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Abstract. The paper deals with a periodic homogenization problem for a

non-stationary convection-diffusion equation stated in a thin infinite cylindri-
cal domain with homogeneous Neumann boundary condition on the lateral

boundary. It is shown that homogenization result holds in moving coordi-

nates, and that the solution admits an asymptotic expansion which consists of
the interior expansion being regular in time, and an initial layer.

Introduction. The goal of the paper is to study the asymptotic behaviour of a so-
lution to an initial boundary problem for a convection-diffusion equation defined in a
thin infinite cylinder with homogeneous Neumann condition on its lateral boundary.
We assume that the coefficients of the equation are periodic in the axial direction
of the cylinder and that the period is of the same order as the cylinder diameter.
The corresponding parabolic operator takes the form

∂tu− div
(
a
(x
ε

)
∇u
)

+
1

ε

(
b
(x
ε

)
,∇u

)
; (1)

here ε is a small positive parameter, and we assume the standard uniform ellipticity
conditions on a(y) and the boundedness of the entries of a(y) and b(y).

Notice that the scaling factor 1/ε is natural for the convection term. Indeed,
if one wants to consider the long-term behaviour of a convection-diffusion process
described by the equation

∂su− div
(
a(y)∇u

)
+
(
b(y),∇u

)
= 0

in a fixed infinite cylinder, then making the diffusive change of variables

x = εy, t = ε2s

leads to a convection-diffusion problem for operator (1) in a thin cylinder.
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Closely related problems for a convection-diffusion equation defined in the whole
space have been considered in [6] and [1]. It was proved in particular that the
homogenization takes place in moving coordinates (x, t) −→

(
x − (b̄/ε)t, t

)
with a

constant vector b̄.
Homogenization problems for divergence form operators and systems in thin

bounded domains have been investigated by many authors, we mention here the
works [7], [10] and [11]. General homogenization theory results for parabolic equa-
tions can be found in [5] and [12].

In the paper we first prove uniform in ε a priori estimates for the solution. This
requires integration in weighted spaces where the solution of the periodic adjoint
cell problem is used as a weight. Then we construct the leading terms of the
asymptotic expansion in moving coordinates, determine the effective speed, and
obtain the estimates for the rate of convergence. Additional difficulty appearing
in the problem under consideration is the dimension reduction issue. Indeed, the
solutions of the original problem belong to variable Sobolev spaces, which makes
the convergence analysis rather involved.

The paper is organized as follows. Section 1 contains the problem setup. In Sec-
tion 2 we deal with a priori estimates and study auxiliary parabolic cell problems.
In Section 3 we construct formal asymptotic expansion which includes the corre-
sponding initial layers, the presence of the initial layer allows us to satisfy the initial
condition in higher order approximations. Section 4 is devoted to the convergence
analysis.

1. Problem statement. Let Q be a bounded domain in Rd−1 with the Lipschitz
boundary ∂Q. For any ε > 0, we denote by Gε a thin infinite cylinder R × εQ
with the axis directed along x1. The lateral boundary of the cylinder Gε is denoted
by Σε = R × ∂(εQ). We study the following non-stationary convection-diffusion
equation: 

∂tu
ε(t, x) +Aε uε(t, x) = 0, (t, x) ∈ (0, T )×Gε,

Bε uε(t, x) = 0, (t, x) ∈ (0, T )× Σε,

uε(0, x) = ϕ(x1), x ∈ Gε,

(2)

where

Aεu = −div
(
a
(x
ε

)
∇xu

)
+

1

ε
(b
(x
ε

)
,∇xu),

Bεu = (a
(x
ε

)
∇xu, n),

(3)

and n stands for the exterior unit normal on Σε. We suppose that the following
conditions are fulfilled:

(H1) Q is a Lipschitz bounded domain in Rd−1;
(H2) aij(y), bj(y) ∈ L∞(G), i, j = 1, ..., d, are 1-periodic functions with respect to

y1;
(H3) The matrix a(y) satisfies the uniform ellipticity condition, that is there exists

a positive constant Λ such that, for almost all x ∈ Rd,

Λ |ξ|2 ≤
d∑

i,j=1

aij(y) ξi ξj , ∀ξ ∈ Rd. (4)

(H4) ϕ(x1) ∈ C∞0 (R).
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Definition 1.1. A function uε(t, x) is said to be a weak solution of problem (2) in
(0, T ]×Gε if

uε ∈ L∞[δ, T ;L2
loc(Gε)] ∩ L2[0, T ;H1

loc(Gε)], δ ∈ (0, T )

and uε satisfies
T∫

0

∫
Gε

{
− uε ∂tψ + (aε∇uε,∇ψ) + (bε,∇uε)ψ

}
dx dt =

∫
Gε

ϕ(x1)ψ(0, x) dx

for any ψ ∈ L2[0, T ;H1(Gε)] such that ∂tψ ∈ L2[0, T ;L2(Gε)] and ψ(T, x) = 0.

We are interested in the asymptotic behaviour of uε(t, x), as ε → 0. Notice that,
for any ε > 0, the existence and the uniqueness of a generalized solution to problem
(2) is given by classical theory (see, e.g., [8]).

2. Some preliminary results.

2.1. A priori estimates. In what follows we denote Y = [0, 1)×Q,

Av = −divy(a(y)∇yv) + (b(y),∇yv), Bv = (a(y)∇yv, n);

A∗p∗ = −div(a∇p∗)− div(bp∗), B∗p∗ = (a∇p∗, n) + (b, n)p∗,

By the Krein-Rutman theorem and the Harnack inequality, the adjoint periodic
problem 

A∗ p∗(y) = 0, y ∈ Y,

B∗ p∗(y) = 0, y ∈ ∂Y,

p∗(y) is periodic in y1,

(5)

has a positive solution p∗(y) ∈ C(Y ) ∩H1(Y ) such that

0 < p− ≤ p∗(y) ≤ p+ <∞. (6)

We fix the choice of p∗ by the normalization condition∫
Y

p∗(y) dy = 1.

The goal of this section is to obtain a priori estimates for a non-stationary convection-
diffusion equation stated in a thin infinite cylinder. Namely, we consider the fol-
lowing non-homogeneous problem:

∂tu
ε(t, x) +Aε uε(t, x) = f(t, x), (t, x) ∈ (0, T )×Gε,

Bε uε(t, x) = ε g(t, x), (t, x) ∈ (0, T )× Σε,

uε(0, x) = ϕ(x), x ∈ Gε,

(7)

Multiplying the equation in (7) by p∗(x/ε)uε(x) and integrating the resulting rela-
tion by parts over Gε, we obtain

1

2

∫
Gε

∂(uε)2

∂t
p∗
(x
ε

)
dx+

1

2

∫
Gε

(uε(t, x))2A∗εp∗
(x
ε

)
dx+

+
1

2

∫
Σε

(uε(t, x))2 B∗εp∗
(x
ε

)
dσ +

∫
Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= ε

∫
Σε

g(t, x)uε(t, x) p∗
(x
ε

)
dσ +

∫
Gε

f(t, x)uε(t, x) p∗
(x
ε

)
dx.
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Here we use the notations

A∗εq(x) = −div
(
a
(x
ε

)
∇q(x)

)
− 1

ε
div
(
b
(x
ε

)
q(x)

)
,

B∗εq(x) = (a
(x
ε

)
∇q(x), n) +

1

ε
(b
(x
ε

)
, n) q(x).

Taking into account the definition of p∗(y) we get

1

2

d

dt

∫
Gε

(uε)2 p∗
(x
ε

)
dx+

∫
Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= ε

∫
Σε

g(t, x)uε(t, x) p∗
(x
ε

)
dσ +

∫
Gε

f(t, x)uε(t, x) p∗
(x
ε

)
dx.

Using the positive definiteness of the matrix a(y), bounds (6), and the Cauchy-
Bunyakovsky inequality, one can obtain

1

2

d

dt

∫
Gε

(uε)2 p∗
(x
ε

)
dx+ Λ p−

∫
Gε

|∇uε|2 dx ≤

+
1

2γ

{∫
Gε

(f(t, x))2 dx+ ε

∫
Σε

(g(t, x))2 dσ
}

+
γ

2
p+ ε

∫
Σε

(uε)2 dσ +
γ

2
p+

∫
Gε

(uε)2 dx

for any γ > 0. By the trace theorem∫
Σε

(uε)2 dσ ≤ C1

ε

∫
Gε

(uε)2 dx+ C2 ε

∫
Gε

|∇uε|2 dx

with constants C1, C2 independent of ε. Consequently, for a sufficiently small γ,

d

dt

∫
Gε

(uε)2 p∗
(x
ε

)
dx+

t∫
0

∫
Gε

|∇uε(s, x)|2 dxds

 ≤
+C

{
‖f‖2L2(Gε) + ε ‖g‖2L2(Σε)

}
+

∫
Gε

(uε)2 p∗
(x
ε

)
dx+

t∫
0

∫
Gε

|∇uε(s, x)|2 dxds

 .
Integrating with respect to t and applying the Grönwall lemma and the positiveness
of the function p∗, one can see that

∫
Gε

(uε)2 dx+

t∫
0

∫
Gε

|∇uε(s, x)|2 dxds ≤

≤ C et
{
‖f‖2L2[0,T ;L2(Gε)] + ε ‖g‖2L2[0,T ;L2(Σε)]

+ ‖ϕ‖2L2(Gε)

}
, t ∈ (0, T ]

(8)

where the constant C does not depend on ε, and depends only on Λ, d and Q.
For the justification procedure we also need a priori estimates in the case of right-

hand side being the divergence of a bounded vector-function. Namely, consider the
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following problem:
∂tu

ε(t, x) +Aε uε(t, x) = divxF (t, x), (t, x) ∈ (0, T )×Gε,

Bε uε(t, x) = −(F, n), (t, x) ∈ (0, T )× Σε,

uε(0, x) = 0, x ∈ Gε,

(9)

with F (t, x) such that

|F (t, x)| ≤ f1(t, x) e−γ |x1|, f1 ∈ L∞((0, T )×Gε).

Multiplying equation in (9) by p∗(xε )uε(x) and integrating by parts over Gε, we
obtain

1

2

d

dt

∫
Gε

(uε)2 p∗
(x
ε

)
dx+

∫
Gε

(aε∇uε,∇uε) p∗
(x
ε

)
dx =

= −
∫
Gε

(F (t, x), ∇uε(t, x)) p∗
(x
ε

)
dx

−
∫
Gε

(F (t, x), ∇p∗
(x
ε

)
)uε(t, x) dx ≡ Iε1 + Iε2 .

(10)

Exploiting the Couchy-Bunyakovsky inequality and taking into account (6) one gets

|Iε1 | ≤
p+

2δ
‖F‖2L2(Gε) +

p+ δ

2
‖∇uε‖L2(Gε)

≤ p+

δ
‖f1‖2L∞((0,T )×Gε) ε

d−1 + p+ δ ‖∇uε‖L2(Gε), δ =
p−Λ

p+
.

The integral Iε2 is estimated as follows

|Iε2 | ≤
1

2

∫
Gε

|
(
F,∇p∗

(x
ε

))
|2 dx+

1

2
‖uε‖2L2(Gε)

≤
+∞∑

n=−∞
‖F‖2L∞(εYn)

∫
εYn

|∇p∗
(x
ε

)
|2 dx+

1

2
‖uε‖2L2(Gε)

≤
+∞∑

n=−∞
‖F‖2L∞(εYn) ε

d−2

∫
Yn

|∇p∗(y)|2 dy +
1

2
‖uε‖2L2(Gε)

≤ C εd−1 1

ε
‖f1‖2L∞((0,T )×Gε) +

1

2
‖uε‖2L2(Gε),

where Yn = (n, n+ 1]×Q.
Finally, combining the obtained estimates for Iε1 and Iε2 with (10), and using the

Grönwall’s lemma, for t ∈ (0, T ] one has

∫
Gε

(uε)2 dx+

t∫
0

∫
Gε

|∇uε(s, x)|2 dxds ≤ C et

ε
εd−1 ‖f1‖2L∞((0,T )×Gε). (11)

2.2. Auxiliary results. In the sequel we will need the information about the as-
ymptotic behaviour of solutions to parabolic equations, as t → ∞. Consider the
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initial boundary value problem

∂τv(τ, y) +A v(τ, y) = 0, (τ, y) ∈ (0,∞)× Y,

B v(τ, y) = 0, (τ, y) ∈ (0,∞)× ∂Y,

v(τ, y)− y1 − periodic,

v(0, y) = ψ(y), y ∈ Y,

(12)

where Y = [0, 1)×Q.

Lemma 2.1. Suppose conditions (H1)−(H3) are fulfilled and ψ(y) ∈ L2(Y ). Then
there exists a unique weak solution v to problem (12), and it stabilizes to a constant
v∞ at the exponential rate, as τ →∞, that is

|v(τ, y)− v∞| ≤ C0 ‖ψ‖L2(Y )e
−γ τ , y ∈ Y, τ > 0, (13)

with positive constants C0 and γ depending only on Λ, d and Q. Moreover, ∇yv
stabilizes exponentially to 0, as τ →∞:

τ+1∫
τ

∫
Y

|∇yv(s, y)|2 dyds ≤ C e−2γ τ . (14)

The constant v∞ is defined by

v∞ =

∫
Y

ψ(y) p∗(y) dy,

where p∗(y) solves problem (5).

Proof. Let us consider two functions

m(τ) = min
y∈Y

v(τ, y), M(τ) = max
y∈Y

v(τ, y).

By the maximum principle, M(τ) decreases and m(τ) increases. In view of the
linearity of the problem, without loss of generality we assume that m(τ0) = 0.
Since v ≥ 0, then we can use the Harnack inequality

m(τ0 + 1) ≥ αM(τ0 + 1), α < 1

to obtain the estimate

oscτ=τ0+1v(τ, y) ≡M(τ0 + 1)−m(τ0 + 1) ≤ (1− α)M(τ0) ≡ (1− α)oscτ=τ0v(τ, y).

Consequently,

oscτ=τ0+1v(τ, y) ≤ (1− α)oscτ=τ0v(τ, y), τ0 ≥ 0

and, obviously, v converges to some constant v∞, as τ →∞

|v(τ, y)− v∞| ≤ C0 ‖ψ‖L2(Y )e
−γτ ,

where C and γ depend only on Λ, d and Q.
Let us calculate the constant v∞. To this end we multiply the equation in (12)

by p∗ and integrate by parts over the set (0, τ) × Y . As a result we obtain the
following equality: ∫

Y

v(τ, y) p∗(y) dy =

∫
Y

ψ(y) p∗(y) dy.
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Since v converges uniformly to the constant v∞, as τ →∞, then it follows from the
last equality that

v∞ =

∫
Y

ψ(y) p∗(y) dy,

if p∗ is normalized by
∫
Y
p∗dy = 1.

Now we prove estimate (14). Note that the function w = v − v∞ solves the
same equation as v, and satisfies the initial condition w(0, y) = ψ − v∞. Multiply-
ing the equation by w, integrating by parts and applying the Cauchy-Bunyakovski
inequality gives∫
Y

|w(τ + 1, y)|2 dy + Λ

τ+1∫
τ

∫
Y

|∇w|2 dyds ≤

Λ−1 1

2η

τ+1∫
τ

∫
Y

|w(s, y)|2 dyds+ Λ−1 η

2

τ+1∫
τ

∫
Y

|∇yw(s, y)|2 dyds+

∫
Y

|w(τ, y)|2 dy,

and, consequently, choosing η < 2Λ2 and using (13), we obtain

τ+1∫
τ

∫
Y

|∇w|2 dyds ≤ C e−2γτ .

The next lemma generalizes the result of Lemma 2.1 to the non-homogeneous
case. Consider the boundary value problem

∂τv(τ, y) +A v(τ, y) = f(τ, y) + divyF (τ, y), (τ, y) ∈ (0,∞)× Y,

B v(τ, y) = g(τ, y)− (F (τ, y), n), (τ, y) ∈ (0,∞)× ∂Y,

v(0, y) = 0, y ∈ Y,

(15)

where f ∈ L2[0,∞;L2(Y )], F ∈ L2[0,∞;L2(Y )d] and g ∈ L2[0,∞;L2(∂Y )] decay
exponentially, as τ →∞, that is

τ+1∫
τ

‖f(s, ·)‖2L2(Y ) ds ≤ C e
−γ1τ ;

τ+1∫
τ

‖F (s, ·)‖2L2(Y )d ds ≤ C e
−γ1τ ;

τ+1∫
τ

‖g(s, ·)‖2L2(∂Y ) ds ≤ C e
−γ1τ , γ1 > 0.

Lemma 2.2. Under the assumptions being made, a solution of problem (15) satis-
fies the estimates

τ+1∫
τ

‖v(s, ·)− v∞‖2L2(Y ) ds ≤ C e
−γ̃τ , (16)

τ+1∫
τ

‖∇v(s, ·)‖2L2(Y ) ds ≤ C e
−γ̃τ , γ̃ > 0. (17)



118 IRYNA PANKRATOVA AND ANDREY PIATNITSKI

Here C depends on Λ, d and Q. The constant v∞ is determined by

v∞ =

∞∫
0

∫
Y

f(τ, y) p∗(y) dy dτ −
∞∫

0

∫
Y

(F (τ, y),∇p∗(y)) dy dτ

+

∞∫
0

∫
∂Y

g(τ, y) p∗(y) dσ dτ,

p∗ being a solution of (5).

Proof. First of all we represent the functions on the right-hand side of (15) as the
sums of functions with finite supports, that is

f(τ, y) =

+∞∑
m=−∞

fm(τ, y), F (τ, y) =

+∞∑
m=−∞

Fm(τ, y), g(τ, y) =

+∞∑
m=−∞

gm(τ, y),

where fm(τ, y) = f(τ, y)χ[m,m+1), Fm(τ, y) = F (τ, y)χ[m,m+1),
gm(τ, y) = g(τ, y)χ[m,m+1), and χ[m,m+1) = χ[m,m+1)(τ) is the characteristic func-
tion of the interval [m,m+ 1).

Due to the linearity of the problem, the solution v of (15) can be represented in
the form

v(τ, y) =

+∞∑
m=−∞

vm(τ, y),

where vm solves the problem
∂τvm +A vm = fm(τ, y) + divyFm(τ, y), (τ, y) ∈ (0,∞)× Y,

B vm = gm(τ, y)− (Fm(τ, y), n), (τ, y) ∈ (0,∞)× ∂Y,

vm(0, y) = 0, y ∈ Y.

(18)

Notice that, in view of the uniqueness of the solution, vm(τ, y) = 0 for τ ∈ [0,m).
Then, multiplying the equation in (18) by vm and integrating over (m−1,m+2)×Y ,
we obtain

∫
Y

(vm(m+ 2, y))2 dy ≤ C(

m+1∫
m

‖f(s, ·)‖2L2(Y ) ds+

+

m+1∫
m

‖g(s, ·)‖2L2(∂Y ) ds+

m+1∫
m

‖F (s, ·)‖2L2(Y ) ds) ≤ C e
−γ1m.

By Lemma 2.1, vm satisfies estimate (13) in (m+ 2,∞)× Y , namely,

|vm(τ, y)− v∞m | ≤ C e−γ1m e−γ (τ−m−2) ≤ C e−γ̃τ , τ > m+ 2,

for some constant v∞m , where γ̃ = min{γ, γ1}. In view of the maximum principle,

v∞m ≤ Ce−γ1m.
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Let us show that v =
∑
vm stabilizes to v∞ =

∑
v∞m , as τ → ∞. To this end we

estimate the L2-norm of the difference v − v∞.

N+1∫
N

‖v(s, ·)− v∞‖2L2(Y ) ds =

N+1∫
N

‖
+∞∑
m=0

(vm(s, ·)− v∞m )‖2L2(Y ) ds =

=

N+1∫
N

‖
{ ∑
m≤N−2

+
∑

m≥N−1

}
(vm(s, ·)− v∞m )‖2L2(Y ) ds ≤

≤ C1N
2 e−2γN + C2 e

−2γ1N ≤ C e−γ̃N , γ̃ > 0.

The exponential decay of ∇v can be proved in much the same way as in the homo-
geneous case.

3. Asymptotic expansion.

3.1. Formal inner expansion. Following the ideas in [6] and [1], we are looking
for an approximate solution in the form

uε ∼ u0

(
t , x1 − ε−1 b̄1t

)
+

∞∑
k=1

εk vk
(
t , x1 − ε−1 b̄1t , y

)
, y =

x

ε
, (19)

where vk, k ≥ 1, are unknown functions which are 1-periodic in y1, the constant b̄1
is to be determined.

Substituting (19) into (2) and collecting power-like terms in front of ε−1 in the
equation and of ε0 in the boundary condition, we obtain the following periodic
problem for the unknown function v1:

Ay v1(t , x1 − ε−1b̄1t , y)

=
(
∂yiai1(y)− b1(y) + b̄1

)
∂x1

u0(t , x1 − ε−1b̄1t), y ∈ Y,

By v1(t , x1 − ε−1b̄1t , y) = −ai1(y)ni ∂x1
u0(t , x1 − ε−1b̄1t), y ∈ ∂Y ;

(20)

Setting

b̄1 =

∫
Y

(ai1(y) ∂yip
∗(y) + b1(y) p∗(y)) dy, (21)

we guarantee that a solution to problem (20) exists. The specific form of the right-
hand side of (20) suggests the following representation of v1:

v1(t , x1 − ε−1b̄1t , y) = N1(y) ∂x1u0(t , x1 − ε−1b̄1t) + u1(t , x1 − ε−1b̄1t),

where a Y -periodic function N1 solves the problem{ Ay N1(y) = ∂yiai1(y)− b1(y) + b̄1, y ∈ Y,

By N1(y) = −ai1(y)ni, y ∈ ∂Y ;
(22)
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Similarly, we get the problem for v2



Ay v2(t , x1 − ε−1b̄1t , y) = −∂tu0

(
t, x1 −

b̄1
ε
r
)∣∣∣
r=t

+
{
a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

−b1(y)N1(y) + b̄1N1(y)
}
∂2
x1
u0

(
t, x1 −

b̄1
ε
t
)

+
{
∂yiai1(y)− b1(y) + b̄1

}
∂x1u1

(
t, x1 −

b̄1
ε
t
)
, y ∈ Y,

By v2(y) = −ai1(y)N1(y)ni ∂
2
x1
u0

(
t, x1 −

b̄1
ε
t
)
, y ∈ ∂Y.

(23)

The compatibility condition for (23) gives rise to the Cauchy problem for u0

{
∂tu0(t, x1) = ahom

11 ∂2
x1
u0(t, x1), (t, x1) ∈ (0, T )× R,

u0(0, x1) = ϕ(x1), x1 ∈ R,
(24)

where the constant ahom
11 is defined by

ahom
11 =

∫
Y

[
a11(y) + a1j(y)∂yjN1(y)− b1(y)N1(y)

]
p∗(y) dy

+

∫
Y

[
b̄1N1(y)p∗(y)− ai1(y)N1(y) ∂yip

∗(y)
]
dy.

The positiveness of ahom
11 has been proved in [9].

Lemma 3.1. The constant ahom
11 is strictly positive.

The form of the right-hand side of the equation in (23) suggests the following
representation for the solution v2:

v2(t , x1 − ε−1b̄1t , y) = N2(y) ∂2
x1
u0(t , x1 − ε−1b̄1t)

+N1(y) ∂x1
u1(t , x1 − ε−1b̄1t) + u2(t , x1 − ε−1b̄1t)

with y1-periodic function N2 being a solution of the problem


AN2(y) = a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

−b1(y)N1(y) + b̄1N1(y)− ahom
11 , y ∈ Y,

BN2(y) = −ai1(y)niN1(y), y ∈ ∂Y ;

(25)
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Similarly, we obtain a boundary value problem for v3

Ay v3(t , x1 − ε−1b̄1t , y) = −N1(y)∂t∂x1
u0

(
t, x1 −

b̄1
ε
r
)∣∣∣
r=t

−∂tu1

(
t, x1 −

b̄1
ε
r
)∣∣∣
r=t

+
[
a11(y)N1(y) + ∂yi(ai1(y)N2(y))

+a1j(y)∂yjN2(y)− b1(y)N2(y) + b̄1N2(y)
]
∂3
x1
u0

(
t, x1 −

b̄1
ε
t
)

+
[
a11(y) + ∂yi(ai1(y)N1(y)) + a1j(y)∂yjN1(y)

+ b1(y)N1(y) + b̄1N1(y)
]
∂2
x1
u1

(
t, x1 −

b̄1
ε
t
)

+
[
∂yiai1(y)− b1(y) + b̄1

]
∂x1u2

(
t, x1 −

b̄1
ε
t
)
, y ∈ Y,

By v3(y) = −ai1(y)N2(y)ni ∂
3
x1
u0

(
t, x1 −

b̄1
ε
t
)

−ai1(y)N1(y)ni ∂
2
x1
u1

(
t, x1 −

b̄1
ε
t
)

−ai1(y)ni ∂x1
u2

(
t, x1 −

b̄1
ε
t
)
, y ∈ ∂Y.

(26)

From the compatibility condition for (26) we derive the equation for u1:

∂tu1(t, x1) = ahom
11 ∂2

x1
u1(t, x1) + h3 ∂

3
x1
u0(t, x1), (t, x1) ∈ (0, T )× R,

where

h3 =

∫
Y

(
− ahom

11 N1p
∗ + a11N1p

∗ − ai1N2∂yip
∗ + b1N2p

∗

+a1j∂yjN2p
∗ + b̄1N2p

∗) dy. (27)

Naturally, v3 can be represented as the sum

v3

(
t, x1 −

b̄1
ε
t , y

)
= N3(y) ∂3

x1
u0

(
t, x1 −

b̄1
ε
t
)

+N2(y) ∂2
x1
u1

(
t, x1 −

b̄1
ε
t
)

+N1(y) ∂x1
u2

(
t, x1 −

b̄1
ε
t
)

+ u3

(
t, x1 −

b̄1
ε
t
)
,

with N3 being a y1-periodic solution of the cell problem
AN3(y) = a11(y)N1(y) + ∂yi(ai1(y)N2(y)) + a1j(y)∂yjN2(y)

−b1(y)N2(y) + b̄1N2(y)− ahom
11 N1(y)− h3, y ∈ Y,

BN3(y) = −ai1(y)niN2(y), y ∈ ∂Y.

(28)

Arguing as above, one can derive the equation for u2

∂tu2(t, x1) = ahom
11 ∂2

x1
u2(t, x1)

+h4 ∂
4
x1
u0(t, x1) + h3 ∂

3
x1
u1(t, x1),

where the constant h4 is defined by

h4 =

∫
Y

(
− ahom

11 N2p
∗ + a11N2p

∗ − ai1N3∂yip
∗ + b1N3p

∗

+a1j∂yjN3p
∗ + b̄1N3p

∗ − h3N1

)
dy.

(29)
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Notice that determining initial conditions for u1 and u2 requires constructing initial
layer correctors, which is done in Section 3.2.

Finally, as an inner approximate solution we take first three terms of (19)

uε∞(t, x) = u0

(
t , x1 −

b̄1
ε
t
)

+ εN1

(x
ε

)
∂x1

u0(t , x1 −
b̄1
ε
t)

+ε u1

(
t , x1 −

b̄1
ε
t
)

+ ε2N2

(x
ε

)
∂2
x1
u0(t , x1 −

b̄1
ε
t)

+ε2N1

(x
ε

)
∂x1

u1(t , x1 −
b̄1
ε
t) + ε2u2(t , x1 −

b̄1
ε
t).

3.2. Initial layers. The leading term u0(t, x1) satisfies the initial condition u0(0, x1)
= ϕ(x1). We introduce the initial layer functions, which will allow us to satisfy the
initial condition up to the second power of ε. Consider the function φ1(τ, y) which
is a solution to the problem

∂τφ1 +Ayφ1 = 0, (τ, y) ∈ (0,∞)× Y,

Byφ1 = 0, (τ, y) ∈ (0,∞)× ∂Y,

φ1(0, y) = −N1(y).

(30)

By Lemma 2.1, φ1 stabilizes to a constant φ1, as τ → ∞, at the exponential rate.
The constant φ1 can be calculated as follows

φ1 = −
∫
Y

N1(y) p∗(y) dy. (31)

We use this constant to set the initial value for u1: u1(0, x1) = φ1 ϕ
′(x1). In this

way [
u0

(
t , x1 −

b̄1
ε
t
)

+ εN1

(x
ε

)
∂x1u0(t , x1 −

b̄1
ε
t) + ε u1

(
t , x1 −

b̄1
ε
t
)

+ ε
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′(x1)

]∣∣∣
t=0

= ϕ(x1).

Similarly, we introduce φ2(τ, y) such that:
∂τφ2 +Ayφ2 = 0, (τ, y) ∈ (0,∞)× Y,

Byφ2 = 0, (τ, y) ∈ (0,∞)× ∂Y,

φ2(0, y) = −N2(y);

(32)

The constant to which φ2 stabilizes, as τ →∞, we denote by φ2

φ2 = −
∫
Y

N2(y) p∗(y) dy, (33)

and set

u2(0, x1) = φ2 ϕ
′′(x1) + φ1 ϕ

′′(x1).

In this way the boundary value problems for u1 and u2 take the form ∂tu1(t, x1) = ahom
11 ∂2

x1
u1(t, x1) + h3 ∂

3
x1
u0(t, x1), (t, x1) ∈ (0, T )× R,

u1(0, x1) = φ1 ϕ
′(x1), x1 ∈ R;

(34)



CONVECTION-DIFFUSION EQUATION IN A CYLINDER 123
∂tu2(t, x1) = ahom

11 ∂2
x1
u2(t, x1)

+h4 ∂
4
x1
u0(t, x1) + h3 ∂

3
x1
u1(t, x1), , (t, x1) ∈ (0, T )× R,

u2(0, x1) = φ2 ϕ
′′(x1) + φ1 ϕ

′′(x1)

(35)

with the constants h3, h4 defined in (27), (29). Then[
ε2N2

(x
ε

)
∂2
x1
u0(t , x1 −

b̄1
ε
t) + ε2N1

(x
ε

)
∂x1

u1(t , x1 −
b̄1
ε
t) +

+ +ε2 q2

(x
ε

)
g(x1) + ε2u2(t , x1 −

b̄1
ε
t) + ε2

(
φ2

( t
ε2
,
x

ε

)
− φ2

)
ϕ′′(x1) +

+ε2
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′(x1)

]∣∣∣
t=0

= 0.

Denote

uεil(t, x) = ε
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′(x1) + ε2

(
φ2

( t
ε2
,
x

ε

)
− φ2

)
ϕ′′(x1)+

+ε2
(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′(x1).

(36)

We summarize this section by writing down the formal asymptotic expansion for a
solution uε of problem (2) which has been constructed above. It reads

Uε(t, x) = u0

(
t , x1 −

b̄1
ε
t
)

+ εN1

(x
ε

)
∂x1

u0(t , x1 −
b̄1
ε
t)

+ε u1

(
t , x1 −

b̄1
ε
t
)

+ ε2N2

(x
ε

)
∂2
x1
u0(t , x1 −

b̄1
ε
t)

+ε2N1

(x
ε

)
∂x1

u1(t , x1 −
b̄1
ε
t) + ε2u2(t , x1 −

b̄1
ε
t) + uεil(t, x).

(37)

Here u0 is a solution of the homogenized problem (24); N1, N2 solve auxiliary cell
problems (22), (25); u1 and u2 are solutions of nonhomogeneous Cauchy problems
(34), (35); the initial layer uεil is given by (30)-(33) and (36). Notice that the
approximate solution satisfies the initial condition: Uε(0, x) = ϕ(x1).

4. Justification procedure. In thin domain Gε it is natural to introduce the
following notion of convergence (see, for example, [4], [13]).

Definition 4.1. We say that fε(t, x) converges strongly to zero in L2[0, T ;H1(Gε)]
if

ε−
(d−1)

2 ‖fε‖
L2[0,T ;H1(Gε)]

−→ 0, ε→ 0.

The normalization factor ε−
(d−1)

2 appears due to the fact that the norm of a fixed

nontrivial C∞0 (R) function ϕ(x1) in the space L2[0, T ;H1(Gε)] is of order ε
(d−1)

2 .
The following theorem is the main result of the paper.

Theorem 4.2. Let conditions (H1)− (H4) be fulfilled. Then the difference between
the exact solution uε of problem (13) and the approximate solution Uε given by (37),
converges in L2[0, T ;H1

loc(Gε)] to zero, as ε→ 0. Moreover, the following estimate
holds: ∫

Gε

(uε − Uε)2 dx+

t∫
0

∫
Gε

|∇(uε(s, x)− Uε(s, x))|2 dxds ≤ C ε2 εd−1. (38)
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Proof. In order to estimate the norm (in the appropriate space) of the difference uε−
Uε between the exact and the approximate solutions, we calculate first Aε(uε−Uε)
and Bε(uε−Uε), and then make use of a priori estimates (8), (11). Straightforward
computations yield

Aε(uε(t, x)− Uε(t, x)) = ε (Rε1(t, x) +Rε2(t, x)) + o(ε), ε→ 0,

where

Rε1(t, x) = −
1∑
k=0

Nk
(x
ε

)
∂t∂

k
x1
u1−k(t , x1 −

b̄1
ε
r)
∣∣∣
r=t

+b̄1

2∑
k=0

Nk
(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

1∑
k=0

a11

(x
ε

)
Nk
(x
ε

)
∂k+2
x1

u1−k(t , x1 −
b̄1
ε
t)

+

2∑
k=1

a1j

(x
ε

)
∂yjNk(y)

∣∣∣
y=x/ε

∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+

2∑
k=0

b1
(x
ε

)
Nk
(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+b̄1

2∑
k=1

(
φk(τ, y)− φk

)
ϕ′′′(x1) + a11(y)

(
φ1

( t
ε2
,
x

ε

)
− φ1

)
ϕ′′′(x1)

+

2∑
k=1

a1j(y)∇yφk(τ, y)
∣∣∣
y=x/ε,τ=t/ε2

ϕ′′′(x1)

+b1(y)

2∑
k=1

(
φk
( t
ε2
,
x

ε

)
− φk

)
ϕ′′′(x1).

Rε2(t, x) =

2∑
k=0

∂yi(ai1(y)Nk(y))
∣∣∣
y=x/ε

∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

+

2∑
k=1

∂yi(ai1(y)(φk(τ, y)− φk))
∣∣∣
y=x/ε,τ=t/ε2

ϕ′′′(x1).

Similarly,

Bε(uε(t, x)− Uε(t, x)) = ε2Rε3(t, x)

with

Rε3(t, x) = −
2∑
k=0

ai1
(x
ε

)
niNk

(x
ε

)
∂k+1
x1

u2−k(t , x1 −
b̄1
ε
t)

ai1(y)ni

2∑
k=1

(
φk
( t
ε2
,
x

ε

)
− φk

)
ϕ′′′(x1).

By a priori estimates (8) and (11),∫
Gε

(uε − Uε)2 dx+

t∫
0

∫
Gε

|∇(uε(s, x)− Uε(s, x))|2 dxds

≤ C eT
{
‖εRε1‖2L2[0,T ;L2(Gε)] + ε ‖ε2Rε3‖2L2[0,T ;L2(Σε)]

+
1

ε
‖εRε2‖2L∞((0,T )×Gε)

}
.
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In order to estimate Rε1, R
ε
2 and Rε3, we analyze properties of the solutions u0, u1

and u2 of problems (24), (34) and (35). For u0 the well-known integral Poisson
formula takes place:

u0(t, x1) =
θ(t)√

4πahom
11 t

∫
R

ϕ(ξ) e
− |x1−ξ|

2

4ahom11 t dξ.

Here θ is the unit step function, that is θ(t) = 1 for t ≥ 0, and θ(t) = 0 when t < 0.
Moreover, similar formula is valid for any derivative of u0 with respect to x1:

∂(k)
x1
u0(t, x1) =

θ(t)√
4πahom

11 t

∫
R

∂
(k)
ξ ϕ(ξ) e

− |x1−ξ|
2

4ahom11 t dξ.

Bearing in mind that ϕ has finite support, one can see that

|∂(k)
x1
u0(t, x1)| ≤ C e−α|x1|2 , C, α > 0, (39)

where α depends on T . Similarly, the following integral representation of ∂
(k)
x1 u1 is

valid:

∂(k)
x1
u1(t, x1) =

θ(t) φ̄1√
4πahom

11 t

∫
R

∂
(k+1)
ξ ϕ(ξ) e

− |x1−ξ|
2

4ahom11 t dξ

+

t∫
0

h3√
4πahom11 (t− τ)

dτ

∫
R

∂3+k
x1

u0(τ, ξ) e
− |x1−ξ|

2

4ahom11 (t−τ) dξ = I1 + I2.

Arguing as above we obtain

|I1| ≤ C e−α|x1|2 , α > 0.

Let us estimate I2.

|I2| ≤
{ t∫

0

dτ

∫
|x1−ξ|≤2|x1|

dξ +

t∫
0

dτ

∫
|x1−ξ|>2|x1|

dξ
} h3 ∂

3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
− |x1−ξ|

2

4ahom11 (t−τ) .

In view of (39), for ξ satisfying |x1 − ξ| ≤ 2|x1|,∣∣∂3+k
x1

u0(τ, ξ) e
− |x1−ξ|

2

4ahom11 (t−τ)
∣∣ ≤ C e−α|ξ|2 e− |x1−ξ|24ahom11 T ≤ C e−α1|x1|2 , α1 > 0,

thus,
t∫

0

dτ

∫
|x1−ξ|≤2|x1|

h3 ∂
3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
− |x1−ξ|

2

4ahom11 (t−τ) dξ

≤ C |x1| e−α1|x1|2
t∫

0

1√
t− τ

dτ ≤ C e−α1|x1|2 .

Noticing that

1√
4πahom

11 t

∫
R

e
− |x1−ξ|

2

4ahom11 t dξ = 1,
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one has
t∫

0

dτ

∫
|x1−ξ|>2|x1|

h3 ∂
3+k
x1

u0(τ, ξ)√
4πahom11 (t− τ)

e
− |x1−ξ|

2

4ahom11 (t−τ) dξ ≤ C e−α1|x1|2 , α1 > 0.

In this way we see that u1 satisfies the estimate

|∂kx1
u1(t, x1)| ≤ C e−α1|x1|2 , α1 > 0, t ≥ 0, x ∈ R. (40)

Arguing as above, one can see that analogous estimate holds for u2 solving problem
(35).

|∂kx1
u2(t, x1)| ≤ C e−α1|x1|2 , α1 > 0, t ≥ 0, x ∈ R. (41)

Bearing in mind the boundedness of the coefficients aij , bj , properties of N1 and
N2 as the solutions of (22), (25), and bounds (39)-(41), one can check the validity
of (38). Note that the exponential decay of the initial layer functions is used while
estimating the corresponding terms.
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