side relies on the following
lemma.
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Lemma 7.2. Let ϑε be defined by (7.13), where W ε is the solution of problem (7.9).
We then have

|∇ϑε| +
∣∣∣∣∂ϑε

∂ν

∣∣∣∣ � Cε−θ/p on ∂Mε
i . (7.21)

Proof of lemma 7.2. For simplicity of notation, we assume that Mε
i = {x ∈ R

2 :
0 < xk < (ε − dε)}. It follows from (7.9) that ϑε satisfies

∆pϑ
ε − β̃ε|ϑε|p−2ϑε = 0 in Mε

i ,

ϑε = 1 on ∂Mε
i ,

}
(7.22)

where
β̃ε =

g

αmεθ
.

Consider the function

vε = exp
{

−
(

β̃ε

p − 1

)1/p

x1

}
. (7.23)

It is clear that vε(x) satisfies (7.22) and that vε(x) = 1 on the face {x1 = 0}.
Then, according to the comparison principle for quasilinear elliptic equations

(see, for example, [16]), the function (ϑε − vε)(x) attains its positive maximum (or
negative minimum) on ∂Mε

i . Since the function (ϑε − vε)(x) = 0 on the face {x1 =
0} and it is positive on the other faces of the cube Mε

i , we have

ϑε − vε � 0, x ∈ M(ε)
i . (7.24)

On the other hand, ϑε � 1 in Mε

i . It then follows from (7.24) that

1 − vε � 1 − ϑε � 0 in Mε

i (7.25)

and, since vε(0, x2) = ϑε(0, x2) = 1, we get

vε(0, x2) − vε(δ, x2)
δ

� ϑε(0, x2) − ϑε(δ, x2)
δ

� 0, δ > 0. (7.26)

Passing to the limit in (7.26) as δ → 0, we obtain

0 � ∂ϑε

∂ν
� ∂vε

∂ν
on {x1 = 0},

with
∂vε

∂ν

∣∣∣∣
x1=0

=
g

αm(p − 1)
ε−θ/p.

Moreover, since
∂ϑε

∂x2
= 0 on {x1 = 0},

we have
|∇ϑε||x1=0 � g

αm(p − 1)
ε−θ/p.

Clearly, the other faces of Mε
i can be treated in the same way. Lemma 7.2 is

proved.
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It now follows from (7.21) that

∑
i

∫
Kz

h∩∂Mε
i

{∣∣∣∣∂ϑε

∂ν

∣∣∣∣|∇ϑε|p−2
}p/p−1

dσ � C
h2

ε2 ε[(ε−θ/p)p−1]p/(p−1) = C
h2

εθ+1 .

(7.27)
Then it is easy to show that

Υ ε,h[ζε] � Ch3+(γ−2)/p(Υ ε,h[ζε])1/p

for ε sufficiently small. Therefore, the function ζε gives a vanishing contribution in
the functional bε,h(z), namely

lim sup
ε→0

Υ ε,h[ζε] = o(h2) (7.28)

as h → 0. This yields

bε,h(z) = µε

∫
Kz

h

{aε(x)|∇ϑε|p + g1ε
m|ϑε|p} dx + o(h2) (7.29)

as h → 0 for sufficiently small ε. Thus, by (7.13) and (7.29) we obtain

lim
h→0

h−2 lim sup
ε→0

bε,h(z) = lim
h→0

h−2 lim inf
ε→0

bε,h(z)

= lim
ε→0

µεg

∫
M

W ε(x)|W ε(x)|p−2 dx, (7.30)

provided that the last limit exists.
Now it remains to obtain an asymptotic formula for the integral in (7.30). Let

Uε(x) =
2∑

j=1

{V +
εj (x) + V −

εj (x)} (7.31)

with

V ±
εj (x) = exp

{
±

(
βε

p − 1

)1/p

(xj ∓ 1
2 )

}
, j = 1, 2, (7.32)

and βε defined in (7.10). Following the arguments from [25, lemma 7.2], we can
show that

lim
ε→0

µεg

∫
M

W ε(x)|W ε(x)|p−2 dx = lim
ε→0

µεg

∫
M

(Uε(x))p−1 dx

= lim
ε→0

4µεg

∫
M

(V +
ε1(x))p−1 dx. (7.33)

After straightforward computation we have

4µεg

∫
M

(V +
ε1(x))p−1 dx = 4

ε

2dεθ/p

εθ/p

ε
(αm)1/p

(
g

p − 1

)(p−1)/p

+ o(1), ε → 0.
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Ωε

Ωε

f

m

Ωε

Ωε

f

m

Figure 1. A three-dimensional example of the microstructure of the domain Ω.

Thus,

b(z) = b = lim
ε→0

µεg

∫
M

W ε(x)|W ε(x)|p−2 dx =
2(αm)1/p

d

(
g

p − 1

)(p−1)/p

. (7.34)

Moreover, since the solution u of (7.4) is a smooth function in Ω, it follows from
remark 3.2 that

lim
ε→0

1
meas Ωε

f
‖uε − u‖p

Ωε
f

= 0.

Thus, theorem 7.1 is proved.

Remark 7.3. Let us notice that if the thickness dε � εθ/p, then {uε}, the sequence
of solutions of problem (7.1), Dp

Ωε
f
-converges to u the solution of the following

problem:∫
Ω

{ 1
2αf(|ux1 |p + |ux2 |p) + g|u|p − pS(x)u} dx → inf, u ∈ W 1,p(Ω). (7.35)

This case corresponds to a model where the process is governed only by the fissures
system.

7.2. Three-dimensional periodic example

Let Ω = Ωε
f ∪ Ω

ε

m be a bounded domain in R
3 with piecewise smooth bound-

ary ∂Ω. Following [13], we assume that the fissures system Ωε
f , i.e. the highly

permeable material, is distributed in thin orthogonal layers of thickness dε = dεθ/p,
(d > 0, θ > p � 2) and the matrix part Ωε

m is made of low-permeability cubic
porous blocks Mε

i centred at xi,ε ∈ Ω. The centres xi,ε are periodically distributed
in Ω, with period ε (see figure 1).

Consider the variational problem (7.1), (7.2). The homogenization result for this
example is as follows.

Theorem 7.4. Let {uε} be the sequence of solutions of problem (7.1), (7.2). Then
{uε} Dp

Ωε
f
-converges to the solution u of the problem:∫

Ω

{A(∇u) + B|u|p − pS(x)u} dx → inf, u ∈ W 1,p(Ω),
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where

A(∇u) = 1
3αf(|(ux1)

2 + (ux2)
2|p/2 + |(ux1)

2 + (ux3)
2|p/2 + |(ux2)

2 + (ux3)
2|p/2)

and B is given by (7.5).

The proof of theorem 7.4 is similar to that of theorem 7.1.

Acknowledgments

The work of B.A. and L.P. has been partly supported by GdR MoMaS 2439 (funded
by CNRS, ANDRA, BRGM, CEA and EDF), which is gratefully acknowledged.
This paper was completed when L.P. was visiting the Applied Mathematics Labo-
ratory CNRS-UMR 5142 of the University of Pau. He is grateful for the invitation
and hospitality. The work of A.P. was partly supported by RFBR Grant no. 02-01-
00868.

References

1 B. Amaziane, A. Bourgeat, M. Goncharenko and L. Pankratov. Characterization of the flow
for a single fluid in excavation damaged zone. C. R. Mecanique 332 (2004), 79–84.

2 B. Amaziane, M. Goncharenko and L. Pankratov. Homogenization of a degenerate triple
porosity model with thin fissures. Eur. J. Appl. Math. 16 (2005), 335–359.

3 B. Amaziane, M. Goncharenko and L. Pankratov. ΓD-convergence for a class of quasilinear
elliptic equations in thin structures. Math. Meth. Appl. Sci. 28 (2005), 1847–1865.

4 T. Arbogast, J. Douglas and U. Hornung. Derivation of the double porosity model of single
phase flow via homogenization theory. SIAM J. Appl. Math. 21 (1990), 823–826.

5 A. Bourgeat. Overall behaviour of fractured porous media versus fractures’ size and per-
meability ratio. In Fluid flow and transport in porous media mathematical and numerical
treatment, Contemporary Mathematics, vol. 295, pp. 75–92 (Providence, RI: American
Mathematical Society, 2002).

6 A. Bourgeat, M. Goncharenko, M. Panfilov and L. Pankratov. A general double porosity
model. C. R. Acad. Sci. Paris Sér. IIb 327 (1999), 1245–1250.

7 A. Bourgeat, A. Mikelic and A. Piatnitski. On the double porosity model of a single phase
flow in random media. Asymp. Analysis 327 (2003), 311–332.

8 A. Bourgeat, G. Chechkin and A. Piatnitski. Singular double porosity model. Applic. Analy-
sis 82 (2003), 103–116.

9 A. Braides and A. Defranceschi. Homogenization of multiple integrals. Oxford Lecture Series
in Mathematics and Its Applications, vol. 12 (Oxford: Clarendon, 1998).
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