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Abstract
The goal of the paper is to study the asymptotic behaviour of solutions to a high
contrast quasilinear equation of the form

−div (|∇uε|p−2∇uε) + Gε(x)|uε|p−2uε = f (x) in �,

where � ⊂ R
n with n � 2, 1 < p � n, and the coefficient Gε(x) is assumed

to blow up as ε → 0 on a set of Nε isolated inclusions of asymptotically
small measure. Here Nε −→ +∞ as ε → 0. It is shown that the asymptotic
behaviour, as ε → 0, of the solution uε is described in terms of a homogenized
quasilinear equation of the form

−div (|∇u|p−2∇u) + B(x)|u|p−2u = f (x) in �,

where the coefficient B(x) is calculated as a local energy characteristic of the
microstructure associated with the potential Gε(x) in the original problem. This
result is then illustrated with a periodic example and a nonperiodic one.

Mathematics Subject Classification: 35B40, 35J60, 74Q05, 76M50

1. Introduction

In this paper we study the asymptotic behaviour of solutions to a high contrast quasilinear
equation of the form

− div (|∇uε|p−2∇uε) + Gε(x)|uε|p−2uε = f (x) (1.1)
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with a small positive parameter ε. This equation is defined in a bounded Lipschitz domain
� ⊂ R

n (n � 2, 1 < p � n), the homogeneous Neumann condition being imposed at the
boundary ∂�. We assume that the coefficient Gε(x) tends to infinity as ε → 0 on a set
consisting of Nε isolated inclusions of asymptotically small measure. Here Nε −→ +∞ as
ε → 0.

Equation (1.1) with appropriate boundary conditions can describe, for example, the
combustion in a medium with a gradient nonlinearity (see, e.g. [15]) and also non-Newtonian
flows in porous media (see, e.g. [7]). Let us also mention that the studied homogenization
problem is closely related to that for nonlinear Dirichlet problems (see, e.g. [2,5,9,11,16] and
references therein).

A number of homogenization problems for equations with non-uniformly bounded
coefficients have already been studied in the existing literature. We will not attempt a literature
review here, but merely mention a few references, for instance [4,6,8,11,13] which deal with
the case of differential operators whose coefficient tends to infinity on a set of asymptotically
small measure. Linear equations of the form (1.1) have been considered in [11].

In the present paper we deal with a quasilinear elliptic problem in a domain with non-
uniformly bounded coefficients. Following the approach introduced in [11], instead of a
classical periodicity assumption, we impose certain conditions on the so-called local energetic
characteristics associated with the boundary value problem (1.1). It will be shown that the
asymptotic behaviour, as ε → 0, of the solution uε is described by a homogenized quasilinear
equation of the form

−div (|∇u|p−2∇u) + B(x)|u|p−2u = f (x) in �,

where the coefficient B(x) is calculated as a local energy characteristic associated with the
potential Gε(x). The proof of the main result is based on the variational homogenization
techniques which are widely used nowadays in homogenization theory (see, e.g. [3,11,14,17]
and references therein). Let us also mention that another nonperiodic homogenization approach
was proposed recently in [12] for nonlinear monotone operators.

The paper is organized as follows. In section 2 we state the problem and formulate the
main result. This result is proved in section 4; it relies on auxiliary results from section 3. Two
examples of periodic and nonperiodic structures are considered in section 5.

Finally, we note that throughout the paper, C (sometimes subscripted) will denote a generic
positive constant, independent of ε and may take different values for different occurences.

2. Statement of the problem and the main result

Let � be a bounded domain in R
n (n � 2) with sufficiently smooth boundary. Let F ε be an

open subset in � (F ε ⊂ �) consisting of small disjoint components F ε
i , i.e.

F ε =
Nε⋃
i=1

F ε
i ,

where Nε → +∞ as ε → 0. We assume that the set F ε is asymptotically distributed in a
regular way in �, i.e. for any ball V (y, r) = {x ∈ � | |x − y| < r} of radius r centred at
y ∈ � and ε > 0 small enough (ε � ε0(r)), V (y, r) ∩ F ε �= ∅. It has a sufficiently smooth
boundary ∂F ε and

meas F ε −→ 0 as ε → 0. (2.1)

We set

�ε = � \ F ε (2.2)
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and consider the following variational problem:∫
�

{|∇uε|p + Gε(x)|uε|p − p f (x) uε
}

dx −→ inf, uε ∈ W 1,p(�), (2.3)

where 1 < p � n, f ∈ Lp′
(�) (1/p + 1/p′ = 1) and the function Gε is given by

Gε(x) =
{
gi(ε) in F ε

i (i = 1, 2, ..., Nε).

g0(x) in �ε.
(2.4)

Here g0 is a smooth strictly positive function in � and

min
i=1,..,Nε

gi(ε) −→ +∞ as ε → 0. (2.5)

It is known (see, e.g. [10]) that, for any ε > 0, there exists a unique solution uε ∈ W 1,p(�)

of the variational problem (2.3) and that uε solves the Neumann boundary value problem for
the corresponding Euler equation:

−div (|∇uε|p−2∇uε) + Gε(x)|uε|p−2uε = f (x).

We study the asymptotic behaviour of uε as ε → 0. The classical periodicity assumption
is here replaced by an abstract one covering a variety of concrete behaviours such as the
periodicity, the almost periodicity, and many more besides.

Let Kz
h be an open cube centred at z ∈ � with length equal to h (0 < ε 
 h < 1). We set

Iε,h
z [φ] =

∫
Kz

h

{|∇φ|p + gε
F (x)|φ|p + h−p−γ |φ − 1|p}

dx, (2.6)

where 0 < γ < p;

gε
F (x) =

Nε∑
i=1

gi(ε)1ε
i (x) (2.7)

with 1ε
i (x) being the characteristic functions of the sets F ε

i (i = 1, 2, ..., Nε).
We introduce the local energy characteristics of the domain � associated with the

variational problem (2.3). For z ∈ � we define

– the functional associated to the energy in �ε:

bε,h(z) = inf
wε

Iε,h
z [wε], (2.8)

where the infimum is taken over wε ∈ W 1,p(Kz
h);

– the functional associated to the p–capacity of the sets F ε (for more details see, e.g. [2]):

aε,h(z) = inf
vε

Iε,h
z [vε], (2.9)

where the infimum is taken over vε ∈ W(Kz
h, F ε), where

W(Kz
h, F ε) = {

vε ∈ W 1,p(Kz
h) | vε = 0 in F ε

}
. (2.10)

Instead of the classical periodicity assumption on the microstructure of the disperse media,
we impose the following conditions on the local energy characteristics of the domain �.
Namely, we assume that

(C.1) there exists a constant C independent of the parameter γ such that

lim
h→0

lim
ε→0

h−naε,h(x) � C;
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(C.2) for any x ∈ � there exist the limits

lim
h→0

lim
ε→0

h−nbε,h(x) = lim
h→0

lim
ε→0

h−nbε,h(x) = b(x),

where b ∈ C(�).

Now we are in position to formulate the main result of the paper.

Theorem 2.1. Let conditions (C.1) and (C.2) be satisfied. Then the solution uε of the
variational problem (2.3) converges strongly in Lp(�) to a solution of the variational problem:

Jhom[u] ≡
∫

�

{|∇u|p + B(x)|u|p − pf (x)u} dx −→ inf, u ∈ W 1,p(�), (2.11)

where

B(x) = g0(x) + b(x). (2.12)

Notice that the minimizer u of the variational problem (2.11) solves the Neumann boundary
value problem for the quasilinear elliptic equation

−div (|∇u|p−2∇u) + B(x)|u|p−2u = f (x).

The proof of theorem 2.1 is given in section 4. The result is obtained by using the
homogenization approach developed in [11] following the scheme developed in [1]. It also
makes use of several auxiliary results given in section 3.

Remark 1. Let us notice that condition (C.1) means that the diameters of the inclusions F ε
i

are much smaller than the minimal distance between them (see, e.g. the relations (5.1) and
(5.48) for the radii of the inclusions in the periodic and locally periodic examples in section
5). The functional bε,h(z) given by (2.8) is a mesoscopic characteristic of the absorption of
the nonhomogeneous medium �. Condition (C.2) means that this absorption is finite and its
density is given by the function b(x).

Condition (C.1) is used to prove an auxiliary result given in lemma 3.2 which will be then
applied in the proof of theorem 2.1 (see section 4.2). Condition (C.2) is used to construct a
convenient approximation for the solution of the variational problem (2.3) in the domain �

(see lemma 3.1). We make use of this approximation in section 4.1. It is also used in the proof
of the inequality (4.19) in section 4.2. The function b(x) appears then in the homogenized
functional (2.11) of theorem 2.1.

3. Auxiliary results

In this section we construct a convenient approximation for the solution of the variational
problem (2.3) in the domain �. To this end we introduce first the following notation.

Let {xα} be a periodic grid in � with a period h′ = h − h1+γ /p (ε 
 h 
 1 and
0 < γ < p). Let us cover the domain � by the cubes Kα

h of length h > 0 centred at the points
xα . We associate with this covering a partition of unity {ϕα} : 0 � ϕα(x) � 1; ϕα(x) = 0 for
x �∈ Kα

h ; ϕα(x) = 1 for x ∈ Kα
h \ ∪β �=αK

β

h ;
∑

α ϕα(x) = 1 for x ∈ �; |∇ϕα(x)| � Ch−1−γ /p.
Denote by Kα

h′ and 	α
h the cube of length h′ centred at the point xα and the set Kα

h \ Kα
h′ ,

respectively.

Lemma 3.1. Assume that conditions (C.1) and (C.2) of theorem 2.1 are satisfied. Then for
each h > 0 there is ε0 = ε0(h) such that for any ε � ε0 there exist sets Bε

h (F ε ⊂ Bε
h ⊂ �)

and functions Y ε
h satisfying the following conditions:

(i) 0 � Y ε
h (x) � 1 in �;
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(ii) Y ε
h (x) = 1 in � \ Bε

h;
(iii) limε→0 meas Bε

h = O(hγ ) as h → 0;
(iv) for any function w ∈ C1(�), we have

lim
ε→0

∫
�

{|∇Y ε
h |p + Gε(x)|Y ε

h |p} |w|p dx �
∫

�

B(x)|w|p dx + o(1) (3.1)

as h → 0.

Proof of lemma 3.1.. Let wε,α
h be a minimizer of the functional in (2.8) with z = xα . It follows

from conditions (C.1) and (C.2) that, as h → 0,

lim
ε→0

∫
Kα

h

{∣∣∇w
ε,α
h

∣∣p + gε
F (x)|wε,α

h |p}
dx = O(hn), (3.2)

lim
ε→0

∫
	α

h

{∣∣∇w
ε,α
h

∣∣p + gε
F (x)|wε,α

h |p}
dx = o(hn), (3.3)

lim
ε→0

∫
Kα

h

|wε,α
h − 1|p dx = O(hn+p+γ ), (3.4)

lim
ε→0

∫
	α

h

|wε,α
h − 1|p dx = o(hn+p+γ ). (3.5)

In addition, using condition (C.2), we obtain

lim
ε→0

∫
Kα

h

{∣∣∇w
ε,α
h

∣∣p + Gε(x) |wε,α
h |p}

dx � hnB(xα) + o(hn) as h → 0. (3.6)

Furthermore, since w
ε,α
h minimizes the functional in (2.8), we have 0 � w

ε,α
h (x) � 1 and

lim
ε→0

meas B
ε,α
h � C hn+γ , (3.7)

where B
ε,α
h = {x ∈ Kα

h ∩ �ε : w
ε,α
h � 1 − h}. Let us introduce the function

W
ε,α
h =

{
1, if w

ε,α
h � 1 − h,

(1 − h)−1w
ε,α
h , otherwise.

(3.8)

It is clear that
∣∣Wε,α

h − 1
∣∣ �

∣∣wε,α
h − 1

∣∣. One can easily show that the function W
ε,α
h satisfies

the estimates (3.3)–(3.6). We set

Bε
h =

⋃
α

B
ε,α
h , Y ε

h (x) =
∑

α

W
ε,α
h (x)ϕα(x).

Then, using the properties of the functions W
ε,α
h and {ϕα} and taking into account the estimate

(3.7), it is easy to show that the functions Y ε
h (x) and the sets Bε

h satisfy conditions (i)–(iv) of
lemma 3.1.

Lemma 3.1 is proved. �
In what follows we make use of the following notation. We denote by W(�, F ε) the class

of functions from the space W 1,p(�) such that these functions equal zero on the set F ε.

Lemma 3.2. Let ω be an arbitrary function from the space W 1,p(�) and let conditions (C.1)
and (C.2) of theorem 2.1 be satisfied. Then there exists a sequence {wε} ⊂ W(�, F ε) which
converges weakly in the space W 1,p(�) to ω and such that, for ε sufficiently small (ε � ε0(ω)),

‖wε‖W 1,p(�) � C‖ω‖W 1,p(�). (3.9)
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Proof of lemma 3.2.. Since the class C2(�) is dense in the space W 1,p(�), it is sufficient to
prove the assertions of lemma 3.2 for an arbitrary ω ∈ C2(�) only.

Let us introduce the function Wε
h defined by

Wε
h(x) =

∑
α

v
ε,α
h (x)ω(x)ϕα(x), (3.10)

where v
ε,α
h (x) is the minimizer of the functional (2.9) with z = xα . It follows from condition

(C.1) that the function v
ε,α
h satisfies the inequalities (3.2)–(3.5) from lemma 3.1. Then using

these inequalities we show that, for h and ε sufficiently small (h � h0(ω), ε � ε0(ω)),

‖Wε
h‖W 1,p(�) � C‖ω‖W 1,p(�).

Let ε̂(h) be a decreasing function such that limh→0 ε̂(h) = 0. We set

h(ε) = 1

j
for ε̂

(
1

j + 1

)
� ε � ε̂

(
1

j

)
, j = 1, 2, ...

and

wε = Wε
h

∣∣∣∣
h=h(ε)

.

It is clear that the function wε satisfies the inequality (3.9).
It remains to show that the sequence {wε} converges weakly in W 1,p(�) to the function

ω. According to (3.9), this sequence is a weakly compact set in the space W 1,p(�). Then it is
sufficient to prove that it converges weakly in Lp(�) to the function ω. Let φ be an arbitrary
function from Lp′

(�). We have∫
�

wεφ dx =
∫

�

ωφ dx +
∑

α

∫
�

ω(v
ε,α
h(ε) − 1)ϕαφ dx. (3.11)

It follows from lemma 3.1 that the second integral in (3.11) vanishes as ε → 0. Therefore, the
sequence {wε} converges weakly in Lp(�) to the function ω.

Lemma 3.2 is proved. �

4. Proof of theorem 2.1

We begin this section by obtaining a priori estimates for the minimizer of problem (2.3):

J ε[uε] −→ inf, uε ∈ W 1,p(�), (4.1)

where

J ε[uε] =
∫

�

{|∇uε|p + Gε(x)|uε|p − p f (x) uε
}

dx. (4.2)

Since J ε[uε] � J ε[0] = 0, by the Young inequality we get∫
�

{|∇uε|p + Gε(x)|uε|p}
dx � C‖f ‖Lp′

(�)‖uε‖Lp(�). (4.3)

It is clear that Gε(x) > G0 > 0. Therefore, the inequality (4.3) implies the estimate

‖uε‖W 1,p(�) � C. (4.4)

Hence, {uε} is a weakly compact set in the space W 1,p(�) and one can extract a subsequence
(still denoted by {uε}) weakly converging to a function u ∈ W 1,p(�).

We will show that u is a solution of the variational problem (2.11). The proof will be done
in two steps.
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4.1. Step 1. Upper bound

Let w = w(x) be an arbitrary smooth function in � and let Y ε
h be the function and Bε

h the set
defined in lemma 3.1. We set

ϑε
h(x) = Y ε

h (x)w(x).

It is clear that ϑε
Mh ∈ W 1,p(�) and since uε minimize the functional J ε, then

J ε[uε] � J ε[ϑε
h]. (4.5)

Let us estimate the right-hand side of the inequality (4.5). We have

J ε[ϑε
h] =

∫
�

{|∇(w Y ε
h )|p + Gε(x)|w Yε

h |p − p f (x) w Y ε
h

}
dx

=
∫

�\Bε
h

|∇w|p dx +
∫

�

{|∇Y ε
h |p + Gε(x)|Y ε

h |p} |w|p dx −
∫

�

p f (x) w dx

+
∫

Bε
h

{|∇wYε
h + w∇Y ε

h |p − |w∇Y ε
h |p}

dx −
∫

�

pf w(Y ε
h − 1) dx. (4.6)

Now it follows from (4.6), and lemma 3.1 that

lim
h→0

lim
ε→0

J ε[ϑε
h] � Jhom[w], (4.7)

where

Jhom[w] =
∫

�

{|∇w|p + B(x)|w|p − pf (x)w} dx, B(x) = (g0 + b)(x). (4.8)

Finally, the inequalities (4.5) and (4.7) imply that

lim
ε→0

J ε[uε] � Jhom[w]. (4.9)

By density arguments, (4.9) holds for any function w ∈ W 1,p(�) as well.

4.2. Step 2. Lower bound

Let {uε} be a sequence of solutions of the variational problem (4.1) which converges weakly
in W 1,p(�) to a function u ∈ W 1,p(�). Let us show that

lim
ε→0

J ε[uε] � Jhom[u]. (4.10)

Let us approximate u by smooth functions, uδ(x) (δ > 0), in �

‖uδ − u‖W 1,p(�) � δ (4.11)

and set wδ = uδ − u. Then according to lemma 3.2 there exists a sequence {wε
δ ∈ W(�, F ε)}

that converges weakly in W 1,p(�) to the function wδ . We set

uε
δ(x) = wε

δ(x) + uε(x). (4.12)

The function uε
δ equals uε on the set F ε, converges weakly in W 1,p(�) and strongly in Lp(�)

to uδ . Moreover, it satisfies the inequality

‖uε
δ − uε‖W 1,p(�) � C‖uδ − u‖W 1,p(�). (4.13)

Then there exists a sequence {rε > 0}, rε → 0, and sets Qε such that

lim
ε→0

meas Qε = 0 and |uε
δ(x) − uδ(x)| � rε in � \ Qε.
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Let us define the functions

vε
δ (x) =




uδ(x) + rε, if uε
δ(x) > uδ(x) + rε,

uε
δ(x), if |uε

δ(x) − uδ(x)| � rε,

uδ(x) − rε, if uε
δ(x) < uδ(x) − rε.

(4.14)

Then the function vε
δ converges uniformly in � to uδ as ε → 0. We set

V ε
δ (x) = uε

δ(x) − vε
δ (x)

and

I ε[uε
δ] =

∫
�

{|∇uε
δ |p + Gε(x)|uε

δ |p
}

dx. (4.15)

Notice that uε
δ(x) = vε

δ (x) in � \ Qε.
Let us now represent the integral I ε[uε

δ] as follows:

I ε[uε
δ] =

(∫
�

|∇V ε
δ |p dx +

∫
�

gε
F (x)|uε

δ |p dx

)
+

(∫
�\Qε

|∇uε
δ |p dx +

∫
�\Fε

g0(x)|uε
δ |p dx

)

+

(∫
Qε

|∇uε
δ |p dx −

∫
Qε

|∇V ε
δ |p dx

)
≡ θε

1 + θε
2 + θε

3 . (4.16)

Consider the first term on the right-hand side of (4.16). First define �ζ ⊂ �:

�ζ = {x ∈ � : |uδ(x)| > 2ζ } (ζ � h > 0)

and cover �ζ by cubes Kα
h of length h centred at xα with nonintersecting interiors. For ε and

h suffciently small, we have |vε
δ | > ζ in Kα

h . As in [1], one can show that for x ∈ � ∩ Kα
h the

following inequality holds true:(
1 + A1h

p

p−1

)
|∇V ε

δ |p

� |vε
δ |p

∣∣∣∣∇
(

uε
δ

vε
δ

)∣∣∣∣
p

− A2

(
1 +

1

hp

)
|uε

δ − vδ|p |∇vε
δ |p

|vε
δ |p

, (4.17)

where A1, A2 are positive constants independent of ε and δ.
Now we make use of the strong convergence of uε

δ in the space Lp(�) to the function uδ ,
the definition and the properties of the function vε

δ (see (4.14)). For any Kα
h ⊂ �ζ , we obtain∫

Kα
h

{|∇V ε
δ |p + gε

F (x)|uε
δ |p

}
dx

� |uδ(x
α)|p

∫
Kα

h

{∣∣∣∣∇
(

uε
δ

vε
δ

)∣∣∣∣
p

+ gε
F (x)

∣∣∣∣uε
δ

vε
δ

∣∣∣∣
p}

dx + o(h3), (4.18)

for ε small enough (ε � ε̂(h)) and h → 0. Condition (C.2) implies

lim
ε→0

∫
Kα

h

{∣∣∣∣∇
(

uε
δ

vε
δ

)∣∣∣∣
p

+ gε
F (x)

∣∣∣∣uε
δ

vε
δ

∣∣∣∣
p}

dx � h3b(xα) + o(h3) (4.19)

as h → 0. Now it follows from (4.18) and (4.19) that

lim
ε→0

θε
1 �

∫
�ζ

b(x)|uδ|p dx. (4.20)

Taking into account the definition of �ζ and passing to the limit as ζ → 0 in (4.20) we get

lim
ε=εj →0

θε
1 �

∫
�

b(x)|uδ|p dx. (4.21)
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In order to estimate θε
2 from below in (4.16) we argue as follows. Using the weak

convergence of uε
δ in W 1,p(�) and strong convergence in Lp(�) to uδ and (4.14) we get

lim
ε=εj →0

θε
2 �

∫
�

{|∇uδ|p + g0(x)|uδ|p
}

dx. (4.22)

Finally consider the third term on the right-hand side of (4.16). Using (4.14) we have

|θε
3 | � C1

∫
Qε

|∇uδ|
{|∇uε

δ |p−1 + |∇uδ|p−1
}

dx,

where C1 is a constant independent of ε, δ. Since uδ(x) is a smooth function in �, we finally
get

|θε
3 | � C

∫
Qε

{
1 + |∇uε

δ |p−1
}

dx. (4.23)

Now it is easy to see that the definition of the function uε
δ , (4.4), (4.13), the estimate for the

measure of Qε and Hölder’s inequality yield

lim
ε→0

|θε
3 | = 0. (4.24)

Thus, it follows from (4.21), (4.22), (4.24) and strong convergence of uε
δ in Lp(�) to uδ

that

lim
ε→0

J ε[uε
δ] � Jhom[uδ]. (4.25)

This inequality together with (4.11) and (4.13) yield (4.10).
Inequalities (4.9) and (4.10) mean that if a subsequence of solutions of problem (2.3)

converges weakly in W 1,p(�) to a function u = u(x), then u minimizes the functional Jhom

in W 1,p(�), i.e. u(x) is a solution of the variational problem (2.11). Since b(x) � 0, this
problem has a unique solution and the whole sequence of solutions of problem (2.3) converges
weakly in W 1,p(�) and strongly in Lp(�) to the function u = u(x).

Theorem 2.1 is proved. �

5. Periodic and nonperiodic examples for n = p = 3

Theorem 2.1 of section 2 provides sufficient conditions for the existence of the homogenized
problem (2.11). It is important to show that the ‘intersection’ of the conditions of theorem 2.1
is not empty. The goal of this section is to prove that for two examples all the conditions of
theorem 2.1 are satisfied and to compute the coefficients of the homogenized problem (2.11)
explicitly. Note that a periodic example for the case n = 3, p = 2 was already constructed
in [11].

5.1. A periodic example

Let � be a bounded domain in R
3 with sufficiently smooth boundary. Let F ε be a union of

balls F ε
i periodically, with a period ε, distributed in the domain �. We assume that the radius

of the ball which equals rε is defined by

rε = exp

(
− 1√

�ε3/2

)
, (5.1)

where � is a strictly positive constant. It is clear that meas F ε −→ 0 as ε → 0.
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Consider the variational problem:∫
�

{|∇uε|3 + Gε(x)|uε|3 − 3 f (x) uε
}

dx −→ inf, uε ∈ W 1,3(�),

(5.2)

where f ∈ L3/2(�) and the function Gε is given by

Gε(x) =
{

gε in F ε,

g0(x) in �ε,
(5.3)

with gε −→ +∞ as ε → 0. Moreover, we assume that

gε = 1

r3
ε

. (5.4)

The following result holds.

Theorem 5.1. Let uε be the solution of the variational problem (5.2). Then uε converges
strongly in L3(�) to u the solution of the variational problem:

Jhom[u] =
∫

�

{|∇u|3 + B(x)|u|3 − 3f (x)u} dx −→ inf, u ∈ W 1,3(�), (5.5)

where

B(x) = g0(x) + 4π�. (5.6)

Proof of theorem 5.1. Following the lines of section 2 we introduce Kz
h, an open cube centred

at z ∈ � ⊂ R
3 with length equal to h (0 < ε 
 h < 1) and we set

Iε,h
z [φ] =

∫
Kz

h

{|∇φ|3 + gε
F (x)|φ|3 + h−3−γ |φ − 1|3} dx, (5.7)

where

gε
F (x) = gε1ε

F (x), (5.8)

with gε defined in (5.4) and 1ε
F (x) being the characteristic function of the set F ε.

Then we introduce the local energy characteristics of the domain � associated with the
variational problem (5.2). For z ∈ � we define

– the functional associated to the energy in �ε:

bε,h(z) = inf
vε

Iε,h
z [vε], (5.9)

where the infimum is taken over vε ∈ W 1,3(Kz
h);

– the functional associated to the 3-capacity of the sets F ε:

aε,h(z) = inf
wε

Iε,h
z [wε], (5.10)

where the infimum is taken over wε ∈ W(Kz
h, F ε), where

W(Kz
h, F ε) = {

wε ∈ W 1,3(Kz
h) | wε = 0 in F ε

}
. (5.11)

Our goal is to check the following conditions:

(C.1) there exists a constant C independent of the parameter γ such that

lim
h→0

lim
ε→0

h−3aε,h(z) � C.

(C.2) for any x ∈ � there exist the limits

lim
h→0

lim
ε→0

h−3bε,h(z) = lim
h→0

lim
ε→0

h−3bε,h(z) = 4π�.
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5.1.1. Condition (C.1) We introduce the following function:

Wε(x) =




0 in Kz
h ∩ F ε,

1 −
∑

i

Ln(|x − xi,ε|)
Ln(rε)

ϕ

( |x − xi,ε|
αε

)
in Kz

h \ F ε,
(5.12)

where xi,ε are the centres of the balls F ε
i ,

Ln(ρ) = ln
1

ρ
− ln

1

αε

(5.13)

and ϕ(t) is a smooth positive function defined by ϕ ∈ C2(R+) with ϕ(t) = 1 for t � 1/2;
ϕ(t) = 0 for t � 1. The parameter αε is defined by

αε = exp

(
− 1√

�ε3/2−κ

) (
0 < κ <

3

2

)
. (5.14)

It is clear that rε 
 αε 
 ε.
Now it follows from (5.10) that

aε,h(z) �
∫

Kz
h

{|∇Wε|3 + h−3−γ |Wε − 1|3} dx. (5.15)

Consider the first integral on the right-hand side of (5.15). We have∫
Kz

h

|∇Wε|3 dx = 4π
∑

Fε
i ⊂Kz

h

(∫ αε/2

rε

∣∣∣∣∂Wε

∂ρ

∣∣∣∣
3

ρ2 dρ +
∫ αε

αε/2

∣∣∣∣∂Wε

∂ρ

∣∣∣∣
3

ρ2 dρ

)
. (5.16)

It is clear that |Ln(ρ)| � ln 2 for ρ ∈ [αε/2, αε]. Then it easily follows from (5.1) and (5.14)
that∫

Kz
h

|∇Wε|3 dx

� C
h3

ε3

(
1

(ln(1/rε) − ln(1/αε))
2 +

1

(ln(1/rε) − ln(1/αε))
3

)
� C1h

3, (5.17)

where C1 is a constant independent of ε, γ .
Consider the second integral on the right-hand side of (5.15). We have

h−3−γ

∫
Kz

h

|Wε − 1|3 dx

= 4πh−3−γ
∑

Fε
i ⊂Kz

h

∫ αε

rε

∣∣∣∣ Ln(ρ)

Ln(rε)
ϕ

(
ρ

αε

)∣∣∣∣
3

ρ2 dρ � C
h−γ

ε3
(αε)

3. (5.18)

Now it follows from (5.17) and (5.18) that

lim
h→0

lim
ε→0

h−3aε,h(z) � C1, (5.19)

where C1 is defined in (5.17) and it is independent of ε and the parameter γ .
Thus condition (C.1) is satisfied.

5.1.2. Condition (C.2). We will construct a function V ε(x) that is a ‘good’ approximation
of vε the minimizer of the functional (5.9) and obtain then an asymptotic formula for the
functional bε,h(z).
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Let SR
0 be a ball centred at the point zero and of radius R > 0. Consider the equation

− 1

ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

∣∣∣∣∂u

∂ρ

∣∣∣∣
)

+ u|u| = 0 (ρ � 0). (5.20)

One can show that, for any admissible positive boundary condition on ∂SR
0 , there exists a

unique positive non-decreasing solution U(ρ) of the Dirichlet boundary value problem for the
equation (5.20) such that U(ρ) ∈ W 1,3(SR

0 ). Then the function vε(ρ) = U
(
(gε)

1/3ρ
)

is the
solution of the following equation:

− 1

ρ2

∂

∂ρ

(
ρ2 ∂vε

∂ρ

∣∣∣∣∂vε

∂ρ

∣∣∣∣
)

+ gεvε|vε| = 0, (5.21)

and it follows from (5.21) and the properties of the function U(ρ) that

∂vε

∂ρ
(ρ) = (gε)

1/2

ρ

(∫ ρ

0
|vε(t)|2 t2 dt

)1/2

. (5.22)

We define the function V ε(x) as follows:

V ε(x) =




Cε
1vε(|x − xi,ε|) in F ε

h,

1 −
∑

i

Cε
2Ln(|x − xi,ε|)ϕ

( |x − xi,ε|
αε

)
in Kz

h \ F ε
h,

(5.23)

where

Cε
1 = 1

vε(rε) + Ln(rε) rε(∂vε/∂ρ)(rε)
, Cε

2 = Cε
1 rε

∂vε

∂ρ
(rε) (5.24)

and

F ε
h =

⋃
Fε

i ⊂Kz
h

F ε
i (5.25)

with F ε
i such that Sε

i ⊂ Kz
h. Here Sε

i is the ball centred at xi,ε and of radius αε.
From (5.4), it is easy to see that

rε

∂vε

∂ρ
(rε) =

(∫ 1

0
|U(t)|2t2 dt

)1/2

= IU = Const (5.26)

and

vε(rε) = U(1). (5.27)

Then we get the following asymptotic formulae for the constants Cε
1, C

ε
2 :

Cε
1 = 1

IU ln(1/rε)
(1 + o(1)), Cε

2 = 1

ln(1/rε)
(1 + o(1)) as ε → 0. (5.28)

Now let vε
min = vε

min(x) be the function that minimizes the functional (5.9). Let us
represent this function in the form

vε
min(x) = V ε(x) + ζ ε(x), (5.29)

where the function V ε is defined in (5.23). Then

bε,h(z) =
∫

Kz
h

{|∇vε
min|3 + gε

F (x)|vε
min|3 + h−3−γ |vε

min − 1|3} dx. (5.30)

We will prove that the function ζ ε gives a vanishing contribution (as ε → 0 and h → 0) in
(5.30) and, therefore, the functional (5.9) may be computed by the function V ε.
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Since the function vε
min = V ε + ζ ε minimizes the functional in (5.30), then we have

bε,h(z) �
∫

Kz
h

{|∇V ε|3 + gε
F (x)|V ε|3 + h−3−γ |V ε − 1|3} dx ≡ Bε,h(z). (5.31)

Let us now estimate the functional (5.30) from below. To this end we make use of the
following inequality:

|ξ1 + ξ2|p � |ξ1|p + δp|ξ2|p + p|ξ1|p−2(ξ1, ξ2), (5.32)

where ξ1, ξ2 are arbitrary vectors from the space R
s (s = 1, 2, ..), 0 < δp � 1 (δp = 1 when

p = 2). Now it follows from (5.30) and (5.32) that

bε,h(z) � Bε,h(z) + δ3Jε,h(z) + 3
∫

Kz
h

{
(∇V ε|∇V ε|, ∇ζ ε) + gε

F (x)|V ε|V ε ζ ε
}

dx

+3 h−3−γ

∫
Kz

h

|V ε − 1|(V ε − 1)ζ ε dx, (5.33)

where

Jε,h(z) =
∫

Kz
h

{|∇ζ ε|3 + gε
F (x)|ζ ε|3 + h−3−γ |ζ ε|3} dx. (5.34)

Now the inequalities (5.31), (5.33) imply that

Jε,h(z) � 3

δ3

∣∣∣∣∣
∫

Kz
h

{
(∇V ε|∇V ε|, ∇ζ ε) + gε

F (x)|V ε|V ε ζ ε + h−3−γ |V ε − 1|(V ε − 1)ζ ε
}

dx

∣∣∣∣∣
= 3

δ3

∣∣∣∣∣
∫

Kz
h

{(
�3V

ε + gε
F (x)|V ε|V ε

)
+ h−3−γ |V ε − 1|(V ε − 1)

}
ζ ε dx

∣∣∣∣∣
� 3

δ3

∫
Kz

h

{| (�3V
ε + gε

F (x)|V ε|V ε) | + h−3−γ |V ε − 1|2} |ζ ε| dx. (5.35)

Let

ηε(x) = −�3V
ε + gε

F (x)|V ε|V ε. (5.36)

Then the function ηε equals zero everywhere in the cube Kz
h except the set Dε = ∪iDε

i , where

Dε
i = {

x ∈ � | αε/2 < |x − xi,ε| < αε

}
and

ηε = −�3V
ε = − 1

ρ2

∂

∂ρ

(
ρ2

∣∣∣∣∂V ε

∂ρ
(ρ)

∣∣∣∣
2
)

in Dε
i .

Moreover, since |Ln(ρ)| � ln 2 for ρ ∈ [αε/2, αε], then the following estimate is valid:

|ηε| � C

(
ln

1

rε

)−2 1

(αε)3
in Dε

i . (5.37)

Let Sε be a union of the balls Sε
i centred at xi,ε and of radius αε. It follows now from

(5.35)–(5.37) and Hölder’s inequality that

Jε,h(z) � 3

δ3

∫
Dε

{|ηε| + h−3−γ |V ε − 1|2} |ζ ε| dx

� Ch2

[(
ln

1

rε

)−2 1

ε2αε

+ h−3−γ (αε)
2

ε2

] (∫
Sε

|ζ ε|3 dx

)1/3

. (5.38)
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To estimate the second term in (5.38) we make use of the following inequality:∫
Sε

0

|v|3 dx � C

{
(αε)

3

ε3

∫
Kε

|v|3 dx + (αε)
3 ln2 1

αε

∫
Kε

|∇v|3 dx

}
, (5.39)

where v is an arbitrary function from W 1,3(Kε), Kε is a cube centred at the point zero and of
length ε and Sε

0 is a ball centred at zero and of radius αε.
Then it follows now from (5.38), (5.39) that

Jε,h(z) � Ch3+γ /3

([
�3 + h−9−3γ (αε)

9

ε9

]
h−3−γ

∫
Kz

h

|v|3 dx

+

[
h−3−γ ln2(1/αε)

ln2(1/rε)
�2 + h−12−4γ (αε)

9

ε6
ln2 1

αε

] ∫
Kz

h

|∇v|3 dx

)1/3

.

From this inequality, for ε sufficiently small (ε � ε0(h)), we get

Jε,h(z) � Ch3+γ /3
(
Jε,h(z)

)1/3

and, therefore,

lim
ε→0

Jε,h(z) = O(h9/2+γ /2) = o(h3). (5.40)

Let us now calculate Bε,h(z). We have

Bε,h(z) =
∫

Kz
h

{|∇V ε|3 + gε
F (x)|V ε|3 + h−3−γ |V ε − 1|3} dx. (5.41)

Here ∫
Kz

h

|∇V ε|3 dx = h3 4π�(1 + o(1)) as ε → 0, (5.42)

∫
Kz

h

gε
F (x)|V ε|3 dx = gε

∫
Fε

h

|V ε|3 dx = 4π
h3

ε3

1

(IU )2 ln3 1

rε

(1 + o(1)) −→ 0 (5.43)

as ε → 0
and

h−3−γ

∫
Kz

h

|V ε − 1|3 dx −→ 0 as ε → 0. (5.44)

Therefore,

lim
h→0

lim
ε→0

h−3Bε,h(z) = 4π�. (5.45)

Now let

jε,h(z) = 3
∫

Kz
h

{
(∇V ε|∇V ε|, ∇ζ ε) + gε

F (x)|V ε|V ε ζ ε
}

dx

+3 h−3−γ

∫
Kz

h

|V ε − 1|(V ε − 1)ζ ε dx.

Then it follows from Hölder’s inequality and (5.45) that

lim
ε→0

|jε,h(z)| � 9 lim
ε→0

(
Bε,h(z)

)2/3 (
Jε,h(z)

)1/3 = o(h3) as h → 0. (5.46)

Finally, from the inequalities (5.31), (5.33), (5.46) and the equality (5.45) we get

lim
h→0

lim
ε→0

h−3bε,h(z) = 4π� (5.47)

and condition (C.2) is proved. This completes the proof of theorem 5.1.
Theorem 5.1 is proved. �
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5.2. A nonperiodic example

As an application of the previous general result (cf theorem 2.1), we give now a nonperiodic
example. More precisely, we will present a locally periodic example.

Let � be a bounded domain in R
3 with sufficiently smooth boundary and {xi} be a periodic

grid in � with a period ε. Let F ε be a union of balls F ε
i centred at the points xi and of radii

r(i)
ε defined by

r(i)
ε = exp

(
− 1

R(xi)ε3/2

)
, (5.48)

where R = R(x) is a strictly positive smooth function in �. As in the periodic case, it is clear
that meas F ε −→ 0 as ε → 0.

Consider the variational problem:∫
�

{|∇uε|3 + Gε(x)|uε|3 − 3 f (x) uε
}

dx −→ inf, uε ∈ W 1,3(�), (5.49)

where f ∈ L3/2(�) and the function Gε is given by

Gε(x) =



1

(r
(i)
ε )3

in F ε
i ; (i = 1, 2, ..., Nε),

g0(x) in �ε.

(5.50)

Following the lines of the proof of theorem 5.1 (with corresponding modifications) one
can obtain the following result.

Theorem 5.2. Let uε be the solution of the variational problem (5.49). Then uε converges
strongly in L3(�) to u the solution of the variational problem:

Jhom[u] =
∫

�

{|∇u|3 + B(x)|u|3 − 3f (x)u} dx −→ inf, u ∈ W 1,3(�), (5.51)

where

B(x) = g0(x) + 4πR2(x). (5.52)
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