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Homogenization of a random

non-stationary convection-diffusion problem

M. L. Kleptsyna and A. L. Pyatnitskii [Piatnitskii]

Abstract. The homogenization problem is studied for a non-stationary convection-
diffusion equation with rapidly oscillating coefficients periodic in the spatial variables
and stationary random in the time. Under the assumption that the coefficients of
the equation have rather good mixing properties, it is shown that, in properly chosen
moving coordinates, the distribution of the solution of the original problem converges
to the solution of the limit stochastic partial differential equation. The homogenized
problem is well-posed and determines the limit measure uniquely.
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§ 1. Introduction
We study the homogenization problem for a non-stationary convection-diffusion

equation with rapidly oscillating coefficients that are random in the time and peri-
odic in the spatial variables. We assume that the dependence of the coefficients on
the time reduces to a dependence on a stationary random process ξ· with values
in Rd, d � 1. The corresponding Cauchy problem becomes

∂

∂t
uε − ∂

∂xi
aij

(
x

ε
, ξ t
ε2

)
∂

∂xj
uε − 1

ε
bi

(
x

ε
, ξ t

ε2

)
∂

∂xi
uε = 0, (1)

uε(x, 0) = u0(x),

and we investigate the limit behaviour of the solutions uε as ε→ 0.
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Similar problems for parabolic equations with symmetric elliptic part and with
diffusion process ξ· were treated earlier in [7] and [13]. In [13] it was shown that
the ‘classical’ homogenization result holds for operators in divergence form, that
is, the family of solutions of the Cauchy problem or of an initial-value boundary-
value problem for the original equation converges almost surely (a.s.) as ε → 0
to a solution of the corresponding Cauchy problem or initial-value boundary-value
problem for the homogenized parabolic equation with constant non-random coeffi-
cients.

The picture of the limit behaviour of the solutions changes substantially in the
presence of an increasing zero-order term; see [7]. In this case the limit dynam-
ics remains random in general, and the homogenization result holds in a weaker
form. Namely, the family of probability measures generated by the distributions
of the solutions of the original problem in an appropriate function space is weakly
convergent as ε→ 0 to a measure solving the limit martingale problem.
Homogenization problems for diverse elliptic and stationary parabolic operators

with lower-order terms were studied in [14], [15], [24], [19], [21]. Special attention
has been given in the literature to operators with incompressible convection terms;
see [2], [3], [9], [10], [25].

Non-stationary parabolic equations of convection-diffusion type whose coeffici-
ents are periodic with respect to both the spatial variables and the time were treated
in [11], where the homogenization result was obtained under the assumption that
the oscillation in the time is ‘slower’ than that in the spatial variables.

The basic concepts of homogenization theory can be found, for instance, in the
books [4] and [12].

As in the deterministic case, when studying the problem (1), one must take
into account the convection term of order 1/ε in the asymptotics of uε. In this
connection, the result on homogenization of the problem (1) is obtained below
in moving coordinates x′ = x − b̄t/ε with some constant vector b̄. This change of
variables enables us to avoid the growing velocity field (of order 1/ε) in the effective
dynamics.

We show here that the family of measures defined by the distribution laws of
the solutions of the problem (1) is weakly convergent as ε→ 0 to a solution of the
limit martingale problem in the energy function space. The diffusion arising in
the limit equation is finite-dimensional and has a coefficient of the form Λ∇u, where
Λ = {Λij} is a constant matrix, and the drift operator is a second-order elliptic
operator with constant coefficients. The matrix Λ is of special interest because,
if ξ· is a diffusion process, then this matrix cannot be constructed by solving the
ordinary ‘local’ problem on a cell with the help of the generator of the process: its
construction requires a more delicate analysis.

In this paper we construct several correctors that are solutions of auxiliary par-
tial differential equations, prove several a priori estimates, and then combine this
technique with some ideas developed in [23] and [6]. It should be noted that some
correctors constructed here depend not only on the value of the process ξ· at the
current time but also on the entire ‘future’ of the process. This differs substantially
from the approaches used in [7], [13], and [6], where the diffusion nature of the
correctors was used.
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In § 2 we pose the problem and formulate the conditions on the coefficients
and on the process. The objective of § 3 is to prove the tightness of the family
of distributions for the solutions of the original problem. In § 4 we pass to the
limit, construct the coefficients of the limit martingale problem, and then, using
the uniqueness of the solution of the limit problem, prove the convergence of the
distributions of uε. The last section is devoted to a special case in which ξ· is a
diffusion process.

§ 2. Setting of the problem
We study the asymptotic behaviour of solutions of the Cauchy problem

∂

∂t
uε(x, t)− ∂

∂xi
aij

(
x

ε
, ξ t
ε2

)
∂

∂xj
uε(x, t)− 1

ε
bi

(
x

ε
, ξ t

ε2

)
∂

∂xi
uε(x, t) = 0, (2)

uε(x, 0) = u0(x),

for small ε > 0; here ξ· stands for an ergodic stationary random process defined on
a probability space (Ω,F,P) and taking values in Rd. The symbol E always stands
for the expectation. If ξ· is a diffusion process, then we denote by L its infinitesimal
generator,

L = qij(y)
∂

∂yi

∂

∂yj
+ Bi(y)

∂

∂yi
.

Further conditions on the process ξ· are given below in terms of strong or uniform
mixing coefficients or in terms of the maximum correlation coefficient. We present
here the corresponding definitions for the convenience of the reader.

Let F�t and F�t be the σ-algebras σ(ξs, s � t) and σ(ξs, s � t), respectively.
The function α(s), s � 0, given by

α(s) = sup
B1∈F�0,B2∈F�s

|P(B1 ∪B2) − P(B1)P(B2)|

is called the strong mixing coefficient of the process ξ·. The function φ(s), s � 0,
given by

φ(s) = sup
B1∈F�0,B2∈F�s

|P(B1 | B2) − P(B1)|

is called the uniform mixing coefficient of ξ·. Finally, the maximum correlation
coefficient ρ(s), s � 0, is defined by

ρ(s) = sup
| cov(η1, η2)|√

E(η1 − E(η1))2E(η2 − E(η2))2
,

where the supremum is taken over all F�0-measurable functions η1 and all F�s-
measurable functions η2 such that E(η1)2 < ∞ and E(η2)2 < ∞, and the symbol
cov stands for the covariance.
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In what follows we always assume that the coefficients aij(z, y) and bi(z, y) are
periodic with respect to the variable z. The other assumptions are formulated
below.

A1. The functions aij(z, y) and bi(z, y) and their first-order derivatives with
respect to z and y are uniformly bounded:

|aij(z, y)|+ |∇zaij(z, y)| + |∇yaij(z, y)| � c,
|bi(z, y)| + |∇zbi(z, y)| + |∇ybi(z, y)| � c;

here and below, the symbol c stands for positive constants.
A2. The matrix aij(z, y) is positive definite, that is,

aijηiηj � c|η|2, η ∈ Rn,

for some c > 0 and for any (z, y) ∈ Tn × Rd.
A3. At least one of the following relations holds:∫ ∞

0

(α(s))1/2 ds <∞;
∫ ∞
0

(φ(s))1/2 ds <∞;
∫ ∞
0

ρ(s) ds <∞.

For the special case in which ξ· is a diffusion process, there is a natural desire to
replace the above conditionA3 by some effectively verifiable sufficient condition in
terms of the coefficients of the generator. However, it turns out to be much more
convenient to use the generator of the time-reversed process ζs = ξ−s rather than

that of the original process ξs. In this connection we introduce the notation L̃ for
the generator of ζs,

L̃ = q̃kl(y)
∂

∂yk

∂

∂yl
+ B̃k(y)

∂

∂yk
,

and suppose that the following condition holds instead of A3.

A3′. The diffusion coefficients q̃kl(y) and their first-order derivatives are uni-
formly bounded,

|q̃kl(y)| + |∇yq̃kl(y)| � c,

and the operator L̃ is uniformly elliptic,

q̃klηkηl � c|η|2, η ∈ Rd,

for any y ∈ Rd. The vector function B̃(y) admits the polynomial estimate

|B̃(y)| + |∇B̃(y)| � c(1 + |y|κ)

for some κ > 0, and there are numbers µ > −1, R > 0, and c > 0 such that

B̃(y) · y
|y| � −c|y|µ

for all y in {y : |y| � R}.
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According to [20] (see also [7]), under the conditionA3′ the process ζ· (and hence
the process ξ· as well) admits a unique invariant measure, which has a continuous
density ρ(y) satisfying the equation

L̃∗ρ = 0,

∫
Rd

ρ(y) dy = 1,

and decaying at infinity more rapidly than any negative power of |y|; here the
symbol L̃∗ stands for the adjoint operator. Moreover, for the stationary version of
the process ζ· with generator L̃ the strong mixing coefficient α(s) decays at infinity
more rapidly than any negative power of s, which implies the condition A3.
Further, the distribution of the stationary process ξ· (ξs = ζ−s) in the space

of sample paths coincides with the distribution of the stationary diffusion process
with generator

L = (ρ(y))−1L̃∗(ρ(y) · ) = q̃kl(y)
∂

∂yk

∂

∂yl
+

(
(ρ(y))−1

∂

∂yi
[ρ(y)q̃ki(y)]−B̃k(y)

)
∂

∂yk
;

we identify these processes in what follows.
Under the assumptions A1–A3, the problem (2) has for any initial condition

u0 ∈ L2(Rn) and any ε > 0 a unique solution

uε ∈ L2(0, T ;H1(Rn)) ∪ C(0, T ;L2(Rn))

almost surely. The distribution of this solution generates a Radon probability
measure on the space

V = L2w(0, T ;H
1(Rn)) ∪ C(0, T ;L2w(Rn))

equipped with the Borel σ-algebra; the symbol w stands here for the weak topology.
This measure, defined as the distribution of uε in V , is denoted by Qε.

§ 3. Tightness
In this section we establish results on tightness of the family of measures Qε.

Generally, this family of measures itself is not tight in V . To obtain a tight family,
we introduce a moving system of coordinates (x′, t) = (x − b̄/ε, t) with a constant
vector b̄ and show that for an appropriate choice of b̄ the family of distributions of
the functions uε(x′, t) is tight in V . This result is based on a priori estimates for
a solution of the problem (2) and on the Prokhorov theorem (see [23], [6]).

Proposition 3.1. The estimate

sup
t�T

(
‖uε(t)‖2L2(Rn) +

∫ t
0

‖∇uε(s)‖2L2(Rn) ds
)
� c‖u0‖2L2(Rn) (3)

holds uniformly with respect to ε > 0. There is a constant vector b̄ such that

lim
ν→0
sup
ε>0
P

{
sup
|t−s|<ν

∣∣∣∣
(
uε(t), ϕ

(
·+ b̄
ε
t

))
−
(
uε(s), ϕ

(
·+ b̄
ε
s

))∣∣∣∣ � γ
}
= 0 (4)

for any ϕ(x) ∈ C∞0 (Rn) and any γ > 0.
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Proof. Let us consider the auxiliary problem

∂

∂s
pε(z, s) + A

∗pε(z, s) = 0, (z, t) ∈ Tn × (−∞, (T + 1)/ε2), (5)

pε
∣∣
s=(T+1)/ε2

= 1,

where

A∗ =
∂

∂zi
aij(z, ξs)

∂

∂zj
− ∂

∂zi
(bi(z, ξs) · ). (6)

By the maximum principle (see [16]), the solution pε(z, s) is strictly positive. More-
over, taking account of the structure of the equation and integrating by parts over
the set Tn × (s, (T + 1)/ε2), we get that∫

Tn

pε(z, s) dz = 1

for any s � (T + 1)/ε2. It follows from Harnack’s inequality (see [22]) that

0 < c1 � pε(z, s) � c2 <∞, (7)

where the constants c1 and c2 depend neither on ε nor on the sample path of ξ·.
Multiplying the equation (2) by pε(x/ε, s/ε

2)uε(x, s) and integrating the resul-
ting formula over Rn × (0, t), we see after simple manipulations that

1

2

∫
Rn

(uε(x, t))2pε

(
x

ε
,
t

ε2

)
dx− 1

2

∫
Rn

(u0(x, t))
2pε

(
x

ε
, 0

)
dx

+

∫ t
0

∫
Rn

aij

(
x

ε
, ξs/ε2

)
pε

(
x

ε
,
s

ε2

)
∂

∂xi
uε(x, s)

∂

∂xj
uε(x, s) dx ds

− 1
2

∫ t
0

∫
Rn

(uε)2
[
∂

∂t
pε

(
x

ε
,
s

ε2

)
+
∂

∂xi

∂

∂xj

(
aij

(
x

ε
, ξs/ε2

)
pε

(
x

ε
,
s

ε2

))

− ∂

∂xi

(
bi

(
x

ε
, ξs/ε2

)
pε

(
x

ε
,
s

ε2

))]
dx ds = 0.

According to (5), the last integral vanishes. Therefore, by (7) we readily obtain (3).

Let us now pass to (4). The following statement is crucial here.

Lemma 1. Let the initial condition u0(x) in (2) be of class C
∞
0 . Then there is a

non-random function κ1(ε) vanishing as ε ↓ 0 and such that

sup
(x,t)∈Rn×(0,T )

osc
Gεx
uε � κ1(ε), (8)

where Gεx stands for the set x+ (−ε/2, ε/2)n.
Proof. Let us consider the auxiliary periodic Cauchy problem

∂

∂s
v(z, s) − Av(z, s) = 0, z ∈ Tn, s > s0,

v
∣∣
s=s0

= v0
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with the operator

A =
∂

∂zi
aij(z, ξs)

∂

∂zj
+ bi(z, ξs)

∂

∂zi
. (9)

The solution v(z, s) of this problem tends exponentially to a constant as s−s0 →∞.
In particular,

osc
Tn
v( · , s0 + ε−1/2) � c′ exp(−cε−1/2)|v0|L∞ , (10)

where c′ and c depend neither on s0 nor on a realization of ξ·. Indeed, under
the assumptions A1 and A2 the solution v(z, s) satisfies the uniform Harnack
inequality, which, in turn, implies the desired estimate (see, for instance, the proof
of Lemma 2 below).
The operator

Aε =
∂

∂xi
aij

(
x

ε
, ξ t

ε2

)
∂

∂xj
+
1

ε
bi

(
x

ε
, ξ t

ε2

)
∂

∂xi

commutes with any shift of the form Sku(x) = u(x + εk), k ∈ Zn. Therefore, by
the maximum principle we get that

|uε(x+ εk, t)− uε(x, t)| �Mε|k|, k ∈ Zn, (11)

where M = maxx |∇u0(x)|.
Next, let us arbitrarily choose t0 � 0 and x0 ∈ Rn, restrict the function uε(x, t0)

to Gεx0 , and denote by ṽ
ε
0 the periodic extension of this restriction with period ε

with respect to the coordinate directions. By (11) we have

|ṽε0(x)− uε(x, t0)| �Mε1/4 (12)

for all x such that |x− x0| � ε1/4.
Let p(t, t′, x, x′) be the fundamental solution of the problem (2).According to [1],

under the assumptions A1-A2 the inequality

p(t0, t0 + ε
3/2, x, x′) � c′ exp(−c|x− x′|2/ε3/2) (13)

holds for any x, x′ such that |x − x′| > ε1/4, where c and c′ depend only on
the constants in the conditions A1-A2. Integrating this inequality over the set
{x : |x− x′| > ε1/4}, we see that∫

|x−x′|>ε1/4
p(t0, t0 + ε

3/2, x, x′) dx � cε. (14)

Let ṽε(x, t) be the solution of the equation ∂tṽ
ε−Aε ṽε = 0 with the initial condition

ṽε|t=t0 = ṽε0(x). Then the estimate (10) gives

osc
Rn
ṽε( · , t0 + ε3/2) � c′ exp(−cε−1/2)|ṽ0|L∞ .

On the other hand, it follows from (12) and (14) that

|uε(x, t0 + ε3/2)− ṽε(x, t0 + ε3/2)| � cε|u0|L∞ + cMε1/4
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for any x ∈ Gεx0 . The last two inequalities imply the desired statement for any
t � ε3/2. For small t this statement is a trivial consequence of (14), which completes
the proof of the lemma.

In what follows, we need a sequence of problems

∂

∂s
pN(z, s) +A∗pN (z, s) = 0, (z, s) ∈ Tn × (−∞, N),

pN(z, N) = 1,
(15)

with the operator A∗ given by (6). By the above arguments one can readily show
that the functions pN satisfy the estimate (7) uniformly with respect to N and s,
−∞ < s � N .
Lemma 2. The sequence pN converges as N →∞ to a stationary ergodic process
with values in C(Tn), and the realizations of this process satisfy the equation

∂

∂s
p+A∗p = 0,

∫
Tn

p(z, s) dz = 1, s ∈ (−∞,+∞). (16)

Moreover, there are non-random constants c > 0 and c1 > 0 such that

max
z∈Tn

k�s�k+1
|pN(z, s)− p(z, s)| � c1 exp(−c(N − k)). (17)

Proof. To prove the convergence and the estimate (17), we consider the following
problem:

∂

∂s
q +A∗q = 0, q

∣∣
s=N

= q0, (18)

in which q0 ∈ L2(Tn) satisfies the equation∫
Tn

q0(z) dz = 0. (19)

Let us first show that, for our purposes, it suffices to verify the exponential decay
of a solution of the problem (18) as N − s→∞, that is, to obtain the estimate

|q(z, s)| � c1‖q0‖L2(Tn) exp(−c(N − s)). (20)

Indeed, for any N > 0 and k > 0 the difference pN+k − pN is a solution of the
equation

∂

∂s
(pN+k − pN ) + A∗(pN+k − pN) = 0, s < N,

and for any s � N we have∫
Tn

(pN+k(z, s)− pN(z, s)) dz = 0, ‖pN+k − pN‖L∞ � c.
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Therefore, assuming the validity of the estimate (20), we get that

‖pN+k − pN‖C(Tn×[k,k+1]) � c1 exp(−c(N − k)).

By the Cauchy criterion, the sequence pN converges asN →∞ to a limit continuous
function, which we denote by p(z, s), and this function satisfies the inequality (17).
Passing to the limit in (15), we obtain (16).
To prove the estimate (20), we consider the conjugate problem

∂

∂s
ν(z, s)− Aν(z, s) = 0, (z, s) ∈ Tn × (s0,+∞),

ν(z, s0) = ϕ(z),
(21)

where ϕ stands for an arbitrary L2(Tn)-function. Multiplying this equation by
q(z, s), integrating over Tn× [s0, N ], and integrating by parts several times, we get
that ∫

Tn

ν(z, N)q0(z) dz =

∫
Tn

ϕ(z)q(z, s0) dz. (22)

By the Nash inequality (see [16]),

max
z∈Tn

|ν(z, s0 + 1)| � c‖ϕ‖L2(Tn). (23)

Let ν+(z, s1) and ν
−(z, s1) be the positive and negative parts of ν(z, s1), respec-

tively:

ν+(z, s1) = max(ν(z, s1), 0); ν−(z, s1) = −min(ν(z, s1), 0).

Subtracting an appropriate constant if necessary, we can assume without loss of
generality that

max
z∈Tn

ν(z, s1) = − min
z∈Tn

ν(z, s1),

and hence ‖ν+( · , s1)‖L∞ = ‖ν−( · , s1)‖L∞ . Applying Harnack’s inequality to the
solution to the problem

∂

∂s
ν1(z, s) −Aν1(z, s) = 0, (z, s) ∈ Tn × (s1,+∞),

ν1(z, s1) = ν
+(z, s1),

we obtain the estimate

max
z∈Tn

ν1(z, s1 + 1) � c2 min
z∈Tn

ν1(z, s1 + 1)

with a constant c2 depending only on the constants in the conditions A1 and A2.
Combining this with the obvious estimate

0 � ν1 � ‖ν+( · , s1)‖L∞ ,



738 M. L. Kleptsyna and A. L. Pyatnitskii

we see that
0 < c3 � ν1(z, s1 + 1) � ‖ν+( · , s1)‖L∞ .

Similarly, if ν2 is the solution of the problem

∂

∂s
ν2(z, s) −Aν2(z, s) = 0, ν2(z, s1) = ν

−(z, s1),

then it admits an estimate of the form

0 < c3 � ν2(z, s1 + 1) � ‖ν−( · , s1)‖L∞ .

By the last two inequalities, it follows that there is a constant c4 > 0 such that

osc
Tn
ν( · , s+ 1) � (1− c4) osc

Tn
ν( · , s) (24)

for any s > s0 + 1. By (23), this implies that

osc
Tn
ν( · , s) � c1 exp(−c(s− s0))‖ϕ‖L2(Tn)

for any s � s0 + 1. Finally, it follows from (22), (19), and the last estimate that∣∣∣∣
∫
Tn

ϕ(z)q(z, s0) dz

∣∣∣∣=
∣∣∣∣
∫
Tn

ν(z, N)q0(z) dz

∣∣∣∣�c1exp(−c(N−s0))‖q0‖L2(Tn)‖ϕ‖L2(Tn)
for any ϕ ∈ L2(Tn). Therefore,

‖q( · , s0)‖L2(Tn) � c1 exp(−c(N − s0))‖q0‖L2(Tn)
and

|q(z, s0)| � c1 exp(−c(N − s0))‖q0‖L2(Tn),
where the Nash estimate was again used in the proof of the latter estimate.
Let us consider the functions p̃N(z, s) = pN+s(z, s), where pN is the solution

of the problem (15). For any N > 0 the function p̃N is defined for any s ∈ R,
and it is a stationary ergodic process with values in C(Tn). As proved above, the
sequence p̃N(z, s) converges exponentially to p(z, s) as N → ∞. Hence, p( · , s) is
also a stationary ergodic process. This completes the proof of the lemma.

We now introduce the constant vector

b̄i = E

∫
Tn

(
∂

∂zj
aij(z, ξs) + b

i(z, ξs)

)
p(z, s) dz, (25)

and the following stationary random process with values in Rn:

ηi(s) =

∫
Tn

(
∂

∂zj
aij(z, ξs) + b

i(z, ξs) − b̄i
)
p(z, s) dz. (26)

All processes used in the definition of the vector b̄ are stationary and ergodic. Thus,
by Birkhoff’s theorem we have

b̄i = lim
T→∞

1

T

∫ T
0

∫
Tn

(
∂

∂zj
aij(z, ξs) + b

i(z, ξs)

)
p(z, s) dz ds (27)

for almost all ω ∈ Ω.
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Lemma 3. The process η(s) satisfies the functional central limit theorem (the
invariance principle) with the covariance matrix

{σ2}ij =
∫ ∞
0

E
(
ηi(s)ηj(0) + ηi(0)ηj(s)

)
ds.

That is,

ε

∫ ·/ε2
0

η(s) ds
L−−−→
ε→0

σw·

in (C[0, T ])n, where w· is the standard n-dimensional Brownian motion.

Proof. Let us first prove that the inequality

‖E{η0 | F�T }‖L2(Ω) � c1
(
exp(−cT ) + ρ(T/2)

)
(28)

holds for any T > 0 with some constants c > 0 and c1 > 0. To this end, we represent
the function p(z, s) on the interval 0 � s � T/2 as a sum p(z, s) = p1(z, s)+p2(z, s),
where the summands p1 and p2 satisfy the equation

∂

∂s
pi(z, s) +A∗pi(z, s) = 0, s < T/2,

with the initial conditions p1|s=T/2 = 1 and p2|s=T/2 = p(z, T/2)− 1, respectively.
Then we have η(0) = η1(0) + η2(0), where

ηm,i(0) =

∫
Tn

(
∂

∂zj
aij(z, ξ0) + b

i(z, ξ0)

)
pm(z, 0) dz, m = 1, 2.

It follows from the definition that p1(0) is measurable with respect to F�T/2, and
hence so is η1(0). By the mixing condition A3 we get that

‖E{η1(0)|F�T }‖L2(Ω) � ρ(T/2)‖η1(0)‖L2(Ω) � Cρ(T/2). (29)

It follows from (17) that

|p2(z, 0)| = |p(z, 0)− pT/2(z, 0)| � c1 exp(−cT/2).

Hence,
‖E{η2(0)|F�T}‖L2(Ω) � ‖η2(0)‖L2(Ω) � C exp(−cT/2),

and this inequality, together with (29), gives the desired estimate (28).

According to [18], Chapter 9, under the assumption A3 the inequality (28)
ensures the functional central limit theorem (CLT) for the process η(−s), which
in turn implies the functional CLT for η(s). Indeed, by the Prokhorov theo-

rem (see [5]), the family

{
ε

∫ t/ε2
0

η(s) ds

}
is tight in (C([0, T ])n if the family{

ε

∫ t/ε2
0

η(−s) ds
}
is tight and the process is stationary. The convergence of
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the finite-dimensional distributions of the process

{
ε

∫ t/ε2
0

η(s) ds

}
is obviously

equivalent to the convergence of the corresponding finite-dimensional distributions

of

{
ε

∫ t/ε2
0

η(−s) ds
}
.

Remark. We have proved the assertion of Lemma 3 under the assumption that the
last inequality in A3 holds. The other two cases (of strong or uniform mixing) can
be treated similarly.
Let us consider another auxiliary problem,

∂

∂s
ψi(z, s) + A∗ψi(z, s) = − ∂

∂zj
(aij(z, ξs)p(z, s)) − aij(z, ξs)

∂

∂zj
p(z, s)

+bi(z, ξs)p(z, s)− b̄ip(z, s) − ηi(s)p(z, s), (z, s) ∈ Tn × (−∞,+∞), (30)

where A∗ is given by (6).

Lemma 4. The problem (30) has a stationary ergodic solution. Under the nor-
malization condition ∫

Tn

ψ(z, s) dz = 0

this solution is unique.

Proof. For brevity, we denote the right-hand side of (30) by F (z, s). Let us consider
the following sequence of Cauchy problems:

∂

∂s
ψN (z, s) + A∗ψN (z, s) = 1{N−1<s�N}F (z, s), (z, s) ∈ Tn × (−∞, N),

ψN
∣∣
s=N

= 0,

where 1{N−1<s�N} stands for the indicator function of the interval (N − 1, N).
Taking into account the equality

∫
Tn
F (z, s)dz ≡ 0, we can readily see that

∫
Tn

ψN (z, s) dz = 0

for any s, where we assume for convenience that ψN = 0 for s > N . By (3.20) we
obtain the estimate

‖ψN‖L∞(Tn×(k,k+1)) � c1 exp(−c(N − k))

for all k � N . Summing the functions over N , −∞ < N < +∞, we obtain the
stationary solution ψ =

∑+∞
N=−∞ ψ

N of the problem (30). Moreover,

‖ψ‖L∞(Tn×(−∞,+∞)) � C (31)

for some non-random constant C. The uniqueness and ergodicity can now be proved
in the same way as in Lemma 2.
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To complete the proof of the tightness of the family of distributions of {uε}, we
consider the expression

(ũε, p̃εϕ) + ε(ũε, ψ̃ε∇xϕ)

for an arbitrary test function ϕ ∈ C∞0 (Rn), where

ũε(x, t) = uε
(
x− 1
ε
b̄t− 1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
,

p̃ε(x, t) = p

(
x

ε
− ε−2b̄t− ε−2

∫ t
0

η

(
s

ε2

)
ds,
t

ε2

)
,

ψ̃ε(x, t) = ψ

(
x

ε
− ε−2b̄t− ε−2

∫ t
0

η

(
s

ε2

)
ds,
t

ε2

)
.

We also use the notation

ϕ̃ = ϕ

(
x+
1

ε
b̄t+

1

ε

∫ t
0

η

(
s

ε2

)
ds

)
(32)

and write

∇εxr(x) = ∇zr(z)
∣∣
z=x/ε

, ∂εt r(t) =
∂

∂s
r(s)

∣∣∣∣
s=t/ε2

for an arbitrary function r. Using the equations (16) and (30), integrating by parts,
and making simple manipulations, we get that

d

dt

[
(ũε, p̃εϕ) + ε(ũε, ψ̃ε∇xϕ)

]
=
d

dt

[
(uε, pεϕ̃) + ε(uε, ψε∇xϕ̃)

]
= (Aεuε, pεϕ̃) +

(
uε, ϕ̃

∂

∂t
pε
)
+
1

ε
(b̄+ η(t/ε2)) · (uε, pε∇xϕ̃)

+ ε(Aεuε, ψε∇xϕ̃) + ε
(
uε,∇xϕ̃

∂

∂t
ψε
)
+ (b̄+ η(t/ε2)) · (uε, ψε∇x∇xϕ̃)

= (uε, pεaε∇x∇xϕ̃) +
(
uε∇x∇xϕ̃, [∇εx(aψ) + aε∇εxψ − bεψε + b̄ψε + ηεψε]

)
+ ε(uεψε, aε∇x∇x∇xϕ̃). (33)

By (3), this implies the inequality

|(ũε(t), p̃ε(t)ϕ) − (ũε(s), p̃ε(s)ϕ)| � c|t− s| ‖ϕ‖C3 . (34)

Approximating the initial condition u0 ∈ L2(Rn) in the problem (1) by a sequence
uN0 ∈ C∞0 (Rn) if necessary and using (3), we can always assume that u0 ∈ C∞0 (Rn).
Then by (34) and Lemma 1, we get that

|(ũε(t), ϕ) − (ũε(s), ϕ)| � c|t− s| ‖ϕ‖C3 + cκ1(ε)‖ϕ‖C1 . (35)

Writing
ûε(x, t) = uε(x− ε−1b̄t, t), (36)
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we arrive at the relation

|(ûε(t), ϕ)− (ûε(s), ϕ)|

=

∣∣∣∣
(
ũε(t), ϕ

(
· − 1
ε

∫ t
0

η(τ/ε2) dτ

))
−
(
ũε(s), ϕ

(
· − 1
ε

∫ s
0

η(τ/ε2) dτ

))∣∣∣∣
�
∣∣∣∣
(
ũε(t), ϕ

(
· − 1
ε

∫ s
0

η(τ/ε2) dτ

))
−
(
ũε(s), ϕ

(
· − 1
ε

∫ s
0

η(τ/ε2) dτ

))∣∣∣∣
+

∣∣∣∣
(
ũε(t), ϕ

(
· − 1
ε

∫ t
0

η(τ/ε2) dτ

)
− ϕ
(
· − 1
ε

∫ s
0

η(τ/ε2) dτ

))∣∣∣∣
� c|t− s| ‖ϕ‖C3 + cκ(ε)‖ϕ‖C1 + c‖ϕ‖C1

∣∣∣∣1ε
∫ t
s

η(τ/ε2) dτ

∣∣∣∣. (37)

For any function ϕ ∈ C∞0 (Rn) the first two terms on the right-hand side of (37)
vanish as ε → 0 and |t − s| → 0, uniformly with respect to t, s, and ω ∈ Ω. By

Lemma 3, the integral
1

ε

∫ t
0

η(τ/ε2) dτ satisfies the functional central limit theo-

rem in (C[0, T ])n on any finite interval [0, T ]. Therefore, applying the Prokhorov
theorem twice, we see that the family of distributions of (ũε, ϕ) is tight in C(0, T ).

§4. Passage to the limit
The objective of this section is to show that the family {ũε} of functions con-

verges almost surely to a solution of the Cauchy problem for a limit deterministic
parabolic equation with constant coefficients, and to obtain the main results on
convergence in distribution for the family of solutions of the problem (1). We
first prove convergence in the space V introduced in § 2. Then we prove the same
convergence in a stronger topology.
We have already proved that the family {ũε} is tight. Therefore, to find the limit

distribution, it suffices to pass to the limit in the expressions of the form (ũε, ϕ) for
an arbitrary function ϕ ∈ C∞0 .
By (33) and by Lemma 1 we get that

(ũε(t), ϕ)− (u0, ϕ)
= (ũε(t), pε(t)ϕ) + ε(ũε(t), ψε(t)∇xϕ) − (u0, pε(0)ϕ)− ε(u0, ψε(0)∇xϕ) +O(ε)

=

∫ t
0

(uε(s), aεpε(s)∇x∇xϕ̃) ds+
∫ t
0

(uε(s), aε∇εxψε(s)∇x∇xϕ̃) ds

+

∫ t
0

(uε(s),∇εx(aεψε(s))∇x∇xϕ̃) ds−
∫ t
0

(uε(s), bεψε(s)∇x∇xϕ̃) ds

+

∫ t
0

(uε(s), b̄ψε(s)∇x∇xϕ̃) ds+
∫ t
0

(uε(s), ηε(s)ψε(s)∇x∇xϕ̃) ds+O(ε). (38)

The following lemma will help us to pass to the limit in this expression.

Lemma 5. Let ζ(z, s) be a stationary ergodic process with values in L2(Tn) (or
C(Tn)) and let

‖ζ‖L2(Tn×(0,1)) � C
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for a non-random constant C. Then the relation

lim
ε→0
sup
t�T

∣∣∣∣
∫ t
0

(uε(s), ζε(s)ϕ̃) ds− 〈ζ〉
∫ t
0

(uε(s), ϕ̃) ds

∣∣∣∣ = 0 (39)

holds almost surely for any C∞0 -function ϕ, where

〈ζ〉 = E
∫
Tn

ζ(z, s) dz,

and ϕ̃ is defined in (32).

Proof. We can assume without loss of generality that 〈ζ〉 = 0, and we write µ(s) =∫
Tn

ζ(z, s)dz. By Lemma 1,

sup
t�T

∣∣∣∣
∫ t
0

[
(uε(τ), ζε(τ)ϕ̃) − µ

(
τ

ε2

)
(uε(τ), ϕ̃)

]
dτ

∣∣∣∣ � Cκ1(ε)
with a non-random constant C. Thus, it suffices to show that

lim
ε→0
sup
t�T

∣∣∣∣
∫ t
0

µ

(
τ

ε2

)
(uε(τ), ϕ̃) dτ

∣∣∣∣ = 0. (40)

By the Arzelà theorem, it follows from (35) that for any ϕ ∈ C∞0 (Rn) there is a
compact subset K ⊂ C[0, T ] for which (ũε(·), ϕ) ∈ K almost surely for any ε > 0.
The rest of the proof is standard. We construct a finite δ-net consisting of step
functions and use Birkhoff’s theorem to prove the limit relation

lim
ε→0

∣∣∣∣
∫ t
0

µ

(
τ

ε2

)
(uε(τ), ϕ̃) dτ

∣∣∣∣ = 0
for any t � T . This, together with the simple estimate∣∣∣∣

∫ t
s

µ

(
τ

ε2

)
(uε(τ), ϕ̃) dτ

∣∣∣∣ � c
∥∥∥∥µ
(
·
ε2

)∥∥∥∥
L2(0,T )

|t− s|1/2,

establishes the relation (40), which completes the proof.

We denote by āij the ‘homogenized’ matrix given by

āij = E

∫
Tn

[
aij(z, ξs)p(z, s) + a

ik(z, ξs)
∂

∂zk
ψj(z, s)− bi(z, ξs)ψj(z, s)

]
dz. (41)

This definition is natural since the terms on the right-hand side of (38) which do
not enter the definition of āij satisfy the equation∫

Tn

(
∂

∂zk

(
aik(z, ξs)ψ

j(z, s)
)
+ b̄iψj(z, s) + ηi(s)ψj (z, s)

)
dz = 0.
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By Lemma 5, (38), and the last equation, we get that

lim
ε→0
sup
t�T

∣∣∣∣(ũε(t), ϕ)− (u0, ϕ)−
∫ t
0

(ũε(s), ā∇x∇xϕ) ds
∣∣∣∣ = 0

almost surely for any ϕ ∈ C∞0 . Thus, any limit point of {ũε} in V satisfies the
equation

∂

∂t
u0 − Āu0 = 0, u0

∣∣
t=0
= u0, (42)

for any typical realization of ξ· and for Ā = ā
ij ∂

∂xi

∂

∂xj
. A solution of the prob-

lem (42) is unique, and hence the family {ũε} converges almost surely in V to the
function u0 as ε→ 0.
In fact, the above convergence result can be improved. Let us show that there

is a stationary ergodic process χ(z, s) with values in C(Tn) for which the function

vε(x, t) ≡ uε(x, t)− u0
(
x+ b̄

t

ε
+
1

ε

∫ t
0

η

(
τ

ε2

)
dτ, t

)

− ε∇xu0
(
x+ b̄

t

ε
+
1

ε

∫ t
0

η

(
τ

ε2

)
dτ, t

)
χ

(
x

ε
,
t

ε2

)
(43)

converges almost surely to 0 with respect to the norm of the space L∞(Rn×[0, T ])∩
L2(0, T ;H1(Rn)). To this end, we substitute the expression (43) into the original
equation, collect the terms with like powers of ε, and equate the resulting expres-
sions to zero. The first equation in this chain is generated by the terms of order
ε−1, and it is

(
∂

∂s
χ(z, s) −Aχ(z, s)

)∣∣∣∣
z= xε , s=

t

ε2

∇xu0ε(x, t)

=
[
∇za(z, ξs) + b(z, ξs) − b̄− η(s)

]∣∣∣
z=xε , s=

t
ε2

∇xu0ε(x, t);

here and henceforth, we use the notation

u0ε(x, t) = u
0

(
x+ b̄

t

ε
+
1

ε

∫ t
0

η

(
τ

ε2

)
dτ, t

)
.

Hence, we want to choose the function χ(z, s) as a solution of the equation

∂

∂s
χj(z, s)− Aχj(z, s) = ∇ziaij(z, ξs) + bj(z, ξs) − b̄j − ηj(s). (44)
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Let us study this equation in more detail. Multiplying it by p(z, s), integrating over
the cylinder Tn× [s1, s2], and recalling the definitions of p(z, s), b̄, and η(s), we can
readily see that ∫

Tn

χ(z, s)p(z, s) dz = const.

Further, arguing as in the proof of Lemma 4, one can show that the equation
(44) has a stationary solution χ(z, s) which is unique up to an additive constant.
Moreover, χ(·, s) is an ergodic process with values in C(Tn). For definiteness, we
set

∫
Tn

χ(z, s)p(z, s) dz = 0.

Under the above choice of χ we have

(
∂

∂t
− Aε

)
vε =

(
− ∂
∂t
+ ǎij

∂

∂xi

∂

∂xj

)
u0 +

(
aε +∇εx(aεχε) + aε∇εxχε

+ bεχε − b̄χε − η
(
t

ε2

)
χε − ǎ

)
∇x∇xu0 +O(ε), (45)

where O(ε) tends to zero in the L∞((0, T );H−1(Rn)-norm uniformly with respect
to ω ∈ Ω, and

ǎij = E

∫
Tn

(
aij(z, ξs) +∇zk(aik(z, ξs)χj(z, s))

+ aik(z, ξs)∇zkχj(z, s) + bi(z, ξs)χj(z, s)
)
p(z, s) dz.

For brevity, let us use the notation

ǎεaux(x, t) = {ǎε,ijaux(x, t)} = a
(
x

ε
, ξt/ε2

)
+∇εx

(
a

(
x

ε
, ξt/ε2

)
χ

(
x

ε
,
t

ε2

))

+ a

(
x

ε
, ξt/ε2

)
∇εxχ
(
x

ε
,
t

ε2

)

+ b

(
x

ε
, ξt/ε2

)
χ

(
x

ε
,
t

ε2

)
−
(
b̄+ η

(
t

ε2

))
χ

(
x

ε
,
t

ε2

)

and

〈ǎaux〉 (s) =
∫
Tn

{
aij(z, ξs) +∇zk

(
aik(z, ξs)χ

j(z, s)
)

+ aik(z, ξs)∇zkχj(z, s) + bi(z, ξs)χj(z, s)
}
p(z, s) dz.

We shall see below that ǎ = ā. Thus, the first term on the right-hand side of (45)
vanishes. To obtain the energy estimate, we multiply the equation (45) by pεvε
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and integrate the resulting formula over Rd × (0, T ). After simple manipulations,
this gives

∫
Rn
(vε(x, t))2p

(
x

ε
,
t

ε2

)
dx+

∫ t
0

∫
Rn
p

(
x

ε
,
s

ε2

)
aij
(
x

ε
, ξ s
ε2

)
∂

∂xi
vε(x, s)

∂

∂xj
vε(x, s) dx ds

= ε2
∫
Rn
p

(
x

ε
, 0

)(
χi
(
x

ε
, 0

)
∂

∂xi
u0(x)

)2
dx

+

∫ t
0

∫
Rn

[
ǎε,ijaux(x, s) − ǎij

]
p

(
x

ε
,
s

ε2

)
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s) dx ds

= ε2
∫
Rn
p

(
x

ε
, 0

)(
χi
(
x

ε
, 0

)
∂

∂xi
u0(x)

)2
dx

+

∫ t
0

∫
Rn

[
ǎε,ijaux(x, s) − 〈ǎaux〉ij

(
s

ε2

)]
p

(
x

ε
,
s

ε2

)
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s) dx ds

+

∫ t
0

∫
Rn

[
〈ǎaux〉ij

(
s

ε2

)
− ǎij

]
p

(
x

ε
,
s

ε2

)
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s) dx ds.
(46)

The second integral on the right-hand side admits the estimate∣∣∣∣
∫ t
0

∫
Rn

[
ǎε,ijaux(x, s)− 〈ǎaux〉

ij

(
s

ε2

)]
p

(
x

ε
,
s

ε2

)
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s) dx ds

∣∣∣∣
= ε

∣∣∣∣
∫ t
0

∫
Rn

Ψij,k
(
x

ε
,
s

ε2

)
∂

∂xk

(
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s)

)
dx ds

∣∣∣∣ � cε
with non-random constant c; here the functions Ψij,k(z, s) are chosen to satisfy the
equation

divΨij(z, s) =
(
ǎε,ijaux(z, s)− 〈ǎaux〉

ij)
p(z, s).

Let us estimate the last term in (46). It follows from the definition of vε(x, t) that

vε(x, t) = uε(x, t)−u0
(
x−b̄ t
ε
−1
ε

∫ t
0

η

(
τ

ε2

)
dτ, t

)
+O(ε) = uε(x, t)−u0ε(x, t)+O(ε)

uniformly with respect to x, t, and ω. Further, by (35), the family

(
uε(t)− u0ε(t),∇x∇xu0ε(t)

)
=
(
ũε(t) − u0(t),∇x∇xu0(t)

)
is compact in (C[0, T ])n

2

. Therefore, it follows from Birkhoff’s theorem that the
limit relation

lim
ε→0
sup
t�T

∣∣∣∣
∫ t
0

∫
Rn

[
〈ǎaux〉ij

(
s

ε2

)
− ǎij

]
p

(
x

ε
,
s

ε2

)
∂

∂xi

∂

∂xj
u0ε(x, s)v

ε(x, s) dx ds

∣∣∣∣ = 0
holds almost surely. We arrive at the following lemma.

Lemma 6. The difference (uε − u0ε), and hence the difference (ũε − u0) as well,
converges to zero almost surely with respect to the L∞(0, T ;L2(Rn))-norm as ε→ 0.
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Let us now pass to the main results of the paper. We denote by Q̂ε the
distribution of the function ûε(x, t) = uε(x − ε−1b̄t, t) in V , where the vector b̄
is given by (25). We also recall that the matrix {āij} was introduced in (41).

Theorem 1. Let {uε} be the family of solutions of the problem (1). Suppose that
u0 ∈ L2(Rn). Then the measures Q̂ε converge weakly in V as ε → 0 to the unique
solution of the stochastic partial differential equation

du(t) =

(
āij +

1

2
(Λ2)ij

)
∂

∂xi

∂

∂xj
u(t) dt+ Λ∇xu(t) dwt, (47)

u
∣∣
t=0
= u0,

where the matrix Λ is given by the formula

(Λ2)ij =

∫ ∞
0

E
(
ηi(0)ηj(s) + ηj(0)ηi(s)

)
ds

and wt stands for the standard n-dimensional Wiener process.

Proof. One can readily see by Itô’s formula that the function u0(x − Λwt, t) is a
solution of the problem (47). According to [8], this problem is well-posed and has
a unique solution.
Let us transform the function uε(x− ε−1b̄t, t) as follows:

uε(x− ε−1b̄t, t) = u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)

+ uε(x− ε−1b̄t, t)− u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
.

It follows from Lemma 6 that the L∞(0, T ;L2(Rn))-norm of the difference between
the second and third terms on the right-hand side vanishes almost surely as ε→ 0.
Thus, for any ϕ ∈ C∞0 the families

(
uε(x− ε−1b̄t, t), ϕ

)
and

(
u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
, ϕ

)

converge in distribution in C(0, T ) to the same limit distribution.
The map Fϕ : (C(0, T ))

n → C(0, T ) defined by

Fϕ(θ( · )) =
(
u0( ·+ θ(t), t), ϕ

)
is continuous, and since the functions

{
1

ε

∫ t
0

η

(
s

ε2

)
ds

}
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converge in distribution to Λwt in (C(0, T ))
n, it follows that the functions(

u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
, ϕ

)

converge in distribution to (u0(x+Λwt, t), ϕ), which proves the theorem.

The topology of V is very weak. In fact, the same convergence holds in a stronger
topology.

Theorem 2. The family ûε converges in distribution in the function space V1 =
L∞(0, T ;L2(Rn)) endowed with the topology of convergence in norm (the strong
topology).

Proof. As already proved, the difference

uε(x− ε−1b̄t, t)− u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)

converges to zero almost surely in V 1, that is, with respect to the L∞(0, T ;L2(Rn))-
norm. By the Prokhorov theorem and Lemma 3, for any δ > 0 there is a compact
subset K ⊂ (C(0, T ))n such that

sup
ε>0
P

{
1

ε

∫ t
0

η

(
s

ε2

)
ds /∈ K

}
< δ.

The map Φ: (C(0, T ))n −→ V 1 defined by

Φ(θ( · )) = u0(x+ θ(t), t),

is continuous. Therefore, for any δ > 0 there is a compact subset K1 of V 1 such
that

sup
ε>0
P

{
u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
/∈ K1

}
< δ.

By Lemma 6, this implies that the families

{
uε(x− ε−1b̄t, t)

}
and

{
u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)}

have the same limits in distribution in V 1. The convergence in distribution of the

expressions u0
(
x+
1

ε

∫ t
0

η

(
s

ε2

)
ds, t

)
to u0(x+Λwt, t) follows from Lemma 3 and

the continuity of the above map Φ.

§ 5. Operators with diffusion coefficients
In this section we assume that the process ξ· in the definition of the coefficients

of the equation (1) is a diffusion process. In this special case, the coefficients of the
effective equation (47) can be found in terms of solutions of auxiliary deterministic
partial differential equations. Moreover, diverse sufficient conditions ensuring the
mixing property A3 of the process ξ· can be formulated in terms of the coefficients
of the generator of ξ·.
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Let us recall the notation ζs = ξ−s and consider the diffusion process (X̃s, ζs)
with values in Tn × Rd that corresponds to the operator

A+ L̃ =
∂

∂zi
aij(z, y)

∂

∂zj
+ bi(z, y)

∂

∂zi
+ q̃kl(y)

∂

∂yk

∂

∂yl
+ B̃k(y)

∂

∂yk
.

According to [20] and [7], under the assumptions A1, A2, and A3′ the process

(X̃s, ζs) has a unique invariant measure, and the density of this measure satisfies
the equation

(A∗ + L̃∗)ρ̃(z, y) = 0,

∫
Tn

∫
Rd

ρ̃(z, y) dy dz = 1. (48)

Moreover, ρ̃(z, y) decays as |y| → ∞ more rapidly than any negative power of |y|.
Further, if f(z, y) is a function of polynomial growth with respect to y, then the
equation

(A+ L̃ )χ̃(z, y) = f(z, y)

is solvable if and only if ∫
Tn

∫
Rd

f(z, y)ρ̃(z, y) dy dz = 0; (49)

any corresponding solution is also of polynomial growth in y.
In what follows, we always suppose that (X̃s, ζs) is a stationary process with

density ρ̃(z, y).
Let p(z, s) be the conditional density of Xs given ξτ , τ ∈ [s,+∞). Then p(z, s)

satisfies the equation (16) almost surely (see [17]), and the process η defined in (26)
admits the representation

η(s) = E
{
div[a(Xs, ξs)] + b

i(Xs, ξs)− b̄i | σ(ξτ , τ � s)
}
.

We note that the condition (49) is equivalent to Ef(X̃s, ζs) = 0. In particular, the
solvability condition holds for the function fb(z, y) = (divz[a(z, y)] + b

i(z, y) − b̄i).
We denote the corresponding solution by χb(z, y). Applying Itô’s formula to the

expression χb(X̃s, ζs), we get after simple manipulations that∫ t
0

fb(X̃s, ζs) ds = χb(X̃t, ζt) − χb(X̃0, ζ0)

+

∫ t
0

σ(X̃s, ζs)∇zχb(X̃s, ζs) dw1s +
∫ t
0

Σ(ζs)∇yχb(X̃s, ζs) dw2s,

where w1 and w2 are independent Wiener processes of dimensions n and d, respec-
tively, and

σ(z, y) =
√
{aij(z, y)}, Σ(y) =

√
{qkl(y)}.

Passing in the preceding formula to the conditional expectations with respect to

the σ-algebra F̃−∞,t = σ{ζτ , −∞ < τ � t} = F−t,+∞ and taking the independence



750 M. L. Kleptsyna and A. L. Pyatnitskii

of {ζ·} and w1 into account, we get that

1√
t

∫ t
0

η−s ds =
1√
t
E
{
χb(X̃t, ζt) | F̃−∞,t

}
+
1√
t
E

{∫ t
0

Σ(ζs)∇yχb(X̃s, ζs) dw2s
∣∣∣ F̃−∞,t

}

=
1√
t
E
{
χb(X̃t, ζt) | F̃−∞,t

}
+
1√
t

∫ t
0

E
{
Σ(ζs)∇yχb(X̃s, ζs) | F̃−∞,s

}
dw2s,

where the process ηs is defined in (26). The first term on the right-hand side
vanishes as t → ∞. Calculating the quadratic characteristic of the Itô integral in
the second term and applying Birkhoff’s theorem, we see that

1

t

∫ t
0

q(ζs)E
{
∇yχib(X̃s, ζs) | F̃−∞,s

}
E
{
∇yχjb(X̃s, ζs) | F̃−∞,s

}
ds

→ E
(
q(ζ0)E

{
∇yχib(X̃0, ζ0) | F̃−∞,0

}
E
{
∇yχjb(X̃0, ζ0) | F̃−∞,0

})
= E
(
q(ξ0)E

{
∇yχib(X̃0, ξ0) | F0,+∞

}
E
{
∇yχjb(X̃0, ξ0) | F0,+∞

})
= (Λ2)ij .

Finally, by Theorem 9.1 and 9.2 in [18] we have the convergence

1√
τ

∫ tτ
0

η−s ds
L−−−→

τ→∞
ΛWt,

where Wt is the standard n-dimensional Wiener process.
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