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This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations
describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through
a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the
mean spherical approximation (MSA) model which takes into account finite size ions and screening
effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the
velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant
of the Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this
nonlinear equation has no monotone structure. However, based on invariant region estimates for the
Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove
existence of at least one solution. To our knowledge this existence result is new at this level of generality.
When the motion is governed by a small static electric field and a small hydrodynamic force, we generalize
O’Brien’s argument to deduce a linearized model. Our second main result is the rigorous homogenization
of these linearized equations and the proof that the effective tensor satisfies Onsager properties, namely
is symmetric positive definite. We eventually make numerical comparisons with the ideal case. Our
numerical results show that the MSA model confirms qualitatively the conclusions obtained using the
ideal model but there are quantitative differences arising that can be important at high charge or high
concentrations.
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1. Introduction

The quasi-static transport of an electrolyte through an elec-
trically charged porous medium is an important and well-known
multiscale problem in geosciences and porous materials model-
ing. An N-component electrolyte is a dilute solution of N species of
charged particles, or ions, in a fluid which saturates a rigid charged
porous medium [1]. The macroscopic dynamics of such a system
is controlled by several phenomena. First the global hydrodynamic
flow, which is commonly modeled by Darcy’s law depends on the
geometry of the pores and also on the charge distributions of the
system. Second, the migration of ions because of an electric field
can be quantified by the conductivity of the system. Third, the dif-
fusion motion of the ions is modified by the interaction with the
surfaces, but also by the interactions between the solute parti-
cles. Lastly, electrokinetic phenomena are due to the electric dou-
ble layer (EDL) which is formed as a result of the interaction of
the electrolyte solution which neutralizes the charge of the solid
phase at the pore solid-liquid interface. Thus, an external elec-
tric field can generate a so-called electro-osmotic flow and recip-
rocally, when a global hydrodynamic flow is applied, an induced
streaming potential is created in the system.

The EDL can be split into several parts, depending on the
strength of the electrostatic coupling. There is a condensed layer
of ions of typical size I; for which the attraction energy with the
surface eX'/&l; (with X the surface charge and e the elementary
charge) is much more than the thermal energy kgT (with kp
Boltzmann’s constant and T the temperature). The corresponding
characteristic length I = &§kgT /X e (Gouy length) is typically less
than one nanometer. Consequently, the layer of heavily adsorbed
ions practically depends on the molecular nature of the interface
and it is generally known as the Stern layer. After the Stern layer
the electrostatic diffuse layer or Debye’s layer is formed, where
the ion density varies. The EDL is the union of Stern and diffuse
layers. The thickness of the diffuse layer is predicted by the Debye
length Ap which depends on the electrolyte concentration. For low
to moderate electrolyte concentrations Ap is in the nanometric
range. Outside Debye’s layer, in the remaining bulk fluid, the
solvent can be considered as electrically neutral.

The large majority of theoretical works are concerned with a
simple (so-called ideal) model for which the departure of ideality
of ions are neglected (see later in this introduction a precise def-
inition of ideality). Thus the macroscopic descriptions of charged
porous media such as the ones using finite element methods [2],
homogenization approaches [3] or lattice-Boltzmann methods [4]
are commonly based on the Poisson-Nernst-Planck formalism for
which the local activity coefficients of ions are neglected and the
transport properties are modeled solely from the mobility at infi-
nite dilution. In addition, the boundary condition for the electro-
static interaction between the two phases is very often simplified
by replacing the bare surface charge X, which corresponds to the
chemistry of the system, by surface potential ¥. Its boundary value
at the no slip plane is known as the zeta potential ¢. In fact, it is
rather the surface charge density X, proportional to the normal
derivative of ¥, than ¢, which is the relevant parameter (this is
confirmed by an asymptotic analysis in [5]).

A few studies do not model the details of the EDL. Under the
presence of an external electric field E, the charged fluid may
acquire a plug electro-osmotic flow velocity which is proportional
to E¢ and given by the so-called Smoluchowski’s formula. In
the case of porous media with large pores, the electro-osmotic
effects are modeled by introducing an effective slip velocity at
the solid-liquid interfaces, which comes from the Smoluchowski
formula. In this setting, the effective behavior of the charge
transport through spatially periodic porous media was studied
by Edwards in [6], using the volume averaging method. These

methods for which the transport beyond the EDL is uncoupled
from the one in the EDL are not valid for numerous systems, such
as clays because the characteristic pore size is also of the order
of the EDL size (a few hundreds of nanometers or even less).
Therefore Debye’s layer fills largely the pores and its effect cannot
anymore be modeled by an effective slip boundary condition at the
liquid-solid interface.

In the present paper, we consider continuum equations (such as
the Navier-Stokes or the Fick equations) as the right model for the
description of porous media at the pore scale where the EDL phe-
nomena and the pore geometry interact. The typical length scale
for which these continuous approach are valid is confirmed to be
both experimentally (see e.g. [7]) and theoretically [8,9] close to 1
nanometer. Therefore, we consider continuum equations at the mi-
croscopic level and, more precisely, we couple the incompressible
Stokes equations for the fluid with the electrokinetic model made
of a global electrostatic equation and one convection-diffusion
equation for each type of ions.

The most original ingredient of the model is the treatment of
the departure from ideality. Electrolyte solutions are not ideal any-
more as far as the ion concentration is not dilute [10]. Typically
simple 1-1 electrolyte, such as NaCl in water have an activity co-
efficient which is close to 0.6 at molar concentrations (while it
is equal to 1 by definition in the ideal case) and the non-ideality
effects is even more important for the transport coefficients
[11,12]. Thus any ideal model can only be in semi-quantitative
agreement with a more rigorous model if departure from ideal-
ity are neglected. In the present article, we use a new approach
based on the Mean Spherical Approximation (MSA), for which the
ions are considered to be charged hard spheres [13,14]. This model
is able to describe the properties of the solutions up to molar
concentrations. In addition, a generalization of the Fuoss-Onsager
theory based on the Smoluchowski equation has been developed
[15,16,11,17,18,12] by taking into account this model, and it is
possible to predict the various transport coefficients of bulk elec-
trolyte solutions up to molar concentrations. This MSA transport
equations extend the well known Debye-Hiickel-Onsager limiting
law to the domain of concentrated solutions. They have also been
proved to be valid [19] for confined solutions in the case of clays by
comparing their predictions to molecular and Brownian dynamics
simulations.

A more detailed, mathematically oriented, presentation of the
fundamental concepts of electro-osmotic flow in nanochannels can
be found in the book [20] by Karniadakis et al., pages 447-470,
from which we borrow the notations and definitions in this
introduction. We now describe precisely our stationary model,
describing at the pore scale the electro-chemical interactions of
an N-component electrolyte in a dilute Newtonian solvent. All
quantities are given in SI units. We start with the following mass
conservation laws

div(j,-+un,-)=o in 2, i=1,....N, 1)

where £2, is the pore space of the porous medium £2, i denotes
the solute species, u is the hydrodynamic velocity and n; is the ith
species concentration. For each species i, un; is its convective flux
and j; its migration-diffusion flux.

The solute velocity is given by the incompressible Stokes
equations with a forcing term made of an exterior hydrodynamical
force f and of the electric force applied to the fluid thanks to the
charged species

N
nAu=f+Vp+e) znV¥ ing2, 2)
j=1

divu=0 in £, (3)
u=0 onadg\is, (4)
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where > 0 is the shear viscosity, p is the pressure, e is the ele-
mentary charge, z; is the charge number of the speciesiand ¥ is the
electrostatic potential. The pore space boundary is 952, while 952
is the outer boundary of the porous medium £2. On the fluid/solid
boundaries 952, \ 952 we assume the no-slip boundary condition
(4). For simplicity, we shall assume that £2 is a rectangular domain
with periodic boundary conditions on 9 £2. Furthermore, in order to
perform a homogenization process, we assume that the pore dis-
tribution is periodic in £2,.

We assume that all valencies z; are different. If not, we lump to-
gether different ions with the same valency. Of course, for physical
reasons, all valencies z; are integers. We rank them by increasing
order and we assume that they are both anions and cations, namely
positive and negative valencies,

N<ZHp<:---<2Zn, z1 <0 < zy, (5)

and we denote by j* and j~ the sets of positive and negative valen-
cies.

The migration-diffusion flux j; is given by the following linear
relationship

N

== Lim.....m) (Vi +zeV¥), i=1,....N, (6)
j=1

where Lj(ny, . .., ny) is the Onsager coefficient betweeniandjand

w; is the chemical potential of the species j given by

5nN)a j:],...,N, (7)

with y; being the activity coefficient of the species j, kg is the Boltz-
mann constant, 0 is the standard chemical potential expressed at
infinite dilution and T is the absolute temperature. The sum of all
fluxes j; is not zero because the solvent is not considered here and
ji is a particle flux. The Onsager tensor L; is made of the linear On-
sager coefficients between the species i and j. It is symmetric and
positive definite. Furthermore, on the fluid/solid interfaces a no-
flux condition holds true

jirv=0 082,\0%,

W= /LJO + kgT Innj + kgT Iny;(ny, . . .

i=1,...,N. (8)

The electrostatic potential is calculated from the Poisson equation
with the electric charge density as bulk source term

N
EAW = —e) zn in2, 9)
j=1

where & = &y§; is the dielectric constant of the solvent. The sur-
face charge X is assumed to be given at the pores boundaries,
namely the boundary condition reads

EVW v =—% ondf,\de, (10)

where v is the unit exterior normal to £2,,.

The activity coefficients y; and the Onsager coefficients L; de-
pend on the electrolyte. At infinite dilution the solution can be
considered ideal and we have y; = land L; = (SijniD?/(l<BT),
where DY > 0 is the diffusion coefficient of species i at infinite
dilution. At finite concentration, these expressions which corre-
spond to the Poisson-Nernst-Planck equations are not valid any-
more. Non-ideal effects modify the ion transport and they are to
be taken into account if quantitative description of the system is
required. Different models can be used. Here we choose the Mean
Spherical Approximation (MSA) in simplified form [11] which is
valid if the diameters of the ions are not too different. The activity
coefficients read

LpI'z}
14 I'o;

Iny; = +lnyH5, j=1,...,N, (11)

where oj is the jth ion diameter, Lp is the Bjerrum length given by
Ly = e?/(4m&kgT), y™ is the hard sphere term defined by (13),
and I" is the MSA screening parameter defined by

(12)

where )p is the Debye length. Thus, 1/2I" generalizes Ap at finite
concentration and it represents the size of the ionic spheres when
the ion diameters o; are different from zero. (In the sequel we shall
use a slightly different definition of the Debye length, relying on
the notion of characteristic concentration, see Table 1.) In (11) /S
is the hard sphere term which is independent of the type of species
and is given by

8 — 9& + 3&2
(1-8)3

where £ is the solute packing fraction.
The Onsager coefficients L; are given by

D?
L,’j(ﬂ], ceey TlN) = n,(ﬁéu + SZU> (1 + Rij),
B
i,j=1,...,N, (14)

N
. T
Iny" =pE) =¢ , withé = =3 mof, (13)
k=1

where ; = Qf + Slf}’s stands for the hydrodynamic interactions in
the MSA formallism and there is no summation for repeated indices
in (14). It is divided into two terms: the Coulombic part is

1 z,-szan

Q= —— . (15)
377 N nLBz,%ak
A+ To)(A+To) (T + ) g T2
k=1 ‘
and the hard sphere part is
2 ~ ~
oi+0)° 1—X3/5+ (X3)?/10
g = _(ota) 1-%/5 1 Ky (16)
12y 14 2X;
with
TN 3XXs + XsXo T
X3 = — n—m——s— and X = — n,-o-". (17)
s 5" g 6 2"
In (14) R;; is the electrostatic relaxation term given by
2 K2 eziz;
U 36kgT (0 + 0j)(1+ Toy) (1 + Ioy)
1 — e—2¢q(0i+0))
X N - (18)
z2e kq%
K'; + ZFI(q + 2r2 — 2ﬂLB’;nl(m
where k4 > 0 is defined by
N
2 > niz2D?
K2 = o TLN : (19)
Yoy
i=1

All these coefficients y;, I', ®;;, R;; are varying in space since they
are functions of the concentrations nj. The N x N tensor (Lj) is easily
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Table 1
Data description.

Quantity Characteristic value
e Electron charge 1.6e—19 C (Coulomb)
D? Diffusivity of the ith species DY € (1.333,2.032)e—09 m?/s
kg Boltzmann constant 1.38e—23]/K
ne Characteristic concentration (6.02 10%*, 6.02 10%%) particles/m>
T Temperature 293°K (Kelvin)
& Dielectric constant 6.93e—10 C/(mV)
n Dynamic viscosity le—3 kg/(ms)
14 Pore size 5e—9m
AD Debye’s length V/ €kpT/(e?n.) € (0.042,0.42) nm
z; jth electrolyte valence Given integer
X Surface charge density 0.129 C/m? (clays)
f Given applied force N/m?
oj jth hard sphere diameter 2e—10 m
' Characteristic electrokinetic potential 0.02527 V (Volt)
Lg Bjerrum length 7.3e—10m

seen to be symmetric. However, to be coined “Onsager tensor”
it should be positive too, which is not obvious from the above
formulas. The reason is that they are only approximations for not
too large concentrations. Nevertheless, when the concentrations
n; are small, all entries L are first order perturbations of the ideal
values SijniD?/(lch) and thus the Onsager tensor is positive at first
order. The various parameters appearing in (1)-(19) are defined in
Table 1.

As already said we consider a rectangular domain £2 = ]_[Z:1
(0, L)% (d = 2, 3 is the space dimension), Ly > 0 and at the outer
boundary 952 we set

¥ + v (x), n;,uandp are 2-periodic. (20)

The applied exterior potential ¥ (x) can typically be linear, equal
to E - x, where E is an imposed electrical field. Note that the
applied exterior force f in the Stokes equation (2) can also be
interpreted as some imposed pressure drop or gravity force. Due to
the complexity of the geometry and of the equations, it is necessary
for engineering applications to upscale the system (1)-(10) and
to replace the flow equations with a Darcy type law, including
electro-osmotic effects.

It is a common practice to assume that the porous medium
has a periodic microstructure. For such media, and in the ideal
case, formal two-scale asymptotic analysis of system (1)-(10) has
been performed in many previous papers. Many of these works
rely on a preliminary linearization of the problem which is first
due to O'Brien et al. [21]. Let us mention in particular the work of
Looker and Carnie in [22] that we rigorously justify in [23] and for
which we provided numerical experiments in [24]. Other relevant
references include [2,25-29,3,30-38].

Our goal here is to generalize these works for the non-ideal
MSA model. More specifically, we extend our previous works [23,
24] and provide the homogenized system for a linearized version
of (1)-(10) in a rigid periodic porous medium (the linearization is
performed around a so-called equilibrium solution which satisfies
the full nonlinear system (1)-(10) with vanishing fluxes). The
homogenized system is an elliptic system of (N 4 1) equations

—divy MV (P°, {j}1<jen) = 8 in £2,

where p° is the pressure, p; the chemical potential of the jth
species, M the Onsager homogenized tensor and $ a source term.
The (N 4 1) equations express the conservation of mass for the
fluid and the N species. More details will be given in Section 5.

In Section 2 we provide a dimensionless version of system
(1)-(10). We also explain in Lemma 1 how the ideal case can be
recovered from the non-ideal MSA model in the limit of small
characteristic value of the solute packing fraction. Section 3 is
concerned with the definition of so-called equilibrium solutions

when the external forces are vanishing (but not the surface charge
X). Computing these equilibrium solutions amounts to solve a
MSA variant of the nonlinear Poisson-Boltzmann equation for the
potential. Existence of a solution to such a Poisson-Boltzmann
equation is established in Section 6 under a smallness assump-
tion for a characteristic value of the solute packing fraction. To
our knowledge this existence result is the first one at this level of
generality. Let us mention nevertheless that, in a slightly simpler
setting (two species only and a linear approximation of p(§)) and
with a different method (based on a saddle point approach in the
two variables ¥ and {n;}), a previous existence result was obtained
in [39]. In Section 4 we give a linearized version of system (1)-(10).
We generalize the seminal work of O’Brien et al. [21], which was
devoted to the ideal case, to the present setting of the MSA model.
Under the assumption that all ions have the same diameter o; we
establishin Proposition 11 and Lemma 12 that the linearized model
is well-posed and that its solution satisfies uniform a priori esti-
mates. This property is crucial for homogenization of the linearized
model which is performed in Section 5. Following our work [23] in
the ideal case, we rigorously obtained the homogenized problem in
Theorem 14 and derive precise formulas for the effective tensor in
Proposition 15. Furthermore we prove that the so called Onsager
relation (see e.g. [40]) is satisfied, namely the full homogenized
tensor M is symmetric positive definite.

Eventually Section 7 is devoted to a numerical study of the
obtained homogenized coefficients, including their sensitivities to
various physical parameters and a systematic comparison with the
ideal case.

2. Non-dimensional form

Before studying its homogenization, we need a dimensionless
form of Eqs. (1)-(10). We follow the same approach as in our
previous works [23,24]. The known data are the characteristic
pore size ¢, the characteristic domain size L, the surface charge
density X (having the characteristic value X, ), the static electrical
potential ¥ and the applied fluid force f. As usual, we introduce
a small parameter ¢ which is the ratio between the pore size and
the medium size, ¢ = £/L < 1.

We are interested in characteristic concentrations n. taking
on typical values in the range (1072, 1) in Mole/liter, that is
(6.02 x 104, 6.02 x 10%) particles per m>. From Table 1, we write
Ap = +/&kgT/(e*n.) and we find out that Ap varies in the range
(0.042, 0.42) nm.

Following [20], we introduce the characteristic potential { =
kgT /e and the parameter S related to the Debye-Hiickel parameter
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k = 1/Xp, as follows

¢ 2
(1)

Next we rescale the space variable by setting X' = x/L and £2' =
/L= ]_[z:] (O, LL)d (we shall drop the primes for simplicity in the
sequel). The rescaled dimensions L;, are assumed to be independent
of ¢. Similarly, the pore space becomes 2° = £,/L which is a
periodically perforated domain with period e. Still following [20],
we define other characteristic quantities

22 kgTn.L

FC=\/7TLBTIC, 7

where I, in terms of n., is deduced from (12), p. is a pressure
equilibrating the electrokinetic forces in (2) and u, is the velocity
corresponding to a Poiseuille flow in a tube of diameter ¢, length L
and pressure drop p.. We also introduce adimensionalized forcing
terms

pe = nckgT, Uec =

)

Pextx ey * = E >y = E N. = eXct
kgT pe’ 3 T gkgT’

and adimensionalized unknowns
]—'825 p5:£ uszE S:g

I ' DPc ' Uc ' kT '
] P 1
I R

C (o j

The dimensionless equations for hydrodynamical and electrostatic
parts are thus

N
g2 Au® — Vp = f* + sznf(x)VlI/S in 2°, (22)
=
u'=0 ondN°\ I, dive® =0 in£2°, (23)
N
—e? AW =B znf(x) in Q° (24)
=1
eVWE.v=—N,X* ondR°\ae, (25)
(WE 4+ we*) u® and p° are £2-periodic in x. (26)

(Recall that 2 = 1‘[;321(0, Ly)¢ so that periodic boundary con-
ditions make sense for such a rectangular domain.) Furthermore,
from (11) and (12) we define

LBrerczf q
_— an
1+ FEFco'j)

& _

v =" exp {—

2 5 niZ;
Fs — K™K .
" ; (1 + I'eoy)?
The solute packing fraction £ is already an adimensionalized quan-
tity (taking values in the range (0, 1)). However, introducing a
characteristic value & we can adimensionalize its formula (13) as

T N o\’
& = gnco'g’ E=§& Zni (f) ) (28)
k=1 ¢

where o, is the characteristic ion diameter. We note that I, €
(0.117,1.17) 10° m~", Io. € (0.023,0.23), [zl € (0.0857,
0.857) and & € (0.252, 25.2) 10~* which is a small parameter.
Concerning Sl; which has to be compared with D? /(kgT), we find
out that

LgnckgT /(3nTeDY) = ItksT/(3mnDY) € (0.005415, 0.5415),

while Slf-}’s is slightly smaller and &;; looks negligible. Concerning
the transport term, the Peclet number for the jth species is

_ull  £%kgTn,
=— = )
Dj nDj

Pe; € (0.01085, 1.085).

After these considerations we obtain the dimensionless form of
Eq.(1):

div(j{ + Penfu’) =0 inQ°,i=1,...,N, (29)

i-v=0 ondR\dL,i=1,...,N, (30)
N

==Y mKvM and M =In(niyfer), (31)
j=1

& kBT ..

KUZ 6U+FQU 1+RU . l,]:l,...,N. (32)

1

Eventually the porous medium £2° is assumed to be an
g-periodic smooth open subset of 2 = Hﬁ:] (0, Ly)¢ and Ly /¢ are
integers for every k and every ¢. It is built from §2 by removing
a periodic distributions of solid obstacles which, after rescaling
by 1/e, are all similar to the unit obstacle Ys. More precisely, we
consider a smooth partition of the unit periodicity cell Y = Ys U Y
where Ys is the solid part and Yr is the fluid part. The liquid/solid
interface is S = dYs \ dY. The fluid part is assumed to be a smooth
connected open subset (no assumption is made on the solid part).
We define Y, = e(Yr +j) and 2° = ;0 YI N 2.

We also assume a periodic distribution of charges X* =
X*(x/e). This will imply that, at equilibrium (in the absence of
other forces), the solution of system (22)-(32) is also periodic of

period ¢.
We recall that the ideal model (see e.g. [20]) corresponds to
the following values of the activity coefficient, 3 = 1, and of

the Onsager tensor Lj = 8,-jn,-D? /(kgT). In view of our previous
dimensional analysis it is interesting to see in which sense the
present non-ideal MSA model is close to the ideal case. We shall
make this connection in the limit of a small parameter going to
zero. More precisely we rely on the characteristic value & of the
solute packing fraction, defined by (28). The smallness of & (which
means a low concentration, weighted by the ion size) will be a
crucial assumption in Theorem 2 that establishes the existence of
equilibrium solutions to the MSA model. It is therefore a natural
parameter to study the limit ideal case. With this goal in mind
we introduce two additional dimensionless numbers: Bjerrum’s
parameter (also called the Landau plasma parameter)
bi = L—B, (33)
Oc
and the ratio appearing in Stokes’ formula for the drag hydrody-
namic force
kBT

S = , 34
7Dlo (34)

where Dg is the characteristic value for the diffusivities D?, 1<i<
N. According to the numerical values of Table 1, we assume that

bi and S are of order one. (35)

More precisely, it is enough to assume that bi and S are bounded
quantities when &. becomes infinitely small (they can tend to zero
too).

Lemma 1. Under assumption (35), the ideal case is the limit of our
non-ideal MSA model for small solute packing fraction &., namely

K =8+ 0(/&), and Iny =0(/&). (36)
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Hence the MSA model is a regular O(+/€.) perturbation of the
idealized model. Theorem 2 in Section 3 gives the equilibrium MSA
solution as an O(y/.) perturbation of the equilibrium idealized
solution. The arguments from Section 6 could be extended to
interpret the MSA variant of the Poisson-Boltzmann equation as
an O(4/&.) perturbation of the classical (ideal) Poisson-Boltzmann
equation.

Proof. In view of formula (13) we find

Iny™ = 0(&).

From its definition (12) and for small & we deduce that
I = 0(y/Lgne).

Using assumption (35), bi = 0(1), yields

roj = 0(y/bi&) = 0(y/&) and I'Ly = 0(v/bi%,) = 0(\/&).

which implies from (11)

LgI'z?
— 9 _0(/&) andthus Iny = O(/&).
1+ Ioj

Turning to the Onsager coefficients, we obtain from (19) that
KqOc = O(\/ Lgncoe) = O(\/%?c)»

which implies after some algebra that

Rij = O(Lpicq) = 0(v/&0).

Using the second part of assumption (35), S = 0(1), yields

ocksT _ o ( ksT ,Fmgc) — 0(S/BiE) = 0(/E).

ﬂD?Uc

Similarly
kBT
2}ff T = 0(5:) = 0.

i

which eventually yields

ﬂjD?
Lj = 2= @i + 0(V&)),
T

from which we infer the conclusion (36). Note that a similar
approximation holds for the chemical potential

1y = ) + kT (Innj + 0(V&)). D

3. Equilibrium solution

The goal of this section is to find a so-called equilibrium so-
lution of system (22)-(32) when the exterior forces are vanish-
ingf = 0and ¥ = 0. However, the surface charge density
2* is not assumed to vanish or to be small. This equilibrium solu-
tion will be a reference solution around which we shall linearize
system (22)-(32) in the next section. Then we perform the ho-
mogenization of the (partially) linearized system. We denote by
n?’s, goe yle, MI-O’S, p%¢ the equilibrium quantities.

In the case f = 0 and ¥®* = 0, one can find an equilibrium
solution by choosing a zero fluid velocity and taking all diffusion
fluxes equal to zero. More precisely, we require

=0 and VM =0, (37)

which obviously implies that j?’s = 0 and (29)-(30) are satisfied.
The Stokes equation (22) shall give the corresponding value of the
pressure satisfying

N
V() = = Y zn )Vt (),
j=1

for which an explicit expression is given below (see (47)). From
VIVIJO‘S = 0and (31) we deduce that there exist constants n}’(oo) >
0and y(o0) > 0 such that

exp{—z¥%¢(x)}

ij,s(X)

" (1) = 1} (00),” (00) (38)

The value n]‘?(oo) is the reservoir concentration (also called the
infinite dilute concentration) which will be later assumed to satisfy
the bulk electroneutrality condition for zero potential. The value
yjo(oo) is the reservoir activity coefficient which corresponds

to the value of yjo’g for zero potential (see (49) below for its
precise formula). Before plugging (38) into Poisson equation (24)
to obtain the MSA variant of the Poisson-Boltzmann equation for
the potential ¥%¢, we have to determine the value of the activity
coefficient yjo's.

From the first equation of (27) we have

14 I ro;

LgI%e [.z?
yjo,a st(é) exp {_ J

(39)

LgI%¢ .22
exp [p(é ) — L,

14+ I rio;
where, for £ € [0, 1), p(§) is a polynomial defined by (13) and,

recalling definition (28) of the characteristic value &, the solute
packing fraction & is

E=¢ in“ ("")3 (40)
—e > (2

=1 ¢

The second equation of (27) gives a formula for the MSA
screening parameter

N 0,
(FO,E)Z — Z nl( szl% (41)
— (14 I I%0)?

Let us explain how to solve the algebraic Egs. (38)-(41).

Combining (38)-(40), for given potential ¥%¢ and screening
parameter I"%¢, the solute packing fraction £ is a solution of the
algebraic equation

N N3
&= exp{—p())E Y (%) n(00)y,(00)

=1 \%

(42)

o LBI“O’EFCZJZ
X exp{ —z¥>f + .

1+ I r.o;

Once we know & = £(¥%¢, %), solution of (42), combining (38)
and (41), I'%¢ is a solution of the following algebraic equation,
depending on ¥%¢,

2

N
yan
FO,S 2 _ 0 0 J
(™ j;n, ()1 () T3 o o2

Ly%f Iz}

0,¢
X exp {_ZJW R %o

—p (e, F°=8>)] . (43)
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All in all, solving the two algebraic equations (42) and (43) yields
the values I"%¢(¥%¢) and £(W0¢) = 5(!110’5, FO'S(W°*5)> (see
Section 6 for a precise statement).

Then the electrostatic equation (24) reduces to the following

MSA variant of the Poisson-Boltzmann equation which is a non-
linear partial differential equation for the sole unknown ¥%¢

N
—e2 AW = B "z (00)y(00)
j=1
Ly%F (W*9) Iz}

14 Mo (w0e) [0

x exp | —z¥¢ +

- p(é(w“*?))}

in £2°¢,
eVW .y = —N, Z* ondRf\ 32, v is 2-periodic.
(44)

In Section 6 (see Theorem 24) we shall prove the following
existence result. Unfortunately we are unable to prove uniqueness.

Theorem 2. Assuming that the surface charge distribution X* be-
longs to L*°(0£2°), that the ions are not too small, namely

o

Ly < (6 + 4v/2) min = with 6 + 4v/2 ~ 11.656854, (45)
<j=N Z:

]

and that the characteristic value & is small enough, there exists at
least one solution of (44) W%¢ € H1(£2%) N L= (2°%).

Introducing the primitive E;(¥) of
E(¥) = zn(c0)y(c0)
Lyl (W) Iz}

expy—z¥ + —————
X Xp{ j +1+FO‘C(‘I/)FCO}

- p(é(wn} ., (46)

the equilibrium pressure in Stokes equations (corresponding to a
zero velocity) is given (up to an additive constant) by

N

pO,s = ZEJ(WO’F) (47)
j=1

Remark 3. In the ideal case, i.e., when yjo’g = 1, the function

Ej(llfo's) defined by (46) is simply equal to n][.)'s =
exp{—zw%¢}.

n?(00)

From a physical point of view, it is desired that the solution of
(44) vanishes, i.e, ¥%¢ = 0, when the surface charges are null,
i.e, X* = 0. Therefore, following the literature, we impose the
bulk electroneutrality condition

N N
D_EO = =) zm(00)y’(0)
Jj=1 j=1

Lg% (0) Fcz]?
X exp

1+ I ) [eo; P(cf(O))] =0, (48)

where I"%¢(0) is the solution of (43) for w%¢ = 0.
Defining the equilibrium activity coefficient by

(49)

1+ I'%¢(0)Io;

. Ly%¢(0)I.2?
¥ (00) = exp [p(S(O))— ’ 5 }

the bulk electroneutrality condition (48) reduces to its usual form

N
Z zn?(c0) = 0.
=1

Formula (49) is an implicit algebraic equation for )/jo (o0) since § 0)
and I"%¢(0) depend themselves on the yko(oo)'s. The next lemma
proves that it is a well-posed equation.

Lemma 4. There always exists a unique solution yjo(oo) of the
algebraic equation (49).

Proof. Assume that there exists yjo(oo) satisfying (49) and plug
this formula in (43). It yields

N 0 2
n; (oo)zj

0,¢ 2 =
(r* )" = Z (1+ % (0)Ie0))?’

=1

which admits a unique solution 7%¢(0) > 0 since the left hand
side is strictly increasing and the right hand side is decreasing. On
the same token, using (49) in (42) leads to

N \3
£0) =&Z<%) 0 (00).

=1 \%

We have thus found explicit values for I"%¢(0) and é (0) which do
not depend on the )/,? (00)’s. Using them in (49) gives its unique
solution y(c0). O

Remark 5. From the proof of Lemma 4 it is clear that "%¢(0)
does not depend on &, while £(0) = 0O(&.), which implies that
¥ (00) = 0(1) for small &.

Remark 6. The bulk electroneutrality condition (48) is not a
restriction. Actually all our results hold under the much weaker
assumption (5) that all valencies z; do not have the same sign.
Indeed, if (48) is not satisfied, we can make a change of variables
in the Poisson-Boltzmann equation (44), defining a new potential
g0e = wO¢ 4 C where C is a constant reference potential. Since
the function

N
C— @) = sznf(oo)yjo(oo)
=1

LBFO'S(C)FCZJZ

m —p©)

X exp {—sz +

is continuous and admits opposite infinite limits when C tends to
=, there exists at least one value C such that @ (C) = 0. This change
of variables for the potential leaves (43) and (44) invariant if we
change the constants n]o(oo) yjo (00) in new constants

i (00) 7 (00) = n(00)y,(00)

Lg% (O) Iz} Ly"**(0) Iz}

14+ 1% (C)lo; 1+ I'%(0)I;0;

X exp {—sz +

— pE(C)) +p<§(0))= :

These new constants satisfy the bulk electroneutrality condition
(48).

4. Linearization

We now proceed to the linearization of electrokinetic
Egs. (22)-(32) around the equilibrium solution computed in Sec-
tion 3. We therefore assume that the external forces, namely the
static electric potential ¥®*(x) and the hydrodynamic force f(x),
are small. However, the surface charge density X* on the pore
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walls is not assumed to be small since it is part of the equilibrium
problem studied in Section 3. Such a linearization process is clas-
sical in the ideal case (see the seminal paper [21] by O'Brien et al.)
but it is new and slightly more complicated for the MSA model.
For small exterior forces, we write the perturbed electrokinetic un-
knowns as

n (x) = n?’s(x) + énf (x), we(x) = w2 (x) + sWe(x),

w0 =u X+’ ®),  p ) =p> X +p°K),

where n?‘g, w0 u%¢ pOe are the equilibrium quantities, corre-
sponding to f = 0 and ¥ = 0. The § prefix indicates a perturba-
tion. Since the equilibrium velocity vanishes u®¢ = 0, we identify
in the sequel u® = §u’.

Motivated by the form of the Boltzmann equilibrium distribu-
tion and the calculation of n?’s, we follow the lead of [21] and in-
troduce a so-called ionic potential @{ which is defined in terms of
n{ by

n; )y (%) = nf(00)y,(00)

x exp{—zi(¥* (%) + & (x) + ¥ (x))}, (50)
where
LgIeI.z?
& — ex - -1 and
Y p {p(%‘) T+ Ilo
51)
N -2 (
niz
aid 2 — k=k ,
( ) ; (1—{-[‘81—'50'/()2
with
8 — 9f + 3&2 N o\’
p)=6——"—5— and §=&) ni| =) .
(1-6)? ; 1\ o
Since q)?’g = 0 by virtue of formula (38) for n?‘g, we identify §f
with @,
Lemma 7. The linearization of (50)-(51) yields
N
ot () = Yzl (897 + PL0 + W), (52)
k=1
with
Lgl
ol = —n{ 8y + B ) ) o} — :0,: P
X ziz _ BO,aCO,s
(14 Ir¢r.o;)?
z; 0.6 0. 3
—— — B"°D™ , 53
((1 + T Teoy)? “") =
where
BO,s — %nfp/(g) CO,s — i zfa,fng’g
1+Ep(§)’ = (14 I Iop)?
N
ziny
poe =S AM
; (14 ¢ rox)?
and

N

0,
A = 20 42T, Z _MCEO
L (14 I'%[L0p)3

n, Zk
—Lgl% .
g Z(]+p08ro-k)4

n, z
+LBFBOSC08 k k .
¢ k; (1 + % I.op)?

Under assumption (45) of Theorem 2 the coefficient A%¢ is positive.

Furthermore, at equilibrium, if we consider n?’£
w0 we have

sz 1k (54)

If all ions have the same diameter (o, = o; for all i, k), then the
coefficients ' = oy are symmetric.

as a function of

dlI/O €

Remark 8. At equilibrium, the concentrations n?”?, as well as
the screening parameter I"°¢, depend only on ¥%¢ through the
algebraic equations (38)-(41). However, outside equilibrium the
concentrations n and the screening parameter I"* depend through
(50)-(51) on the entire family (§¥° + @f + ¥***),1 <k <N.

Proof. Linearizing (50) leads to

—8y¢
on; =0 051)2 n{ (00)y, (00) exp{—z¥"*}
zin?(00)y;
G i( ())):j( ) xp{—z,-llfo‘g}<(311/€+@f+‘1’e)a’*)

i

which is equivalent to

)

suf = W 0o P (0w + @f + we), (55)
Vi

Linearization of the first equation of (51) yields

W e~ IE

(1 + Fo'grcgi)z

i

with 88 = —nc Za,{ snt. (56)

k=

Multiplying (55) by a and (56) by 03 O ¢, then summing up to
eliminate §y; /yi , gives

N N
b4
(Z U,?(Sﬂ,i) (1 + gncp’(%-) Z o',?nz s)
k=1 k=1
N
= Za,fzkng’*?@w + &f + w”‘*)
k=1

s XN: Lglezion)*
k=1 (1 + FO'SFcUk)Z '

from which, together with (55), we deduce
S0 = —zin®* (x) (awg(x) + @ () + we’“’*(x))

Lplez?2n* (x)

a+ FOS(x)Fca,»)ZM @

N
+ B%*n>* (x) Z oLznyt (x)

k=1
X (511/€(x) + Pp(x) + lPex"*(x))

— B n® ()L I8¢ (x). (57)

Next, we linearize the second formula of (51) to obtain

N 2 0,e,2
ZFO,SSFS — Z Zktsnli _ an 8Zk0krc sre ).
k=1 (1 + FO’SFCUIc)Z (1 + FO’SFcUk)B
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Combining it with (57) leads to

N

_;(1

x (aq/f(x) F oL + w‘—’*f»*(x))

0,¢ 3
n,” Xz

0,¢ & j—
AME () 8T (x) = + % (x) I.0y)?

N
+B% (D% (0) Y np* (0zioy,
k=1

x (8'1/5()() LX) + weva*(x)). (58)

Eventually, plugging (58) into (57) yields (52) and (53).

Since we divide by A%® we check that it does not vanish in some
range of the physical parameters. Using definition (51) of (1"%¢)?
in the equality 27%¢ = 2(1"%#)2/I%¢ allows us to rewrite the
coefficient A%® as

0,e_2

n, z
AO,{;‘X k “k
() Z(1+r0€ro.’)2

2 n 20’]( Lsz
X _
roer, " (1+r%ro) (14 I rhop)?
N 0,62

n, z
—|—L r BO,sco.s k “k ,
e ; (1+ % oy)?

where each term in the sum of the first line is positive under the
same condition (45) and same proof as in Lemma 18.

The computation leading to (54) is completely similar. Finally,
the symmetry relation ol , = a,?”f is obvious from formula (53)
wheno, = o;foralli,k. 0O

& —

Remark9 In the ideal case, y* = 1, Lemma 7 simplifies a lot

since oc, v o= —n?’SSik which implies there is no coupling between
the various ionic potentials in the definition of a single species
concentration.

Thanks to the definition (50) of the ionic potential, the lineariza-
tion of the convection-diffusion equation (29) is easy because the
diffusive flux simplifies as

= In (e ) = In (n(00)(00)) = (f + W),
Furthermore, the equilibrium solution satisfies VMJ.O“LT = 0, which

implies

div (Zn" K ZV(®f + W) + Peyn) ) =0 in° (59)
Jj=1

I<§'S_<,BIT5U+9)<1+RS), i,j=1,...,N. (60)

The linearization of the Stokes equation (22) is more tricky. We first
get

N
e2Aw = Vop' =f + )z (s Ve £ nl Vo) in@r,

j=1
(61)
divu®* =0 in2°, u"=0 ondR°\ .
We rewrite the sum on the right hand side of (61) as
N
v (Z z;nf*sawf> + 5¢
j=1
N
withs* =z <8anl1/0’£ - (StI/SVn;”£> . (62)

j=1

d 0,
Since an’s = o= V% at equilibrium, from Lemma 7 we de-
duce
N
s =3z (zkotf;f (ws +of+ wexf=*) — 80t ) Voo
jk=1
N
= Yz (qsk T g *)W/O ’ (63)
J.k=1

If all ions have the same diameter, the coefficients af;f are sym-
metric, i.e. a r = akj , 50 we deduce

dni* 0
k & ext,* ,€
E kdwog(qu +w )W/

- sz(cplf ) e,
k=1

Thus, we rewrite (61) as

N
AW — VP =1 =) " zn*V (o + ¥*¥) (64)
j=1

where the new pressure P? is defined by

N
Pt = 5p8 + szn;),s (8l1/8 + cDJg + ,I/ext,*) )
j=1

Remark 10. When the ion diameters are different, we can merely
introduce nonlinear functions F; (defined by their derivatives) such
that

N
=Y 5 (o + ) V(F@™)).
=1

In general it is not clear whether F; = n;.

Of course, one can deduce a linearized equation for §¥* from
the non-linear Poisson equation (24) too. But, since §¥*¢ does not
enter the previous equations (upon redefining the pressure P¢), it
is decoupled from the main unknowns u®, P® and &{. Therefore it
is not necessary to write its equation in detail.

To summarize, we have just proved the following result.

Proposition 11. Assume that all ions have the same diameter. The
linearized system, around the equilibrium solution of Section 3, of the
electrokinetic equations (22)-(32) is

N
AW — VP = =) " zn*V (0f + ¥*¥) in2°,  (65)
j=1
u* =0 ondN°\ag, (66)

divu® =0 in £°,

N
div n?’g <Z Kg’gzjV(cpf + Py 4 Pe,-u5> =0
=

in%,i=1,...,N, (67)
N
D K V(P + W) v =0 ondRf\ 9%, (68)
u’, P°, & are $2-periodic, (69)

where the coefficients nj(-)’g
equilibrium.

and Kij-)‘s (defined by (60)) are evaluated at
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This is the system of equations that we are going to homogenize
in the next sections. It is the extension to the non-ideal case of
a similar ideal system previously studied in [23,24,2,25,27-29,34,
22]. The mathematical structure of system (65)-(69) is essentially
the same as in the ideal case. The only difference is the coupling
of the diffusion equations through the tensor K,-? **. Note that the

tensor Ki?’s is related to the original Onsager tensor L;, defined
n (14): upon adimensionalization and evaluation at equilibrium,
Lij becomes LS."C’ = n?‘gl(g’sD?/(kBT). In particular, the tensor Lg‘s
inherits from the symmetry of L; (it is thus symmetric positive
definite).

Next, we establish the variational formulation of (65)-(69)
and prove that it admits a unique solution. The functional spaces
related to the velocity field are

We = {veH' (29% v=00nd°\ 3£, $2-periodic in x}
and
H® = {ve W?, divv = 0in £2°}.

The variational formulation of (65)-(69) is: find u®* € H® and
(@ )i=1..n € H(£29)N, @/ being §2-periodic, such that, for any
test functions v. € H® and {¢j}j=1..n € H'(2°)N, ¢ being
§2-periodic,

a ((ua’ {@f}), (V, {¢]})) - <°C» (V, {¢]})>s

where the bilinear form a and the linear form £ are defined by

,,,,,

a ((us, (@), (v, {qu})) = g2 /Qs Vu' : Vvdx

N ZiZ;
1 il s
- / e K V@S - Ve dx

=1 Pe,' QFf

(o= Y5 [ vy
. 1 QS

j=

N
ZiZ;
-y = / ny K E* - Vi dx —
=1 Pei QF

where, for simplicity, we denote by E* the electric field corre-
sponding to the potential ¥ #* i.e., E*(x) = VWe*(x).

f* . vdx, (70)

0

Lemma 12. For sufficiently small values of n. > 0and & > 0, and
under assumption (45), there exists a unique solution of (65)-(69),
u € H°and {@)i—1..n € H'(Q", ® being 2-periodic.

Furthermore, there exists a positive constant C, independent of ¢, such
that

& & &
0l 2 (eya + eI VUl 5 ey + max D5 (111 (e

< C(IIE I 2eoyt + Il 2¢)1)- (71)

Proof. Assumption (45) and small £& > 0 imply that the poten-
tial ¢ is bounded in L*®(£2¢) (see Theorem 24). The same holds
true for £ and I"%¢ which are algebraic functions of ¥%¢. Thus,
the concentrations nj‘-)'s, defined by (109) are uniformly positive

and bounded in L*°(£2¢). Due to the structure of Slfj 95-15 and Rj,
these coefficients, evaluated at equilibrium, are arbitrary small in
L°°(£2°?) for small n.. Consequently, the tensor Kij.)'s is positive def-
inite (as a perturbation of the identity) and the bilinear form a is

coercive for n. < n{". The rest of the proof, including the a priori

estimates, is similar to the ideal case, studied in [23], where we had
0,e

Ki" =38 O

5. Homogenization

In Sections 3 and 4 we did not use our assumption that the
porous medium and the surface charge distribution are e-periodic
(see the end of Section 2). Our further analysis relies crucially
on this ¢-periodicity hypothesis. Theorem 2 gives the existence
of a solution to the Poisson-Boltzmann equation (44) but not its
uniqueness. Nevertheless, we can define a particular solution of
(44), which is e-periodic,

WO (x) = @O (g) : (72)

where ¥O(y) is a solution of the unit cell Poisson-Boltzmann
equation

in Y,

N
AWy =B znl(y)
j=1
Vw0 . v = —N, Z*(y)
y — w%(y) is 1-periodic,
exp {—z¥°(n)}
m(y) = n;’<oo>yj°<oo>yjo—’(y)

with the activity coefficient defined by
LBFO(.V) Fczjz
1+ I°(y)r.o))

ondYr \ dY, (73)

)

v =y® @) exp [—

N 0 2
0/ 2 _ n, (¥)z;
(00 =2 G gy

and
8 — 9 4 32
VM5 — explp(®)) with p(s) = £ > 2 T35

a—¢y and

N
TN, 0 3
= n,(y)o;.
"EO/) 6 ; k(y) k

The formal two-scale asymptotic expansion method [41-43]
can be applied to system (65)-(69) as in the ideal case studied
by [22,3,30,31,33,23] and [24]. Introducing the fast variable y =
x/¢&, it assumes that the solution of (65)-(69) is given by

u(x) = u(x, x/e) + eu' (X, x/e) + - -,
PP(x) =p°(x) +ep' (x, x/€) + - -+, (74)
DF(x) = D) (X) + €D} (x, x/e) + - -.
We then plug this ansatz in Egs. (65)-(69) and use the chain-rule
lemma for a function ¢ (x, f)

(o) = (50 150) ).

Identifying the various powers of ¢ we obtain a cascade of equa-
tions from which we retain only the first ones that constitute the
following two-scale homogenized problem. This type of calcula-
tion is classical and we do not reproduce it here. It can be made
rigorous thanks to the notion of two-scale convergence [44,45].

Proposition 13. From each bounded sequence {w?} in L*(£2¢) one
can extract a subsequence which two-scale converges to a limit w €
L?(£2 x Yr) in the sense that

lim | wf(x)e (x, §) dx = / / w(x, y)o(x,y) dy dx
& 2 Jye

e—>0 Joe

forany ¢ € 1?(£2; Cper(Y)) (“per” denotes 1-periodicity).
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For sequences of functions w® defined in the perforated domain
£2¢ and satisfying uniform in ¢H'-bounds, it is well-known [42]
that one can build extensions to the entire domain £2 satisfying
the same uniform bounds. We implicitly assume such extensions
in the theorem below but do not give details which are classical
and may be found in [23].

Theorem 14. Under the assumptions of Lemma 12 the solution
of (65)—(69) converges in the following sense

u® — u’(x,y) in the two-scale sense

eV’ — Vyuo(x, y) in the two-scale sense

&

P? — pO(x) strongly in L*(£2)
@ — &(x) weakly in H'(£2) and strongly in L*(£2)

Vo§ — fobjo x) + VyCDj] (x,y) inthe two-scale sense

where (u°, p°) e [2(£2; per(Y) ) x L2(£2) and {®?, d> Yi=1...N €

(H'(2) x [*(£2; per(Y))) is the unique solution of the two-scale
homogenized problem

—2,u°(x,y) + Vyp' (x,y) = =V, p° (%) — F* (%)

N
+ >zl () (VxdP () + Vy @] (x.y) + E* (%)) in 2 x Yz,
Jj=1

divyu’(x,y) =0 in2 x Y, u’(x,y)=0 on2 xS, (76)

divy (/ u’(x, y) dy) =0 in$2, (77)
i

N
—div,n’(y) (Z Ki(1)z(Vy @} (x, y) + V@) (%)
j=1

+E'(x) + Pe,-uo(x,y)> =0 in2xY, (78)

N
> Ki»z(Vy @] + Vi@ +E) - v(y) =0 on2 xS, (79)
j=1

N
—divy / nd(y) (Zl<,—,-(y)z,—(qu>jl(x, Y) + Vi® (x) + E*(x))
Yr

=1

+ Peju®(x, y)) dy=0 ing2, (80)

@7, f u®dy and p° being $2-periodic in x, (81)
Ve

with periodic boundary conditions on the unit cell Yr for all functions
dependingony and S = 9Ys \ dY.

The limit problem introduced in Theorem 14 is called the two-
scale and two-pressure homogenized problem, following the ter-
minology of [42,46]. It features two incompressibility constraints
(76) and (77) which are exactly dual to the two pressures p°(x) and
pl(x, y) which are their corresponding Lagrange multipliers. Re-
mark that Egs. (75), (76) and (78) are just the leading order terms
in the ansatz of the original equations. On the other hand, Eqs. (77)
and (80) are averages on the unit cell Y of the next order terms in
the ansatz. For example, (77) is deduced from

divyu'(x,y) + divyu’(x,y) =0 in 2 x Y

by averaging on Y, recalling that u'(x,y) = Oon £2 x S.

Proof. The proof of convergence and the derivation of the homog-
enized system is completely similar to the proof of Theorem 1
in [23] which holds in the ideal case. The only point which deserves
to be made precise here is the well-posedness of the two-scale ho-
mogenized problem.

Following section 3.1.2 in [47], we introduce the functional
space for the velocities

= {u’(x.y) € L2, ($2: Hy,, (Yp)?) satisfying (76)-(77)},

per

which is known to be orthogonal in L2, (£2; Hp,, (Y¢)?) to the space
of gradients ofthe form V,q(x)+-V,q1(x, y) withq(x) € per(.Q)/R
andq;(x,y) € L2, (£2; Lf,er(YF)/R) We define the functional space
X=Vx H;er(.Q)/]Ri xL per (£2; per(YF)d/R) and the variational for-

mulation of (75)-(81) is to find (u°, {®?, cpj ) € X such that, for
any test functions (v, {¢?, ¢}) € X,

a ((UO’ {@0, ®jl})f (V’ {¢]Qv ¢Jl})) = <°Cs (V, {¢jpf ¢]1})>7 (82)

where the bilinear form a and the linear form .£ are defined by

a(@®, {@9,q>j1}),(v, 9.0/ D) ::// V,u’ : Vvdxdy
2 JYr

Z
+ "f f °1<,J(vxcp°+vycb )- (de) +vy¢ ) dx dy
= Pe; Ye

i

+ sz / / ) (u’ - (Vi + Vi)
j=1 2 JYp

—v- (V@) + V,®))) dxdy (83)

and
(L, (v, {gi]) Zz]/ / n]QE*~vdxdy—/ f* . vdxdy
Yr 2 JYp

-y / / nOKGE" - (Vi@ + Vyp)) dxdy,
Pel YF

We apply the Lax-Milgram lemma to prove the existence and the
uniqueness of the solution in X of (82). The only point which re-
quires to be checked is the coercivity of the bilinear form. We take
v=u’,¢) = @) and ¢} = @/ as the test functions in (82).

We defme a local dlffusion tensor

kBT
<u LZ,ZJL,](y)) , (84)

1=<ij=<N

i ZiZj 0
kK@) = (52Kl
Pe; 1<ij<N
which is symmetric since (L;) is symmetric too. As already re-
marked in the proof of Lemma 12, K is uniformly coercive for small
enough n. > 0and & > 0. Therefore, the second integral on the
right hand side of (83) is positive. The third integral, being skew-
symmetric, vanishes, which proves the coercivity ofa. O

Of course, one should extract from (75)-(81) the macroscopic
homogenized problem, which requires to separate the fast and
slow scale. In the ideal case, Looker and Carnie in [22] proposed
a first approach which was further improved in [23] and [24].

The main idea is to recognize in the two-scale homogenized
problem (75)-(81) that there are two different macroscopic fluxes,
namely (Vyp°(x)+f*(x)) and { V@] (X)+E*(x)}1<j<n. Therefore we
introduce two family of cell problems, indexed by k € {1, ..., d}
for each component of these fluxes. We denote by {ek}lskfd the
canonical basis of RY.



50 G. Allaire et al. / Physica D 282 (2014) 39-60

The first cell problem, corresponding to the macroscopic
pressure gradient, is

N

—ANK @) + VO ) = €+ Y zn’ (1) V07 (1) inYr (85)
j=1

divyv**(y) =0 inYs, v*(@y) =0 onsS, (86)

N
—div,n’(y) (ij(y)zjvye,"-"(y) + Pe,—v°”‘(y)> =0 inYr (87)

j=1

N
> Ki»zV,07 (y) v =0 ons. (88)
j=1

The second cell problem, corresponding to the macroscopic diffu-
sive flux, is for each species | € {1, ..., N}

N
>zl ()€t + V0 1) inYr

=1

—Ayv’*k(y) + Vyn”‘(y) =

(89)

div,v**(y) =0 inY¥;, v**() =0 ons, (90)
N

—div,n0(y) (Z Kz (85e* + V,0/ (1)) + Pe,»v“‘(y))
j=1
N
k Lk
> Ki»z(sye* + V,67 () v =0 ons, (92)

=1

where d;; is the Kronecker symbol. As usual the cell problems are
complemented with periodic boundary conditions.
Then, we can decompose the solution of (75)-(81) as

0 _ d _ g0k LPO *
u(m)-Z V) +i) ®

k=

+ Zv' ) (Ek

i=1

")
p'(x.y) = i( 7% (y) ( +fk>(><)

)

)

(X)) (93)

N ) 9" 0
+ Y oato) (5 + 5t

d

o(x,y) = Z( i) (— +) @

k=
foRe)
+ Ze”‘(w( )(x)) (95)
i=1

We average (93)—(95) in order to get a purely macroscopic homog-
enized problem. We define the homogenized quantities: first, the
electro-chemical potential

(X)) (94)

(%) = =z(®] (1) + ¥ (), (96)

then, the ionic flux of the jth species

1 N Z]
jix = 7/ no(y)( Ki(y)— (Vy @/ (x, y)
] |YF| " ] ; J Pej( Yyl

+ V@) (x) + E*(x)) + u°>dy, (97)

and finally the filtration velocity

ux) = 1 u’(x, y) dy. (98)
|YF| Yr

From (93)-(95) we deduce the homogenized or upscaled equations
for the above effective fields.

Proposition 15. Introducing the flux g(x) = (u, {jj}1<j<n) and the
gradient F(x) = (Vyp°, {Viii}i<j<n), the macroscopic equations

are
divyg =0 in $2, (99)
J=—-MF — M, {0}), (100)
with a homogenized tensor M defined by
k o
Z1 ZN
D D
L - N
M = Z1 N |, (101)
Dy Dy
Ly NG I
21 ZN

and complemented with periodic boundary conditions for p°® and
{quo}@vSN. The matrices J;, K, Dj; and L; are defined by their entries

1 .
T} = V""(v) -e'dy,
1Yel

(K} = vo”‘(y) -e'dy,

|YF|
.e —_— 0
{Dﬁ}lk = A /YF n; )

N
x (vl*"(y) +y Iqmmz—"f (Sime* + vyef,;"cy))) el dy,
m=1

{L,-}zkzwl—l / n}’(y)(v“(vwz&m(v) ve“(y)) el ay.
Fl Jyg

Furthermore, M is symmetric positive definite, which implies that the
homogenized equations (99)-(100) have a unique solution.

Remark 16. The symmetry of M is equivalent to the famous
Onsager’s reciprocal relations. In the ideal case, the symmetry of
the tensor M was proved in [22,23].

Proof. The conservation law (99) is just a rewriting of (77) and
(80). The constitutive equation (100) is an immediate consequence
of the definition (97) and (98) of the homogenized fluxes, taking
into account the decomposition (93)-(95).

We now prove that M is positive definite. For any collection
of vectors A%, {A'}1<i<y € R let us introduce the following linear
combinations of the cell solutions

d

w=2%°w+2xm)

k=1

:d (102)
=3 (s ).
k=1 i=1
which satisfy
N .
—AV0) + Yyt 0) = 20+ Yz @) (W + V67 )
j=1
inYr (103)
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divyv*(y) =0 inYs, v'()=0 onS, (104)
N
—div, (n?(y) (Z ziK; (W + V,6} () + Pev* @))) =0
j=1
in Yr (105)
N
> ZKi(W +V,0} () v =0 ons, (106)

j=1

Multiplying the Stokes equation (103) by v*, the convection-
diffusion equation (105) by Qj* and summing up, we obtain

/ (lVka()’)l2
Yr

+) %n?@)xycy)(vyefcy) + ) - (%6 ) + x’)) dy
ij=1 "1

N
= / )\O-v*dy—i—Z/ zZndA v dy
Yr i=1 YYF

N
ZiZj o s i\ i
+ —n/K;(V,0" + X)) - A'd
”;/;F Pel‘ i l]( Y¥j ) y

N N
= KA®- 204 D IAT A0+ > zal ok
i=1 i,j=1

N
+ )z LA’ = MO0z )T - 40,z
i=1

The left hand side of the above equality is positive. This proves the
positive definite character of M.

Following a computation of [23] in the ideal case, we prove the
symmetry of . For another set of vectors 1°, {A'};<i<y € RY,

we define v* and Qf by (102). Multiplying the Stokes equation

for v* by v* and the convection-diffusion equation for 9]; by ij
(note the skew-symmetry of this computation), then adding the
two variational formulations yields

N
] 22 )
/ VW Vvdy + ) / #n?K,-jvyef-vyeﬁdy
Yp vp €

ij=1 1

~ N . -~
:/)ﬁ.ﬁdy-{-Z/ zjnfxf.vxdy
Yp j=1YYF

N
ZZ; o
— Z/ “IndKga - V,607 dy.
ve Pei

ij=1

(107)

The diffusion tensor appearing in the left hand side of (107) is pre-
cisely equal to K, defined by (84), which is symmetric. Therefore,
the left hand side of (107) is symmetric in A, A Exchanging the last
term in (107), we deduce by symmetry

~ N . ~
/ A°~vkdy+2/ Zn) vt dy
Yr j=1YYF

N Z:Z: . ~
+> / o K - 9,07 dy
ij=17YF

1

N
=/io.wdy+2/ zjnfif.vxdy
YF j=1YYF

N ZiZ; ~
+> #n?l(,j)»f - V,07 dy,
i=1Jvr F€i

which is equivalent to the desired symmetry

MO (zd DT A0z DT = MOO, za )T - G0, za ). O

6. Existence of solutions to the MSA variant of Poisson-
Boltzmann equation

The goal of this section is to prove Theorem 2, i.e., the
existence of solutions to system (44), the MSA variant of the
Poisson-Boltzmann equation. These solutions are the so-called
equilibrium solutions computed in Section 3. In a slightly different
setting (two species and a linear approximation of p(¢)) and with
a different method (based on a saddle point approach in the
two variables, potential and concentrations), a previous existence
result was obtained in [39].

To simplify the notations we shall drop all e- or O-indices.
In the same spirit, the pore domain is denoted $2,, a subset
of the full domain £2. To simplify we denote by 92, the solid
boundary of £2,, which should rather be 02, \ 942 since we
impose periodic boundary conditions on 9£2. With our simplified
notations, Theorem 2 is restated below as Theorem 24 and the
Poisson-Boltzmann equation reads

N
—AY = ﬁsznj(x) in £,

= (108)
V¥ .v=—N,X* onds2, ¥ iss2-periodic,
where, in view of (38), the equilibrium concentrations are

0 0 2

n; (00)y; (00) Lyl Iz}

J j j
n=-————expy—z¥+ ——1¢. 109
J yHS P ! 14 I'Io; (109)

We recall that the MSA screening parameter I” is defined by

N 52
nz;

2 _
(*=2 (1+ I.I'oj)?

=1

(110)

and the hard sphere part of the activation coefficient is given by
8 — 9£ + 3&2

e and

y™ = exp{p(&)}

N o \3
s=chnj(;J) :

=1 ¢

withp(§) = §

(111)

where £ € [0, 1) is the solute packing fraction and &, its charac-
teristic value defined by (28).

Let us now explain our strategy to solve the boundary value
problem (108) coupled with the algebraic equations (109)-(111).
In a first step (Lemmas 17 and 18) we eliminate the algebraic
equations and write a nonlinear boundary value problem (116) for
the single unknown ¥. In a second step we introduce a truncated
or “cut-off” problem (120) which is easily solved by a standard
energy minimization since the nonlinearity has been truncated.
The third and most delicate step is to prove a maximum principle
for these truncated solutions (Proposition 23) which, in turn, imply
our desired existence result.

In the first step we eliminate & as a function of (¥, I') and
then I as a function of ¥. From (42), for given potential ¥ and
screening parameter I", the solute packing fraction £ is a solution
of the algebraic equation

N \3
§ = exp(—p())s ) (%) 7 (00)y;”(00)

=1 \%

(112)

LBI"FCZJ.Z
X exp | —z¥ + .

1+ I'Teo;
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Lemma 17. For given values of ¥ and I', there exists a unique
solution ¢ = £, I') € [0, 1) of (112). Furthermore, this solution
depends smoothly on ¥, I' and is increasing with I".

Proof. One can check that p(§) is an increasing function of £ on
[0, 1) with range R since
8 —2¢
(1-&*
The existence and the uniqueness follow from the strict decrease

of the function exp{—p(&)} from 1 to 0, while the left hand side &
of (112) increases from O to 1. Since the function

P =

LpI" Iz}
R
14 I'[o;
is increasing, so is the solution £ of (112) as a functionof I'. O

Once we know & = &(¥, I'), the MSA screening parameter I”
satisfies the following algebraic equation (see (43))

2

Iy = Z”O(OO)V, (Oo)m
LBFF22
X exp —zﬂl’—l—m—p(é(df r) (113)

We now prove that the algebraic equation (113) admits a unique
solution I" (¥) under a mild assumption.

Lemma 18. For any value of W, there always exists at least one
solution I' = I'(¥) of the algebraic equation (113). Furthermore,
under the following assumption on the physical parameters

Ly < (6 + 4v/2) min —OZ with 6 + 4+/2 ~ 11.656854,  (114)
<J=N Z:
]

the solution I (W) is unique and is a differentiable function of W¥.

Proof. Existence of a solution is a consequence of the fact that, as
functions of I, the left hand side of (113) spans R while the right
hand side remains positive and bounded on R*.

Denote by F(I") the difference between the left and the right
hand sides of (113). Let us show that (114) implies that F is an
increasing function on R™, and, moreover, F'(I") > 0. To this end
we use the trick 2I" = 2(I")?/I" and compute the derivative (see
(115) in Box I on next page).

Lemma 17 shows that 0£/0I" > 0, so the second line of Eq.
(115) in Box I is positive. Introducing x = I"I:oj, the sign of each
term in the sum of the first line of Eq. (115) in Box I is exactly that
of the polynomial P(x) = 4x* + (6 — Lszz/aj)x + 2. A simple
computation shows that P(x) has no positive roots (and thus is
positive for x > 0) if and only if (114) holds true.

Since, F(0) < O and lim; F(I') = +oo, the inequal-
ity F/(I') > 0 yields the existence and the uniqueness of the
root I" such that F(I') = 0. Then, a standard application of
the implicit function theorem leads to the differentiable character
of F(W). O

Remark 19. The bound (114) is a sufficient, but not a necessary,
condition for uniqueness of the root I'(¥), the solution of
(113). There are other criteria (not discussed here) which
ensure the uniqueness of I"(¥). However there are cases when
multiple solutions do exist: it is interpreted as a phase transition
phenomenon and it was studied, e.g., in [48].

In view of Lemma 18 the solute packing fraction is now a
nonlinear function of the potential ¥ that we denote by

Ewy=¢(w.r)).

As aresult of our first step, the electrostatic equation (108) reduces
to the following Poisson-Boltzmann equation which is a nonlinear
partial differential equation for the sole unknown ¥

N
—AY =B sznj’(oo)yj“(oo)
' (116)

Ly (¥) .22 -
P

— T pEW
1+ I@) o pEW))
on d£2,, V¥ is £2-periodic.

X exp {—zjllf—t—
V¥ .v=—N, X"

Recall that N, > 0is a parameter and that X*(x) is assumed to be
a £2-periodic function in L>(9£2,). Our goal is to prove existence
of at least one solution to problem (116). The main difficulty is the
non-linearity of the right hand side which is growing exponentially
fastatinfinity. Recalling definition (46) of E;(¥), the right hand side
of (116) is the nonlinear function & defined by its derivative

N
BY EW).
j=1

In the ideal case, Remark 3 tells us that E;(¥) = nj‘.)(oo) exp{—z¥}.
We are thus lead to introduce

QW) = (117)

N
=Y _n)(eo)y’ (o) exp {~z¥}.

j=1

g(y) ¥ €R, (118)

which is a strictly convex function. In the ideal case, we have
@ (V) = Bg(¥) and the existence and the uniqueness of a solution
of (116) are more or less standard thanks to a monotonicity
argument (see [49,5]). For the MSA model our strategy of proof is
different since @ is not anymore convex. We rely on a truncation
argument, L°°-bounds and still some monotonicity properties
of part of @’. Our proof requires a smallness condition on the
characteristic value &.

The second step of our proof introduces a truncation operator
at the level M > 0 defined, for any function ¢, by

M
—— ifp<——
ZN ZN
. M M
Tu(p) = ¢ if ——<¢p=<—,
ZN |z1]
M

—  ifp > —.
|z1] |z1]

Note that this truncation is not symmetric since the growth

condition at 00 of @ and g are not symmetric too. We define a

“cut-off” function @, by its derivative

Dy (W) =@ o Ty(¥), (119)
and solve the associated “cut-off” problem
—AYy = _qu(/I(WM) in Qp, (120)
VW -v=—-N,X* on 882, ¥y is 22-periodic.

Note that @;,(¥) is a bounded Lipschitz function and its primitive
@y (W) is a coercive C'-function, with a linear growth at infinity.
Therefore, for ¥* € L*°(0£2,) and M sufficiently large, the
corresponding functional

1
JW) = 5/ |V1//|2+f ¢m(1/f)+Naf DIV
2 2 32
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L'z}
T+ Tco;

(14 I'T;0))?

/ z? exp{—z¥ + 7t
F'(I) =

N
> " n?(00)y(00)

j=1
g 2
P @)Z" (00)y, (00)

Ly Tz

7EX —zv e —
(1 + I'T.0;)? p{ J +1+r1},

(14 I'Te0)?

—p®)} (2 e Lsz? — 20;(1 + Frcoj)>
1_, c

2

—p(S)] (115)

Box L.

is lower semi-continuous with respect to the weak topology of H'
and coercive on H'. Then the basic calculus of variations yields
existence of at least one solution for problem (120). Furthermore,
for smooth domains, ¥, belongs to Wz'q(.Qp) forall g < +o0.

The third step of our proof amounts to prove an L>-estimate for
¥y, such that, for M sufficiently large, it implies @y (W) = @ (V)
and, consequently, existence of at least one solution for problem
(116). We start by some simple lemmas giving bounds on the solute
packing fraction &.

Lemma 20. Let p(§), £ = &, TI") and g(y) be given by (111),
(112) and (118) respectively. Then we have

Aming(lp) = gep(é) =< tAmaxg("p)a (121)
with

22

]

3 3
. Or Or Lp max &
Amin = ‘i:c miny| — s Amax = EC max | — e 1 7.
T o T o

Let & be the unique solution of xexp{p(x)} = Aming€m Where g, is
the minimal value of g(y). Then we have

&0 <& < Anaxg(¥). (122)

Proof. Formula (112) yields

N \3
Eexplp(®)) = & ) (Z—’) n%(00)y,2(00)

=1 \%%

v LgI" Iz}
X ex —Z; + —
P17% 1+ I'To;
Since
@rrz ﬁ
——— < [pmax —,
1 + I'l.o; i o

we deduce the bound (121). The other bound (122) is then a
consequence of the fact that p(§) > 0 and &€ — £eP® is
increasing. 0O

For the sequel it is important to find a bound for & which is
independent of &, small as we wish, at least for large values of the
potential ¥.

Lemma 21. Let £ = £(W, I') be the unique solution of (112). There
exists a threshold 0 < £ < 1 such that, for any number q > 1, there
exist positive values Enin, Emax > O such that, for any characteristic
value 0 < & < £“/q,

) -1 1
i" Zé—min 1fl1/ < 710g77
v gé

) 1 1

";:Zg:max lfl]/ 710g7
lz1] ™ qéc

Remark 22. The point in Lemma 21 is that the lower bounds
Emin, Emax > 0 are independent of &, (but they depend on q), on
the contrary of & in Lemma 20. In the proof of Proposition 23 the
number q will be chosen as O(1) with respect to &.

Proof. We improve the lower bound for Eq. (113) when the
potential is very negative ¥ < (log(g&.))/zy. From (121) we
deduce for small &,

3
. (o
£e"9 > Aming (W) = ny(00)yy (00) min (i)
c

fg (1406 ")

v

L0 (00190 00y min & 3—0(1)
2q N YN ! o) )
where the lower bound is independent of &. The conclusion
follows by defining &, as the unique solution of

1 o \°
. pPGEmin) _ 0 0 . r
Emine = 72q 1y (00) yy (00) mrm (7%) .

Note that &, is uniformly bounded away from O for small &, since
¥x(00) = O(1) by virtue of Remark 5.

The proof of the estimate for large values & > (log(qé.))/z is
analogous. 0O

Now the upper bound in Lemma 20 implies that for & =
&, I') we have

22

Em—i“e_LB e JJ <eP®  fory <« — log i
g(¥)éc max(ZH)® v gk
(123)
Indeed, by (121) and Lemma 21
2
e - 5 Emin o “?"‘%
T Anax&W) T g(W)E, mrax(g—;f

For the purpose of comparison we introduce the following
auxiliary Neumann problem

1
—AU = — N, X*dS
|Qp| 082p

VU-v=—N, *

in £2p,

on 052, (124)

f U(x)dx = 0.
2p

Remark that (124) admits a solution U € H,(£2,) since the bulk
and surface source terms are in equilibrium. Furthermore, the zero
average condition of the solution gives its uniqueness. It is known
that U is continuous and achieves its minimum and maximum in
£2,,. Define

U is £2-periodic,

1
o= —/ N, X*dS, Unmin = min U(x) and
|~Q | 2p XeR2p

Umax = max U (x).
xeR2p
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Then our L*°-bound reads as follows.

Proposition 23. Let ¥, be a solution for the cut-off problem (120)
and take

M =1 !
=log —.
&

Under assumption (114), there exists a critical value €< > 0such that,
forany & € (0, ), the solution Wy, of (120) satisfies the following
bounds

M M
- — Wy < —. (125)

ZN |z1]
Proof. We write the variational formulation for ¥y, — U for any
smooth £2-periodic function ¢. Taking into account the definition
@, (W) = @'(Ty (W), it reads

N
/ V(@ —U) - Vodx— B> znf(00)y (o)
2p j=1

% / (e*ZjTM(‘I’M) _e*ZjTM(U*C))
2p

22 e (T (Oy)

% ELB T Ty @))o; —pE(Ty (¥m))) o dx

N
+ [ (-8R andeonpeoe o
2p

j=1
22 e I (T (Uy)

« ¢ Ty PEMM ) a)(p dx = 0. (126)

We take ¢(x) = (¥u(x) — U(x) + C)~, where C is a constant to
be determined and, as usual, the function f~ = min(f, 0) is the
negative part of f. The first term in (126) is thus non-negative.

By monotonicity of v — —z; exp{—z;Tu (v)} the second term of
(126) is non-negative. To prove that the third one is non-negative
too (which would imply that ¢ = 0), it remains to choose C in
such a way that the coefficient Q in front of ¢ in the third term is
non-positive.

For a given number g > 1 (to be defined later, independent of
&.) we define constants

- 1 1
M =log — <M = log —
qéc &

and we choose C = Upax + I\7I/zN. Since ¢ # 0 if and only if
¥y < U — C, we restrict the following computation to these
negative values of ¥,. In such a case, we have ¥, < ;—N] log é (the
same is true for Ty (¥))) so we can apply (123) from Lemma 21.
Then, since —M/zy < Ty(U — C) < —M/ZN, we bound the
coefficient Q (decomposing the indices inj~ for negative valencies
and j* for positive ones)

N
Q=5 —BY zn(c0)y (c0)e sV~
=1
zszcF(TM(lIIM))

o o B T e Tyye; ~PE T A

22

Lg max L
— 0 O by O
<G —BY zm(c0)y(c0)e 1 7
IS
—B ZZjnjo(oo)yjo(oo)erM/ZNe*p(s(TM(q’M)))
jeit

22

Lg max -
= 0 0 i 9
< o — zin: (00)y: (c0)e J
< ﬁZ“( )7,(00)
using (123) e
22
- —Lgmax -
EminerM/ZNe i
—B ) _zn)(00)y,(00) : (127)
; T g (T (W) max (23

Next, for small & (i.e. very negative values of ¥ ), the function
g(Ty (W) is decreasing (and equivalent to n (co)e 2Nm¥m) at
—0)

g(Tu(¥m)) < g(—M/zy).

Thus

erM/zN

10 0 _edien
;Zjnj (00)y; (Oo)g(TM(g/M))
> 0 (00)e#iM/aN

= §(—M/zy) J;ZJ”J CACOL

E(1+01) 2y
- = —(1 1)).
TN e (T to(y g TOW

We insert inequality (128) into the last term in (127) which yields

(128)

22

o 0 0 Lg maxéfj
Q<5 —B) zm(c0)y(c)e
IS
22

J
—Lg m]ax e

zN‘S;:min H T(l—f—o(l))

qéc max(Z-)3
r c

(129)

Then, recalling that &, and yjo(oo) are O(1) for small &, it follows
that, for given ¢ > 1, there exists £ < 1 such that, for any
0 < & < &9, the expression on the right hand side of (129) is
negative.

Now we conclude that ¢ = (¥ — U + C)~ = 0, which implies

Yy > U — Unpax — % log qé Choosing q sufficiently large so that
Zi log ¢ > Upax — Umin, we deduce the lower bound vy > —M/zy
in (125).

An analogous calculation gives the upper bound in (125) and
the proposition is proved. O

As a conclusion of our three steps of the proof, we can state the
final result which is Theorem 2, stated in the simplified notations
of this section.

Theorem 24. Let X¥* e L*°(3$2p). Under assumption (114) and
for small enough & € (0, &), there exists a solution of the Pois-
son-Boltzmann problem (116), ¥ € H! (£2,) NL>(£2p). In particular,
n; satisfies a uniform lower bound n;j(x) > C > 0in £2),.

Proof. Proposition 23 implies that Ty (¥y) = Yy, so @y, (Py) =
@' (¥y), which proves that ¥, solves the original Poisson-
Boltzmann problem (116). O

Remark 25. Note that the assumption (114) and &, small enough
are completely independent of the scaling of the domain £2, and
thus of ¢. Therefore, Theorem 24 applies uniformly with respect to
¢ in the porous medium $2, as stated in Theorem 2.

Remark 26. Of course, further regularity of ¥ can be obtained by
standard elliptic regularity in (116). For example, assuming X* €
C*(082p), theright hand side of Eq. (116) is bounded and using the
smoothness of the geometry, we conclude that ¥ € W2~q((2p) for
every q < +00. By bootstrapping, we obtain that ¥ € C°°(§p).
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7. Numerical results

We perform two-dimensional numerical computations with
the FreeFem++ package [50]. The goal of this section is
to compute the effective coefficients constituting the Onsager
homogenized tensor (101), to study their variations in terms of
some physical parameters (concentration, pore size and porosity)
and to make comparisons with the ideal case studied in [24]
in a realistic model of porous media. We use the same unit
cell geometries and complete the same test cases as in [24]. It
corresponds to a simple model of geological montmorillonite clays.

The linearization of the electrokinetic equations (see Section 4)
allows us to decouple the computation of the electrostatic
potential from those of the cell problems.

In a first step, we compute the solution ¥° of the nonlinear
Poisson-Boltzmann equation (73) with the associated hard sphere
term ¥ and MSA screening parameter I”, from which we infer
the activity coefficients ;° and the concentrations n?.

Second, knowing the njo's, and thus the MSA screening
parameter I”, we compute the hydrodynamic interaction terms £2;;
(15)-(16) and the electrostatic relaxation terms R; (18). In turn it
yields the value of the tensor Kj; given by (60). The concentrations
n? and the tensor Kj; play the role of coefficients in the cell problems
(85)-(88)and (90)—(92). Thus, we can now compute their solutions
which are used to evaluate the various entries of the effective
tensor (101) according to the formula from Proposition 15. In
all figures we plot the adimensionalized entries of the effective
tensors (101). However, when the concentrations are involved, we
plot them in their physical units, namely we use the dimensional
quantity

(130)

For large pores (compared to the Debye length) the electrostatic
potential is varying as a boundary layer close to the solid
boundaries. In such a case, the mesh is refined close to those
boundaries (see e.g. Fig. 1). The total number of degrees of freedom
is around 18 000 (depending on the infinite dilution concentration
(o))

The nonlinear Poisson-Boltzmann equation (73) is solved
with Lagrange P2 finite elements and a combination of a
Newton-Raphson algorithm and a double fixed point algorithm.
The Newton-Raphson algorithm is used to solve the Poisson-
Boltzmann equation at fixed values of the MSA coefficients y*** and
I'. The double fixed point algorithm is performed on these values
of y" and I'. It starts with the initial values y™ = 1and I = 0
which correspond to the ideal case.

Letn = 1,2,...,nga be the iteration number of the first
level of the fixed point algorithm (the outer loop) which update
the electrokinetic potential from the previous value ¥ ™D to
the new value ¥, keeping y/°, fixed. We first solve the
Poisson-Boltzmann equation with these initial values and a MSA
screening parameter initialized to 7). Let us note I}’ the
generic term at iteration k. Here, the iteration number ;c =
1,2, ..., kana refers to the second level (inner loop) of the double

fixed point algorithm. It yields the electrokinetic potential sll((,f:l]))

17 (00) = n n (00).

and, through (41), the new F(E{")_l) value which allows us to iterate
in k. The inner iterations are stopped when the wished accuracy is
reached at k = Kfjnal.

From this new electrokinetic potential !I/(i';:l)), we determine
the species concentrations and, through (13), the solute packing
fraction £ "=V, At this stage, a new hard sphere term y is defined
and we start a new iteration of the outer loop. The outer loop is
broken when the wished accuracy is reached at n = ngp,).

All the following computations are ran for an aqueous solution
of NaCl at 298 K (Kelvin), where species j = 1 is the cation Na*

Fig. 1. Mesh for a periodicity cell with ellipsoidal inclusions (porosity is equal to
0.62).

(zi = 1) with diffusivity DY = 13.33e—10 m?/s and species
j = 2 the anion ClI~ (z; = —1) with DY = 20.32e—10 m?/s
(note that this is the opposite convention of the previous sections
where z; < 0 < z,). The hard sphere diameters of the two species
are considered equal to 3.3e— 10 m. This model of NaCl electrolyte
solution is able to reproduce both the equilibrium (activity
coefficients, osmotic pressure) and the transport coefficients
(conductivity, Hittorf transference number [51], self and mutual
diffusion coefficient of the electrolyte) up to molar concentrations.
The infinite dilution concentrations of the species are considered
equal, n?(oo) = ng(oo), and the characteristic concentration is
n. = 0.1 mol/1.

The dynamic viscosity 7 is equal to 0.89e—3 kg/(ms). Instead
of using the formula of Table 1 for defining the Debye length, we
use the following definition (as in the introduction)

which differs by a factor of /2 in the present case of two
monovalent ions. Other physical values are to be found in Table 1.
Following [24] two model geometries are considered. The first one
features ellipsoid solid inclusions (see Fig. 1), for which we perform
variations of concentrations from 1073 to 1 mol/l and variations of
the pore size (3 < ¢ < 50 nm). The second one is a rectangular
model (see Fig. 2) which allows us to perform porosity variation.

7.1. Variation of the concentration

Here we consider the geometry with ellipsoidal inclusions
(Fig. 1). We vary the infinite dilution concentrations nj‘.)(oo) in

the range (1072, 10) or, equivalently through (130), the dimen-
sional infinite dilution concentrations njfk(oo) vary from 1073 to
1 mol/l. The pore size is £ = 50 nm. Varying proportionally all
values of n]Q(oo) is equivalent to varying the parameter 8 in the
Poisson-Boltzmann equation (73).

As can be checked in Fig. 3, except for very small concentrations,
the cell-average of the concentrations |Yg| ™! fYF n;(y) dy is almost

equal to the infinite dilution concentrations n?(oo). This is clear
in the ideal case, but in the MSA case tflle cell-average of
the concentrations is slightly smaller than the infinite dilution
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of the dimensional (mol/1) infinite dilution concentrations nf(oo).

concentrations for large concentrations. It is a manifestation of
the packing effect which forbids the boundary layer to be too
thin in the MSA setting. The behavior of Fig. 3 (bottom) which
represents the Donnan effect was expected. For small dilutions
the MSA concentration is higher than the ideal one because the
electrolyte is in the attractive electrostatic regime so that there
is a tendency of incorporating anions. It is the opposite for large
dilutions: the electrolyte is in the repulsive hard sphere regime and
the excluded volumes expel the anions.

Since the permeability tensor K depends on the pore size ¢,
we renormalize its entries by dividing them by the corresponding
ones for a pure filtration problem (computed through the usual
Stokes cell problems [42]). The resulting relative permeability
coefficients are plotted in Fig. 4: the smaller the infinite dilution
concentration, the smaller the permeability. We clearly see an
asymptotic limit of the relative permeability tensor not only
for high concentrations but also for low concentrations. In the
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Fig. 4. Diagonal entries of the relative permeability tensor, Ky; and Kj;, as
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Fig. 5. Entries of the electrodiffusion tensor D1 for the cation, as functions of the
dimensional (mol/l) infinite dilution concentrations n]f‘ (00).

latter regime, the hydrodynamic flux is reduced: the electrostatic
attraction of the counterions with respect to the surface slows
down the fluid motion. This effect is not negligible because the
Debye layer is important. The MSA model differs from the ideal
case. The curve is qualitatively the same but the electrostatic
reduction of the Darcy flow is more important. Non-ideality
diminishes the mobility of the counterions at the vicinity of the
surface so that the electrostatic interactions in the double layers
are more pronounced.

The entries of the electrodiffusion tensor {; for the cation
are plotted in Fig. 5. A similar behavior is obtained for the other
tensor Dy, for the anion. As expected the flux increases with the
infinite dilution concentration n;" (00).Itis not alinear law because
even at low concentration there are still counterions; they do not
appear to be very mobile, though. The cross-diffusion tensor D,
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Fig. 6. Diagonal entries of the cross-diffusion tensor Dy,, as functions of the
dimensional (mol/l) infinite dilution concentrations nj*(oo).
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Fig. 7. Diagonal entries of the electrodiffusion tensor Dy; as functions of the
dimensional (mol/l) infinite dilution concentrations n; (c0) (log-log plot).

is displayed in Fig. 6: for large concentrations it is of the same
order of magnitude than the species diffusion tensors D;; and
D,,, because of the strong electrostatic interactions between the
ions. In all cases, the MSA model is close to the ideal one: it is
only for large concentrations that the values of the electrodiffusion
tensor are different, and smaller, for MSA compared to ideal.
There are probably compensating effects: same charge correlations
increase diffusion but this effect is somewhat counterbalanced by
opposite charge correlations that slow down the diffusion process.
Non-ideal effects could be more important in the case of further
quantities such as the electric conductivity for which cross effects
are additive.

The log-log plot of Fig. 7 (where the slope of the curve is
approximately 2) shows that the electrodiffusion tensors D; be-
haves quadratically as a function of n;‘ (00) when n;‘ (00) becomes
large. This asymptotic analysis can be made rigorous in the ideal
case. At low salt concentration, correlation effects (i.e. non-ideality)
enhance slightly diffusion. In this regime, there are no counteri-
ons. So the relaxation effect is purely repulsive and diffusion is
enhanced [52]. At high concentration, the co-ion concentration
is not negligible and there is a classical electrostatic relaxation
friction.

The coupling tensors L; and L, are plotted in Fig. 8. The
coupling is, of course, maximal for large concentrations but the
coupling tensor L; for the cation does not vanish for very small
infinite dilution concentrations since the cell-average of the cation
concentration has a non-zero limit (required to compensate the
negative surface charge) as can be checked in Fig. 3. The differences
between the ideal and MSA models are very limited in this
logarithmic plot.
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Fig. 8. Diagonal entries of the coupling tensors IL; and L, as functions of the
dimensional (mol/l) infinite dilution concentrations nf (00) (log-log plot).

o——a N1_mean (MSA)
10° - #—# N2_mean (MSA) —

o N1_mean (Ideal)
N2_mean (Ideal)

H'ﬂt.‘,
T —
|

N 4

10"

]0'2—.‘.|....|.‘..|....|J,,‘—
10 20 30 40 50

Fig.9. Averaged cell concentration Nj_mean = |Y¢|™' f\’r n;(y) dy versus pore size
£ (nm).

7.2. Variation of pore size

We keep the same geometry with ellipsoidal inclusions (Fig. 1)
but we now vary the pore size ¢, which is equivalent to vary the
parameter §, defined by (21), in the Poisson-Boltzmann equation
(73). It thus changes the values of the concentrations n](.J (y) which
play the role of coefficients in the cell problems (85)-(88) and
(89)—(92). This is the only modification which is brought into
the cell problems. We emphasize that varying the pore size does
not change the geometry of the unit cell, but simply changes the
coefficients of the cell problems.

The dimensional infinite dilution concentration nj(co) =
n;(00) is 10~! mol/1 which yields a value 0.7678 for the infinite
dilute activity coefficients y, (c0) = y¢(c0).

In Fig. 9 we plot the cell-average of the concentrations
|Ye| ! fYF nj(y) dy as functions of the pore size £. Qualitatively,
there is a close agreement between the ideal and MSA cases, as
can be checked on this logarithmic plot. Yet, the departure from
ideality is not negligible. For small pore size the Donnan effect,
which corresponds to the anion concentration, is typically 40%
higher than its value in the ideal case. When the pore size goes
to infinity the averaged concentrations should converge to the
infinite dilution concentrations.

In Fig. 10 we plot the relative permeability coefficients with re-
spect to the ones of the Stokes problem. As was already observed
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Fig. 10. Relative permeability coefficients K;; and K, versus pore size £ (nm).

in [24], the variation is not monotone and there is a minimum for
a pore size of roughly 20 nm. This effect is less pronounced for the
MSA model but the location of the £ value where the minimum is
attained is not affected. This is the signature of a transition from a
bulk diffusion regime for small pores to a surface diffusion regime
(caused by large boundaries) at large pores. Globally, the counteri-
ons reduce the hydrodynamic flow because of the attraction with
the surface, but this relaxation effect is less important at very large
or very small pore size £. More precisely, if the pore size becomes
very large, the electrostatic screening is important, as already men-
tioned. Thus the domain of attraction becomes very small and the
lowering of the hydrodynamic flow is reduced: the permeability
is increased. On the other hand, for very small pores, the counte-
rion profile becomes more and more uniform. Consequently, there
is no screening, but the hydrodynamic flow does not modify a lot
the counterion distribution, since it is globally uniform and the re-
sulting electrostatic slowdown becomes less important. The depar-
tures from ideality modeled by the MSA globally reduce the total
variation of the permeability tensor because the mobility of the
ions in the Debye layer is weaker and their dynamics influence less
the Darcy flow.

7.3. Variation of the porosity

Eventually we investigate the influence of the porosity on the
effective tensors. To this end we rely on the rectangular geometry
where we vary the size of the inclusions (see Fig. 2). The infinite di-
lution concentration is fixed at n](-’ (00) = 1,0r nj’-“(oo) = 0.1 mol/L.
The porosity is defined as |Yr|/|Y| and takes the successive values
of 0.19, 0.36, 0.51, 0.64, 0.75 in our computations. Note that the
porosity is independent of the pore size £ which is defined as the
characteristic size of the entire periodicity cell, i.e., the union of
its fluid and solid parts. In Fig. 11 we plot the cell-average of the
concentrations |Yz| ™! fYF n;(y) dy as functions of the porosity. They
are almost identical between the ideal and MSA cases. When the
porosity goes to 1, meaning that there are no more solid charged
walls, the averaged concentrations should become equal, respect-
ing the global electroneutrality. In Fig. 12 we check that the per-
meability tensor is increasing with porosity, as expected. The same
happens for the electrodiffusion tensor Dy, for the anion in Fig. 14.
More surprising is the behavior of the electrodiffusion tensor Dy,
for the cation in Fig. 13: again there is a minimum value attained
for a 0.35 value of the porosity. This may be explained again by a
transition from a bulk diffusion regime for large porosities to a sur-
face diffusion regime (caused by the charged boundaries) for small
porosities.

The departures from ideality are found to be very important.
They multiply the magnitude of diffusion by a factor of two,
especially at low porosities for which the amount of anions is low.
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Fig. 11. Averaged cell concentration Nj_mean = |Y¢|~! va n;(y) dy versus porosity
(7 (c0) = 0.1 mol/l).
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It corresponds to the case for which the relaxation effect is purely
repulsive. A similar trend is obtained for the anion but the diffusion
coefficient is much lower at low porosities: anions are expelled
from the surface and they cannot have surface diffusion so that
their transport properties are globally reduced.

8. Conclusion

We presented the homogenization (or upscaling) of the
transport properties for a N-component electrolyte solution
confined in a charged rigid porous medium. Contrary to what is
commonly supposed in this domain the departures from ideality
are properly taken into account thanks to a MSA-transport model,
both for the equilibrium properties (activity coefficients y;) and for
the transport quantities (Onsager coefficients L;). These non-ideal
effects are expected to be significant in most of the applications
for which the electrolyte concentrations are typically molar. In
the case of the equilibrium solution (in absence of external forces,
apart from the surface charges on the solid wall), we prove
the existence of (at least) one solution for small solute packing
fractions (which corresponds to the validity of the MSA approach).

When a (small) external electric field is applied or when a
(small) hydrodynamic or chemical potential gradient occurs, a
rigorous homogenization procedure yields (at the linear response
regime) the homogenized macroscopic laws. The effective Onsager
tensor takes into account the departure from ideality, but it is
still symmetric and positive definite. The significance of non-
ideality has been studied by applying the results to a model of
porous media (typically geological clays) for simple dissociated
1-1 electrolytes in water. It is shown that non-ideality only slightly
modifies the qualitative aspects, but it can strongly modify the
quantitative values, depending on the homogenized quantities.

For the equilibrium properties, it enhances the ion concentra-
tions at low external concentration (because electrostatic attrac-
tion is predominant) and it reduces them at the opposite limit. The
relative permeability tensor is increased but, in any case, it is close
to the reference value calculated with a neutral solution. The dif-
ferences for the coupled diffusions and ion electrodiffusions de-
pend on the concentrations and on the species. Similarly to bulk
diffusion, the non-ideality can have an impact of the order of 50%
for molar concentrations. Nevertheless, for some cases, there are
compensating effects. It should be noted that for the model we con-
sidered the charges (ions, solid phase) were relatively low so that
the differences should be magnified for highly charged media with
higher valency electrolytes and higher concentrations. In that case,
the result could be completely different because of the possibility
of ion pairing that can change the sign of the ion charge. Neverthe-
less, the (relatively) simple MSA-transport theory we presented is
not valid anymore in that case so that a realistic quantitative de-
scription of such complex media would require further develop-
ments.

To conclude, we showed that non-ideality can actually be
important for the description of porous media. Since most of
the existing effective theories for concentrated systems are based
on ideal models which neglect the departure from ideality, the
parameters that can be measured thanks to these approaches may
be wrongly estimated. In that case, they cannot be considered
as robust structural quantities of the system: they are effective
parameters that depend on the experimental conditions.
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