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a b s t r a c t

This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations
describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through
a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the
mean spherical approximation (MSA) model which takes into account finite size ions and screening
effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the
velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant
of the Poisson–Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this
nonlinear equation has no monotone structure. However, based on invariant region estimates for the
Poisson–Boltzmann equation and for small characteristic value of the solute packing fraction, we prove
existence of at least one solution. To our knowledge this existence result is new at this level of generality.
When themotion is governed by a small static electric field and a small hydrodynamic force,we generalize
O’Brien’s argument to deduce a linearized model. Our second main result is the rigorous homogenization
of these linearized equations and the proof that the effective tensor satisfies Onsager properties, namely
is symmetric positive definite. We eventually make numerical comparisons with the ideal case. Our
numerical results show that the MSA model confirms qualitatively the conclusions obtained using the
ideal model but there are quantitative differences arising that can be important at high charge or high
concentrations.
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1. Introduction

The quasi-static transport of an electrolyte through an elec-
trically charged porous medium is an important and well-known
multiscale problem in geosciences and porous materials model-
ing. An N-component electrolyte is a dilute solution of N species of
charged particles, or ions, in a fluid which saturates a rigid charged
porous medium [1]. The macroscopic dynamics of such a system
is controlled by several phenomena. First the global hydrodynamic
flow, which is commonly modeled by Darcy’s law depends on the
geometry of the pores and also on the charge distributions of the
system. Second, the migration of ions because of an electric field
can be quantified by the conductivity of the system. Third, the dif-
fusion motion of the ions is modified by the interaction with the
surfaces, but also by the interactions between the solute parti-
cles. Lastly, electrokinetic phenomena are due to the electric dou-
ble layer (EDL) which is formed as a result of the interaction of
the electrolyte solution which neutralizes the charge of the solid
phase at the pore solid–liquid interface. Thus, an external elec-
tric field can generate a so-called electro-osmotic flow and recip-
rocally, when a global hydrodynamic flow is applied, an induced
streaming potential is created in the system.

The EDL can be split into several parts, depending on the
strength of the electrostatic coupling. There is a condensed layer
of ions of typical size lG for which the attraction energy with the
surface eΣ/E lG (with Σ the surface charge and e the elementary
charge) is much more than the thermal energy kBT (with kB
Boltzmann’s constant and T the temperature). The corresponding
characteristic length lG = EkBT/Σe (Gouy length) is typically less
than one nanometer. Consequently, the layer of heavily adsorbed
ions practically depends on the molecular nature of the interface
and it is generally known as the Stern layer. After the Stern layer
the electrostatic diffuse layer or Debye’s layer is formed, where
the ion density varies. The EDL is the union of Stern and diffuse
layers. The thickness of the diffuse layer is predicted by the Debye
length λD which depends on the electrolyte concentration. For low
to moderate electrolyte concentrations λD is in the nanometric
range. Outside Debye’s layer, in the remaining bulk fluid, the
solvent can be considered as electrically neutral.

The large majority of theoretical works are concerned with a
simple (so-called ideal) model for which the departure of ideality
of ions are neglected (see later in this introduction a precise def-
inition of ideality). Thus the macroscopic descriptions of charged
porous media such as the ones using finite element methods [2],
homogenization approaches [3] or lattice-Boltzmann methods [4]
are commonly based on the Poisson–Nernst–Planck formalism for
which the local activity coefficients of ions are neglected and the
transport properties are modeled solely from the mobility at infi-
nite dilution. In addition, the boundary condition for the electro-
static interaction between the two phases is very often simplified
by replacing the bare surface charge Σ , which corresponds to the
chemistry of the system, by surface potentialΨ . Its boundary value
at the no slip plane is known as the zeta potential ζ . In fact, it is
rather the surface charge density Σ , proportional to the normal
derivative of Ψ , than ζ , which is the relevant parameter (this is
confirmed by an asymptotic analysis in [5]).

A few studies do not model the details of the EDL. Under the
presence of an external electric field E, the charged fluid may
acquire a plug electro-osmotic flow velocity which is proportional
to Eζ and given by the so-called Smoluchowski’s formula. In
the case of porous media with large pores, the electro-osmotic
effects are modeled by introducing an effective slip velocity at
the solid–liquid interfaces, which comes from the Smoluchowski
formula. In this setting, the effective behavior of the charge
transport through spatially periodic porous media was studied
by Edwards in [6], using the volume averaging method. These
methods for which the transport beyond the EDL is uncoupled
from the one in the EDL are not valid for numerous systems, such
as clays because the characteristic pore size is also of the order
of the EDL size (a few hundreds of nanometers or even less).
Therefore Debye’s layer fills largely the pores and its effect cannot
anymore bemodeled by an effective slip boundary condition at the
liquid–solid interface.

In the present paper, we consider continuumequations (such as
the Navier–Stokes or the Fick equations) as the right model for the
description of porous media at the pore scale where the EDL phe-
nomena and the pore geometry interact. The typical length scale
for which these continuous approach are valid is confirmed to be
both experimentally (see e.g. [7]) and theoretically [8,9] close to 1
nanometer. Therefore,we consider continuumequations at themi-
croscopic level and, more precisely, we couple the incompressible
Stokes equations for the fluid with the electrokinetic model made
of a global electrostatic equation and one convection–diffusion
equation for each type of ions.

The most original ingredient of the model is the treatment of
the departure from ideality. Electrolyte solutions are not ideal any-
more as far as the ion concentration is not dilute [10]. Typically
simple 1–1 electrolyte, such as NaCl in water have an activity co-
efficient which is close to 0.6 at molar concentrations (while it
is equal to 1 by definition in the ideal case) and the non-ideality
effects is even more important for the transport coefficients
[11,12]. Thus any ideal model can only be in semi-quantitative
agreement with a more rigorous model if departure from ideal-
ity are neglected. In the present article, we use a new approach
based on the Mean Spherical Approximation (MSA), for which the
ions are considered to be charged hard spheres [13,14]. This model
is able to describe the properties of the solutions up to molar
concentrations. In addition, a generalization of the Fuoss–Onsager
theory based on the Smoluchowski equation has been developed
[15,16,11,17,18,12] by taking into account this model, and it is
possible to predict the various transport coefficients of bulk elec-
trolyte solutions up to molar concentrations. This MSA transport
equations extend thewell knownDebye–Hückel–Onsager limiting
law to the domain of concentrated solutions. They have also been
proved to be valid [19] for confined solutions in the case of clays by
comparing their predictions to molecular and Brownian dynamics
simulations.

A more detailed, mathematically oriented, presentation of the
fundamental concepts of electro-osmotic flow in nanochannels can
be found in the book [20] by Karniadakis et al., pages 447–470,
from which we borrow the notations and definitions in this
introduction. We now describe precisely our stationary model,
describing at the pore scale the electro-chemical interactions of
an N-component electrolyte in a dilute Newtonian solvent. All
quantities are given in SI units. We start with the following mass
conservation laws

div

ji + uni


= 0 in Ωp, i = 1, . . . ,N, (1)

where Ωp is the pore space of the porous medium Ω , i denotes
the solute species, u is the hydrodynamic velocity and ni is the ith
species concentration. For each species i, uni is its convective flux
and ji its migration–diffusion flux.

The solute velocity is given by the incompressible Stokes
equations with a forcing termmade of an exterior hydrodynamical
force f and of the electric force applied to the fluid thanks to the
charged species

η∆u = f + ∇p + e
N
j=1

zjnj∇Ψ inΩp, (2)

div u = 0 in Ωp, (3)

u = 0 on ∂Ωp \ ∂Ω, (4)
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where η > 0 is the shear viscosity, p is the pressure, e is the ele-
mentary charge, zi is the charge number of the species i andΨ is the
electrostatic potential. The pore space boundary is ∂Ωp while ∂Ω
is the outer boundary of the porous mediumΩ . On the fluid/solid
boundaries ∂Ωp \ ∂Ω we assume the no-slip boundary condition
(4). For simplicity, we shall assume thatΩ is a rectangular domain
with periodic boundary conditions on ∂Ω . Furthermore, in order to
perform a homogenization process, we assume that the pore dis-
tribution is periodic inΩp.

We assume that all valencies zj are different. If not, we lump to-
gether different ions with the same valency. Of course, for physical
reasons, all valencies zj are integers. We rank them by increasing
order andwe assume that they are both anions and cations, namely
positive and negative valencies,

z1 < z2 < · · · < zN , z1 < 0 < zN , (5)

and we denote by j+ and j− the sets of positive and negative valen-
cies.

The migration–diffusion flux ji is given by the following linear
relationship

ji = −

N
j=1

Lij(n1, . . . , nN)

∇µj + zje∇Ψ


, i = 1, . . . ,N, (6)

where Lij(n1, . . . , nN) is theOnsager coefficient between i and j and
µj is the chemical potential of the species j given by

µj = µ0
j + kBT ln nj + kBT ln γj(n1, . . . , nN), j = 1, . . . ,N, (7)

with γj being the activity coefficient of the species j, kB is the Boltz-
mann constant,µ0

j is the standard chemical potential expressed at
infinite dilution and T is the absolute temperature. The sum of all
fluxes ji is not zero because the solvent is not considered here and
ji is a particle flux. The Onsager tensor Lij is made of the linear On-
sager coefficients between the species i and j. It is symmetric and
positive definite. Furthermore, on the fluid/solid interfaces a no-
flux condition holds true

ji · ν = 0 ∂Ωp \ ∂Ω, i = 1, . . . ,N. (8)

The electrostatic potential is calculated from the Poisson equation
with the electric charge density as bulk source term

E∆Ψ = −e
N
j=1

zjnj inΩp, (9)

where E = E0Er is the dielectric constant of the solvent. The sur-
face charge Σ is assumed to be given at the pores boundaries,
namely the boundary condition reads

E∇Ψ · ν = −Σ on ∂Ωp \ ∂Ω, (10)

where ν is the unit exterior normal toΩp.
The activity coefficients γi and the Onsager coefficients Lij de-

pend on the electrolyte. At infinite dilution the solution can be
considered ideal and we have γi = 1 and Lij = δijniD0

i /(kBT ),
where D0

i > 0 is the diffusion coefficient of species i at infinite
dilution. At finite concentration, these expressions which corre-
spond to the Poisson–Nernst–Planck equations are not valid any-
more. Non-ideal effects modify the ion transport and they are to
be taken into account if quantitative description of the system is
required. Different models can be used. Here we choose the Mean
Spherical Approximation (MSA) in simplified form [11] which is
valid if the diameters of the ions are not too different. The activity
coefficients read

ln γj = −
LBΓ z2j
1 + Γ σj

+ ln γ HS, j = 1, . . . ,N, (11)
where σj is the jth ion diameter, LB is the Bjerrum length given by
LB = e2/(4πEkBT ), γ HS is the hard sphere term defined by (13),
and Γ is the MSA screening parameter defined by

Γ 2
= πLB

N
k=1

nkz2k
(1 + Γ σk)2

. (12)

For dilute solutions, i.e., when all nj are small, we have

2Γ ≈ κ =
1
λD

with λD =

 EkBT

e2
N

k=1
nkz2k

,

where λD is the Debye length. Thus, 1/2Γ generalizes λD at finite
concentration and it represents the size of the ionic spheres when
the ion diameters σi are different from zero. (In the sequel we shall
use a slightly different definition of the Debye length, relying on
the notion of characteristic concentration, see Table 1.) In (11) γ HS

is the hard sphere termwhich is independent of the type of species
and is given by

ln γ HS
= p(ξ) ≡ ξ

8 − 9ξ + 3ξ 2

(1 − ξ)3
, with ξ =

π

6

N
k=1

nkσ
3
k , (13)

where ξ is the solute packing fraction.
The Onsager coefficients Lij are given by

Lij(n1, . . . , nN) = ni


D0
i

kBT
δij + �ij


1 + Rij


,

i, j = 1, . . . ,N, (14)

where�ij = �c
ij+�HS

ij stands for the hydrodynamic interactions in
theMSA formalism and there is no summation for repeated indices
in (14). It is divided into two terms: the Coulombic part is

�c
ij = −

1
3η

zizjLBnj

(1 + Γ σi)(1 + Γ σj)


Γ +

N
k=1

nk
πLBz2k σk
(1+Γ σk)2

 , (15)

and the hard sphere part is

�HS
ij = −


σi + σj

2
12η

nj
1 − X̃3/5 + (X̃3)

2/10

1 + 2X̃3
, (16)

with

X̃3 =
π

6

N
i=1

ni
3X1X2 + X3X0

4X2
0

and Xk =
π

6

N
i=1

niσ
k
i . (17)

In (14) Rij is the electrostatic relaxation term given by

Rij =
κ2
q e

2zizj
3EkBT (σi + σj)(1 + Γ σi)(1 + Γ σj)

×
1 − e−2κq(σi+σj)

κ2
q + 2Γ κq + 2Γ 2 − 2πLB

N
k=1

nk
z2k e

−κqσk

(1+Γ σk)2

(18)

where κq > 0 is defined by

κ2
q =

e2

EkBT

N
i=1

niz2i D
0
i

N
i=1

D0
i

. (19)

All these coefficients γj,Γ ,�ij,Rij are varying in space since they
are functions of the concentrationsnj. TheN×N tensor (Lij) is easily
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Table 1
Data description.

Quantity Characteristic value

e Electron charge 1.6e−19 C (Coulomb)
D0
i Diffusivity of the ith species D0

i ∈ (1.333, 2.032)e−09 m2/s
kB Boltzmann constant 1.38e−23 J/K
nc Characteristic concentration (6.02 1024, 6.02 1026) particles/m3

T Temperature 293◦K (Kelvin)
E Dielectric constant 6.93e−10 C/(mV)
η Dynamic viscosity 1e−3 kg/(ms)
ℓ Pore size 5e−9 m
λD Debye’s length


EkBT/(e2nc) ∈ (0.042, 0.42) nm

zj jth electrolyte valence Given integer
Σ Surface charge density 0.129 C/m2 (clays)
f Given applied force N/m3

σj jth hard sphere diameter 2e−10 m
Ψc Characteristic electrokinetic potential 0.02527 V (Volt)
LB Bjerrum length 7.3e−10 m
seen to be symmetric. However, to be coined ‘‘Onsager tensor’’
it should be positive too, which is not obvious from the above
formulas. The reason is that they are only approximations for not
too large concentrations. Nevertheless, when the concentrations
nj are small, all entries Lij are first order perturbations of the ideal
values δijniD0

i /(kBT ) and thus the Onsager tensor is positive at first
order. The various parameters appearing in (1)–(19) are defined in
Table 1.

As already said we consider a rectangular domain Ω =
d

k=1
(0, Lk)d (d = 2, 3 is the space dimension), Lk > 0 and at the outer
boundary ∂Ω we set

Ψ + Ψ ext(x), ni,u and p areΩ-periodic. (20)

The applied exterior potentialΨ ext(x) can typically be linear, equal
to E · x, where E is an imposed electrical field. Note that the
applied exterior force f in the Stokes equation (2) can also be
interpreted as some imposed pressure drop or gravity force. Due to
the complexity of the geometry and of the equations, it is necessary
for engineering applications to upscale the system (1)–(10) and
to replace the flow equations with a Darcy type law, including
electro-osmotic effects.

It is a common practice to assume that the porous medium
has a periodic microstructure. For such media, and in the ideal
case, formal two-scale asymptotic analysis of system (1)–(10) has
been performed in many previous papers. Many of these works
rely on a preliminary linearization of the problem which is first
due to O’Brien et al. [21]. Let us mention in particular the work of
Looker and Carnie in [22] that we rigorously justify in [23] and for
which we provided numerical experiments in [24]. Other relevant
references include [2,25–29,3,30–38].

Our goal here is to generalize these works for the non-ideal
MSA model. More specifically, we extend our previous works [23,
24] and provide the homogenized system for a linearized version
of (1)–(10) in a rigid periodic porous medium (the linearization is
performed around a so-called equilibrium solution which satisfies
the full nonlinear system (1)–(10) with vanishing fluxes). The
homogenized system is an elliptic system of (N + 1) equations

−divxM∇(p0, {µj}1≤j≤N) = S inΩ,

where p0 is the pressure, µj the chemical potential of the jth
species, M the Onsager homogenized tensor and S a source term.
The (N + 1) equations express the conservation of mass for the
fluid and the N species. More details will be given in Section 5.

In Section 2 we provide a dimensionless version of system
(1)–(10). We also explain in Lemma 1 how the ideal case can be
recovered from the non-ideal MSA model in the limit of small
characteristic value of the solute packing fraction. Section 3 is
concerned with the definition of so-called equilibrium solutions
when the external forces are vanishing (but not the surface charge
Σ). Computing these equilibrium solutions amounts to solve a
MSA variant of the nonlinear Poisson–Boltzmann equation for the
potential. Existence of a solution to such a Poisson–Boltzmann
equation is established in Section 6 under a smallness assump-
tion for a characteristic value of the solute packing fraction. To
our knowledge this existence result is the first one at this level of
generality. Let us mention nevertheless that, in a slightly simpler
setting (two species only and a linear approximation of p(ξ)) and
with a different method (based on a saddle point approach in the
two variablesΨ and {nj}), a previous existence result was obtained
in [39]. In Section 4we give a linearized version of system (1)–(10).
We generalize the seminal work of O’Brien et al. [21], which was
devoted to the ideal case, to the present setting of the MSA model.
Under the assumption that all ions have the same diameter σj we
establish in Proposition 11 and Lemma12 that the linearizedmodel
is well-posed and that its solution satisfies uniform a priori esti-
mates. This property is crucial for homogenization of the linearized
model which is performed in Section 5. Following our work [23] in
the ideal case,we rigorously obtained the homogenized problem in
Theorem 14 and derive precise formulas for the effective tensor in
Proposition 15. Furthermore we prove that the so called Onsager
relation (see e.g. [40]) is satisfied, namely the full homogenized
tensor M is symmetric positive definite.

Eventually Section 7 is devoted to a numerical study of the
obtained homogenized coefficients, including their sensitivities to
various physical parameters and a systematic comparisonwith the
ideal case.

2. Non-dimensional form

Before studying its homogenization, we need a dimensionless
form of Eqs. (1)–(10). We follow the same approach as in our
previous works [23,24]. The known data are the characteristic
pore size ℓ, the characteristic domain size L, the surface charge
densityΣ (having the characteristic valueΣc), the static electrical
potential Ψ ext and the applied fluid force f. As usual, we introduce
a small parameter ε which is the ratio between the pore size and
the medium size, ε = ℓ/L ≪ 1.

We are interested in characteristic concentrations nc taking
on typical values in the range (10−2, 1) in Mole/liter, that is
(6.02×1024, 6.02×1026) particles perm3. From Table 1, wewrite
λD =


EkBT/(e2nc) and we find out that λD varies in the range

(0.042, 0.42) nm.
Following [20], we introduce the characteristic potential ζ =

kBT/e and the parameterβ related to the Debye–Hückel parameter
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κ = 1/λD, as follows

β =


ℓ

λD

2

. (21)

Next we rescale the space variable by setting x′
= x/L and Ω ′

=

Ω/L =
d

k=1(0, L
′

k)
d (we shall drop the primes for simplicity in the

sequel). The rescaled dimensions L′

k are assumed to be independent
of ε. Similarly, the pore space becomes Ωε

= Ωp/L which is a
periodically perforated domain with period ε. Still following [20],
we define other characteristic quantities

Γc =


πLBnc, pc = nckBT , uc = ε2

kBTncL
η

,

where Γc , in terms of nc , is deduced from (12), pc is a pressure
equilibrating the electrokinetic forces in (2) and uc is the velocity
corresponding to a Poiseuille flow in a tube of diameter ℓ, length L
and pressure drop pc . We also introduce adimensionalized forcing
terms

Ψ ext,∗
=

eΨ ext

kBT
, f∗ =

fL
pc
, Σ∗

=
Σ

Σc
, Nσ =

eΣcℓ

EkBT
,

and adimensionalized unknowns

Γ ε
=
Γ

Γc
, pε =

p
pc
, uε =

u
uc
, Ψ ε

=
eΨ
kBT

,

nεj =
nj

nc
, jεj =

jjL
ncD0

j
.

The dimensionless equations for hydrodynamical and electrostatic
parts are thus

ε2∆uε − ∇pε = f∗ +

N
j=1

zjnεj (x)∇Ψ
ε inΩε, (22)

uε = 0 on ∂Ωε
\ ∂Ω, div uε = 0 inΩε, (23)

−ε2∆Ψ ε
= β

N
j=1

zjnεj (x) in Ωε
; (24)

ε∇Ψ ε
· ν = −NσΣ∗ on ∂Ωε

\ ∂Ω, (25)

(Ψ ε
+ Ψ ext,∗), uε and pε areΩ-periodic in x. (26)

(Recall that Ω =
d

k=1(0, Lk)
d so that periodic boundary con-

ditions make sense for such a rectangular domain.) Furthermore,
from (11) and (12) we define

γ εj = γ HS
ε exp


−

LBΓ εΓcz2j
(1 + Γ εΓcσj)


and

(Γ ε)2 =

N
k=1

nεkz
2
k

(1 + ΓcΓ
εσk)2

.

(27)

The solute packing fraction ξ is already an adimensionalized quan-
tity (taking values in the range (0, 1)). However, introducing a
characteristic value ξc we can adimensionalize its formula (13) as

ξc =
π

6
ncσ

3
c , ξ = ξc

N
k=1

nεk


σk

σc

3

, (28)

where σc is the characteristic ion diameter. We note that Γc ∈

(0.117, 1.17) 109 m−1, Γcσc ∈ (0.023, 0.23), LBΓc ∈ (0.0857,
0.857) and ξc ∈ (0.252, 25.2) 10−4 which is a small parameter.
Concerning �c

ij which has to be compared with D0
i /(kBT ), we find

out that

LBnckBT/(3ηΓcD0
i ) = ΓckBT/(3πηD0

i ) ∈ (0.005415, 0.5415),
while �HS
ij is slightly smaller and Rij looks negligible. Concerning

the transport term, the Peclet number for the jth species is

Pej =
ucL
D0
j

=
ℓ2kBTnc

ηD0
j

∈ (0.01085, 1.085).

After these considerations we obtain the dimensionless form of
Eq. (1):

div

jεi + Peinεi u

ε


= 0 inΩε, i = 1, . . . ,N, (29)

jεi · ν = 0 on ∂Ωε
\ ∂Ω, i = 1, . . . ,N, (30)

jεi = −

N
j=1

nεi K
ε
ij∇Mε

j and Mε
j = ln


nεj γ

ε
j e

zjΨ ε

, (31)

K εij =


δij +

kBT
D0
i

�ij


1 + Rij


, i, j = 1, . . . ,N. (32)

Eventually the porous medium Ωε is assumed to be an
ε-periodic smooth open subset ofΩ =

d
k=1(0, Lk)

d and Lk/ε are
integers for every k and every ε. It is built from Ω by removing
a periodic distributions of solid obstacles which, after rescaling
by 1/ε, are all similar to the unit obstacle YS . More precisely, we
consider a smooth partition of the unit periodicity cell Y = YS ∪YF
where YS is the solid part and YF is the fluid part. The liquid/solid
interface is S = ∂YS \ ∂Y . The fluid part is assumed to be a smooth
connected open subset (no assumption is made on the solid part).
We define Y j

ε = ε(YF + j) andΩε
=


j∈Zd Y j
ε ∩Ω .

We also assume a periodic distribution of charges Σ∗
≡

Σ∗(x/ε). This will imply that, at equilibrium (in the absence of
other forces), the solution of system (22)–(32) is also periodic of
period ε.

We recall that the ideal model (see e.g. [20]) corresponds to
the following values of the activity coefficient, γi = 1, and of
the Onsager tensor Lij = δijniD0

i /(kBT ). In view of our previous
dimensional analysis it is interesting to see in which sense the
present non-ideal MSA model is close to the ideal case. We shall
make this connection in the limit of a small parameter going to
zero. More precisely we rely on the characteristic value ξc of the
solute packing fraction, defined by (28). The smallness of ξc (which
means a low concentration, weighted by the ion size) will be a
crucial assumption in Theorem 2 that establishes the existence of
equilibrium solutions to the MSA model. It is therefore a natural
parameter to study the limit ideal case. With this goal in mind
we introduce two additional dimensionless numbers: Bjerrum’s
parameter (also called the Landau plasma parameter)

bi =
LB
σc
, (33)

and the ratio appearing in Stokes’ formula for the drag hydrody-
namic force

S =
kBT
ηD0

cσc
, (34)

whereD0
c is the characteristic value for the diffusivitiesD

0
i , 1 ≤ i ≤

N . According to the numerical values of Table 1, we assume that

bi and S are of order one. (35)

More precisely, it is enough to assume that bi and S are bounded
quantities when ξc becomes infinitely small (they can tend to zero
too).

Lemma 1. Under assumption (35), the ideal case is the limit of our
non-ideal MSA model for small solute packing fraction ξc , namely

K εij = δij + O(

ξc), and ln γ εj = O(


ξc). (36)
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Hence the MSA model is a regular O(
√
ξc) perturbation of the

idealizedmodel. Theorem 2 in Section 3 gives the equilibriumMSA
solution as an O(

√
ξc) perturbation of the equilibrium idealized

solution. The arguments from Section 6 could be extended to
interpret the MSA variant of the Poisson–Boltzmann equation as
an O(

√
ξc) perturbation of the classical (ideal) Poisson–Boltzmann

equation.

Proof. In view of formula (13) we find

ln γ HS
= O(ξc).

From its definition (12) and for small ξc we deduce that

Γ = O(

LBnc).

Using assumption (35), bi = O(1), yields

Γ σj = O(

biξc) = O(


ξc) and Γ LB = O(


bi3ξc) = O(


ξc),

which implies from (11)

−
LBΓ z2j
1 + Γ σj

= O(

ξc) and thus ln γj = O(


ξc).

Turning to the Onsager coefficients, we obtain from (19) that

κqσc = O(

LBncσc) = O(


ξc),

which implies after some algebra that

Rij = O(LBκq) = O(

ξc).

Using the second part of assumption (35), S = O(1), yields

Ωc
ij
kBT
D0
i

= O


kBT
ηD0

cσc


biξc


= O(S


biξc) = O(


ξc).

Similarly

ΩHS
ij

kBT
D0
i

= O(Sξc) = O(ξc),

which eventually yields

Lij =
niD0

i

kBT
(δij + O(


ξc)),

from which we infer the conclusion (36). Note that a similar
approximation holds for the chemical potential

µj = µ0
j + kBT (ln nj + O(


ξc)). �

3. Equilibrium solution

The goal of this section is to find a so-called equilibrium so-
lution of system (22)–(32) when the exterior forces are vanish-
ing f = 0 and Ψ ext

= 0. However, the surface charge density
Σ∗ is not assumed to vanish or to be small. This equilibrium solu-
tion will be a reference solution around which we shall linearize
system (22)–(32) in the next section. Then we perform the ho-
mogenization of the (partially) linearized system. We denote by
n0,ε
i ,Ψ 0,ε,u0,ε,M0,ε

i , p0,ε the equilibrium quantities.
In the case f = 0 and Ψ ext

= 0, one can find an equilibrium
solution by choosing a zero fluid velocity and taking all diffusion
fluxes equal to zero. More precisely, we require

u0,ε
= 0 and ∇M0,ε

j = 0, (37)
which obviously implies that j0,εi = 0 and (29)–(30) are satisfied.
The Stokes equation (22) shall give the corresponding value of the
pressure satisfying

∇p0,ε(x) = −

N
j=1

zjn
0,ε
j (x)∇Ψ 0,ε(x),

for which an explicit expression is given below (see (47)). From
∇M0,ε

j = 0 and (31)we deduce that there exist constants n0
j (∞) >

0 and γ 0
j (∞) > 0 such that

n0,ε
j (x) = n0

j (∞)γ 0
j (∞)

exp{−zjΨ 0,ε(x)}

γ
0,ε
j (x)

. (38)

The value n0
j (∞) is the reservoir concentration (also called the

infinite dilute concentration)whichwill be later assumed to satisfy
the bulk electroneutrality condition for zero potential. The value
γ 0
j (∞) is the reservoir activity coefficient which corresponds

to the value of γ 0,ε
j for zero potential (see (49) below for its

precise formula). Before plugging (38) into Poisson equation (24)
to obtain the MSA variant of the Poisson–Boltzmann equation for
the potential Ψ 0,ε , we have to determine the value of the activity
coefficient γ 0,ε

j .
From the first equation of (27) we have

γ
0,ε
j = γ HS(ξ) exp


−

LBΓ 0,εΓcz2j
1 + Γ 0,εΓcσj



= exp


p(ξ)−

LBΓ 0,εΓcz2j
1 + Γ 0,εΓcσj


, (39)

where, for ξ ∈ [0, 1), p(ξ) is a polynomial defined by (13) and,
recalling definition (28) of the characteristic value ξc , the solute
packing fraction ξ is

ξ = ξc

N
j=1

n0,ε
j


σj

σc

3

. (40)

The second equation of (27) gives a formula for the MSA
screening parameter

(Γ 0,ε)2 =

N
k=1

n0,ε
k z2k

(1 + ΓcΓ
0,εσk)2

. (41)

Let us explain how to solve the algebraic Eqs. (38)–(41).
Combining (38)–(40), for given potential Ψ 0,ε and screening

parameter Γ 0,ε , the solute packing fraction ξ is a solution of the
algebraic equation

ξ = exp{−p(ξ)}ξc
N
j=1


σj

σc

3

n0
j (∞)γ 0

j (∞)

× exp


−zjΨ 0,ε

+
LBΓ 0,εΓcz2j
1 + Γ 0,εΓcσj


. (42)

Once we know ξ ≡ ξ(Ψ 0,ε,Γ 0,ε), solution of (42), combining (38)
and (41), Γ 0,ε is a solution of the following algebraic equation,
depending on Ψ 0,ε ,

(Γ 0,ε)2 =

N
j=1

n0
j (∞)γ 0

j (∞)
z2j

(1 + Γ 0,εΓcσj)2

× exp


−zjΨ 0,ε

+
LBΓ 0,εΓcz2j
1 + Γ 0,εΓcσj

− p

ξ(Ψ 0,ε,Γ 0,ε)


. (43)
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All in all, solving the two algebraic equations (42) and (43) yields
the values Γ 0,ε(Ψ 0,ε) and ξ̃ (Ψ 0,ε) ≡ ξ


Ψ 0,ε,Γ 0,ε(Ψ 0,ε)


(see

Section 6 for a precise statement).
Then the electrostatic equation (24) reduces to the following

MSA variant of the Poisson–Boltzmann equation which is a non-
linear partial differential equation for the sole unknown Ψ 0,ε

−ε2∆Ψ 0,ε
= β

N
j=1

zjn0
j (∞)γ 0

j (∞)

× exp


−zjΨ 0,ε

+
LBΓ 0,ε(Ψ 0,ε)Γcz2j
1 + Γ 0,ε(Ψ 0,ε)Γcσj

− p(ξ̃ (Ψ 0,ε))


inΩε,

ε∇Ψ 0,ε
· ν = −NσΣ∗ on ∂Ωε

\ ∂Ω, Ψ 0,ε isΩ-periodic.
(44)

In Section 6 (see Theorem 24) we shall prove the following
existence result. Unfortunatelywe are unable to prove uniqueness.

Theorem 2. Assuming that the surface charge distribution Σ∗ be-
longs to L∞(∂Ωε), that the ions are not too small, namely

LB < (6 + 4
√
2) min

1≤j≤N

σj

z2j
with 6 + 4

√
2 ≈ 11.656854, (45)

and that the characteristic value ξc is small enough, there exists at
least one solution of (44) Ψ 0,ε

∈ H1(Ωε) ∩ L∞(Ωε).

Introducing the primitive Ej(Ψ ) of

E ′

j (Ψ ) = zjn0
j (∞)γ 0

j (∞)

× exp


−zjΨ +

LBΓ 0,ε(Ψ )Γcz2j
1 + Γ 0,ε(Ψ )Γcσj

− p(ξ̃ (Ψ ))


, (46)

the equilibrium pressure in Stokes equations (corresponding to a
zero velocity) is given (up to an additive constant) by

p0,ε =

N
j=1

Ej(Ψ 0,ε). (47)

Remark 3. In the ideal case, i.e., when γ 0,ε
j = 1, the function

Ej(Ψ 0,ε) defined by (46) is simply equal to n0,ε
j = n0

j (∞)

exp{−zjΨ 0,ε
}.

From a physical point of view, it is desired that the solution of
(44) vanishes, i.e., Ψ 0,ε

= 0, when the surface charges are null,
i.e., Σ∗

= 0. Therefore, following the literature, we impose the
bulk electroneutrality condition

N
j=1

E ′

j (0) = −

N
j=1

zjn0
j (∞)γ 0

j (∞)

× exp


LBΓ 0,ε(0)Γcz2j
1 + Γ 0,ε(0)Γcσj

− p(ξ̃ (0))


= 0, (48)

where Γ 0,ε(0) is the solution of (43) for Ψ 0,ε
= 0.

Defining the equilibrium activity coefficient by

γ 0
j (∞) = exp


p(ξ̃ (0))−

LBΓ 0,ε(0)Γcz2j
1 + Γ 0,ε(0)Γcσj


, (49)

the bulk electroneutrality condition (48) reduces to its usual form
N
j=1

zjn0
j (∞) = 0.
Formula (49) is an implicit algebraic equation for γ 0
j (∞) since ξ̃ (0)

and Γ 0,ε(0) depend themselves on the γ 0
k (∞)’s. The next lemma

proves that it is a well-posed equation.

Lemma 4. There always exists a unique solution γ 0
j (∞) of the

algebraic equation (49).

Proof. Assume that there exists γ 0
j (∞) satisfying (49) and plug

this formula in (43). It yields


Γ 0,ε(0)

2
=

N
j=1

n0
j (∞)z2j

(1 + Γ 0,ε(0)Γcσj)2
,

which admits a unique solution Γ 0,ε(0) > 0 since the left hand
side is strictly increasing and the right hand side is decreasing. On
the same token, using (49) in (42) leads to

ξ̃ (0) = ξc

N
j=1


σj

σc

3

n0
j (∞).

We have thus found explicit values for Γ 0,ε(0) and ξ̃ (0) which do
not depend on the γ 0

k (∞)’s. Using them in (49) gives its unique
solution γ 0

j (∞). �

Remark 5. From the proof of Lemma 4 it is clear that Γ 0,ε(0)
does not depend on ξc , while ξ̃ (0) = O(ξc), which implies that
γ 0
j (∞) = O(1) for small ξc .

Remark 6. The bulk electroneutrality condition (48) is not a
restriction. Actually all our results hold under the much weaker
assumption (5) that all valencies zj do not have the same sign.
Indeed, if (48) is not satisfied, we can make a change of variables
in the Poisson–Boltzmann equation (44), defining a new potential
Ψ̃ 0,ε

= Ψ 0,ε
+ C where C is a constant reference potential. Since

the function

C → Φ(C) =

N
j=1

zjn0
j (∞)γ 0

j (∞)

× exp


−zjC +

LBΓ 0,ε(C)Γcz2j
1 + Γ 0,ε(C)Γcσj

− p(ξ̃ (C))


is continuous and admits opposite infinite limits when C tends to
±, there exists at least one value C such thatΦ(C) = 0. This change
of variables for the potential leaves (43) and (44) invariant if we
change the constants n0

j (∞)γ 0
j (∞) in new constants

ñ0
j (∞)γ̃ 0

j (∞) = n0
j (∞)γ 0

j (∞)

× exp


−zjC +

LBΓ 0,ε(C)Γcz2j
1 + Γ 0,ε(C)Γcσj

−
LBΓ 0,ε(0)Γcz2j
1 + Γ 0,ε(0)Γcσj

− p(ξ̃ (C))+ p(ξ̃ (0))


.

These new constants satisfy the bulk electroneutrality condition
(48).

4. Linearization

We now proceed to the linearization of electrokinetic
Eqs. (22)–(32) around the equilibrium solution computed in Sec-
tion 3. We therefore assume that the external forces, namely the
static electric potential Ψ ext(x) and the hydrodynamic force f(x),
are small. However, the surface charge density Σ∗ on the pore
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walls is not assumed to be small since it is part of the equilibrium
problem studied in Section 3. Such a linearization process is clas-
sical in the ideal case (see the seminal paper [21] by O’Brien et al.)
but it is new and slightly more complicated for the MSA model.
For small exterior forces, wewrite the perturbed electrokinetic un-
knowns as
nεi (x) = n0,ε

i (x)+ δnεi (x), Ψ ε(x) = Ψ 0,ε(x)+ δΨ ε(x),

uε(x) = u0,ε(x)+ δuε(x), pε(x) = p0,ε(x)+ δpε(x),

where n0,ε
i ,Ψ 0,ε,u0,ε, p0,ε are the equilibrium quantities, corre-

sponding to f = 0 and Ψ ext
= 0. The δ prefix indicates a perturba-

tion. Since the equilibrium velocity vanishes u0,ε
= 0, we identify

in the sequel uε = δuε .
Motivated by the form of the Boltzmann equilibrium distribu-

tion and the calculation of n0,ε
i , we follow the lead of [21] and in-

troduce a so-called ionic potentialΦε
i which is defined in terms of

nεi by

nεi (x)γ
ε
i (x) = n0

i (∞)γ 0
j (∞)

× exp{−zi(Ψ ε(x)+ Φε
i (x)+ Ψ ext,∗(x))}, (50)

where

γ εi = exp

p(ξ)−

LBΓ εΓcz2i
1 + Γ εΓcσi


and

(Γ ε)2 =

N
k=1

nεkz
2
k

(1 + Γ εΓcσk)2
,

(51)

with

p(ξ) = ξ
8 − 9ξ + 3ξ 2

(1 − ξ)3
and ξ = ξc

N
j=1

nεj


σj

σc

3

.

Since Φ0,ε
i = 0 by virtue of formula (38) for n0,ε

i , we identify δΦε
i

withΦε
i .

Lemma 7. The linearization of (50)–(51) yields

δnεi (x) =

N
k=1

zkα
0,ε
i,k (x)


δΨ ε(x)+ Φε

k (x)+ Ψ ext,∗(x)

, (52)

with

α
0,ε
i,k = −n0,ε

i δik + B0,εn0,ε
i n0,ε

k σ 3
k −

LBΓc

A0,ε
n0,ε
i n0,ε

k

×


z2i

(1 + Γ 0,εΓcσi)2
− B0,εC0,ε


×


z2k

(1 + Γ 0,εΓcσk)2
− B0,εD0,εσ 3

k


, (53)

where

B0,ε
=

π
6 ncp′(ξ)

1 + ξp′(ξ)
, C0,ε

=

N
k=1

z2kσ
3
k n

0,ε
k

(1 + Γ 0,εΓcσk)2
,

D0,ε
=

N
k=1

z2kn
0,ε
k

(1 + Γ 0,εΓcσk)2

and

A0,ε
= 2Γ 0,ε

+ 2Γc

N
k=1

n0,ε
k z2kσk

(1 + Γ 0,εΓcσk)3

− LBΓc

N
k=1

n0,ε
k z4k

(1 + Γ 0,εΓcσk)4

+ LBΓcB0,εC0,ε
N

k=1

n0,ε
k z2k

(1 + Γ 0,εΓcσk)2
.

Under assumption (45) of Theorem 2 the coefficient A0,ε is positive.
Furthermore, at equilibrium, if we consider n0,ε
i as a function of

Ψ 0,ε , we have

dn0,ε
i

dΨ 0,ε
=

N
k=1

zkα
0,ε
i,k . (54)

If all ions have the same diameter (σk = σi for all i, k), then the
coefficients α0,ε

i,k = α
0,ε
k,i are symmetric.

Remark 8. At equilibrium, the concentrations n0,ε
i , as well as

the screening parameter Γ 0,ε , depend only on Ψ 0,ε through the
algebraic equations (38)–(41). However, outside equilibrium the
concentrations nεi and the screening parameterΓ ε depend through
(50)–(51) on the entire family (δΨ ε

+ Φε
k + Ψ ext,∗), 1 ≤ k ≤ N .

Proof. Linearizing (50) leads to

δnεi =
−δγ εi

(γ
0,ε
i )2

n0
i (∞)γ 0

j (∞) exp{−ziΨ 0,ε
}

−
zin0

i (∞)γ 0
j (∞)

γ
0,ε
i

exp{−ziΨ 0,ε
}


δΨ ε

+ Φε
i + Ψ ext,∗


which is equivalent to

δnεi =
−δγ εi

γ
0,ε
i

n0,ε
i − zin

0,ε
i


δΨ ε

+ Φε
i + Ψ ext,∗


. (55)

Linearization of the first equation of (51) yields

δγ εi

γ
0,ε
i

= p′(ξ)δξ −
LBΓcz2i

(1 + Γ 0,εΓcσi)2
δΓ ε

with δξ =
π

6
nc

N
k=1

σ 3
k δn

ε
k. (56)

Multiplying (55) by σ 3
i and (56) by σ 3

i n
0,ε
i , then summing up to

eliminate δγ εi /γ
0,ε
i , gives

N
k=1

σ 3
k δn

ε
k


1 +

π

6
ncp′(ξ)

N
k=1

σ 3
k n

0,ε
k



= −

N
k=1

σ 3
k zkn

0,ε
k


δΨ ε

+ Φε
k + Ψ ext,∗


+ δΓ ε

N
k=1

LBΓcz2kσ
3
k n

0,ε
k

(1 + Γ 0,εΓcσk)2
,

from which, together with (55), we deduce

δnεi (x) = −zin
0,ε
i (x)


δΨ ε(x)+ Φε

i (x)+ Ψ ext,∗(x)


+
LBΓcz2i n

0,ε
i (x)

(1 + Γ 0,ε(x)Γcσi)2
δΓ ε(x)

+ B0,εn0,ε
i (x)

N
k=1

σ 3
k zkn

0,ε
k (x)

×


δΨ ε(x)+ Φε

k (x)+ Ψ ext,∗(x)


− B0,εC0,εn0,ε
i (x)LBΓcδΓ

ε(x). (57)

Next, we linearize the second formula of (51) to obtain

2Γ 0,εδΓ ε
=

N
k=1


z2k δn

ε
k

(1 + Γ 0,εΓcσk)2
−

2n0,ε
k z2kσkΓc

(1 + Γ 0,εΓcσk)3
δΓ ε


.
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Combining it with (57) leads to

A0,ε(x) δΓ ε(x) = −

N
k=1

n0,ε
k (x)z3k

(1 + Γ 0,ε(x)Γcσk)2

×


δΨ ε(x)+ Φε

k (x)+ Ψ ext,∗(x)


+ B0,ε(x)D0,ε(x)
N

k=1

n0,ε
k (x)zkσ 3

k

×


δΨ ε(x)+ Φε

k (x)+ Ψ ext,∗(x)

. (58)

Eventually, plugging (58) into (57) yields (52) and (53).
Since we divide by A0,ε we check that it does not vanish in some

range of the physical parameters. Using definition (51) of (Γ 0,ε)2

in the equality 2Γ 0,ε
= 2(Γ 0,ε)2/Γ 0,ε allows us to rewrite the

coefficient A0,ε as

A0,ε(x) = Γc

N
k=1

n0,ε
k z2k

(1 + Γ 0,εΓcσk)2

×


2

Γ 0,εΓc
+

2σk
(1 + Γ 0,εΓcσk)

−
LBz2k

(1 + Γ 0,εΓcσk)2


+ LBΓcB0,εC0,ε

N
k=1

n0,ε
k z2k

(1 + Γ 0,εΓcσk)2
,

where each term in the sum of the first line is positive under the
same condition (45) and same proof as in Lemma 18.

The computation leading to (54) is completely similar. Finally,
the symmetry relation α0,ε

i,k = α
0,ε
k,i is obvious from formula (53)

when σk = σi for all i, k. �

Remark 9. In the ideal case, γ εi ≡ 1, Lemma 7 simplifies a lot
since α0,ε

i,k = −n0,ε
i δik which implies there is no coupling between

the various ionic potentials in the definition of a single species
concentration.

Thanks to the definition (50) of the ionic potential, the lineariza-
tion of the convection–diffusion equation (29) is easy because the
diffusive flux simplifies as

Mε
j = ln


nεj γ

ε
j e

zjΨ ε


= ln

n0
j (∞)γ 0

j (∞)

− zj(Φε

j + Ψ ext,∗).

Furthermore, the equilibrium solution satisfies ∇M0,ε
j = 0, which

implies

div
 N

j=1

n0,ε
i K 0,ε

ij zj∇(Φε
j + Ψ ext,∗)+ Pein

0,ε
i uε


= 0 inΩε (59)

K 0,ε
ij =


D0
i

kBT
δij +Ω0

ij


1 + R0

ij


, i, j = 1, . . . ,N. (60)

The linearization of the Stokes equation (22) ismore tricky.We first
get

ε2∆uε − ∇δpε = f∗ +

N
j=1

zj

δnεj ∇Ψ

0,ε
+ n0,ε

j ∇δΨ ε


inΩε,

(61)
divuε = 0 inΩε, uε = 0 on ∂Ωε

\ ∂Ω.

We rewrite the sum on the right hand side of (61) as

∇


N
j=1

zjn
0,ε
j δΨ ε


+ Sε

with Sε =

N
j=1

zj

δnεj ∇Ψ

0,ε
− δΨ ε

∇n0,ε
j


. (62)
Since ∇n0,ε
j =

dn0,εj
dΨ 0,ε ∇Ψ

0,ε at equilibrium, from Lemma 7 we de-
duce

Sε =

N
j,k=1

zj

zkα

0,ε
j,k


δΨ ε

+ Φε
k + Ψ ext,∗


− zkα

0,ε
j,k δΨ

ε


∇Ψ 0,ε

=

N
j,k=1

zjzkα
0,ε
j,k


Φε

k + Ψ ext,∗

∇Ψ 0,ε (63)

If all ions have the same diameter, the coefficients α0,ε
j,k are sym-

metric, i.e. α0,ε
j,k = α

0,ε
k,j , so we deduce

Sε =

N
k=1

zk
dn0,ε

k

dΨ 0,ε


Φε

k + Ψ ext,∗

∇Ψ 0,ε

=

N
k=1

zk

Φε

k + Ψ ext,∗

∇n0,ε

k .

Thus, we rewrite (61) as

ε2∆uε − ∇Pε = f∗ −

N
j=1

zjn
0,ε
j ∇


Φε

j + Ψ ext,∗ , (64)

where the new pressure Pε is defined by

Pε = δpε +

N
j=1

zjn
0,ε
j


δΨ ε

+ Φε
j + Ψ ext,∗ .

Remark 10. When the ion diameters are different, we can merely
introduce nonlinear functions Fj (defined by their derivatives) such
that

Sε =

N
j=1

zj

Φε

j + Ψ ext,∗
∇


Fj(Ψ 0,ε)


.

In general it is not clear whether Fj = nj.

Of course, one can deduce a linearized equation for δΨ ε from
the non-linear Poisson equation (24) too. But, since δΨ ε does not
enter the previous equations (upon redefining the pressure Pε), it
is decoupled from the main unknowns uε , Pε andΦε

i . Therefore it
is not necessary to write its equation in detail.

To summarize, we have just proved the following result.

Proposition 11. Assume that all ions have the same diameter. The
linearized system, around the equilibrium solution of Section 3, of the
electrokinetic equations (22)–(32) is

ε2∆uε − ∇Pε = f∗ −

N
j=1

zjn
0,ε
j ∇


Φε

j + Ψ ext,∗ inΩε, (65)

divuε = 0 inΩε, uε = 0 on ∂Ωε
\ ∂Ω, (66)

div n0,ε
i

 N
j=1

K 0,ε
ij zj∇(Φε

j + Ψ ext,∗)+ Peiuε


= 0

inΩε, i = 1, . . . ,N, (67)
N
j=1

K 0,ε
ij zj∇(Φε

j + Ψ ext,∗) · ν = 0 on ∂Ωε
\ ∂Ω, (68)

uε, Pε,Φε
j areΩ-periodic, (69)

where the coefficients n0,ε
j and K 0,ε

ij (defined by (60)) are evaluated at
equilibrium.
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This is the system of equations thatwe are going to homogenize
in the next sections. It is the extension to the non-ideal case of
a similar ideal system previously studied in [23,24,2,25,27–29,34,
22]. The mathematical structure of system (65)–(69) is essentially
the same as in the ideal case. The only difference is the coupling
of the diffusion equations through the tensor K 0,ε

ij . Note that the
tensor K 0,ε

ij is related to the original Onsager tensor Lij, defined
in (14): upon adimensionalization and evaluation at equilibrium,
Lij becomes L0,εij = n0,ε

i K 0,ε
ij D0

i /(kBT ). In particular, the tensor L0,εij
inherits from the symmetry of Lij (it is thus symmetric positive
definite).

Next, we establish the variational formulation of (65)–(69)
and prove that it admits a unique solution. The functional spaces
related to the velocity field are

W ε
= {v ∈ H1(Ωε)d, v = 0 on ∂Ωε

\ ∂Ω,Ω-periodic in x}

and

Hε = {v ∈ W ε, div v = 0 inΩε
}.

The variational formulation of (65)–(69) is: find uε ∈ Hε and
{Φε

j }j=1,...,N ∈ H1(Ωε)N , Φε
j being Ω-periodic, such that, for any

test functions v ∈ Hε and {φj}j=1,...,N ∈ H1(Ωε)N , φj being
Ω-periodic,

a

(uε, {Φε

j }), (v, {φj})


= ⟨L, (v, {φj})⟩,

where the bilinear form a and the linear form L are defined by

a

(uε, {Φε

j }), (v, {φj})


:= ε2

Ωε

∇uε : ∇v dx

+

N
i,j=1

zizj
Pei


Ωε

n0,ε
i K 0,ε

ij ∇Φε
j · ∇φi dx

+

N
j=1

zj


Ωε

n0,ε
j


uε · ∇φj − v · ∇Φε

j


dx

⟨L, (v, {φj})⟩ :=

N
j=1

zj


Ωε

n0,ε
j E∗

· v dx

−

N
i,j=1

zizj
Pei


Ωε

n0,ε
i K 0,ε

ij E∗
· ∇φi dx −


Ωε

f∗ · v dx, (70)

where, for simplicity, we denote by E∗ the electric field corre-
sponding to the potential Ψ ext,∗, i.e., E∗(x) = ∇Ψ ext,∗(x).

Lemma 12. For sufficiently small values of nc > 0 and ξc > 0, and
under assumption (45), there exists a unique solution of (65)–(69),
uε ∈ Hε and {Φε

j }j=1,...,N ∈ H1(Ωε)N , Φε
j being Ω-periodic.

Furthermore, there exists a positive constant C, independent of ε, such
that

∥uε∥L2(Ωε)d + ε∥∇uε∥L2(Ωε)d2 + max
1≤j≤N

∥Φε
j ∥H1(Ωε)

≤ C

∥E∗

∥L2(Ω)d + ∥f∗∥L2(Ω)d

. (71)

Proof. Assumption (45) and small ξc > 0 imply that the poten-
tial Ψ 0,ε is bounded in L∞(Ωε) (see Theorem 24). The same holds
true for ξ and Γ 0,ε which are algebraic functions of Ψ 0,ε . Thus,
the concentrations n0,ε

j , defined by (109) are uniformly positive
and bounded in L∞(Ωε). Due to the structure of �c

ij, �
HS
ij and Rij,

these coefficients, evaluated at equilibrium, are arbitrary small in
L∞(Ωε) for small nc . Consequently, the tensor K 0,ε

ij is positive def-
inite (as a perturbation of the identity) and the bilinear form a is
coercive for nc ≤ ncr

c . The rest of the proof, including the a priori
estimates, is similar to the ideal case, studied in [23], wherewe had
K 0,ε
ij = δij. �

5. Homogenization

In Sections 3 and 4 we did not use our assumption that the
porous medium and the surface charge distribution are ε-periodic
(see the end of Section 2). Our further analysis relies crucially
on this ε-periodicity hypothesis. Theorem 2 gives the existence
of a solution to the Poisson–Boltzmann equation (44) but not its
uniqueness. Nevertheless, we can define a particular solution of
(44), which is ε-periodic,

Ψ 0,ε(x) = Ψ 0
 x
ε


, (72)

where Ψ 0(y) is a solution of the unit cell Poisson–Boltzmann
equation

−∆yΨ
0(y) = β

N
j=1

zjn0
j (y) in YF ,

∇yΨ
0
· ν = −NσΣ∗(y) on ∂YF \ ∂Y ,

y → Ψ 0(y) is 1-periodic,

n0
j (y) = n0

j (∞)γ 0
j (∞)

exp

−zjΨ 0(y)


γ 0
j (y)

,

(73)

with the activity coefficient defined by

γ 0
j (y) = γ HS(y) exp


−

LBΓ 0(y)Γcz2j
(1 + Γ 0(y)Γcσj)


and

(Γ 0(y))2 =

N
k=1

n0
k(y)z

2
k

(1 + ΓcΓ
0(y)σk)2

,

and

γ HS
= exp{p(ξ)} with p(ξ) = ξ

8 − 9ξ + 3ξ 2

(1 − ξ)3
and

ξ(y) =
πnc

6

N
k=1

n0
k(y)σ

3
k .

The formal two-scale asymptotic expansion method [41–43]
can be applied to system (65)–(69) as in the ideal case studied
by [22,3,30,31,33,23] and [24]. Introducing the fast variable y =

x/ε, it assumes that the solution of (65)–(69) is given by
uε(x) = u0(x, x/ε)+ εu1(x, x/ε)+ · · · ,

Pε(x) = p0(x)+ εp1(x, x/ε)+ · · · ,

Φε
j (x) = Φ0

j (x)+ εΦ1
j (x, x/ε)+ · · · .

(74)

We then plug this ansatz in Eqs. (65)–(69) and use the chain-rule
lemma for a function φ(x, x

ε
)

∇


φ

x,

x
ε


=


∇xφ +

1
ε
∇yφ


x,

x
ε


.

Identifying the various powers of ε we obtain a cascade of equa-
tions from which we retain only the first ones that constitute the
following two-scale homogenized problem. This type of calcula-
tion is classical and we do not reproduce it here. It can be made
rigorous thanks to the notion of two-scale convergence [44,45].

Proposition 13. From each bounded sequence {wε} in L2(Ωε) one
can extract a subsequence which two-scale converges to a limit w ∈

L2(Ω × YF ) in the sense that

lim
ε→0


Ωε
wε(x)ϕ


x,

x
ε


dx =


Ω


YF
w(x, y)ϕ(x, y) dy dx

for any ϕ ∈ L2

Ω; Cper(Y )


(‘‘per’’ denotes 1-periodicity).
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For sequences of functionswε defined in the perforated domain
Ωε and satisfying uniform in εH1-bounds, it is well-known [42]
that one can build extensions to the entire domain Ω satisfying
the same uniform bounds. We implicitly assume such extensions
in the theorem below but do not give details which are classical
and may be found in [23].

Theorem 14. Under the assumptions of Lemma 12 the solution
of (65)–(69) converges in the following sense

uε → u0(x, y) in the two-scale sense
ε∇uε → ∇yu0(x, y) in the two-scale sense

Pε → p0(x) strongly in L2(Ω)
Φε

j → Φ0
j (x) weakly in H1(Ω) and strongly in L2(Ω)

∇Φε
j → ∇xΦ

0
j (x)+ ∇yΦ

1
j (x, y) in the two-scale sense

where (u0, p0) ∈ L2(Ω;H1
per(Y )

d) × L20(Ω) and {Φ0
j ,Φ

1
j }j=1,...,N ∈

H1(Ω)× L2(Ω;H1
per(Y ))

N is the unique solution of the two-scale
homogenized problem

−∆yu0(x, y)+ ∇yp1(x, y) = −∇xp0(x)− f∗(x)

+

N
j=1

zjn0
j (y)


∇xΦ

0
j (x)+ ∇yΦ

1
j (x, y)+ E∗(x)


in Ω × YF ,

(75)

divyu0(x, y) = 0 inΩ × YF , u0(x, y) = 0 onΩ × S, (76)

divx


YF

u0(x, y) dy


= 0 inΩ, (77)

−divyn0
i (y)

 N
j=1

Kij(y)zj

∇yΦ

1
j (x, y)+ ∇xΦ

0
j (x)

+ E∗(x)

+ Peiu0(x, y)


= 0 inΩ × YF , (78)

N
j=1

Kij(y)zj

∇yΦ

1
j + ∇xΦ

0
j + E∗


· ν(y) = 0 onΩ × S, (79)

−divx


YF

n0
i (y)

 N
j=1

Kij(y)zj

∇yΦ

1
j (x, y)+ ∇xΦ

0
j (x)+ E∗(x)


+ Peiu0(x, y)


dy = 0 inΩ, (80)

Φ0
i ,


YF

u0 dy and p0 being Ω-periodic in x, (81)

with periodic boundary conditions on the unit cell YF for all functions
depending on y and S = ∂YS \ ∂Y .

The limit problem introduced in Theorem 14 is called the two-
scale and two-pressure homogenized problem, following the ter-
minology of [42,46]. It features two incompressibility constraints
(76) and (77) which are exactly dual to the two pressures p0(x) and
p1(x, y) which are their corresponding Lagrange multipliers. Re-
mark that Eqs. (75), (76) and (78) are just the leading order terms
in the ansatz of the original equations. On the other hand, Eqs. (77)
and (80) are averages on the unit cell YF of the next order terms in
the ansatz. For example, (77) is deduced from

divyu1(x, y)+ divxu0(x, y) = 0 in Ω × YF

by averaging on YF , recalling that u1(x, y) = 0 onΩ × S.
Proof. The proof of convergence and the derivation of the homog-
enized system is completely similar to the proof of Theorem 1
in [23]which holds in the ideal case. The only pointwhich deserves
to be made precise here is the well-posedness of the two-scale ho-
mogenized problem.

Following section 3.1.2 in [47], we introduce the functional
space for the velocities

V = {u0(x, y) ∈ L2per

Ω;H1

per(YF )
d satisfying (76)–(77)},

which is known to be orthogonal in L2per

Ω;H1

per(YF )
d

to the space

of gradients of the form∇xq(x)+∇yq1(x, y)with q(x) ∈ H1
per(Ω)/R

and q1(x, y) ∈ L2per

Ω; L2per(YF )/R


. We define the functional space

X = V×H1
per(Ω)/R×L2per(Ω;H1

per(YF )
d/R) and the variational for-

mulation of (75)–(81) is to find (u0, {Φ0
j ,Φ

1
j }) ∈ X such that, for

any test functions (v, {φ0
j , φ

1
j }) ∈ X ,

a

(u0, {Φ0

j ,Φ
1
j }), (v, {φ

0
j , φ

1
j })


= ⟨L, (v, {φ0
j , φ

1
j })⟩, (82)

where the bilinear form a and the linear form L are defined by

a

(u0, {Φ0

j ,Φ
1
j }), (v, {φ

0
j , φ

1
j })


:=


Ω


YF

∇yu0
: ∇v dx dy

+

N
i,j=1

zizj
Pei


Ω


YF

n0
i Kij(∇xΦ

0
j + ∇yΦ

1
j ) · (∇xφ

0
j + ∇yφ

1
j ) dx dy

+

N
j=1

zj


Ω


YF

n0
j


u0

· (∇xφ
0
j + ∇yφ

1
j )

− v · (∇xΦ
0
j + ∇yΦ

1
j )

dx dy (83)

and

⟨L, (v, {φj})⟩ :=

N
j=1

zj


Ω


YF

n0
j E

∗
· v dx dy −


Ω


YF

f∗ · v dx dy

−

N
i,j=1

zizj
Pei


Ω


YF

n0
i KijE∗

· (∇xφ
0
j + ∇yφ

1
j ) dx dy,

We apply the Lax–Milgram lemma to prove the existence and the
uniqueness of the solution in X of (82). The only point which re-
quires to be checked is the coercivity of the bilinear form. We take
v = u0, φ0

j = Φ0
j and φ1

j = Φ1
j as the test functions in (82).

We define a local diffusion tensor

K̃(y) =


zizj
Pei

Kij(y)n0
i (y)


1≤i,j≤N

=


kBT
ucL

zizjLij(y)


1≤i,j≤N
, (84)

which is symmetric since (Lij) is symmetric too. As already re-
marked in the proof of Lemma 12, K̃ is uniformly coercive for small
enough nc > 0 and ξc > 0. Therefore, the second integral on the
right hand side of (83) is positive. The third integral, being skew-
symmetric, vanishes, which proves the coercivity of a. �

Of course, one should extract from (75)–(81) the macroscopic
homogenized problem, which requires to separate the fast and
slow scale. In the ideal case, Looker and Carnie in [22] proposed
a first approach which was further improved in [23] and [24].

The main idea is to recognize in the two-scale homogenized
problem (75)–(81) that there are two different macroscopic fluxes,
namely (∇xp0(x)+f∗(x)) and {∇xΦ

0
j (x)+E∗(x)}1≤j≤N . Thereforewe

introduce two family of cell problems, indexed by k ∈ {1, . . . , d}
for each component of these fluxes. We denote by {ek}1≤k≤d the
canonical basis of Rd.
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The first cell problem, corresponding to the macroscopic
pressure gradient, is

−∆yv0,k(y)+ ∇yπ
0,k(y) = ek +

N
j=1

zjn0
j (y)∇yθ

0,k
j (y) in YF (85)

divyv0,k(y) = 0 in YF , v0,k(y) = 0 on S, (86)

−divyn0
i (y)

 N
j=1

Kij(y)zj∇yθ
0,k
j (y)+ Peiv0,k(y)


= 0 in YF (87)

N
j=1

Kij(y)zj∇yθ
0,k
j (y) · ν = 0 on S. (88)

The second cell problem, corresponding to the macroscopic diffu-
sive flux, is for each species l ∈ {1, . . . ,N}

−∆yvl,k(y)+ ∇yπ
l,k(y) =

N
j=1

zjn0
j (y)(δlje

k
+ ∇yθ

l,k
j (y)) in YF

(89)

divyvl,k(y) = 0 in YF , vl,k(y) = 0 on S, (90)

−divyn0
i (y)

 N
j=1

Kij(y)zj

δljek + ∇yθ

l,k
j (y)


+ Peivl,k(y)


= 0 in YF (91)
N
j=1

Kij(y)zj

δljek + ∇yθ

l,k
j (y)


· ν = 0 on S, (92)

where δij is the Kronecker symbol. As usual the cell problems are
complemented with periodic boundary conditions.

Then, we can decompose the solution of (75)–(81) as

u0(x, y) =

d
k=1


−v0,k(y)


∂p0

∂xk
+ f ∗

k


(x)

+

N
i=1

vi,k(y)

E∗

k +
∂Φ0

i

∂xk


(x)


(93)

p1(x, y) =

d
k=1


−π0,k(y)


∂p0

∂xk
+ f ∗

k


(x)

+

N
i=1

π i,k(y)

E∗

k +
∂Φ0

i

∂xk


(x)


(94)

Φ1
j (x, y) =

d
k=1


−θ

0,k
j (y)


∂p0

∂xk
+ f ∗

k


(x)

+

N
i=1

θ
i,k
j (y)


E∗

k +
∂Φ0

i

∂xk


(x)


. (95)

We average (93)–(95) in order to get a purelymacroscopic homog-
enized problem. We define the homogenized quantities: first, the
electro-chemical potential

µj(x) = −zj(Φ0
j (x)+ Ψ ext,∗(x)), (96)

then, the ionic flux of the jth species

jj(x) =
1

|YF |


YF

n0
j (y)

 N
l=1

Kjl(y)
zl
Pej


∇yΦ

1
l (x, y)

+ ∇xΦ
0
l (x)+ E∗(x)


+ u0


dy, (97)
and finally the filtration velocity

u(x) =
1

|YF |


YF

u0(x, y) dy. (98)

From (93)–(95)we deduce the homogenized or upscaled equations
for the above effective fields.

Proposition 15. Introducing the flux J(x) = (u, {jj}1≤j≤N) and the
gradient F (x) = (∇xp0, {∇xµj}1≤j≤N), the macroscopic equations
are

divxJ = 0 inΩ, (99)

J = −MF − M(f∗, {0}), (100)

with a homogenized tensor M defined by

M =



K
J1

z1
. . .

JN

zN
L1

D11

z1
· · ·

D1N

zN
...

...
. . .

...

LN
DN1

z1
· · ·

DNN

zN


, (101)

and complemented with periodic boundary conditions for p0 and
{Φ0

j }1≤j≤N . The matrices Ji, K, Dji and Lj are defined by their entries

{Ji}lk =
1

|YF |


YF

vi,k(y) · el dy,

{K}lk =
1

|YF |


YF

v0,k(y) · el dy,

{Dji}lk =
1

|YF |


YF

n0
j (y)

×


vi,k(y)+

N
m=1

Kjm(y)
zm
Pej


δimek + ∇yθ

i,k
m (y)


· el dy,

{Lj}lk =
1

|YF |


YF

n0
j (y)


v0,k(y)+

N
m=1

Kjm(y)
zm
Pej

∇yθ
0,k
m (y)


· el dy.

Furthermore, M is symmetric positive definite, which implies that the
homogenized equations (99)–(100) have a unique solution.

Remark 16. The symmetry of M is equivalent to the famous
Onsager’s reciprocal relations. In the ideal case, the symmetry of
the tensor M was proved in [22,23].

Proof. The conservation law (99) is just a rewriting of (77) and
(80). The constitutive equation (100) is an immediate consequence
of the definition (97) and (98) of the homogenized fluxes, taking
into account the decomposition (93)–(95).

We now prove that M is positive definite. For any collection
of vectors λ0, {λi}1≤i≤N ∈ Rd let us introduce the following linear
combinations of the cell solutions

vλ =

d
k=1


λ0kv

0,k
+

N
i=1

λikv
i,k


,

θλj =

d
k=1


λ0kθ

0,k
j +

N
i=1

λikθ
i,k
j


,

(102)

which satisfy

−∆yvλ(y)+ ∇yπ
λ(y) = λ0 +

N
j=1

zjn0
j (y)


λj + ∇yθ

λ
j (y)


in YF (103)
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divyvλ(y) = 0 in YF , vλ(y) = 0 on S, (104)

−divy


n0
i (y)


N
j=1

zjKij(λ
j
+ ∇yθ

λ
j (y))+ Peivλ(y)


= 0

in YF (105)
N
j=1

zjKij(λ
j
+ ∇yθ

λ
j (y)) · ν = 0 on S, (106)

Multiplying the Stokes equation (103) by vλ, the convection–
diffusion equation (105) by θλj and summing up, we obtain
YF


|∇yvλ(y)|2

+

N
i,j=1

zizj
Pei

n0
i (y)Kij(y)(∇yθ

λ
j (y)+ λj) · (∇yθ

λ
i (y)+ λi)


dy

=


YF
λ0 · vλ dy +

N
i=1


YF

zin0
i λ

i
· vλ dy

+

N
i,j=1


YF

zizj
Pei

n0
i Kij(∇yθ

λ
j + λj) · λi dy

= Kλ0 · λ0 +

N
i=1

Jiλ
i
· λ0 +

N
i,j=1

ziλi · Dijλ
j

+

N
i=1

ziλi · Liλ
0

= M(λ0, {ziλi})T · (λ0, {ziλi})T .

The left hand side of the above equality is positive. This proves the
positive definite character of M.

Following a computation of [23] in the ideal case, we prove the
symmetry of M. For another set of vectors λ̃0, {λ̃i}1≤i≤N ∈ Rd,
we define vλ̃ and θ λ̃j by (102). Multiplying the Stokes equation

for vλ by vλ̃ and the convection–diffusion equation for θ λ̃j by θλj
(note the skew-symmetry of this computation), then adding the
two variational formulations yields

YF
∇yvλ · ∇yvλ̃ dy +

N
i,j=1


YF

zizj
Pei

n0
i Kij∇yθ

λ̃
j · ∇yθ

λ
j dy

=


YF
λ0 · vλ̃ dy +

N
j=1


YF

zjn0
j λ

j
· vλ̃ dy

−

N
i,j=1


YF

zizj
Pei

n0
i Kijλ̃

j
· ∇yθ

λ
i dy. (107)

The diffusion tensor appearing in the left hand side of (107) is pre-
cisely equal to K̃ , defined by (84), which is symmetric. Therefore,
the left hand side of (107) is symmetric in λ, λ̃. Exchanging the last
term in (107), we deduce by symmetry
YF
λ0 · vλ̃ dy +

N
j=1


YF

zjn0
j λ

j
· vλ̃ dy

+

N
i,j=1


YF

zizj
Pei

n0
i Kijλ

j
· ∇yθ

λ̃
i dy

=


YF
λ̃0 · vλ dy +

N
j=1


YF

zjn0
j λ̃

j
· vλ dy

+

N
i,j=1


YF

zizj
Pei

n0
i Kijλ̃

j
· ∇yθ

λ
i dy,
which is equivalent to the desired symmetry

M(λ̃0, {ziλ̃i})T · (λ0, {ziλi})T = M(λ0, {ziλi})T · (λ̃0, {ziλ̃i})T . �

6. Existence of solutions to the MSA variant of Poisson–
Boltzmann equation

The goal of this section is to prove Theorem 2, i.e., the
existence of solutions to system (44), the MSA variant of the
Poisson–Boltzmann equation. These solutions are the so-called
equilibrium solutions computed in Section 3. In a slightly different
setting (two species and a linear approximation of p(ξ)) and with
a different method (based on a saddle point approach in the
two variables, potential and concentrations), a previous existence
result was obtained in [39].

To simplify the notations we shall drop all ε- or 0-indices.
In the same spirit, the pore domain is denoted Ωp, a subset
of the full domain Ω . To simplify we denote by ∂Ωp the solid
boundary of Ωp, which should rather be ∂Ωp \ ∂Ω since we
impose periodic boundary conditions on ∂Ω . With our simplified
notations, Theorem 2 is restated below as Theorem 24 and the
Poisson–Boltzmann equation reads−∆Ψ = β

N
j=1

zjnj(x) inΩp,

∇Ψ · ν = −NσΣ∗ on ∂Ωp, Ψ isΩ-periodic,

(108)

where, in view of (38), the equilibrium concentrations are

nj =
n0
j (∞)γ 0

j (∞)

γ HS
exp


−zjΨ +

LBΓ Γcz2j
1 + Γ Γcσj


. (109)

We recall that the MSA screening parameter Γ is defined by

(Γ )2 =

N
j=1

njz2j
(1 + ΓcΓ σj)2

(110)

and the hard sphere part of the activation coefficient is given by

γ HS
= exp{p(ξ)} with p(ξ) = ξ

8 − 9ξ + 3ξ 2

(1 − ξ)3
and

ξ = ξc

N
j=1

nj


σj

σc

3

, (111)

where ξ ∈ [0, 1) is the solute packing fraction and ξc its charac-
teristic value defined by (28).

Let us now explain our strategy to solve the boundary value
problem (108) coupled with the algebraic equations (109)–(111).
In a first step (Lemmas 17 and 18) we eliminate the algebraic
equations and write a nonlinear boundary value problem (116) for
the single unknown Ψ . In a second step we introduce a truncated
or ‘‘cut-off’’ problem (120) which is easily solved by a standard
energy minimization since the nonlinearity has been truncated.
The third and most delicate step is to prove a maximum principle
for these truncated solutions (Proposition 23)which, in turn, imply
our desired existence result.

In the first step we eliminate ξ as a function of (Ψ ,Γ ) and
then Γ as a function of Ψ . From (42), for given potential Ψ and
screening parameter Γ , the solute packing fraction ξ is a solution
of the algebraic equation

ξ = exp{−p(ξ)}ξc
N
j=1


σj

σc

3

n0
j (∞)γ 0

j (∞)

× exp


−zjΨ +

LBΓ Γcz2j
1 + Γ Γcσj


. (112)
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Lemma 17. For given values of Ψ and Γ , there exists a unique
solution ξ ≡ ξ(Ψ ,Γ ) ∈ [0, 1) of (112). Furthermore, this solution
depends smoothly on Ψ ,Γ and is increasing with Γ .

Proof. One can check that p(ξ) is an increasing function of ξ on
[0, 1)with range R+ since

p′(ξ) =
8 − 2ξ
(1 − ξ)4

.

The existence and the uniqueness follow from the strict decrease
of the function exp{−p(ξ)} from 1 to 0, while the left hand side ξ
of (112) increases from 0 to 1. Since the function

Γ →
LBΓ Γcz2j
1 + Γ Γcσj

is increasing, so is the solution ξ of (112) as a function of Γ . �

Once we know ξ ≡ ξ(Ψ ,Γ ), the MSA screening parameter Γ
satisfies the following algebraic equation (see (43))

(Γ )2 =

N
j=1

n0
j (∞)γ 0

j (∞)
z2j

(1 + Γ Γcσj)2

× exp


−zjΨ +

LBΓ Γcz2j
1 + Γ Γcσj

− p (ξ(Ψ ,Γ ))


. (113)

We now prove that the algebraic equation (113) admits a unique
solution Γ (Ψ ) under a mild assumption.

Lemma 18. For any value of Ψ , there always exists at least one
solution Γ ≡ Γ (Ψ ) of the algebraic equation (113). Furthermore,
under the following assumption on the physical parameters

LB < (6 + 4
√
2) min

1≤j≤N

σj

z2j
with 6 + 4

√
2 ≈ 11.656854, (114)

the solution Γ (Ψ ) is unique and is a differentiable function of Ψ .

Proof. Existence of a solution is a consequence of the fact that, as
functions of Γ , the left hand side of (113) spans R+ while the right
hand side remains positive and bounded on R+.

Denote by F(Γ ) the difference between the left and the right
hand sides of (113). Let us show that (114) implies that F is an
increasing function on R+, and, moreover, F ′(Γ ) > 0. To this end
we use the trick 2Γ = 2(Γ )2/Γ and compute the derivative (see
(115) in Box I on next page).

Lemma 17 shows that ∂ξ/∂Γ > 0, so the second line of Eq.
(115) in Box I is positive. Introducing x = Γ Γcσj, the sign of each
term in the sum of the first line of Eq. (115) in Box I is exactly that
of the polynomial P(x) = 4x2 + (6 − LBz2j /σj)x + 2. A simple
computation shows that P(x) has no positive roots (and thus is
positive for x ≥ 0) if and only if (114) holds true.

Since, F(0) < 0 and lim+∞ F(Γ ) = +∞, the inequal-
ity F ′(Γ ) > 0 yields the existence and the uniqueness of the
root Γ such that F(Γ ) = 0. Then, a standard application of
the implicit function theorem leads to the differentiable character
of Γ (Ψ ). �

Remark 19. The bound (114) is a sufficient, but not a necessary,
condition for uniqueness of the root Γ (Ψ ), the solution of
(113). There are other criteria (not discussed here) which
ensure the uniqueness of Γ (Ψ ). However there are cases when
multiple solutions do exist: it is interpreted as a phase transition
phenomenon and it was studied, e.g., in [48].
In view of Lemma 18 the solute packing fraction is now a
nonlinear function of the potential Ψ that we denote by

ξ̃ (Ψ ) ≡ ξ

Ψ ,Γ (Ψ )


.

As a result of our first step, the electrostatic equation (108) reduces
to the following Poisson–Boltzmann equation which is a nonlinear
partial differential equation for the sole unknown Ψ

−∆Ψ = β

N
j=1

zjn0
j (∞)γ 0

j (∞)

× exp


−zjΨ +

LBΓ (Ψ )Γcz2j
1 + Γ (Ψ )Γcσj

− p(ξ̃ (Ψ ))


inΩp,

∇Ψ · ν = −NσΣ∗ on ∂Ωp, Ψ isΩ-periodic.

(116)

Recall that Nσ > 0 is a parameter and thatΣ∗(x) is assumed to be
a Ω-periodic function in L∞(∂Ωp). Our goal is to prove existence
of at least one solution to problem (116). The main difficulty is the
non-linearity of the right hand sidewhich is growing exponentially
fast at infinity. Recalling definition (46) of Ej(Ψ ), the right hand side
of (116) is the nonlinear functionΦ defined by its derivative

Φ ′(Ψ ) = β

N
j=1

E ′

j (Ψ ). (117)

In the ideal case, Remark 3 tells us that Ej(Ψ ) = n0
j (∞) exp{−zjΨ }.

We are thus lead to introduce

g(ψ) =

N
j=1

n0
j (∞)γ 0

j (∞) exp

−zjψ


, ψ ∈ R, (118)

which is a strictly convex function. In the ideal case, we have
Φ(Ψ ) = βg(Ψ ) and the existence and the uniqueness of a solution
of (116) are more or less standard thanks to a monotonicity
argument (see [49,5]). For the MSA model our strategy of proof is
different since Φ is not anymore convex. We rely on a truncation
argument, L∞-bounds and still some monotonicity properties
of part of Φ ′. Our proof requires a smallness condition on the
characteristic value ξc .

The second step of our proof introduces a truncation operator
at the levelM > 0 defined, for any function ϕ, by

TM(ϕ) =



−
M
zN

if ϕ < −
M
zN
,

ϕ if −
M
zN

≤ ϕ ≤
M
|z1|

,

M
|z1|

if ϕ >
M
|z1|

.

Note that this truncation is not symmetric since the growth
condition at ±∞ of Φ and g are not symmetric too. We define a
‘‘cut-off’’ functionΦM by its derivative

Φ ′

M(Ψ ) = Φ ′
◦ TM(Ψ ), (119)

and solve the associated ‘‘cut-off’’ problem
−∆ΨM = −Φ ′

M(ΨM) in Ωp,
∇ΨM · ν = −NσΣ∗ on ∂Ωp, ΨM isΩ-periodic. (120)

Note thatΦ ′

M(Ψ ) is a bounded Lipschitz function and its primitive
ΦM(Ψ ) is a coercive C1-function, with a linear growth at infinity.
Therefore, for Σ∗

∈ L∞(∂Ωp) and M sufficiently large, the
corresponding functional

J(ψ) =
1
2


Ωp

|∇ψ |
2
+


Ωp

ΦM(ψ)+ Nσ


∂Ωp

Σ∗ψ
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5)
F ′(Γ ) =

N
j=1

n0
j (∞)γ 0

j (∞)
z2j exp


−zjΨ +

LBΓ Γc z2j
1+Γ Γcσj

− p(ξ)


(1 + Γ Γcσj)2


2
Γ

− Γc
LBz2j − 2σj(1 + Γ Γcσj)

(1 + Γ Γcσj)2



+
∂ξ

∂Γ
p′(ξ)

N
j=1

n0
j (∞)γ 0

j (∞)
z2j

(1 + Γ Γcσj)2
exp


−zjΨ +

LBΓ Γcz2j
1 + Γ Γcσj

− p(ξ)


. (11

Box I.
is lower semi-continuous with respect to the weak topology of H1

and coercive on H1. Then the basic calculus of variations yields
existence of at least one solution for problem (120). Furthermore,
for smooth domains, ΨM belongs toW 2,q(Ωp) for all q < +∞.

The third step of our proof amounts to prove an L∞-estimate for
ΨM such that, forM sufficiently large, it impliesΦM(ΨM) = Φ(ΨM)

and, consequently, existence of at least one solution for problem
(116).We start by some simple lemmas giving bounds on the solute
packing fraction ξ .

Lemma 20. Let p(ξ), ξ ≡ ξ(Ψ ,Γ ) and g(ψ) be given by (111),
(112) and (118) respectively. Then we have

Aming(Ψ ) ≤ ξep(ξ) ≤ Amaxg(Ψ ), (121)

with

Amin = ξc min
r


σr

σc

3

, Amax = ξc max
r


σr

σc

3

e
LB max

j

z2j
σj .

Let ξ0 be the unique solution of x exp{p(x)} = Amingm where gm is
the minimal value of g(ψ). Then we have

ξ0 ≤ ξ ≤ Amaxg(Ψ ). (122)

Proof. Formula (112) yields

ξ exp{p(ξ)} = ξc

N
j=1


σj

σc

3

n0
j (∞)γ 0

j (∞)

× exp


−zjΨ +

LBΓ Γcz2j
1 + Γ Γcσj


.

Since

0 <
LBΓ Γcz2j
1 + Γ Γcσj

≤ LB max
j

z2j
σj
,

we deduce the bound (121). The other bound (122) is then a
consequence of the fact that p(ξ) ≥ 0 and ξ → ξep(ξ) is
increasing. �

For the sequel it is important to find a bound for ξ which is
independent of ξc , small as we wish, at least for large values of the
potential Ψ .

Lemma 21. Let ξ ≡ ξ(Ψ ,Γ ) be the unique solution of (112). There
exists a threshold 0 < ξ cr < 1 such that, for any number q ≥ 1, there
exist positive values ξmin, ξmax > 0 such that, for any characteristic
value 0 < ξc < ξ cr/q,

ξ ≥ ξmin if Ψ <
−1
zN

log
1
qξc
,

ξ ≥ ξmax if Ψ >
1

|z1|
log

1
qξc
.

Remark 22. The point in Lemma 21 is that the lower bounds
ξmin, ξmax > 0 are independent of ξc (but they depend on q), on
the contrary of ξ0 in Lemma 20. In the proof of Proposition 23 the
number qwill be chosen as O(1)with respect to ξc .
Proof. We improve the lower bound for Eq. (113) when the
potential is very negative Ψ < (log(qξc))/zN . From (121) we
deduce for small ξc

ξep(ξ) ≥ Aming(Ψ ) = n0
N(∞)γ 0

N (∞)min
r


σr

σc

3

×
ξc

qξc


1 + O(ξ 1−zN−1/zN

c )


≥
1
2q

n0
N(∞)γ 0

N (∞)min
r


σr

σc

3

= O(1),

where the lower bound is independent of ξc . The conclusion
follows by defining ξmin as the unique solution of

ξminep(ξmin) =
1
2q

n0
N(∞)γ 0

N (∞)min
r


σr

σc

3

.

Note that ξmin is uniformly bounded away from 0 for small ξc since
γ 0
N (∞) = O(1) by virtue of Remark 5.
The proof of the estimate for large values Ψ > (log(qξc))/z1 is

analogous. �

Now the upper bound in Lemma 20 implies that for ξ =

ξ(Ψ ,Γ )we have

ξmin

g(Ψ )ξc max
r
( σr
σc
)3

e
−LB max

j

z2j
σj

≤ e−p(ξ), for Ψ <
−1
zN

log
1
qξc
.

(123)
Indeed, by (121) and Lemma 21

e−p(ξ)
≥

ξ

Amaxg(Ψ )
≥

ξmin

g(Ψ )ξc max
r


σr
σc

3 e
−LB max

j

z2j
σj .

For the purpose of comparison we introduce the following
auxiliary Neumann problem

−∆U =
1

|Ωp|


∂Ωp

NσΣ∗ dS in Ωp,

∇U · ν = −NσΣ∗ on ∂Ωp,

U isΩ-periodic,

Ωp

U(x) dx = 0.

(124)

Remark that (124) admits a solution U ∈ H1
#(Ωp) since the bulk

and surface source terms are in equilibrium. Furthermore, the zero
average condition of the solution gives its uniqueness. It is known
that U is continuous and achieves its minimum and maximum in
Ωp. Define

σ =
1

|Ωp|


∂Ωp

NσΣ∗ dS, Umin = min
x∈Ωp

U(x) and

Umax = max
x∈Ωp

U(x).
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Then our L∞-bound reads as follows.

Proposition 23. Let ΨM be a solution for the cut-off problem (120)
and take

M = log
1
ξc
.

Under assumption (114), there exists a critical value ξ cr > 0 such that,
for any ξc ∈ (0, ξ cr), the solution ΨM of (120) satisfies the following
bounds

−
M
zN

≤ ΨM(x) ≤
M
|z1|

. (125)

Proof. We write the variational formulation for ΨM − U for any
smooth Ω-periodic function ϕ. Taking into account the definition
Φ ′

M(ΨM) = Φ ′(TM(ΨM)), it reads
Ωp

∇(ΨM − U) · ∇ϕ dx − β

N
j=1

zjn0
j (∞)γ 0

j (∞)

×


Ωp


e−zjTM (ΨM ) − e−zjTM (U−C)

× e
LB

z2j ΓcΓ (TM (ΨM ))

1+ΓcΓ (TM (ΨM ))σj
−p(ξ(TM (ΨM )))

ϕ dx

+


Ωp


−β

N
j=1

zjn0
j (∞)γ 0

j (∞)e−zjTM (U−C)

× e
LB

z2j ΓcΓ (TM (ΨM ))

1+ΓcΓ (TM (ΨM ))σj
−p(ξ(TM (ΨM )))

+ σ


ϕ dx = 0. (126)

We take ϕ(x) = (ΨM(x) − U(x) + C)−, where C is a constant to
be determined and, as usual, the function f −

= min(f , 0) is the
negative part of f . The first term in (126) is thus non-negative.

By monotonicity of v → −zj exp{−zjTM(v)} the second term of
(126) is non-negative. To prove that the third one is non-negative
too (which would imply that ϕ ≡ 0), it remains to choose C in
such a way that the coefficient Q in front of ϕ in the third term is
non-positive.

For a given number q ≥ 1 (to be defined later, independent of
ξc) we define constants

M̃ = log
1
qξc

≤ M = log
1
ξc

and we choose C = Umax + M̃/zN . Since ϕ ≠ 0 if and only if
ΨM < U − C , we restrict the following computation to these
negative values ofΨM . In such a case,we haveΨM <

−1
zN

log 1
qξc

(the
same is true for TM(ΨM)) so we can apply (123) from Lemma 21.
Then, since −M/zN ≤ TM(U − C) ≤ −M̃/zN , we bound the
coefficient Q (decomposing the indices in j− for negative valencies
and j+ for positive ones)

Q = σ − β

N
j=1

zjn0
j (∞)γ 0

j (∞)e−zjTM (U−C)

× e
LB

z2j ΓcΓ (TM (ΨM ))

1+ΓcΓ (TM (ΨM ))σj
−p(ξ(TM (ΨM )))

≤ σ − β

j∈j−

zjn0
j (∞)γ 0

j (∞)e
LB max

j

z2j
σj

−β

j∈j+

zjn0
j (∞)γ 0

j (∞)ezjM̃/zN e−p(ξ(TM (ΨM )))
≤
using (123)

σ − β

j∈j−

zjn0
j (∞)γ 0

j (∞)e
LB max

j

z2j
σj

−β

j∈j+

zjn0
j (∞)γ 0

j (∞)
ξminezjM̃/zN e

−LB max
j

z2j
σj

g(TM(ΨM))ξc max
r
( σr
σc
)3
. (127)

Next, for small ξc (i.e. very negative values of ΨM ), the function
g(TM(ΨM)) is decreasing (and equivalent to n0

N(∞)e−zN TM (ΨM ) at
−∞)

g(TM(ΨM)) ≤ g(−M/zN).

Thus
j∈j+

zjn0
j (∞)γ 0

j (∞)
ezjM̃/zN

g(TM(ΨM))

≥
1

g(−M/zN)


j∈j+

zjn0
j (∞)γ 0

j (∞)ezjM̃/zN

≥ zN
ξc(1 + o(1))
qξc(1 + o(1))

=
zN
q
(1 + o(1)). (128)

We insert inequality (128) into the last term in (127) which yields

Q ≤ σ − β

j∈j−

zjn0
j (∞)γ 0

j (∞)e
LB max

j

z2j
σj

−β
zNξmin

qξc max
r
( σr
σc
)3

e
−LB max

j

z2j
σj (1 + o(1)). (129)

Then, recalling that ξmin and γ 0
j (∞) are O(1) for small ξc , it follows

that, for given q ≥ 1, there exists ξ cr < 1 such that, for any
0 < ξc ≤ ξ cr, the expression on the right hand side of (129) is
negative.

Nowwe conclude that ϕ = (ΨM −U + C)− = 0, which implies
ψM ≥ U − Umax −

1
zN

log 1
qξc

. Choosing q sufficiently large so that
1
zN

log q ≥ Umax −Umin, we deduce the lower boundψM ≥ −M/zN
in (125).

An analogous calculation gives the upper bound in (125) and
the proposition is proved. �

As a conclusion of our three steps of the proof, we can state the
final result which is Theorem 2, stated in the simplified notations
of this section.

Theorem 24. Let Σ∗
∈ L∞(∂Ωp). Under assumption (114) and

for small enough ξc ∈ (0, ξ cr), there exists a solution of the Pois-
son–Boltzmann problem (116),Ψ ∈ H1(Ωp)∩L∞(Ωp). In particular,
nj satisfies a uniform lower bound nj(x) ≥ C > 0 inΩp.

Proof. Proposition 23 implies that TM(ΨM) = ΨM , so Φ ′

M(ΨM) =

Φ ′(ΨM), which proves that ΨM solves the original Poisson–
Boltzmann problem (116). �

Remark 25. Note that the assumption (114) and ξc small enough
are completely independent of the scaling of the domain Ωp and
thus of ε. Therefore, Theorem 24 applies uniformly with respect to
ε in the porous mediumΩε , as stated in Theorem 2.

Remark 26. Of course, further regularity of Ψ can be obtained by
standard elliptic regularity in (116). For example, assuming Σ∗

∈

C∞(∂Ωp), the right hand side of Eq. (116) is bounded and using the
smoothness of the geometry, we conclude that Ψ ∈ W 2,q(Ωp) for
every q < +∞. By bootstrapping, we obtain that Ψ ∈ C∞(Ωp).
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7. Numerical results

We perform two-dimensional numerical computations with
the FreeFem++ package [50]. The goal of this section is
to compute the effective coefficients constituting the Onsager
homogenized tensor (101), to study their variations in terms of
some physical parameters (concentration, pore size and porosity)
and to make comparisons with the ideal case studied in [24]
in a realistic model of porous media. We use the same unit
cell geometries and complete the same test cases as in [24]. It
corresponds to a simplemodel of geologicalmontmorillonite clays.

The linearization of the electrokinetic equations (see Section 4)
allows us to decouple the computation of the electrostatic
potential from those of the cell problems.

In a first step, we compute the solution Ψ 0 of the nonlinear
Poisson–Boltzmann equation (73) with the associated hard sphere
term γ HS and MSA screening parameter Γ , from which we infer
the activity coefficients γ 0

j and the concentrations n0
j .

Second, knowing the n0
j ’s, and thus the MSA screening

parameterΓ , we compute the hydrodynamic interaction termsΩij
(15)–(16) and the electrostatic relaxation terms Rij (18). In turn it
yields the value of the tensor Kij given by (60). The concentrations
n0
j and the tensorKij play the role of coefficients in the cell problems

(85)–(88) and (90)–(92). Thus,we can now compute their solutions
which are used to evaluate the various entries of the effective
tensor (101) according to the formula from Proposition 15. In
all figures we plot the adimensionalized entries of the effective
tensors (101). However, when the concentrations are involved, we
plot them in their physical units, namely we use the dimensional
quantity

n∗

j (∞) = nc n0
j (∞). (130)

For large pores (compared to the Debye length) the electrostatic
potential is varying as a boundary layer close to the solid
boundaries. In such a case, the mesh is refined close to those
boundaries (see e.g. Fig. 1). The total number of degrees of freedom
is around 18000 (depending on the infinite dilution concentration
n∗

j (∞)).
The nonlinear Poisson–Boltzmann equation (73) is solved

with Lagrange P2 finite elements and a combination of a
Newton–Raphson algorithm and a double fixed point algorithm.
The Newton–Raphson algorithm is used to solve the Poisson–
Boltzmann equation at fixed values of theMSA coefficients γ HS and
Γ . The double fixed point algorithm is performed on these values
of γ HS and Γ . It starts with the initial values γ HS

= 1 and Γ = 0
which correspond to the ideal case.

Let n = 1, 2, . . . , nfinal be the iteration number of the first
level of the fixed point algorithm (the outer loop) which update
the electrokinetic potential from the previous value Ψ (n−1) to
the new value Ψ (n), keeping γ HS

(n−1) fixed. We first solve the
Poisson–Boltzmann equation with these initial values and a MSA
screening parameter initialized to Γ (n−1)

(0) . Let us note Γ (n−1)
(k−1) the

generic term at iteration k. Here, the iteration number k =

1, 2, . . . , kfinal refers to the second level (inner loop) of the double
fixed point algorithm. It yields the electrokinetic potential Ψ (n−1)

(k−1)

and, through (41), the new Γ (n−1)
(k) value which allows us to iterate

in k. The inner iterations are stopped when the wished accuracy is
reached at k = kfinal.

From this new electrokinetic potential Ψ (n−1)
(kfinal)

, we determine
the species concentrations and, through (13), the solute packing
fraction ξ (n−1). At this stage, a new hard sphere term γ HS

(n) is defined
and we start a new iteration of the outer loop. The outer loop is
broken when the wished accuracy is reached at n = nfinal.

All the following computations are ran for an aqueous solution
of NaCl at 298 K (Kelvin), where species j = 1 is the cation Na+
Fig. 1. Mesh for a periodicity cell with ellipsoidal inclusions (porosity is equal to
0.62).

(z1 = 1) with diffusivity D0
1 = 13.33e−10 m2/s and species

j = 2 the anion Cl− (z2 = −1) with D0
2 = 20.32e−10 m2/s

(note that this is the opposite convention of the previous sections
where z1 < 0 < z2). The hard sphere diameters of the two species
are considered equal to 3.3e−10 m. This model of NaCl electrolyte
solution is able to reproduce both the equilibrium (activity
coefficients, osmotic pressure) and the transport coefficients
(conductivity, Hittorf transference number [51], self and mutual
diffusion coefficient of the electrolyte) up to molar concentrations.
The infinite dilution concentrations of the species are considered
equal, n0

1(∞) = n0
2(∞), and the characteristic concentration is

nc = 0.1 mol/l.
The dynamic viscosity η is equal to 0.89e−3 kg/(ms). Instead

of using the formula of Table 1 for defining the Debye length, we
use the following definition (as in the introduction)

λD =

 EkBT

e2
N
j=1

njz2j

,

which differs by a factor of
√
2 in the present case of two

monovalent ions. Other physical values are to be found in Table 1.
Following [24] twomodel geometries are considered. The first one
features ellipsoid solid inclusions (see Fig. 1), forwhichwe perform
variations of concentrations from 10−3 to 1 mol/l and variations of
the pore size (3 ≤ ℓ ≤ 50 nm). The second one is a rectangular
model (see Fig. 2) which allows us to perform porosity variation.

7.1. Variation of the concentration

Here we consider the geometry with ellipsoidal inclusions
(Fig. 1). We vary the infinite dilution concentrations n0

j (∞) in
the range (10−2, 10) or, equivalently through (130), the dimen-
sional infinite dilution concentrations n∗

j (∞) vary from 10−3 to
1 mol/l. The pore size is ℓ = 50 nm. Varying proportionally all
values of n0

j (∞) is equivalent to varying the parameter β in the
Poisson–Boltzmann equation (73).

As can be checked in Fig. 3, except for very small concentrations,
the cell-average of the concentrations |YF |

−1

YF

nj(y) dy is almost
equal to the infinite dilution concentrations n0

j (∞). This is clear
in the ideal case, but in the MSA case the cell-average of
the concentrations is slightly smaller than the infinite dilution
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Fig. 2. Meshes for three different porosities (0.19, 0.51 and 0.75) of a periodic cell with rectangular inclusions.
Fig. 3. Averaged cell concentrations Nj_mean = |YF |
−1

YF

nj(y) dy (top) and
rescaled averaged cell anion concentrationN2_mean/n0

2(∞) (bottom) as a function
of the dimensional (mol/l) infinite dilution concentrations n∗

j (∞).

concentrations for large concentrations. It is a manifestation of
the packing effect which forbids the boundary layer to be too
thin in the MSA setting. The behavior of Fig. 3 (bottom) which
represents the Donnan effect was expected. For small dilutions
the MSA concentration is higher than the ideal one because the
electrolyte is in the attractive electrostatic regime so that there
is a tendency of incorporating anions. It is the opposite for large
dilutions: the electrolyte is in the repulsive hard sphere regime and
the excluded volumes expel the anions.

Since the permeability tensor K depends on the pore size ℓ,
we renormalize its entries by dividing them by the corresponding
ones for a pure filtration problem (computed through the usual
Stokes cell problems [42]). The resulting relative permeability
coefficients are plotted in Fig. 4: the smaller the infinite dilution
concentration, the smaller the permeability. We clearly see an
asymptotic limit of the relative permeability tensor not only
for high concentrations but also for low concentrations. In the
Fig. 4. Diagonal entries of the relative permeability tensor, K11 and K22 , as
functions of the dimensional (mol/l) infinite dilution concentrations n∗

j (∞).

Fig. 5. Entries of the electrodiffusion tensor D11 for the cation, as functions of the
dimensional (mol/l) infinite dilution concentrations n∗

j (∞).

latter regime, the hydrodynamic flux is reduced: the electrostatic
attraction of the counterions with respect to the surface slows
down the fluid motion. This effect is not negligible because the
Debye layer is important. The MSA model differs from the ideal
case. The curve is qualitatively the same but the electrostatic
reduction of the Darcy flow is more important. Non-ideality
diminishes the mobility of the counterions at the vicinity of the
surface so that the electrostatic interactions in the double layers
are more pronounced.

The entries of the electrodiffusion tensor D11 for the cation
are plotted in Fig. 5. A similar behavior is obtained for the other
tensor D22 for the anion. As expected the flux increases with the
infinite dilution concentration n∗

j (∞). It is not a linear law because
even at low concentration there are still counterions; they do not
appear to be very mobile, though. The cross-diffusion tensor D12
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Fig. 6. Diagonal entries of the cross-diffusion tensor D12 , as functions of the
dimensional (mol/l) infinite dilution concentrations n∗

j (∞).

Fig. 7. Diagonal entries of the electrodiffusion tensor D11 as functions of the
dimensional (mol/l) infinite dilution concentrations n∗

j (∞) (log–log plot).

is displayed in Fig. 6: for large concentrations it is of the same
order of magnitude than the species diffusion tensors D11 and
D22, because of the strong electrostatic interactions between the
ions. In all cases, the MSA model is close to the ideal one: it is
only for large concentrations that the values of the electrodiffusion
tensor are different, and smaller, for MSA compared to ideal.
There are probably compensating effects: same charge correlations
increase diffusion but this effect is somewhat counterbalanced by
opposite charge correlations that slow down the diffusion process.
Non-ideal effects could be more important in the case of further
quantities such as the electric conductivity for which cross effects
are additive.

The log–log plot of Fig. 7 (where the slope of the curve is
approximately 2) shows that the electrodiffusion tensors Dji be-
haves quadratically as a function of n∗

j (∞) when n∗

j (∞) becomes
large. This asymptotic analysis can be made rigorous in the ideal
case. At low salt concentration, correlation effects (i.e.non-ideality)
enhance slightly diffusion. In this regime, there are no counteri-
ons. So the relaxation effect is purely repulsive and diffusion is
enhanced [52]. At high concentration, the co-ion concentration
is not negligible and there is a classical electrostatic relaxation
friction.

The coupling tensors L1 and L2 are plotted in Fig. 8. The
coupling is, of course, maximal for large concentrations but the
coupling tensor L1 for the cation does not vanish for very small
infinite dilution concentrations since the cell-average of the cation
concentration has a non-zero limit (required to compensate the
negative surface charge) as can be checked in Fig. 3. The differences
between the ideal and MSA models are very limited in this
logarithmic plot.
Fig. 8. Diagonal entries of the coupling tensors L1 and L2 , as functions of the
dimensional (mol/l) infinite dilution concentrations n∗

j (∞) (log–log plot).

Fig. 9. Averaged cell concentration Nj_mean = |YF |
−1

YF

nj(y) dy versus pore size
ℓ (nm).

7.2. Variation of pore size

We keep the same geometry with ellipsoidal inclusions (Fig. 1)
but we now vary the pore size ℓ, which is equivalent to vary the
parameter β , defined by (21), in the Poisson–Boltzmann equation
(73). It thus changes the values of the concentrations n0

j (y) which
play the role of coefficients in the cell problems (85)–(88) and
(89)–(92). This is the only modification which is brought into
the cell problems. We emphasize that varying the pore size does
not change the geometry of the unit cell, but simply changes the
coefficients of the cell problems.

The dimensional infinite dilution concentration n∗

1(∞) =

n∗

2(∞) is 10−1 mol/l which yields a value 0.7678 for the infinite
dilute activity coefficients γ 1

0 (∞) = γ 2
0 (∞).

In Fig. 9 we plot the cell-average of the concentrations
|YF |

−1

YF

nj(y) dy as functions of the pore size ℓ. Qualitatively,
there is a close agreement between the ideal and MSA cases, as
can be checked on this logarithmic plot. Yet, the departure from
ideality is not negligible. For small pore size the Donnan effect,
which corresponds to the anion concentration, is typically 40%
higher than its value in the ideal case. When the pore size goes
to infinity the averaged concentrations should converge to the
infinite dilution concentrations.

In Fig. 10 we plot the relative permeability coefficients with re-
spect to the ones of the Stokes problem. As was already observed
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Fig. 10. Relative permeability coefficients K11 and K22 versus pore size ℓ (nm).

in [24], the variation is not monotone and there is a minimum for
a pore size of roughly 20 nm. This effect is less pronounced for the
MSA model but the location of the ℓ value where the minimum is
attained is not affected. This is the signature of a transition from a
bulk diffusion regime for small pores to a surface diffusion regime
(caused by large boundaries) at large pores. Globally, the counteri-
ons reduce the hydrodynamic flow because of the attraction with
the surface, but this relaxation effect is less important at very large
or very small pore size ℓ. More precisely, if the pore size becomes
very large, the electrostatic screening is important, as alreadymen-
tioned. Thus the domain of attraction becomes very small and the
lowering of the hydrodynamic flow is reduced: the permeability
is increased. On the other hand, for very small pores, the counte-
rion profile becomes more andmore uniform. Consequently, there
is no screening, but the hydrodynamic flow does not modify a lot
the counterion distribution, since it is globally uniform and the re-
sulting electrostatic slowdownbecomes less important. The depar-
tures from ideality modeled by the MSA globally reduce the total
variation of the permeability tensor because the mobility of the
ions in the Debye layer is weaker and their dynamics influence less
the Darcy flow.

7.3. Variation of the porosity

Eventually we investigate the influence of the porosity on the
effective tensors. To this end we rely on the rectangular geometry
wherewe vary the size of the inclusions (see Fig. 2). The infinite di-
lution concentration is fixed at n0

j (∞) = 1, or n∗

j (∞) = 0.1mol/l.
The porosity is defined as |YF |/|Y | and takes the successive values
of 0.19, 0.36, 0.51, 0.64, 0.75 in our computations. Note that the
porosity is independent of the pore size ℓ which is defined as the
characteristic size of the entire periodicity cell, i.e., the union of
its fluid and solid parts. In Fig. 11 we plot the cell-average of the
concentrations |YF |

−1

YF

nj(y) dy as functions of the porosity. They
are almost identical between the ideal and MSA cases. When the
porosity goes to 1, meaning that there are no more solid charged
walls, the averaged concentrations should become equal, respect-
ing the global electroneutrality. In Fig. 12 we check that the per-
meability tensor is increasingwith porosity, as expected. The same
happens for the electrodiffusion tensor D22 for the anion in Fig. 14.
More surprising is the behavior of the electrodiffusion tensor D11
for the cation in Fig. 13: again there is a minimum value attained
for a 0.35 value of the porosity. This may be explained again by a
transition from a bulk diffusion regime for large porosities to a sur-
face diffusion regime (caused by the charged boundaries) for small
porosities.

The departures from ideality are found to be very important.
They multiply the magnitude of diffusion by a factor of two,
especially at low porosities for which the amount of anions is low.
Fig. 11. Averaged cell concentrationNj_mean = |YF |
−1

YF

nj(y) dy versus porosity
(n∗

j (∞) = 0.1 mol/l).

Fig. 12. Permeability tensor K versus porosity (n∗

j (∞) = 0.1 mol/l).

Fig. 13. Electrodiffusion tensor D11 for the cation versus porosity (n∗

j (∞) =

0.1 mol/l).

Fig. 14. Electrodiffusion tensor D22 for the anion versus porosity (n∗

j (∞) =

0.1 mol/l).
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It corresponds to the case for which the relaxation effect is purely
repulsive. A similar trend is obtained for the anion but the diffusion
coefficient is much lower at low porosities: anions are expelled
from the surface and they cannot have surface diffusion so that
their transport properties are globally reduced.

8. Conclusion

We presented the homogenization (or upscaling) of the
transport properties for a N-component electrolyte solution
confined in a charged rigid porous medium. Contrary to what is
commonly supposed in this domain the departures from ideality
are properly taken into account thanks to a MSA-transport model,
both for the equilibrium properties (activity coefficients γj) and for
the transport quantities (Onsager coefficients Lij). These non-ideal
effects are expected to be significant in most of the applications
for which the electrolyte concentrations are typically molar. In
the case of the equilibrium solution (in absence of external forces,
apart from the surface charges on the solid wall), we prove
the existence of (at least) one solution for small solute packing
fractions (which corresponds to the validity of the MSA approach).

When a (small) external electric field is applied or when a
(small) hydrodynamic or chemical potential gradient occurs, a
rigorous homogenization procedure yields (at the linear response
regime) the homogenizedmacroscopic laws. The effective Onsager
tensor takes into account the departure from ideality, but it is
still symmetric and positive definite. The significance of non-
ideality has been studied by applying the results to a model of
porous media (typically geological clays) for simple dissociated
1–1 electrolytes inwater. It is shown that non-ideality only slightly
modifies the qualitative aspects, but it can strongly modify the
quantitative values, depending on the homogenized quantities.

For the equilibrium properties, it enhances the ion concentra-
tions at low external concentration (because electrostatic attrac-
tion is predominant) and it reduces them at the opposite limit. The
relative permeability tensor is increased but, in any case, it is close
to the reference value calculated with a neutral solution. The dif-
ferences for the coupled diffusions and ion electrodiffusions de-
pend on the concentrations and on the species. Similarly to bulk
diffusion, the non-ideality can have an impact of the order of 50%
for molar concentrations. Nevertheless, for some cases, there are
compensating effects. It should be noted that for themodelwe con-
sidered the charges (ions, solid phase) were relatively low so that
the differences should bemagnified for highly chargedmedia with
higher valency electrolytes and higher concentrations. In that case,
the result could be completely different because of the possibility
of ion pairing that can change the sign of the ion charge. Neverthe-
less, the (relatively) simple MSA-transport theory we presented is
not valid anymore in that case so that a realistic quantitative de-
scription of such complex media would require further develop-
ments.

To conclude, we showed that non-ideality can actually be
important for the description of porous media. Since most of
the existing effective theories for concentrated systems are based
on ideal models which neglect the departure from ideality, the
parameters that can be measured thanks to these approaches may
be wrongly estimated. In that case, they cannot be considered
as robust structural quantities of the system: they are effective
parameters that depend on the experimental conditions.
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