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ON THE ASYMPTOTIC BEHAVIOR OF EIGENVALUES AND EIGENFUNCTIONS
OF NON-SELF-ADJOINT ELLIPTIC OPERATORS

A. L. Pyatnitskii and A. S. Shamaev UDC 517.9

The article concerns the study of conditions on the non-self-adjoint elliptic operator defined in the
whole space R

n, ensuring the existence and uniqueness of a constant-sign eigenfunction tending to
zero at infinity. We also study the asymptotics of the corresponding eigenvalue as the coefficient in
the highest-order derivative of the operator tends to zero. The result is formulated in terms connected
with the variational problem for the Lagrangian on one-dimensional trajectories in the space R

n. The
explicit form of this Lagrangian is given in terms of the coefficients of the original operator.

1 INTRODUCTION

Problems pertaining to the asymptotic behavior of spectral characteristics of non-self-adjoint operators in
unbounded domains arise in connection with various topics in mathematical physics, the theory of control of
stochastic dynamical systems, and problems of financial mathematics. This paper is aimed at studying conditions
ensuring that a non-self-adjoint elliptic operator in the entire space R

n admits a unique eigenfunction which is of
fixed sign and tends to zero at infinity (the so-called ground state; see Conditions A and B below). We also examine
asymptotics of the corresponding eigenvalue as a small parameter by the highest-order derivatives of the operator
tends to zero. The result is formulated in terms of a variational problem for the Lagrangian (functional of action)
on one-dimensional trajectories in R

n. The Lagrangian is explicitly expressed through the coefficients of the given
operator.

Let

L ≡ aij
∂2

∂xi∂xj
+ bi(x)

∂

∂xi
+ C(x)

be an elliptic differential operator, aijξiξj � α|ξ|2. Here and in what follows, summation is assumed over repeated
indices.

Definition 1. Condition A holds for the operator L if its coefficients satisfy the following conditions:

• |b(x)| < C|x| + C1 for all x ∈ R
n, where C and C1 are constants;

• C(x)→ −∞ as |x| → ∞.
Definition 2. Condition B holds for the operator L if

• (x, b(x)) > α|x|2 for all x such that |x| � c1, where α > 0 and c1 > 0 are constants;

• C(x) < r(|x|)|x|2 for some function r(s) which tends to zero as s→ ∞;
• |b(x)| < C|x| + C1 for all x ∈ R

n, where C and C1 are constants.

Definition 3. A function u(x) belongs to the class Ξ if u(x) > 0 and u(x)→ 0 as |x| → ∞.
Definition 4. A function u(x) belongs to the class Υ if u(x) > 0 and u(x) exp(γ|x|2) → 0 as |x| → ∞ for

some γ > 0.
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For our next definition, we introduce an increasing sequence of domains QM , QM ⊂ QM+1,
∞⋃

M=1

QM = R
n,

and in each of these consider the spectral Dirichlet problem

LuM + λMuM = 0 in QM , uM

∣∣
∂QM

= 0. (1)

According to [2], for each QM , there is a unique eigenvalue λM for which this problem admits a real-valued solution
of constant sign.

Definition 5. We say that a function u(x) of class Ξ is a ground state which can be realized by a sequence
of solutions in finite domains if there is a sequence of domains QM with the above properties and lim

M→∞
λM = λ,

lim
M→∞

uM (x) = u(x) uniformly on each compact set.

With the help of standard estimates of solutions of elliptic equations, it is easy to show that the function
u(x) introduced in Definition 5 is a solution of the equation Lu+ λu = 0 in R

n.

Theorem 1. Suppose that Condition A holds. Then there is a unique real λ for which the equation
Lu + λu = 0 admits a solution in the class Ξ. Moreover, this solution is unique (to within an arbitrary constant
coefficient) both in the class Ξ and in the class of functions which decay as |x| → ∞ (no condition of fixed sign is
needed). Moreover, λ satisfies the inequality

−C(x∗) < λ < − lnα(t0)
t0

− C(x∗), (2)

where x∗ is a point of minimum of the function C(x) on the ball Q2; x
∗ is a point of maximum of the function C(x)

in R
n, QR = {|x| < R},

αx0(t0) ≡ P{ξx0
t0 ∈ Q1, ξ

x0
s ∈ Q2 ∀s ∈ [0, t0]},

where x0 ∈ Q1, α(t0) ≡ inf
x0∈Q1

αx0(t0), and ξx0
s is a diffusion process with the generator

L ≡ aij
∂2

∂xi∂xj
+ bi(x)

∂

∂xi

issuing from the point x0; t0 is an arbitrary positive number. The function u(x) satisfies the inequality |u(x)| <
CN (|x| + 1)−N with an arbitrary N > 0, where CN > 0 are constants. The ground state u(x) can be realized by
a sequence of solutions in finite domains.

If Condition B holds, then there is a unique λ for which the equation Lu+ λu = 0 admits a solution in the
class Υ, and this solution is unique to within a constant coefficient. Moreover, for this λ, the solution is unique in
a wider class, namely, the class of functions u(x) such that |u(x)| ∈ Υ, with no condition of positivity. This solution
is a ground state which can be realized by a sequence of solutions in finite domains.

Theorem 2. Let

Lµ ≡ µ2aij
∂2

∂xi∂xj
+ µbi(x)

∂

∂xi
+ C(x)

and suppose that either Condition A or Condition B holds for the operator L1. Let

S(x0, T ) = inf
x(·)
(T )−1

T∫
0

(aij(ẋi − bi(x))(ẋj − bj(x))− C(x)) dt,

where the infimum is taken over all absolutely continuous curves x(t) such that x(0) = x(T ) = x0; a
ij are the

elements of the matrix inverse to the matrix of coefficients aij . Let the function uµ(x) and the real number λµ

be such that Lµuµ + λµuµ = 0 and uµ(x) is either of class Ξ or class Υ, depending on whether Condition A or
Condition B is satisfied (these quantities are defined uniquely in view of Theorem 1). Then there exist the limits

lim
T→∞

S(x0, T ), lim
µ→0

λµ,

the first limit being independent of x0 ∈ R
n. Moreover,

lim
T→∞

S(x0, T ) = lim
µ→0

λµ.
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Remark. Direct calculations show that the differential equation

Lu ≡ u′′(x) + xu′(x) +
[

x2

√
1 + x2

+
1

(1 + x2)
3
2
− x2

1 + x2

]
u = 0

admits the solution u(x) = exp(−√
1 + x2). Obviously, Condition B holds for the operator L. However, the solution

u(x) does not belong to the class Υ but belongs to the wider class Ξ. By Theorem 1, for some λ there is another
solution ũ(x) of the equation Lu+ λu = 0 in the class Υ. Thus, in the case of Condition B, there is no uniqueness
of the ground state in the class Ξ. Moreover, it can be shown that the solution u(x) is not a ground state that can
be realized by solutions in finite domains.

Theorem 1 will be proved in several steps.
Step 1. Suppose that Condition A holds. Let us establish the existence of a real λ for which the equation

Lu + λu = 0 admits a solution of class Ξ. Consider a sequence of balls {QM} of radii M = 1, 2, . . . with center at
the origin and the corresponding sequence of boundary-value problems

(L+ λM )uM (x) = 0 in QM , uM (x) = 0 on ∂QM . (3)

According to the Krein–Rutman theorem on positive operators (see [2]), for each M , there is a unique real λM for
which problem (3) has a positive solution. Let us normalize this solution so that uM (0) = 1. Our aim is to show
that the sequence {uM} contains a subsequence {uM ′} uniformly convergent on each compact set K ⊂ R

n, and
also that the sequence {λM ′} is convergent, i.e., lim

M ′→∞
λM ′ = λ.

First, let us show that the sequence {λM} is bounded, more precisely, that the estimate (2) from Theorem 1
holds with λ replaced by λM . For this purpose, in (0,∞)×QM we consider a parabolic equation with the elliptic
part (L+λM ) and the initial value uM (x) coinciding with the solution of problem (3). Then, uM (x) is a stationary
solution of the parabolic equation. Let us utilize its probability representation. For each positive t, we have

uM (x) = E
{
uM (ξx

t∧τM
) exp

( t∧τM∫
0

(C(ξx
s ) + λM ) ds

)}
, (4)

where a ∧ b ≡ min(a, b), τM is the Markovian time at which the trajectory of the process ξx
s reaches the boundary

of the ball QM , and the symbol E denotes the mathematical expectation. Now, let x0 be a point of minimum of
the function uM (x) on Q1. By Ω1 we denote the following event:

Ω1 ≡ {ξx0
t0 ∈ Q1, ξ

x0
t ∈ Q2 ∀t ∈ [0, t0]}.

Since the function uM (x) is positive, the probability representation of uM (x) yields

uM (x) � E
{
χΩ1uM (ξx0

t0 ) exp
( t0∫

0

(C(ξx0
s ) + λM ) ds

)}

� uM (x0)E
{
χΩ1 exp

( t0∫
0

(C(ξx0
s ) + λ

M ) ds
)}

� uM (x0) exp(t0C(x∗) + λM t0)αx0(t0).

Therefore, 1 � exp(t0C(x∗) + λM t0)αx0(t0). Taking the logarithm of both sides of this inequality, we find that
−t0λM � t0C(x∗) + lnαx0(t0). Hence, we obtain the upper bound in (2).

In order to establish the lower bound, assume the contrary: −C(x∗) > λM . Then, using the probability
representation (4), we obtain uM (x0) � K exp(βt0), where β = C(x∗) + λM < 0, |uM | < K, and K > 0 does not
depend on t0. But then the inequality uM (x0) � K exp(βt0) cannot be valid for all t0 > 0, and this is a contradiction.
Using the Harnack inequality, combined with interior estimates of derivatives of solutions of elliptic equations, and
taking into account that the sequence {λM} is bounded, we can find a subsequence {M ′} such that for each
compact set K in Rn, the sequence {uM ′} is uniformly convergent on K to a function u(x) defined for all x ∈ R

n

and satisfying the equation Lu+ λu = 0 in R
n, where λ = lim

M ′→∞
λM ′ .
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Let us show that u(x)→ 0 as |x| → ∞ and for u(x) the following estimate holds:

|u(x)| � CN (1 + |x|)−N ∀N > 0.

Let R0 be so large that for |x| > R0 the function C(x) + λM is negative for all M . We choose the constant CN so
large that CN |x|−N � |uM ′ | for |x| = R0 (this choice is possible, since the sequence of functions uM ′ is uniformly
bounded on each compact set K ⊂ R

n in view of the Harnack inequality). Since uM ′(x) = 0 for |x| = M ′,
we have CN |x|−N − uM ′ � 0 for |x| = R0 and |x| = M ′. Let us apply the operator L + λM ′ to the difference
wN,M ′(x) ≡ CN |x|−N − uM ′(x) and examine the sign of the function (L + λM ′ )wN,M ′ in the spherical layer
{R0 < |x| < M ′}. Simple calculations show that (L+ λM ′ )wN,M ′ � 0 for large enough R0 > 0, and the magnitude
of R0 depends only on N > 0 and the coefficients aij , bi, and C of the operator L, but it does not depend on M ′.
Here, the condition |bi(x)| � C1|x| + C2 should be used. We assume that initially R0 has been chosen such that
(L + λM ′)wN,M ′ � 0 for |x| � R0, and wN,M ′ � 0 for |x| = R0. Using the inequality wN,M ′ � 0 for |x| = M ′

and the maximum principle, we conclude that wN,M ′ � 0 for R0 � |x| � M ′, i.e., CN |x|−N � uM ′(x) � 0 for
R0 � |x| � M ′. Let us pass to the limit in the last inequality as M ′ → ∞. Taking into account that R0 > 0 and
CN > 0 is independent of M ′ and using the uniform convergence of {uM ′} on an arbitrary compact set K ⊂ R

n, we
find that CN |x|−N � u(x) � 0 for |x| � R0. Increasing (if necessary) the constant CN > 0, we obtain the estimate
CN (|x|+ 1)−N � u(x) � 0 for x ∈ R

n.
Step 2. Let us show that every other solution ū of the equation Lū + λū = 0 that decays as |x| → ∞ and

is not necessarily of fixed sign is proportional to the function u(x) constructed above, i.e., ū = γu(x), where γ �= 0
is a constant. First, we note that if v(x) is a positive solution of the equation Lv + λv = 0 decaying as |x| → ∞,
then any solution ū which also decays as |x| → ∞ satisfies the inequality |ū(x)| � Kv(x), K = const > 0. Indeed,
consider a ball Qρ of a sufficiently large radius ρ > 0 such that C(x) + λ < 0 for all x outside Qρ, and choose
a constant K > 0 such that Kv(x) � ū(x) for |x| = ρ. For |x| > ρ, the maximum principle can be applied, since
C(x) + λ is of a suitable sign. Therefore, Kv(x) � ū(x) for |x| > ρ, but since ū(x) is bounded in the ball Qρ, the
inequality Kv(x) � ū(x) holds for x ∈ R

n with a constant K ′ > 0. The inverse inequality Kv(x) � −ū(x) is proved
in a similar way. We finally have Kv(x) � |ū(x)|.

Now let u(x) be the positive solution constructed above and let u1(x) be a solution that decays at infinity
(it does not have to be of fixed sign). Then the function w(x) = u1(x) × (u(x))−1 is defined for all x ∈ R

n and is
bounded in R

n in view of the above estimate, and it is easy to check that it satisfies the equation L′w(x) = 0, where
L′ is a second-order elliptic operator without a potential. It would be easy to obtain an explicit expression for L′,
but this formula will not be used here and is, therefore, omitted. Let γ = inf

x∈Rn
w(x). Here the infimum exists, since

the function w(x) is bounded. Then L′(w(x)− γ) = 0 and inf
x∈Rn

(w(x)− γ) = 0. Consider a sequence of points {xn}
such that lim

n→∞(w(xn)− γ) = 0. Let x∗ ∈ R
n be a limit point of this sequence. Since w(x∗)− γ = 0, the maximum

principle implies that w(x) = const and u1(x) = constu(x), i.e., the desired statement is proved. If lim inf
n→∞ |xn| =∞,

then u1(x)(u(x))−1 − γ = h(x), where h(xn) → 0 as n → ∞. Consequently, u1(x) − γu(x) = h(x)u(x). Let
u1(x) − γu(x) = u2(x). We obviously have u2(x) � 0 and u2(x) → 0 as |x| → ∞. According to what has been
proved above, |u(x)| � Ku2(x) = Kh(x)u(x), and, therefore, 1 � K|h(x)|, which is a contradiction with the fact
that h(xn)→ 0 as n→ ∞. This contradiction completes the proof of the linear dependence of the functions u1(x)
and u(x).

Let us show that for no other constant λ′ does the equation Lu′ + λ′u′ = 0 admit a solution in the class Ξ.
Suppose the contrary. Then there exists λ′ �= λ such that Lu′ = −λ′u′, u′ belonging to the class Ξ. Adding (if
necessary) a constant to C(x), we may assume without loss of generality that both −λ and −λ′ are strictly positive.
Consider the operator L∗ formally conjugate to L and let q(x) > 0 be a solution of the equation L∗q = −λq. The
existence of such a solution is established by arguments similar to those used in the first step of the proof. These
arguments show that the function q(x) can be obtained as the limit (with respect to uniform convergence of each
compact set K) of a sequence of solutions of the following problems: L∗qM = −λMqM in QM , qM = 0 on the
boundary of QM , qM > 0 in QM , qM (0) = 1. However, we still do not have estimates characterizing the behavior
of q(x) at infinity. Let us obtain some integral estimates for qM (x) uniform in M (thereby, we obtain estimates for
q(x) for large |x|).

Let QR0 be a sufficiently large ball, so that C(x) < 0 outside QR0 , and let M > R0. We have

(−λM )−1

∫
QM\QR0

L∗qMϕdx =
∫

QM\QR0

qMϕdx (5)
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for any test function ϕ. We take as ϕ the solution of the Dirichlet problem

Lϕ = f̄ , x ∈ QM \QR0 ,

ϕ = 1, x ∈ ∂QR0 , ϕ = 0, x ∈ ∂QM ,

where f̄ = min{0, Lψ} in QM \ QR0 , and ψ ≡ |x|−s−M−s

R0
−s−M−s for some s > 0. Then, by the maximum principle, the

following estimate holds: ϕ � ψ in QM \QR0 , since the functions ϕ and ψ coincide on the border of the spherical
layer QM \QR0 , and L(ϕ−ψ) = min{0, Lψ}−Lψ � 0. Integrating by parts and taking into account the boundary
conditions for the functions ϕ and qM , we obtain

(−λM )−1

∫
QM\QR0

L∗qMϕdx = (−λM )−1

∫
∂QR0

(
∂qM
∂ν

ϕ− ∂ϕ

∂ν
qM + (b, n)ϕqM

)
dσ + (−λM )−1

∫
QM\QR0

qM f̄ dx, (6)

where ∂
∂ν is the conormal derivative. The left-hand side of the last relation is positive in view of (5) and the positive

sign of the functions qM and ϕ. It remains bounded as M → ∞, since the first term on the right-hand side of (6)
is bounded uniformly in M and the second term is always negative. Thus, we have∫

QM\QR0

qMψ dx �
∫

QM\QR0

qMϕdx � (−λM )−1

∫
QM\QR0

L∗qMϕdx � C,

where C is independent of M > 0, and s > 0 is an arbitrary constant. Hence, using the Fatou theorem, we obtain
the existence of the integrals

∫
Rn

q(x)(|x| + 1)−s dx. We obviously have

∫
Rn

u′q dx = (−λ′)−1

∫
Rn

Lu′q dx = (−λ′)−1

∫
Rn

u′L∗q dx = λ(λ′)−1

∫
Rn

u′q dx.

Since the integrals in these relations are positive, we must have λ = λ′, which is in contradiction with our initial
assumption.

Step 3. Consider the case where Condition B holds for the operator L. First, let us make the following
observation. Suppose that a twice-differentiable function u(x) is a solution of the differential equation

aij
∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ C(x)u = 0.

Then the function
v(x) ≡ u(x) exp(−γ|x|2), (7)

with a real constant γ, satisfies the differential equation

aij
∂2v

∂xi∂xj
+ b′i(x)

∂v

∂xi
+ C′(x)v = 0,

with
b′i(x) = bi(x) + 4γaijxj , C′(x) = C(x) + γxibi(x) + 2γaii + 4γ2aijxixj .

The above formulas can be verified by direct calculations.
Now suppose that Condition B holds for the operator L. Let us choose the constant γ < 0 such that

γxibi(x) + 4γ2aijxixj < −γ0|x|2

for some constant γ0 > 0. This can be done, since Condition B ensures that

xibi(x) > α|x|2.
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It follows that Condition A holds for the operator L′ with the coefficients aij , b′i, and C
′, provided that the constant

γ < 0 has been chosen in a suitable manner. Let us construct a solution of the corresponding equation L′v+λv = 0
and pass to the function u(x) = v(x) exp(γ|x|2) (see (7)). We obtain a solution of the original problem in the class Υ.
This solution is unique in the class Υ, since otherwise we would have a nonunique solution of the corresponding
problem for the operator L′ in the class Ξ.

The solutions obtained in both cases considered above are ground states which can be realized by sequences
of solutions in finite domains. Indeed, for the operators subject to Condition A this is clear from the construction of
the solution, and in the case of Condition B, the realizability by solutions in finite domains can be easily established
with the help of the transformation (7). The proof of Theorem 1 is complete.

Let us prove Theorem 2. For this purpose we will need some auxiliary statements.

Proposition 1. Suppose that Condition A holds. Then for all T > 0 there exist curves {xT (t)}, t ∈ [0, T ],
realizing the minimum in the variational problem

(T )−1I(x(·), T ) ≡ (T )−1

T∫
0

(aij(ẋi − bi(x))(ẋj − bj(x))− C(x)) dt → inf, (8)

where the infimum is taken over all absolutely continuous curves {x(·)} with arbitrary values at the end-points of
the interval [0, T ]. Moreover, there is a ball QR of sufficiently large radius R such that the extremal curves {xT (t)},
t ∈ [0, T ], belong to QR for any T .

Proof. Suppose the contrary. Then there exists a sequence of time instants {Tn}, Tn → ∞, and a sequence of
points {Yn} on the curves {xTn(t)} such that |Yn| → ∞ as n→ ∞. We further note that there exists a ballQρ having
a nonempty intersection with each curve {xTn}. Otherwise, there would be a sequence of balls Qρn′ , ρn′ → ∞, such
that the curves {xTn′ } lie completely outside the balls Qρn′ , but this is in contradiction with the fact that {xTn′} are
extremal curves of the original variational problem. Indeed, we have min

x∈Rn\Qρ
n′
(−C(x)) → ∞ as n′ → ∞ and the

stationary curve x(t) ≡ 0 being substituted into the functional yields the value I0 = aijbi(0)bj(0)−C(0). Therefore,
for large enough n the curve {xTn}, which belongs to the exterior of the ball Qρn , cannot be an extremal curve of
the original functional. Thus, there exists a ball Qρ0 having common points with any extremal curve {xTn}.

Further, let us take ρ0 sufficiently large, so that

min
x∈Rn\Qρ

n′
(−C(x)) � 2I0,

and denote by [t0n, t1n] the time intervals on which the trajectory {xTn} is outside the ball Qρ0 . Let us show that
the sequence t1n − t0n cannot grow to infinity as n → ∞. Consider two cases. If t1n �= Tn and t0n �= 0, then
|xTn(t0n)| = |xTn(t1n)| = ρ0 and the piece of the trajectory {xTn} on the interval [t0n, t1n] for large n may be replaced
by a curve which, moving with the unit velocity along the radius-vector, during the time ρ0 comes from the point
{xTn(t0n)} to the origin, stays at the origin for the time t1n − t0n − 2ρ0, and then the rest of the time, ρ0 moves to
the point xTn(t1n) along the radius-vector. For instance, if t1n = Tn, then the piece of the trajectory {xTn} on the
interval [t0n, Tn] can be replaced by the trajectory which moves with the unit velocity from the point {xTn(t1n)} to
the origin, and then the rest of the time up to the instant Tn stays at the origin. In a similar way, we consider
the case t0n = 0. In all cases considered above, simple calculations show that if the length of the interval [t0n, t1n] is
sufficiently large, then the replacement of the piece of the trajectory leads to a smaller value of the functional on
the modified trajectory, and, therefore, {xTn} cannot be an extremal trajectory of this functional. It follows that
the quantities t1n − t0n are bounded uniformly in n.

Let ẋTn − b(xTn) ≡ fn(t). The quantities
{ t1n∫

t0n

(fn(t))2 dt
}
have to be uniformly bounded. Otherwise, one

could replace the said piece of the trajectory by a more economical one (from the standpoint of the functional of the
original variational problem), namely, by a uniform rectilinear motion from the point xTn(t0n) to the point x

Tn(t1n).
On the other hand, in view of Condition A and the known estimates for solutions of differential equations

(estimates of the Gronwall–Bellmann type), we have

|xTn(t2n)| � C exp[k(t1n − t0n)]
( t1n∫

t0n

(fn(t))2 dt+ |xTn(t0n)|
)
, (9)
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where t2n is the time instant when the quantity |xTn(t)| attains its maximal value on the interval [t0n, t1n], and C and k
are positive constants independent of n. If |xTn(t0n)| = ρ0, then, according to our assumption, the left-hand side
of the last inequality goes to infinity as n → ∞, while all terms on the right-hand side remain bounded. This
contradiction proves the statement of the lemma. If |xTn(t0n)| �= ρ0, then |xTn(t1n)| = ρ0. The inequality (9) remains
valid if the last term on its right-hand side is replaced by |xTn(t1n)|, which also leads to a contradiction.

Proposition 2. Suppose that Condition A holds and let {xT (t)}, t ∈ [0, T ], be extremal curves of the
variational problem (8) in which the infimum is taken over all absolutely continuous curves {x(·)} such that x(0) = x0

and x(T ) = y0, where x0 and y0 are arbitrary points. Then there exist compact sets K and K1 in R
n such that

for arbitrarily chosen x0, y0 ∈ K and T > 0, the corresponding curves {xT (t)}, t ∈ [0, T ], always remain within the
compact set K1.

The proof of Proposition 2 is based on the following four lemmas.

Lemma 1. Let (∆t)1 be the time during which the trajectory xT (t) remains within the spherical layer
KR−1,R = {R− 1 < |x| < R} after crossing the sphere {|x| = R− 1} at the instant t0. Then

t0+(∆t)1∫
t0

|ẋ− b(x)|2 dt � max{C(∆t)1R2 − C′R, 0},

where C and C′ are positive constants independent of R and (∆t)1.

Proof. Denote by br(x) and ẋr the projections of the corresponding vectors on the radius-vector. In view of
the conditions on the vector field b, we have

t0+(∆t)1∫
t0

br(x) dt � α(∆t)1(R − 1).

Let us subtract from this inequality the following obvious identity:

t0+(∆t)1∫
t0

ẋr dt = 1.

We get
t0+(∆t)1∫

t0

(−ẋr + br(x)) dt � α(∆t)1(R − 1)− 1.

Using the Cauchy inequality, we find that

(∆t)1

t0+(∆t)1∫
t0

| − ẋ+ b(x)|2 dt �
( t0+(∆t)1∫

t0

(−ẋr + br(x))dt
)2

� (α(∆t)1(R− 1)− 1)2.

Hence we obtain the statement of the lemma.

Lemma 2. Let (∆t)2 be the time during which the trajectory xT (t) remains in the spherical layer KR−1,R =
{R− 1 < |x| < R} after crossing the sphere {|x| = R} at the instant t0. Then

t0+(∆t)2∫
t0

|ẋ− b(x)|2 dt � C((∆t)2R2 + ((∆t)2)−1),

where C > 0 is a constant independent of R and (∆t)2.
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Proof. In view of the restrictions on the vector field b (see Condition B), the following estimate holds:
t0+(∆t)2∫

t0

br(x) dt � α(R − 1)(∆t)2.

Moreover, it is obvious that
t0+(∆t)2∫

t0

ẋr dt = −1.

Taking the difference of the last two relations, we get
t0+(∆t)2∫

t0

(br(x)− ẋr) dt � α(R − 1)(∆t)2 + 1.

From the last inequality, using the Cauchy inequality, we obtain

(∆t)2

t0+(∆t)2∫
t0

|b(x)− ẋ|2 dt �
( t0+(∆t)2∫

t0

(br(x)− ẋr) dt
)2

� (α(R − 1)(∆t)2 + 1)2.

The last inequality for large R yields the statement of the lemma.

Lemma 3. Let (∆t) be the time during which the extremal curve xT (t) stays outside the ball QR, and let
Rmax be the maximal value of |xT (t)| during this stay. Then the infinite growth of Rmax as T → ∞ implies the
infinite growth of (∆t).

Proof. Assume the contrary, namely, that (∆t) remains bounded as Rmax goes to infinity. We have

−
t0+(∆t)∫

t0

ẋr dt = Rmax −R,

where t0 is the instant at which the trajectory attains the level Rmax, Rmax = |xT (t0)|, and (∆t) is the time of
descent to the lower level R. Moreover, according to Condition B, we have

t0+(∆t)∫
t0

br(x) dt > 0.

Therefore,
t0+(∆t)∫

t0

(br(x)− ẋr) dt > Rmax −R.

By the Cauchy inequality, we obtain

(∆t)

t0+(∆t)∫
t0

|b(x)− ẋ|2 dt �
( t0+(∆t)∫

t0

(b(x)− ẋ) dt
)2

� (Rmax −R)2.

Hence, in view of Condition B, for large Rmax we have
t0+(∆t)∫

t0

(|b(x)− ẋ|2 − C(x)) dt � (Rmax −R)2(∆t)−1 − o(1)R2
max(∆t).

If (∆t) were to remain bounded, we could have replaced (for large Rmax) the curve xT (t) by the curve yT (t)
representing uniform motion from the point at which the curve xT (t) enters the ball QR to the point at which this
curve abandons the ball QR, so that the value of the functional on yT (t) would be smaller than on xT (t). This
contradiction completes the proof of the lemma.
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Lemma 4. Let (∆t) = (∆t)1 + (∆t)2 be the total time during which the trajectory xT (t) stays in the
spherical layer KR−1,R. Then the value of the original functional (8) on the intersection of the curve xT (t) with
the layer KR−1,R is estimated from below by k0R

2(∆t), where the constant k0 is independent of R and (∆t).

Proof. On the basis of the previous two lemmas, we have∫
Γ

|ẋ− b(x)|2 dt � c0R
2((∆t)− c1R−1), (10)

where Γ is the intersection of the curve with the spherical layer mentioned in the statement of the lemma. Let us
choose a constant A > 0 such that 2c1 < A, where c1 is the constant from the preceding inequality. If (∆t) < AR−1,
then by Lemma 2 we have∫

Γ

|ẋ− b(x)|2 dt � C(∆t)−1
2 � C(∆t)−1 � CA−1R � CA−1R(R(∆t)A−1) � C′R2(∆t),

and the desired inequality is proved.
Now let (∆t) � AR−1. Due to our choice of the constant A > 0, we have c1R−1 < 0.5AR−1 < 0.5(∆t), and,

therefore, with the help of the inequality (10), we obtain the estimate∫
Γ

|ẋ− b(x)|2 dt � c0R
2((∆t) − 1

2
(∆t)) � 1

2
c0R

2(∆t).

Since C(x) � o(1)R2, it is obvious that∫
Γ

(|ẋ − b(x)|2 − C(x)) dt � k0R
2∆t.

The lemma is proved.
Now, we turn to the proof of Proposition 2. Let T be the time during which the trajectory stays outside the

ball QR0 , and let Rmax be the maximal radius attained by the extremal curve xT (t). We choose a radius R∗ such
that the curve xT (t) stays for time T − 2 in the ball QR∗ . Then,∫

Γ1

(|ẋ − b(x)|2 − C(x)) dt � k0R0
2(T − 2)

due to Lemma 4. Here, Γ1 is the part of the curve xT (t) lying in the spherical layer KR0R∗ . Further, by Lemma 4
we have ∫

Γ2

(|ẋ− b(x)|2 − C(x)) dt � k02(R∗)2,

where Γ2 is the part of the curve xT (t) lying in the spherical layer KR∗Rmax . Thus,∫
Γ1∪Γ2

(|ẋ− b(x)|2 − C(x)) dt � k0(2(R∗)2 +R0
2(T − 2)).

Consider the trajectory yT (t) lying in the ball QR0 and formed by three pieces:
(1) uniform motion from the point A to the origin;
(2) staying at the origin for the time T − 2 (stationary curve);
(3) uniform motion for the time 1 from the origin to the point B.
Here, A and B are, respectively, the points at which the extremal curve enters and leaves the ball QR0 .
Direct calculations show that the value of the functional on this curve does not exceed

(4R0
2 +K(R0)) + (T − 2)(|b(0)|+ C(0)),
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whereK(R0) > 0 is a constant. Assume that as T goes to infinity, Rmax also becomes infinitely large. Then R∗ must
also go to infinity, for otherwise we would obtain a contradiction with Lemma 3. But then for large enough Rmax

and R0 such that k0R0
2 > |b(0)|+ C(0), we have

(4R0
2 +K(R0)) < 2k0(R∗)2, (T − 2)(|b(0)|+ C(0)) < k0(T − 2)(R0)2.

Thus, the original functional on the trajectory yT (t) takes a smaller value than on the trajectory xT (t), and,
therefore, xT (t) cannot be an extremal trajectory. This contradiction completes the proof of Proposition 2.

The following statement gives estimates of eigenfunctions and plays an important role in the proof of Theo-
rem 2.

Lemma 5. Suppose that Condition A holds for the operator L and the solutions of the equation Lµuµ +
λµuµ = 0 in the class Ξ are normalized by the condition

∫
Rn

uµ(x) dx = 1. Then, in each ball Qρ the following
estimates hold for the functions uµ:

uµ(x) < c0µ−n, x ∈ R
n; uµ(x) > c1 exp(−C(ρ)

µ
), x ∈ Qρ,

where c0 and c1 are constants independent of µ and ρ and C(ρ) is a constant that depends on ρ but is independent
of µ.

Proof. Note that in the variables y = (µ)−1x the equation Lµuµ + λµuµ = 0 takes the form

(L̃µ + λµ)uµ(µy) ≡
(
aij

∂2uµ

∂yi∂yj
+ bi(µy)

∂uµ

∂yi
+ C(µy)uµ(µy) + λµ

)
uµ(µy) = 0,

and the small parameter µ is present only in the arguments of the coefficients which are bounded. Therefore, if
dist(x′, x′′) < µ, the Harnack estimates guarantee that c0 � uµ(x′)(uµ(x′′))−1 � c1. Therefore,

uµ(x) � c min
z∈Qx

µ

uµ(z) � c′ min
z∈Qx

µ

uµ(z)µ−n

∫
Qx

µ

dz′ � c′
∫

Rn

uµ(x) dxµ−n � c′µ−n,

and the first inequality of this lemma is proved.
Now let x, z ∈ K be two given points of a compact set K. Then there is a sequence of points

x1, . . . , xN such that x1 = x, xN = z, and dist(xi, xi+1) < µ, and the length N of the sequence satisfies
the inequality N < C(K)(µ)−1, where C(K) is a constant depending only on the compact set K. But then,

c0 � uµ(xi)(uµ(xi+1))−1 � c1, and, therefore, uµ(z)(uµ(x))−1 � (c−1
1 )

C(K)
µ , which implies that

uµ(z) � exp
(
−C

′(K)
µ

)
uµ(x). (11)

Just as in the proof of Theorem 1, applying the operator (L̃µ + λµ,M ) to the difference

c0µ
−n

(
|y| − ρ

µ
+ 1
)−N

− uµ,M (µy)

in the exterior of the ball Qρ/µ and using the maximum principle, we see that uµ,M , together with uµ, satisfies the
following estimate for |y| � ρ/µ:

uµ(µy) � c0µ
−n

(
|y| − ρ

µ
+ 1
)−N

,

where ρ = ρ(N) is independent of µ. In the variables x, we get

uµ(x) � c0µ
N−n

(
(|x| − ρ)

µ
+ µ

)−N
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for |x| � ρ(N). Taking N = 2n+ 1 in the last inequality, it is easy to see that the following estimate holds in the
ball of radius 2ρ: ∫

Q2ρ

uµ(x)dx � 1
2
.

Therefore max
z∈Q2ρ

uµ(z) > c2 > 0, where c2 is independent of µ. Taking into account the estimate (11), we obtain the

statement of the lemma.
Proof of Theorem 2. First, we consider the case of operators satisfying Condition A. Let QM be the ball of

radius M with center at the origin. Consider the spectral problem

Lµu = λu in QM , u
∣∣
∂QM

= 0, (12)

and denote by λµ,M the principal eigenvalue of this problem and by uµ,M the corresponding eigenfunction.
With the help of ideas used in the proof of Theorem 1 in [1], one can show that for each M > 0,

lim
µ↓0

λµ,M = lim
T→∞

SM (x0, T ), (13)

where

SM (x0, T ) = inf
{x(·)}⊂Q

1
T

T∫
0

{aij(ẋi − bi(x(t)))(ẋj − bj(x(t))) − C(x(t))} dt,

and the infimum is taken over all smooth curves x(·) that do not abandon the ball QM on the interval (0, T ).
We will need two auxiliary parabolic problems:

∂

∂t
vµ =

1
µ
Lµvµ, vµ

∣∣
t=0

= uµ, (14)

where the initial value is the first eigenfunction uµ of the operator Lµ in the entire space, and

∂

∂t
vµ,M =

1
µ
Lµvµ,M , vµ,M

∣∣
t=0

= uµ,M , vµ,M

∣∣
∂QM

= 0, (15)

where uµ,M is the first eigenfunction of problem (12). We obviously have

vµ(t, x) = exp
(
−λµt

µ

)
uµ(x), vµ,M (t, x) = exp

(
−λµ,M t

µ

)
uµ,M (x). (16)

Let us prove the estimate from above. For a given (small) δ > 0, there is a sufficiently large T0 such that for
all T̃ > T0, we have S(0, T̃ ) < λ̄+ δ. Here, for the sake of brevity, we use the notation λ̄ = lim

T→∞
S(0, T ). With the

help of the lower estimate of the principle of large deviations for the diffusion process ξµ with the generator

µaij
∂2

∂xi∂xj
+ bi(x)

∂

∂xi

(see [4]), just as in Theorem 1 from [1], we find that for each γ > 0 there exists µ0 > 0, such that

vµ(T̃ , 0) � exp
(
−C(ρ)

µ

)
exp

(
− T̃S(0, T̃ ) + γ

µ

)
� exp

(
−C(ρ)

µ

)
exp

(
− T̃ λ̄+ T̃ δ + γ

µ

)
, ∀µ < µ0.

Here, we have also used Proposition 1 and Lemma 5. Taking the logarithm of this inequality and using the estimate
from Lemma 5, we get

C(ρ)
µ

− λT̃

µ
� −C(ρ)

µ
− T̃ λ̄+ T̃ δ + γ

µ
.
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Dividing this by T̃ and taking into account that T̃ , δ, and γ are arbitrary, we find

lim
µ→0

λµ � λ̄.

In order to obtain the estimate from below, we note that, due to the principle of large deviations for the
process ξµ and the Varadhan theorem (see [3]), the following relation holds for all T̃ :

lim
µ→0

µ lnE exp
(
1
µ

T̃∫
0

C(ξ0µ(t)) dt
)
= T̃ S̄(T̃ ),

where

S̄(T ) = inf
x(·)
(T̃ )−1

T∫
0

{aij(ẋi − bi(x(t))(ẋj − bj(x(t)) − C(x(t))} dt,

and the infimum is taken over all absolutely continuous curves with arbitrary end-points. Writing out the probability
representation of the solution of problem (14), using Lemma 5 and the preceding equality, for each δ > 0 we obtain
the estimate

µ ln(v(T̃ , 0)) = µ lnEuµ(ξ0µ(T̃ )) exp
(
1
µ

T̃∫
0

C(ξ0µ(t)) dt
)

� −Cµ ln(µ) + T̃ S(T̃ ) + δ,

which holds for all sufficiently small µ. Further, observe that in view of Proposition 1, the difference (TS(T ) −
TS(0, T )) is bounded uniformly in T > 0, and, therefore,

lim
T→∞

S(0, T ) = lim
T→∞

S(T ).

Taking the logarithm of the preceding inequality and dividing the result by T̃ , we find that

lim
µ→0

λµ � λ̄.

This, together with the upper estimate, implies the statement of the theorem under Condition A.
Let us make an important observation. In view of Proposition 1, for all large enough M , we have

SM (0, T ) = S(0, T ),

and, therefore, by (13)
lim
µ→0

λµ,M = lim
µ→0

λµ. (17)

In the case where Condition B is satisfied, we change the unknown function by letting

u(x) = eγ|x|
2/(2µ)U(x).

Then the problem Lµu = λu transforms to Lγ
µU = λU , where

Lγ
µ = µ

2aij
∂2

∂xi∂xj
+ µ(γaijxj + bi(x))

∂

∂xi
+ (γ2aijxixj + bi(x)xi + C(x)).

For γ < 0 sufficiently small in absolute value, Condition B yields

(γaijxj + bi(x), x) � c|x|2, c > 0,

γ2aijxixj + bi(x)xi + C(x) � −c|x|2.
Thus, Condition A holds for the operator Lγ

µ and, according to what has been proved above, we have lim
µ→0

λµ,M =

lim
µ→0

λµ. By Proposition 2, for large enough M , the quantities S(0, T ) and SM (0, T ) coincide, and, therefore,

using (13), we obtain
lim
µ→0

λµ = lim
µ→0

λµ,M = lim
T→∞

SM (0, T ) = lim
T→∞

S(0, T ).

Theorem 2 is proved.
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