
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2010.5.189
c©American Institute of Mathematical Sciences
Volume 5, Number 2, June 2010 pp. 189–215

HOMOGENIZATION OF VARIATIONAL FUNCTIONALS WITH

NONSTANDARD GROWTH IN PERFORATED DOMAINS

Brahim Amaziane
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Abstract. The aim of the paper is to study the asymptotic behavior of solu-
tions to a Neumann boundary value problem for a nonlinear elliptic equation
with nonstandard growth condition of the form

−div
(
|∇uε|pε(x)−2 ∇uε

)
+ |uε|pε(x)−2 uε = f(x)

in a perforated domain Ωε, ε being a small parameter that characterizes the
microscopic length scale of the microstructure. Under the assumption that
the functions pε(x) converge uniformly to a limit function p0(x) and that p0

satisfy certain logarithmic uniform continuity condition, it is shown that uε

converges, as ε → 0, to a solution of homogenized equation whose coefficients
are calculated in terms of local energy characteristics of the domain Ωε. This
result is then illustrated with periodic and locally periodic examples.

1. Introduction. In recent years, increasing attention has been paid to the study
of the so called differential equations and variational problems with nonstandard
p(x)-growth motivated by their applications to the mathematical modeling in con-
tinuum mechanics. Such equations arise, for example, from the modeling of non-
Newtonian fluids with thermo-convective effects (see, e.g., [9, 10]), the modeling of
electro-rheological fluids (see, e.g., [28, 29]), the thermistor problem (see, e.g., [37]),
the problem of image recovery (see, e.g., [16]), and the motion of a compressible
fluid in a heterogeneous anisotropic porous medium obeying to the nonlinear Darcy
law (see, e.g., [11, 14]). There is an extensive literature on this subject. We will
not attempt a review of the literature here, but merely mention a few references,
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see for instance [3, 4, 12, 16, 19, 22, 30, 32], and references therein. Recently, there
also appeared a research group on variable exponent Lebesgue and Sobolev spaces;
we refer to their web page

http://www.math.helsinki.fi/analysis/varsobgroup/.
This paper is aimed at homogenization of the Neumann problem for the following

equation with nonstandard growth:

− div
(
|∇uε|pε(x)−2 ∇uε

)
+ |uε|pε(x)−2 uε = f(x) in Ωε, (1)

where ε is a small positive parameter, Ωε = Ω \ Fε is a perforated domain in R
n

(n > 2), Ω is a bounded Lipschitz domain, and pε is a continuous positive function
in Ω which converges to a function p0 and satisfies some conditions which will be
specified in Section 3; f is a given function. Equations of such type are called
pε(x)–Laplacian equations with nonstandard growth conditions.

Note that the Neumann boundary value problem in perforated domains for lin-
ear and nonlinear equations with standard growth, i.e., pε(x) = p = Const in Ωε,
was considered earlier by many authors (see, e.g., [17, 26, 38] and the bibliography
therein). Homogenization problems for functionals with periodic and locally peri-
odic rapidly oscillating Lagrangians of p-growth with a constant p are well studied
now, see for instance [15, 18] and the bibliography therein.

The works [33, 34, 35, 36, 24] (see also [38]) focus on the variational functionals
with non-standard growth conditions. In particular, the homogenization and Γ-
convergence problems for Lagrangians with variable rapidly oscillating exponents
p(x) were considered in [34, 35]. It was shown that the energy minimums and the
homogenized Lagrangians in the spaces W 1,r might depend on the value of r (so
called Lavrentiev phenomenon). For example, such a behaviour can be observed for
the Lagrangian |∇u|p(x/ε) with a periodic “chess-board” exponent p(y) and a small
parameter ε > 0.

Another interesting example of Lagrangian with rapidly oscillating exponent was
considered in [24]. Namely, for the functional

Jε[u] =
∫
|∇u|p(x/ε)dx

with a smooth periodic exponent p(y) such that p(x) > 1, it was shown that the
limit functional is bounded on Sobolev-Orlicz space of functions with gradient in a
Lα log-space where α is the fiber percolation level of p(x). Variational functionals
with non-standard growth conditions have also been considered in [15]. Chapter 21
of this book focuses on the Γ-convergernce of such functionals in Lp spaces. The Γ–
convergence of the variational functionals for Lagrangians of pε growth with rapidly
oscillating coefficients in variable Sobolev spaces W 1,pε(·) was studied in [8].

Let us also mention that the homogenization of the Dirichlet variational problem
corresponding to the nonlinear equation (1) was studied in [5, 7]. To our knowl-
edge, the homogenization problems in perforated domain for pε(x)–Laplacian with
nonstandard growth conditions have not been studied earlier. In this paper we
deal with the Neumann variational problem for the nonlinear equation (1). Here,
problem (1) is considered in the framework of Sobolev spaces with variable expo-
nents which will be briefly described in the following Section. For a more general
discussion on the variational homogenization methods used in this paper, we refer
to [15, 18, 26].

http://www.math.helsinki.fi/analysis/varsobgroup/
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Following the approach developed in [26], instead of a classical periodicity as-
sumption on the structure of the perforated domain Ωε, we impose certain condi-
tions on the so–called local energy characteristics associated with the equation (1).
It will be shown that the asymptotic behavior, as ε → 0, of the solution uε is
described by the Neumann problem for the following nonlinear equation:

− ∂xi
ai(x,∇u) + a0(x)|u|p0(x)−2u = ρ(x)f(x) in Ω, (2)

where the functions ai (i = 1, 2, .., n), a0, and ρ are defined in terms of the above
mentioned local characteristics.

The proof of the main result is based on the application of the notion of Γ–
convergence and the variational homogenization technique which is nowadays widely
used in the homogenization theory (see, e.g., [15, 26, 38] and references therein).

The outline of the rest of the paper is as follows. In Section 2, for the sake of
completeness, we recall the definition and main results on the Lebesgue and Sobolev
spaces with variable exponents which will be used in the sequel. In Section 3 all
necessary mathematical notation is defined, the microscopic problem is formulated,
the general assumptions are stated, and the main result is formulated. The proof of
the convergence result is carried out in Section 5; it relies on auxiliary results from
Section 4. Two examples of periodic and locally periodic structures are considered
in Section 6.

Notational convention. In what follows C, C1, C2, etc. are generic constants
independent of ε.

2. Sobolev spaces with variable exponents. For the reader’s convenience, we
recall some basic facts concerning Sobolev spaces with variable exponents, see for
instance [13] or [20] and the bibliography herein.

Let Ω be a bounded Lipschitz domain in R
n (n > 2) and the exponent function

p(x) satisfies the following conditions:

1 < p− = inf
Ω

p(x) 6 p(x) 6 sup
Ω

p(x) = p+ < +∞. (3)

For all x, y ∈ Ω,

|p(x) − p(y)| 6 ω(|x − y|) with lim
τ→0

ω(τ) ln

(
1

τ

)
6 C, (4)

where C is a constant.

1. By Lp(·)(Ω) we denote the space of measurable functions f in Ω such that

Ap(·),Ω(f) =

∫

Ω

|f(x)|p(x) dx < +∞.

The space Lp(·)(Ω) equipped with the norm

‖f‖Lp(·)(Ω) = inf

{
λ > 0 : Ap(·),Ω

(
f

λ

)
6 1

}
(5)

becomes a Banach space.
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2. The following inequalities hold:





min
(
‖f‖p−

Lp(·)(Ω)
, ‖f‖p+

Lp(·)(Ω)

)
6 Ap(·),Ω(f) 6 max

(
‖f‖p−

Lp(·)(Ω)
, ‖f‖p+

Lp(·)(Ω)

)
,

min

(
A

1

p−

p(·),Ω(f), A
1

p+

p(·),Ω(f)

)
6 ‖f‖Lp(·)(Ω) 6 max

(
A

1

p−

p(·),Ω(f), A
1

p+

p(·),Ω(f)

)
.

(6)
3. Let f ∈ Lp(·)(Ω), g ∈ Lq(·)(Ω) with

1

p(x)
+

1

q(x)
= 1, 1 < p− 6 p(x) 6 p+ < +∞, 1 < q− 6 q(x) 6 q+ < +∞.

Then the Hölder’s inequality holds
∫

Ω

|f g| dx 6 2 ‖f‖Lp(·)(Ω) ‖g‖Lq(·)(Ω) . (7)

4. According to (7), for every 1 6 q = const < p− 6 p(x) < +∞

‖f‖Lq(Ω) 6 C ‖f‖Lp(·)(Ω) with the constant C = 2 ‖1‖
L

p(·)
p(·)−q (Ω)

. (8)

It is straightforward to check that for domains Ω such that measΩ < +∞,

‖1‖Lp(·)(Ω) 6 2 max
{

[measΩ]2/p−

, [measΩ]1/2p+
}

. (9)

5. The space W 1, p(·)(Ω), p(·) ∈ [p−, p+] ⊂]1, +∞[, is defined by

W 1, p(·)(Ω) =
{

f ∈ Lp(·)(Ω) : |∇ f | ∈ Lp(·)(Ω)
}

.

If condition (4) is fulfilled, W
1,p(·)
0 (Ω) is the closure of the set C∞

0 (Ω) with re-

spect to the norm of W 1,p(·)(Ω). If the boundary of Ω is Lipschitz–continuous

and p(x) satisfies (4), then C∞
0 (Ω) is dense in W

1, p(·)
0 (Ω). The norm in the

space W
1, p(·)
0 is defined by

‖u‖
W

1, p(·)
0

=
∑

i

‖Diu‖Lp(·)(Ω) + ‖u‖Lp(·)(Ω).

If the boundary of Ω is Lipschitz and p ∈ C0(Ω), then the norm ‖ · ‖
W

1, p(·)
0 (Ω)

is equivalent to the norm

‖̃u‖
W

1, p(x)
0 (Ω)

=
∑

i

‖Diu‖Lp(·)(Ω). (10)

6. If p ∈ C(Ω), then W 1,p(·)(Ω) is separable and reflexive.
7. If p, q ∈ C(Ω),

p∗(x) =





p(x)n

n − p(x)
if p(x) < n,

+∞ if p(x) > n,
and 1 < q(x) 6 sup

Ω
q(x) < inf

Ω
p∗(x),

then the embedding W
1,p(·)
0 (Ω) →֒ Lq(·)(Ω) is continuous and compact.
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8. Friedrichs’ inequality is valid in the following form: if p(x) satisfies
conditions (3)–(4), then there exists a constant C > 0 such that for every

f ∈ W
1,p(·)
0 (Ω)

‖f‖Lp(·)(Ω) 6 C ‖∇f‖Lp(·)(Ω) . (11)

3. Statement of the problem and main results. Let Ω be a bounded Lipschitz
domain in R

n (n > 2). Let {Fε}(ε>0) be a family of open subsets in Ω; in the
sequel ε is a small positive parameter characterizing the microscopic length scale.
We assume that:

(F1) the set Fε consists of Nε (Nε → +∞ as ε → 0) small isolated components
such that their diameters go to zero as ε → 0;

(F2) the set Fε is distributed in an asymptotically regular way in Ω, i.e., for
any ball B(y, r) of radius r centered at y ∈ Ω and sufficiently small ε > 0
(ε 6 ε0(r)), we have that B(y, r) ∩ Fε 6= ∅ and B(y, r) ∩ (Ω \ Fε) 6= ∅.

We set
Ωε = Ω \ Fε. (12)

A sequence of functions {pε}(ε>0) is said to belong to the class Lε
p0(·) if this

sequence possesses the following properties:

(A1) for any ε > 0 , pε is bounded in the following sense:

1 < p− 6 p−ε ≡ min
x∈Ω

pε(x) 6 pε(x) 6 max
x∈Ω

pε(x) ≡ p+
ε 6 p+ < +∞ in Ω; (13)

(A2) for any x, y ∈ Ω and any ε > 0, the function pε satisfies the local log–Hölder
continuity property, i.e.,

|pε(x) − pε(y)| 6 ωε(|x − y|) with lim
τ→0

ωε(τ) ln

(
1

τ

)
6 Cε. (14)

(A3) the function pε converges uniformly in Ω to a function p0, i.e.,

lim
ε→0

‖pε − p0‖C(Ω) = 0, (15)

where the limit function p0 is assumed to satisfy (4);

Notice that the sequence pε = p0 for any ε > 0 belongs to the family Lε
p0(·).

On the space Lpε(·)(Ωε) we define the functional Jε : Lpε(·)(Ωε) −→ R∪ {+∞} :

Jε[u] =





∫

Ωε

{
1

pε(x)
|∇u|pε(x) +

1

pε(x)
|u|pε(x) − f(x)u

}
dx, if u ∈ W 1,pε(·)(Ωε);

+∞, otherwise,
(16)

where f ∈ C(Ω).
We study the asymptotic behavior of Jε and their minimizers as ε → 0. The

classical periodicity assumption is here substituted by an abstract one covering a
variety of concrete behaviors such as the periodicity, the almost periodicity, and
many more besides. For this, we assume that Ωε ⊂ Ω is a disperse medium, i.e.,
the following assumptions hold:

(C1) the local concentration of the set Ωε has a positive continuous limit, that is
the indicator of Ωε converges weakly in L2(Ω) to a continuous positive limit.
This implies that there exists a continuous positive function ρ = ρ(x) such
that

lim
h→0

lim
ε→0

h−nmeas (Kx
h ∩ Ωε) = ρ(x)
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for any open cube Kx
h centered at x ∈ Ω with lengths equal to h > 0;

(C2) for any q ∈ [p−, p+] there exists a family of extension operators Pε
q : W 1,q(Ωε)

→ W 1,q(Ω) such that
global: for any uε ∈ W 1,q(Ωε),

‖uε‖Lq(Ω) 6 C ‖uε‖Lq(Ωε) , ‖∇uε‖Lq(Ω) 6 C ‖∇uε‖Lq(Ωε) (17)

uniformly in ε > 0, where uε = Pε
qu

ε and uε = uε in Ωε.
local: for any h > 0 there is ε0(h) > 0 such that for all ε < ε0(h), z ∈ Ω and

any function u ∈ W 1,q((z + [−2h, 2h]n) ∩ Ωε) the estimates hold

‖uε‖Lq((z+[−h,h]n)∩Ω) 6 C ‖uε‖Lq((z+[−2h,2h]n)∩Ωε) , (18)

‖∇uε‖Lq((z+[−h,h]n)∩Ω) 6 C ‖∇uε‖Lq((z+[−2h,2h]n)∩Ωε) . (19)

Remark 1. Notice that in condition (C2) we require the existence of extension
operators only in usual Sobolev spaces W 1,q with constant q. In this case the
extension condition is well studied in the existing mathematical literature (see, e.g.,
[1, 6, 17, 26, 27]). For instance, it holds for a wide class of disperse media (see, for
instance, [26]).

One more condition is imposed on the so called local characteristic of the set Fε

associated to the functional (16). In order to formulate this condition we denote
by Kz

h an open cube centered at z ∈ Ω with edge length h (0 < ε ≪ h ≪ 1), and
introduce the functional:

cε,h
pε(·)(z,b) = inf

vε

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇vε|pε(·) + h−pε(x)−γ |vε − (x − z,b)|pε(x)

}
dx,

(20)
where γ > 0, b ∈ R

n, and the infimum is taken over vε ∈ W 1,pε(·)(Kz
h ∩ Ωε). Here

( · , · ) stands for the scalar product in R
n. We assume that:

(C3) there is a continuous, with respect to x ∈ Ω, function T (x,b) and γ = γ0

(0 < γ0 < p−) such that, for any {pε}(ε>0) ⊂ Lε
p0(·), any x ∈ Ω and any

b ∈ R
n,

lim
h→0

lim
ε→0

h−ncε,h
pε(·)(x,b) = lim

h→0
lim
ε→0

h−ncε,h
pε(·)(x,b) = T (x,b). (21)

Remark 2. Condition (C3) is always fulfilled for periodic and locally periodic
structures.

Remark 3. It is crucial in condition (C3) that the limit function T (x,b) does not
depend on the particular choice of the sequence pε → p0. Notice that this is always
the case for periodic and locally periodic perforated media. These media will be
considered in detail in the last section of the paper.

We define the strong convergence in Lp0(·)(Ωε) in the following way.

Definition 3.1 (Strong convergence in Lp0(·)(Ωε)). The sequence {ωε} ⊂ Lp0(·)(Ωε)
is said to converge strongly in the space Lp0(·)(Ωε) to a function ω ∈ Lp0(·)(Ω) if

lim
ε→0

‖ωε − ω‖Lp0(·)(Ωε) = 0.

We also recall the definition of the Γ–convergence (see, e.g., [15, 18]). In our case
it reads.
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Definition 3.2 (Γp0(·)–convergence). The functionals Iε : Lpε(·)(Ωε) −→ R∪{+∞}

are said to Γp0(·)–converge to a functional I : Lp0(·)(Ω) −→ R ∪ {+∞} if

(a) (“lim inf”– inequality) for any u ∈ Lp0(·)(Ω) and any sequence {uε} ⊂
Lpε(·)(Ωε) which converges to the function u strongly in the space Lp0(·)(Ωε) we
have:

lim
ε→0

Iε[uε] > I[u];

(b) (“lim sup”– inequality) for any u ∈ Lp0(·)(Ω) there is a sequence {wε} ⊂
Lpε(·)(Ωε) which converges to the function u strongly in the space Lp0(·)(Ωε) such
that

lim
ε→0

Iε[wε] 6 I[u].

Now we are in position to formulate the first convergence result of the paper.

Theorem 3.3. Assume that {pε}(ε>0) ⊂ Lε
p0(·), and let conditions (C1)–(C3) be

satisfied. Then the functionals Jε defined in (16), Γp0(·)–converge to the functional

Jhom : Lp0(·)(Ω) −→ R ∪ {+∞} given by

Jhom[u] =





∫

Ω

{
T (x,∇u) +

ρ(x)

p0(x)
|u|p0(x) − ρ(x) f(x)u

}
dx, if u ∈ W 1,p0(·)(Ω);

+∞, otherwise.
(22)

Now let us formulate the convergence result for the minimizers of the functionals
Jε. Consider the variational problem:

Jε[uε] −→ min, uε ∈ W 1,pε(·)(Ωε). (23)

According to [2, 13, 14, 21], for each ε > 0, problem (23) has a unique solution
uε ∈ W 1,pε(·)(Ωε).

The following convergence result holds.

Theorem 3.4. Under the assumptions of Theorem 3.3, the solution uε of the vari-
ational problem (23) converges strongly in Lp0(·)(Ωε) to a solution of the problem:

Jhom[u] −→ min, u ∈ W 1,p0(·)(Ω). (24)

4. Properties of the homogenized problem. In this Section we deal with the
properties of the homogenized problem (24). First, we will describe the properties
of the function T (x,b) defined in (21). Then using this result we will show the
continuity of the homogenized functional Jhom in the space W 1,p0(·)(Ω). Finally, we
will prove that the variational problem (24) has a unique solution u ∈ W 1,p0(·)(Ω).

Properties of the function T (x,b) are given by the following lemma.

Lemma 4.1. Under the assumptions of Theorem 3.4 the function T (x,b) has the
following properties:

(i) it is convex with respect to the variable b, i.e.,

T (x,bτ ) 6 τT (x,b1) + (1 − τ)T (x,b2), (25)

for any τ ∈ [0, 1], where bτ = τb1 + (1 − τ)b2;
(ii) it satisfies the bound:

|T (x,b)| 6 C |b|p0(x)
; (26)
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(iii) it is locally Lipschitz in the following sense:

|T (x,b1) − T (x,b2)| 6 C (1 + |b1| + |b2|)
p0(x)−1 |b1 − b2| . (27)

Proof of Lemma 4.1. We begin by proving the statement (i) of Lemma 4.1. Let
vε
1, vε

2, and vε
1,2 be minimizers of the functional in (20) with b = b1, b = b2, and

bτ = τb1 + (1 − τ)b2, respectively. Then we have

cε,h
pε(·)(z,bτ ) =

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇vε

1,2|
pε(x) + h−γ−pε(x)|vε

1,2 − (x − z,bτ )|pε(x)

}
dx

6

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇vε

τ |
pε(x) + h−γ−pε(x)|vε

τ − (x − z,bτ)|pε(x)

}
dx, (28)

where vε
τ = τvε

1 + (1 − τ)vε
2 . Then from (28) we get:

cε,h
pε(·)(z,bτ ) 6 τcε,h

pε(·)(z,b1) + (1 − τ)cε,h
pε(·)(z,b2). (29)

Now the statement (i) of Lemma 4.1 immediately follows from (29) and the condition
(C3).

We turn to the statement (ii) of Lemma 4.1. Let vε be the minimizer of the
functional in (20). Taking wb = (x − z,b) as a test function in (20) we get:

cε,h
pε(·)(z,b) 6

∫

Kz
h
∩Ωε

1

pε(x)
|∇wb|

pε(x) dx.

This inequality and (13) immediately imply that

cε,h
pε(·)(z,b) 6

1

p−

∫

Kz
h
∩Ωε

|b|pε(x) dx. (30)

Then we have:

cε,h
pε(·)(z,b) 6

1

p−

∫

Kz
h
∩Ωε

|b|p0(x) dx +
1

p−

∫

Kz
h
∩Ωε

{
|b|pε(x) − |b|p0(x)

}
dx.

Now using the assumption (A3) we obtain

cε,h
pε(·)(z,b) 6

1

p−

∫

Kz
h
∩Ωε

|b|p0(x) dx + o(1) as ε → 0. (31)

This inequality and the assumption (A2) imply that, for ε sufficiently small,

cε,h
pε(·)(z,b) 6 C hn|b|p0(z) + o(hn) as h → 0. (32)

Now the statement (ii) of Lemma 4.1 immediately follows from (32) and the condi-
tion (C3).

It remains to prove the statement (iii) of the lemma. Let τ be defined by

τ =
|b1 − b2|

1 + |b1| + |b2|
. (33)

Consider the functional cε,h
pε(·)(z,b1). It can be represented as follows:

cε,h
pε(·)(z,b1) = cε,h

pε(·)

(
z, (1 − τ)b2 + τ

(
b2 + τ−1 (b1 − b2)

))
.
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Then it follows from (29) that

cε,h
pε(·)(z,b1) 6 (1 − τ) cε,h

pε(·)(z,b2) + τ cε,h
pε(·)

(
z,b2 + τ−1 (b1 − b2)

)
. (34)

We apply the inequality (32) to estimate the second term of the right hand side of
(34). For ε sufficiently small and h → 0, from (33), we have:

τ cε,h
pε(·)

(
z,b2 + τ−1 (b1 − b2)

)
6 C hn |b1 − b2|

1 + |b1| + |b2|

∣∣b2 + τ−1 (b1 − b2)
∣∣p0(x)

+ o(hn) 6 2n C hn (1 + |b1| + |b2|)
p0(x)−1 |b1 − b2| + o(hn) as, h → 0. (35)

Then from (33)–(35), for ε sufficiently small and h → 0, we obtain:

cε,h
pε(·)(z,b1) − cε,h

pε(·)(z,b2) 6 C1 hn (1 + |b1| + |b2|)
p0(x)−1 |b1 − b2| + o(hn), (36)

as h → 0. In the same way, for ε sufficiently small and h → 0,

cε,h
pε(·)(z,b1)−cε,h

pε(·)(z,b2) > −C1 hn (1 + |b1| + |b2|)
p0(x)−1 |b1 − b2|+o(hn). (37)

The statement (iii) of Lemma 4.1 follows from (36)–(37) and the condition (C3).
This completes the proof of Lemma 4.1.

Our next aim is to show that the homogenized functional Jhom is continuous in
the space W 1,p0(·)(Ω).

Lemma 4.2. Under the assumptions of Theorem 3.4 the functional Jhom satisfies
the inequality:

|Jhom[u] − Jhom[v]| 6 L ‖u − v‖W 1,p0(·)(Ω) , (38)

where L = L
(
measΩ, p±0 , ‖u‖W 1,p0(·)(Ω), ‖v‖W 1,p0(·)(Ω)

)
.

Proof of Lemma 4.2. From the definition of the homogenized functional Jhom and
regularity properties of functions p0, ρ, f , we get:

|Jhom [u] − Jhom[v]|

6 C

∫

Ω

{
|T (x,∇u) − T (x,∇v)| +

∣∣∣|u|p0(x) − |v|p0(x)
∣∣∣ + |u − v|

}
dx.

(39)

Let us estimate the right hand side of (39). For the first term, by (27), we have:
∫

Ω

|T (x,∇u) − T (x,∇v)| dx 6 C

∫

Ω

(1 + |∇u| + |∇v|)p0(x)−1 |∇u −∇v| dx. (40)

To estimate the integral on the right hand side of (40), we apply Hölder’s inequality
(7) and inequalities (6). Then we obtain:

∫

Ω

(1 + |∇u| + |∇v|)p0(x)−1 |∇u −∇v| dx 6 C Υ1 ‖∇u −∇v‖Lp0(·)(Ω), (41)

where Υ1 = max
{
A

1/q−

0

p0(·),Ω (1 + |∇u| + |∇v|) , A
1/q+

0

p0(·),Ω (1 + |∇u| + |∇v|)
}

and

1

p0(·)
+

1

q0(·)
= 1 with 1 < q−0 6 q0(x) 6 q+

0 . (42)

In a similar way one can estimate the second and the third terms on the right
hand side of (39). Finally, this yields the desired inequality (38). Lemma 4.2 is
proved.
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Lemma 4.3. Under the assumptions of Theorem 3.4 there exists a unique solution
u ∈ W 1,p0(·)(Ω) of the variational problem (24).

Proof of Lemma 4.3. The existence of the minimizer to the functional (16) is a
consequence of the proof of Theorem 3.4 presented in Section 5.3. The uniqueness
of the solution of the homogenized problem (24) immediately follows from the strict
convexity of the homogenized functional Jhom.

5. Proof of main results. The proof of main results is based on the Γ–convergence
and variational homogenization techniques (see for instance [26]). The proof of The-
orem 3.3 is given below in Sections 5.1 and 5.2. First, we show that the Γ-limit
functional takes on finite values only for u ∈ W 1,p0(·)(Ω). Then we obtain the “lim
inf”–inequality and the “lim sup”–inequality.

The assertion of Theorem 3.4 is then a consequence of Theorem 3.3. It is shown
in Section 5.3.

The following statement characterizes the domain of the Γ-limit functional.

Lemma 5.1. Let a family {uε}, uε ∈ W 1,pε(·)(Ωε), be such that

lim
ε→0

Jε[uε] < ∞.

Then there is a function u0 ∈ W 1,p0(·)(Ω) such that along a subsequence

lim
ε→0

‖uε − u0‖Lp0(·)(Ωε) = 0. (43)

Proof of Lemma 5.1. Considering the coercive properties of the functional Jε it is
easy to see that, for some subsequence εk, the uniform bound holds

‖uεk‖
W

1,pεk
(·)

(Ωεk )
6 C.

Exploiting the extension condition (C2), the continuity of p0(x) and the fact that
pε converges to p0 uniformly in Ω, we conclude that for any δ > 0 there exist
h = h(δ) > 0 and piece-wise constant function p̂δ such that for all sufficiently small
ε > 0:
(i) p̂δ(x) > p0(x) − δ in Ω;
(ii) p̂δ(x) = const on each cube of the form 2hj + [−h, h]n, j ∈ Z

n;
(iii) ‖uεk‖W 1,p̂δ(·)(Ω) 6 C.

By the Sobolev embedding theorem, the sequence {uεk} is compact in Lp0(·)(Ω).
Thus, there is u0 ∈ Lp0(·)(Ω) such that (43) holds, after probably taking another
subsequence.

We assert that u0 ∈ W 1,p0(·)(Ω). Indeed, it follows from the uniform bound
(iii) that ‖∇u0‖Lp̂δ(·)(Ω) 6 C with a constant C being independent of δ. Passing

to the limit as δ → 0 and applying the Fatou theorem, we arrive at the desired
statement.

5.1. Proof of the “lim inf”–inequality. The proof of the “lim inf”–inequality

is done in two main steps. At the first step we introduce an auxiliary functional J̃ε

and prove the “lim inf”–inequality for this functional. On the second step, using
the condition (C3), we obtain this inequality for the functional Jε.

Step 1. An auxiliary inequality. Let πε(x) = min{pε(x), p0(x)}. It is clear that
{πε} ⊂ Lε

p0(·).
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On the space Lπε(·)(Ωε) we define the functional J̃ε : Lπε(·)(Ωε) −→ R ∪ {+∞}
by setting:

J̃ε[u] =





∫

Ωε

{
1

pε(x)
|∇u|πε(x) +

1

pε(x)
|u|pε(x) − f(x)u

}
dx, if u ∈ W 1,πε(·)(Ωε);

+∞, otherwise.
(44)

Notice that the functional J̃ε is continuous in W 1,πε(·)(Ωε). More precisely, the
following inequality holds:

|J̃ε[u] − J̃ε[v]| 6 C Υ2 ‖u − v‖W 1,πε(·)(Ωε), (45)

where

Υ2 =max
{

A
1/q−

0

p0(·),Ωε(1+|u|+|∇u|+|v|+|∇v|) , A
1/q+

0

p0(·),Ωε(1+|u|+|∇u|+|v|+|∇v|)
}

,

the exponent q0 = q0(x) and the value q−0 are defined in (42). Notice also, that the

statement of Lemma 5.1 remains valid for the functional J̃ε.
Now let u be an arbitrary C∞(Ω) function and {uε} be a sequence which con-

verges to the function u strongly in Lp0(·)(Ωε) and such that J̃ε[uε] 6 C. We will
show that

lim
ε→0

J̃ε[uε] > Jhom[u]. (46)

Let {xα} be a set of points in the domain Ω that form an h–periodic space
lattice. Let us cover the domain Ω by the cubes Kα

h with nonintersecting interiors
and introduce the notation:

Ωh = {∪αKα
h ; Kα

h ⊂ Ω} ; Ω̃h = Ω \ Ωh; Ωε
h = Ωε ∩ Ωh; Ω̃ε

h = Ωε ∩ Ω̃h.

Moreover,

meas Ω̃h = O(h) as h → 0. (47)

Consider now J̃ε [uε]. It is clear that

J̃ε [uε] =

∫

Ωε
h

Fπε
(x, uε,∇uε) dx +

∫

Ω̃ε
h

Fπε
(x, uε,∇uε) dx, (48)

where

Fπε
(x, u,∇u) =

1

pε(x)
|∇u|πε(x) +

1

pε(x)
|u|pε(x) − f(x)u. (49)

Consider, first, the second term on the right hand side of (48). It follows from
the strong convergence of the sequence {uε} to u ∈ C∞(Ω) in the space Lp0(·)(Ωε)
and (47) that

lim
h→0

lim
ε→0

∫

Ω̃ε
h

Fπε
(x, uε,∇uε) dx > 0. (50)

Consider now the first term on the right hand side of (48). We have:
∫

Ωε
h

Fπε
(x, uε,∇uε) dx

=
∑

Kα
h
⊂Ω

∫

Kα
h
∩Ωε

{
1

pε(x)
|∇uε|πε(x) +

1

pε(x)
|uε|pε(x) − f(x)uε

}
dx.

(51)
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For any α such that Kα
h ⊂ Ω, we set

vε(x) = uε(x) − u(xα) (52)

and consider the first term on the right hand side of (51). Bearing in mind (20), as
ε → 0, we have:∫

Kα
h
∩Ωε

1

pε(x)
|∇uε|πε(x) dx =

∫

Kα
h
∩Ωε

1

πε(x)
|∇vε|πε(x) dx + o(1)

=

∫

Kα
h
∩Ωε

{
1

πε(x)
|∇vε|πε(x) + h−γ−πε(x)|vε − (x − z,b)|πε(x)

}
dx (53)

−h−γ

∫

Kα
h
∩Ωε

h−πε(x)|vε − (x − xα,b)|πε(x) dx + o(1).

Let us estimate the second integral on the right hand side of (53). It follows from
the regularity of the function u and assumptions (A1), (A3) that, for any b ∈ R

n

and any ε > 0, we have:
∫

Kα
h
∩Ωε

h−πε(x)|vε − (x − xα,b)|πε(x) dx

=

∫

Kα
h
∩Ωε

h−πε(x) |(uε − u)(x) + {u(x) − u(xα) − (x − xα,∇u(xα))}

+(x − xα,∇u(xα) − b)|πε(x)
dx.

It is easy to see that, for h → 0,

lim
ε→0

∫

Kα
h
∩Ωε

h−πε(x) |u(x) − u(xα) − (x − xα,∇u(xα))|πε(x)
dx = O

(
hn+p

−

)
. (54)

Now it follows from (54) that

lim
ε→0

∫

Kα
h
∩Ωε

h−πε(x)|vε − (x − xα,b)|πε(x) dx

6 C lim
ε→0

{ ∫

Kα
h
∩Ωε

h−πε(x) |uε(x) − u(x)|πε(x)
dx (55)

+

∫

Kα
h
∩Ωε

h−πε(x) |(x − xα,∇u(xα) − b)|πε(x)
dx

}
+ O

(
hn+p

−

)
, as h → 0.

We set b = bα = ∇u(xα). Then it follows from the strong convergence of the
sequence {uε} to u in the space Lp0(·)(Ωε) and (55) that

lim
ε→0

∫

Kα
h
∩Ωε

h−γ−πε(x)|vε − (x − z,∇u(xα))|pε(x) dx = O
(
hn+p

−−γ
)

, (56)

as h → 0. Finally, from the definition (20) and relations (53), (56) we get:

lim
ε→0

∫

Kα
h
∩Ωε

1

pε(x)
|∇uε|πε(x) dx > lim

ε→0
cε,h
πε(·)(x

α,∇u(xα)) − O
(
hn+p

−−γ
)

. (57)
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Therefore, by (57), the first term on the right hand side of (48) can be estimated
as follows:

lim
ε→0

∫

Ωε
h

Fπε
(x, uε,∇uε) dx > lim

ε→0

∑

Kα
h
⊂Ω

cε,h
πε(·)(x

α,∇u(xα))

+ lim
ε→0

∫

Ωε
h

{
1

pε
|uε|pε − f uε

}
dx − O

(
hp

−−γ
)

, as h → 0 (0 < γ < p−). (58)

Finally, from (50), (58) we have:

lim
ε→0

J̃ε [uε] > lim
ε→0

∑

Kα
h
⊂Ω

cε,h
πε(·)(x

α,∇u(xα))

+ lim
ε→0

∫

Ωε
h

{
1

pε(x)
|uε|pε(x) − f(x)uε

}
dx − O

(
hp

−−γ
)

, as h → 0. (59)

We pass to the limit in the inequality (59) first as ε → 0 and then as h → 0.
Taking into account the strong convergence of the sequence {uε} to u in the space
Lp0(·)(Ωε), the regularity of the function f , the properties of the function pε, and
conditions (C1), (C3) we obtain the desired inequality (46).

By the definition of πε(x) we have πε(x) 6 p0(x) in Ω. Therefore, the family {J̃ε}
is uniformly in ε continuous in W 1,p0(·)(Ωε) topology. In addition, by Lemma 4.2 the
functional Jhom is continuous in W 1,p0(·)(Ω) topology. Then the fact that inequality
(46) holds for any u ∈ C∞(Ω) implies that (46) holds for all u ∈ W 1,p0(·)(Ω). This

completes the proof of the “lim inf”–inequality for the functional J̃ε.

Step 2. “Lim inf”–inequality for the initial functional. Let u be an arbitrary
function from Lp0(·)(Ω) and {uε} be a sequence which converges to the function u
strongly in Lp0(·)(Ωε) and such that Jε[uε] 6 C. First we remark that one can
prove the inequality

lim
ε→0

Jε[uε] > Jhom[u] ∀u ∈ C∞(Ω) (60)

in the same way as the inequality (46).

Notice that in contrast with J̃ε, the functional Jε is not continuous in W 1,p0(·)

topology. Therefore, the fact that (60) holds for any C∞–function does not imply
this inequality for any u ∈ W 1,p0(·)(Ω). To prove (60) for any u ∈ W 1,p0(·)(Ω) we
use another technique based on the assumption (C3). Namely, let u ∈ W 1,p0(·)(Ω)\
C∞(Ω). Consider the value

Iε[uε] =

∫

Ωε

1

pε(x)
|∇uε|pε(x) dx −

∫

Ωε

1

pε(x)
|∇uε|πε(x) dx

=

∫

Ωε

|∇uε|πε(x)

{
1

pε(x)
|∇uε|pε(x)−πε(x) −

1

pε(x)

}
dx. (61)

It is easy to see that for all x ∈ Ωε

max
0<B<1

(
−Bπε(x)

(
1

pε(x)
Bpε(x)−πε(x) −

1

pε(x)

))
6 C|pε(x) − p0(x)|, (62)
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with a constant C that does not depend on x and ε. Then

lim
ε→0

Jε[uε] > lim
ε→0

Iε[uε] + lim
ε→0

J̃ε[uε]

> lim
ε→0

∫

{|∇uε|<1}∩Ωε

|∇uε|πε(x)

{
1

pε(x)
|∇uε|pε(x)−πε(x) −

1

pε(x)

}
dx + Jhom[u].

(63)

Now it follows from (62), (63) that

lim
ε→0

Jε[uε] > Jhom[u] ∀u ∈ W 1,p0(·)(Ω) \ C∞(Ω). (64)

Inequalities (60), (64) mean that if u is an arbitrary function from W 1,p0(·)(Ω) and
{uε} is a sequence converging to the function u strongly in Lp0(·)(Ωε) then

lim
ε→0

Jε[uε] > Jhom[u] (65)

and the “lim inf”–inequality is proved.

5.2. Proof of the “lim sup”– inequality. Step 1. Upper bound. Let {xα} be

a periodic grid in Ω with a period h′ = h−h1+γ/p
+

(ε ≪ h ≪ 1, 0 < γ < p−). Let us
cover the domain Ω by cubes Kα

h of length h > 0 centered at points xα. We associate
with this covering a partition of unity {ϕα} : 0 6 ϕα(x) 6 1; ϕα(x) = 0 for x 6∈ Kα

h ;

ϕα(x) = 1 for x ∈ Kα
h \∪β 6=αKβ

h ;
∑

α ϕα(x) = 1 for x ∈ Ω; |∇ϕα(x)| 6 Ch−1−γ/p
+

.
Let now vε

α = vε
α(x) be a function minimizing functional (20) with b = bα and

z = xα, where bα is a constant vector which will be specified later on. It follows
from conditions (A1) and (C3) that, as h → 0,

lim
ε→0

∫

Kα
h
∩Ωε

|∇vε
α|

pε(x) dx = O (hn) ;

lim
ε→0

∫

Kα
h
∩Ωε

h−pε(x)|vε
α − (x − z,bα)|pε(x) dx = O

(
hn+γ

)
.

(66)

Denote by Kα
h′ the cube of length h′ centered at the point xα, and by Πα

h the set
Kα

h \ Kα
h′ . By (66) and condition (A1) we have:

∫

Πα
h
∩Ωε

{
|∇vε

α|
pε(x) + h−pε(x)−γ |vε

α − (x − z,bα)|pε(x)
}

dx

=

∫

Kα
h
∩Ωε

{
|∇vε

α|
pε(x) + h−pε(x)−γ |vε

α − (x − z,bα)|pε(x)
}

dx (67)

−

∫

Kα
h′

∩Ωε

{
|∇vε

α|
pε(x) + (h′)−pε(x)−γ |vε

α − (x − z,bα)|pε(x)
}

dx + o(hn),

as h → 0. Then from the definition of cε,h
pε(·)(z,b) (see (20)) it follows that, for

sufficiently small ε, the bound holds∫

Πα
h
∩Ωε

{
|∇vε

α|
pε(x) + h−pε(x)−γ |vε

α − (x − z,bα)|pε(x)
}

dx

6 cε,h
pε(·)(z,bα) − cε,h′

pε(·)(z,bα) + o(hn), as h → 0.
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Considering now condition (C3), we obtain that, as h → 0,

lim
ε→0

∫

Πα
h
∩Ωε

|∇vε
α|

pε(x) dx = o (hn) ;

lim
ε→0

∫

Πα
h
∩Ωε

h−pε(x)|vε
α − (x − z,bα)|pε(x) dx = o

(
hn+γ

)
.

(68)

Let u be a smooth function in Ω. In the domain Ωε we define

wε
h(x) =

∑

α

{u(x) + vε
α(x) − (x − xα,bα)}ϕα(x). (69)

It is clear that wε
h ∈ W 1,pε(·)(Ωε) and that

Jε[wε
h] 6

∑

α

∫

Kα
h′

∩Ωε

Fε(x, wε
h,∇wε

h) dx +
∑

α,β

∫

(Kα
h
∩Kβ

h
)∩Ωε

|Fε(x, wε
h,∇wε

h)| dx, (70)

where the function Fε is defined by

Fε(x, u,∇u) =
1

pε(x)
|∇u|pε(x) +

1

pε(x)
|u|pε(x) − f(x)u. (71)

First, we consider the second sum on the right hand side of (70). Considering the
properties of the partition of unity {ϕα}, it is not difficult to check that for any α

and β the number of terms which are nontrivial in Kα
h ∩ Kβ

h is finite and does not
depend on ε. Then in order to estimate the second term on the right hand side of
(70) it is sufficient to estimate the following integral:

jε[wε
h] =

∫

(Kα
h
∩Kβ

h
)∩Ωε

{
1

pε(x)
|∇ (u + [vε

α − (x − xα,bα)] ϕα)|pε(x)

+
1

pε(x)
|u + [vε

α − (x − xα,bα)] ϕα|
pε(x)

− f(x) (u + [vε
α − (x − xα,bα)] ϕα)

}
dx ≡ jε1[w

ε
h] + jε2[w

ε
h] + jε3[w

ε
h]. (72)

For the first term on the right hand side of (72) we have:

jε1[w
ε
h] =

∫

(Kα
h
∩Kβ

h
)∩Ωε

1

pε(x)
|∇ (u + [vε

α − (x − xα,bα)] ϕα)|pε(x)
dx

6 C1

{ ∫

(Kα
h
∩Kβ

h
)∩Ωε

|∇u|pε(x)
dx +

∫

(Kα
h
∩Kβ

h
)∩Ωε

1

pε(x)
|∇vε

α|
pε(x)

dx (73)

+

∫

(Kα
h
∩Kβ

h
)∩Ωε

|∇(x − xα,bα)|pε(x)
dx+

∫

(Kα
h
∩Kβ

h
)∩Ωε

|[vε
α − (x − xα,bα)]∇ϕα|

pε(x)
dx

}
.

By the condition (A1), taking into account the relation meas (Kα
h ∩ Kβ

h ) = o(hn)
as h → 0, and the fact that u is a smooth function in Ω and bα is a constant vector,
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we obtain

lim
ε→0

∫

(Kα
h
∩Kβ

h
)∩Ωε

{
|∇u|pε(x)

+ |∇(x − xα,bα)|pε(x)
}

dx = o(hn), as h → 0. (74)

It also follows from (68) that

lim
ε→0

∫

(Kα
h
∩Kβ

h
)∩Ωε

1

pε(x)
|∇vε

α|
pε(x)

dx = o(hn), as h → 0. (75)

Due to the properties of {ϕα}, for the last term on the right hand side of (73), we
have: ∫

(Kα
h
∩Kβ

h
)∩Ωε

|[vε
α − (x − xα,bα)]∇ϕα|

pε(x)
dx

6 C

∫

(Kα
h
∩Kβ

h
)∩Ωε

h−pε(x) · h−γ(pε(x)/p
+) |vε

α − (x − xα,bα)|pε(x)
dx.

It is clear that pε(x)/p+ 6 1. Then h−γ(pε(x)/p
+) 6 h−γ and

∫

(Kα
h
∩Kβ

h
)∩Ωε

h−pε(x) · h−γ(pε(x)/p
+) |vε

α − (x − xα,bα)|pε(x) dx

6 h−γ

∫

(Kα
h
∩Kβ

h
)∩Ωε

h−pε(x) |vε
α − (x − xα,bα)|pε(x) dx.

Therefore, from the second estimate in (68) we deduce that

lim
ε→0

∫

(Kα
h
∩Kβ

h
)∩Ωε

|[vε
α − (x − xα,bα)]∇ϕα|

pε(x)
dx = o(hn), as h → 0. (76)

Finally, (74)–(76) yield:

lim
h→0

lim
ε→0

jε1[w
ε
h] = 0. (77)

In a similar way we can show that lim
h→0

lim
ε→0

jε2[w
ε
h] = 0, and lim

h→0
lim
ε→0

jε3[w
ε
h] = 0.

This implies that the contribution of the second term on the right hand side of (70)
is asymptotically negligible, that is

lim
h→0

lim
ε→0

∑

α,β

∫

(Kα
h
∩Kβ

h
)∩Ωε

|Fε(x, wε
h,∇wε

h)| dx = 0. (78)

Consider now the first term on the right hand side of (70). We set bα = ∇u(xα).
It follows from the definition of the function wε

h that, for any α,

wε
h(x) = u(x) + vε

α(x) − (x − xα,∇u(xα)) in Kα
h′ ∩ Ωε (79)

and

∇wε
h = (∇u(x) −∇u(xα)) + ∇vε

α(x) in Kα
h′ ∩ Ωε. (80)

Then we have that∫

Kα
h′

∩Ωε

Fε(x, wε
h,∇wε

h) dx =

∫

Kα
h′

∩Ωε

{
1

pε(x)
|∇wε

h|
pε(x) +

1

p0(x)
|u|p0(x) − f u

}
dx
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+

∫

Kα
h′

∩Ωε

1

pε(x)

{
|wε

h|
pε(x) − |u|pε(x)

}
dx+

∫

Kα
h′

∩Ωε

{
1

pε(x)
|u|pε(x) −

1

p0(x)
|u|p0(x)

}
dx

−

∫

Kα
h′

∩Ωε

f(x) {vε
α(x) − (x − xα,∇u(xα))} dx.

In order to estimate the second term on the right–hand side of this relation we
apply the inequality:

∣∣∣(ξ + η)
pε(·) − ξpε(·)

∣∣∣ 6 Aη
(
1 + ξpε(·)−1 + ηpε(·)−1

)
, (81)

where ξ, η > 0 and A = A(p(−), p(+)) is a constant. Then from condition (A3),
(66) with bα = ∇u(xα), (79), (81), and the regularity of u, f, pε, p0, for sufficiently
small ε and h → 0, we get:

∫

Kα
h′

∩Ωε

Fε(x, wε
h,∇wε

h) dx

=

∫

Kα
h′

∩Ωε

{
1

pε(x)
|∇wε

h|
pε(x) +

1

p0(x)
|u|p0(x) − f u

}
dx + o(hn).

(82)

Now it follows from (80), (82), the regularity properties of functions u, f , and the
definition (20) that, for sufficiently small ε and h → 0,

∫

Kα
h′

∩Ωε

Fε(x, wε
h,∇wε

h) dx 6 hn
cε,h
pε(·)(x

α,∇u(xα))

hn

+ hn

{
1

p0(xα)
|u(xα)|p0(xα) − f(xα)u(xα)

}
meas (Kα

h ∩ Ωε)

hn
+ o(hn). (83)

Now we take the union in (83) over all cubes and pass to the limit first as ε → 0
and then as h → 0. Taking into account (78) and the condition (C3), we obtain
that for any smooth function u

lim
h→0

lim
ε→0

Jε[wε
h] 6 Jhom[u]. (84)

This inequality also holds true for any u ∈ W 1,p0(·)(Ω). This fact immediately
follows from density arguments and the continuity of the homogenized functional
in W 1,p0(·)(Ω) (cf. Lemma 4.2).

Step 2. Construction of the recovery sequence. Consider the sequence {wε
h}

defined by (69). Let ε̂(h) be a decreasing function such that lim
h→0

ε̂(h) = 0. We set

h(ε) =
1

j
for ε̂

(
1

j + 1

)
6 ε 6 ε̂

(
1

j

)
, j = 1, 2, ...

and

wε = wε
h

∣∣∣∣
h=h(ε)

.

It is clear that the sequence wε converges strongly in Lp0(·)(Ωε) to the function
u = u(x) and satisfies the inequality:

lim
ε→0

Jε[wε] 6 Jhom[u]. (85)
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This completes the proof of the “lim sup”–inequality and of Theorem 3.3.

5.3. Proof of Theorem 3.4. Let uε be a solution of the variational problem (23).
Then from (6), (7), (23), and the properties of the functions f, pε we have:

‖uε‖W 1,pε(·)(Ωε) 6 C and Apε(·),Ωε (uε) + Apε(·),Ωε (∇uε) 6 C. (86)

It follows from the properties (F1) and (F2) of the set Fε (see the beginning of
Section 3) and the continuity of the function p0 that we can cover the domain Ω by
the finite number of subdomains Θα (α = 1, 2, .., M) with nonintersecting interiors
such that, for any α, ∂Θα ∩ Fε = ∅ and

p⋆
α =

np−α

n − p−α
> max

Θα

p0(x) ≡ p+
α with p−α = min

Θα

p0(x). (87)

Since the number of the subdomains Θα is finite, then inequalities (86) imply that

‖uε‖
W 1,pα

min (Ωε)
6 C, (88)

where pα
min = minα p−α . Now it follows from condition (C3) that

‖uε‖
W 1,pα

min (Ω)
6 C (89)

and inequalities (87), (89) imply that the family {uε} is a compact set in the space
Lp0(·)(Ω). Hence, one can extract a subsequence {uε, ε = εk → 0} that converges
strongly in Lp0(·)(Ω) to a function u ∈ W 1,p0(·)(Ω). Let us show that u = u(x) is a
solution of the variational problem (24).

First, it is clear that since uε is the solution of the variational problem (23), then

Jε[uε] 6 Jε[wε
h],

where the function wε
h is given by (69). Now the “lim sup”–inequality (84) imme-

diately implies that, for any w ∈ W 1,p0(·)(Ω),

lim
ε=εk→0

Jε[uε] 6 Jhom[w]. (90)

On the other hand, from the “lim inf”–inequality, we have:

lim
ε=εk→0

Jε[uε] > Jhom[u]. (91)

Now inequalities (90) and (91) imply that if a subsequence of solutions of problem
(23) converges strongly in Lp0(·)(Ωε) to a function u = u(x), then, for any w ∈
W 1,p0(·)(Ω),

Jhom[u] 6 Jhom[w] (92)

and u is the solution of (24). Since this problem has a unique solution, then the
whole sequence of solutions of problem (23) converges strongly in Lp0(·)(Ωε) to the
function u.

This completes the proof of Theorem 3.4.

6. Periodic and locally periodic examples. Theorems 3.3 and 3.4 of Section 3
provide sufficient conditions for the existence of the Γ–limit functional (22) and for
the convergence of minimizers of the variational problem (23) to the minimizer of
the homogenized variational problem (24). It is important to show that the class of
functions which satisfy the conditions of these theorems is not empty. The goal of
this Section is to prove that for periodic and locally periodic media all conditions of
the above mentioned theorems are satisfied and to compute the coefficients of the
homogenized functional (22) in terms of solutions of auxiliary cell problems.
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In fact, we will prove that conditions (C1), (C3) are always satisfied in the
periodic case if the boundary of inclusions is regular enough (see Proposition 1),
and that the extension condition (C2) can also be replaced with the assumption
on the regularity of the inclusions geometry (see the beginning of Appendix).

6.1. A periodic example. Let Ω be a bounded domain in R
n (n > 2) with

sufficiently smooth boundary. We assume that, in the standard periodic cell Y =
(−1/2, 1/2)n, there is an obstacle F ⊂ Y being an open set with a sufficiently
smooth boundary ∂F such that F̄ ⊂ Y . We assume that this geometry is repeated
periodically in the whole R

n. The geometric structure within the domain Ω is then
obtained by intersecting the ε–multiple of this geometry with Ω, ε being a small
positive parameter. Let {xk,ε} be an ε–periodic grid in R

n: xk,ε = εk, k ∈ Z
n.

Then we define Fε as the union of sets Fε
k
⊂ Kk

ε obtained from εF by translations
with vectors εk, k ∈ Z

n, i.e.,

Fε
k

= εk + εF, Fε =
⋃

k

(Fε
k
∩ Ω), and Ωε

B = Ω \ Fε, (93)

and Kk
ε = εk + εY .

Notice that the geometry of the inclusions having a nontrivial intersection with
the domain boundary, might be rather complicated. In particular, the extension
condition (C2) might be violated for these inclusions. To avoid these technical
difficulties we will often assume below that the domain Ω is not perforated in a
small neighbourhood of its boundary ∂Ω.

Denote by Kε the union of k ∈ Z
n such that Kk

ε ⊂ Ω, and set

Ω̃ε =
⋃

k∈Kε

(Kk

ε ∩ Fε
k), Ωε = Ω \

⋃

k∈Kε

Fε
k. (94)

Let a family of continuous functions {pε}(ε>0) and a function p0 satisfy conditions
(A1)–(A3) from Section 3.

On the space Lpε(·)(Ωε) we define the functional Jε : Lpε(·)(Ωε) −→ R∪ {+∞} :

Jε[u] =





∫

Ωε

{
1

pε(x)

(
|∇u|pε(x) + |u|pε(x)

)
− f(x)u

}
dx, if u ∈ W 1,pε(·)(Ωε);

+∞, otherwise,
(95)

where f ∈ C(Ω), and on the space Lpε(·)(Ωε
B) - the functional

Jε
B [u] =





∫

Ωε
B

{
1

pε(x)

(
|∇u|pε(x) + |u|pε(x)

)
− f(x)u

}
dx, if u ∈ W 1,pε(·)(Ωε

B);

+∞, otherwise,
(96)

We study the asymptotic behavior of the functional Jε and its minimizer as
ε → 0. To formulate the main result of this section we will introduce some notation.
We denote by Ub = Ub(p, y) a minimizer of the following variational problem:

∫

Y ⋆

1

p

∣∣∇yUb − b
∣∣p dy −→ min, u ∈ W 1,p

per(Y
⋆). (97)

where Y ⋆ = Y \ F , and b = (b1, b2, ..., bn) is a vector in R
n, p > 1 is a parameter.
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If p > 2 then the solution Ub coincides with a unique solution in W 1,p
per(Y

⋆) of
the following cell problem:





divy

(∣∣∇yUb
∣∣p−2

∇yUb

)
= 0 in Y ⋆;

(∣∣∇yUb
∣∣p−2

∇yUb − b, ~ν
)

= 0 on ∂F ;

y → Ub(y) Y − periodic,

(98)

here ~ν is the outward normal to ∂F .
The following result holds.

Theorem 6.1. The sequence of functionals {Jε}(ε>0) defined in (95),

Γp0(·)– converges to the functional Jhom : Lp0(·)(Ω) −→ R ∪ {+∞} given by:

Jhom[u] =





∫

Ω

{
T (x,∇u) +

ρ

p0(x)
|u|p0(x)− ρf(x)u

}
dx, if u ∈ W 1,p0(·)(Ω);

+∞, otherwise,
(99)

where

ρ = measY ⋆ and T (x,b) =

∫

Y ⋆

1

p0(x)

∣∣∇yUb(p0(x), y) − b
∣∣p0(x)

dy. (100)

Moreover, a minimizer uε of the functional (95) converges strongly in the space
Lp0(·)(Ωε) to u the minimizer of the homogenized functional (99).

The sequence {Jε
B}(ε>0) defined in (96), also Γp0(·)–converges to the functional

Jhom.

Remark 4. In general, the existence of a minimizer of the functional (96) is a
complicated problem because the geometry of Ωε

B might be rather complex.

6.1.1. Proof of Theorem 6.1. Theorem 6.1 can be proved in two different ways. One
of them is to check that under the assumptions of Theorem 6.1 conditions (C1)
– (C3) are satisfied and that the characteristics introduced in conditions (C1)
and (C3) coincide with those defined in (100). In order to make the results of
Theorems 3.3 and 6.1 compatible, we will prove in this section that the mentioned
characteristics do coincide.

On the other hand, in the periodic case the direct Γ-convergence techniques
apply. This allows us to simplify the proof and to obtain formula (100) by means
of Γ-convergence approach used in periodic homogenization. In this connection, we
will provide below the proof of “liminf” inequality for the stated in Theorem 6.1
Γ-convergence. Since the proof of “limsup” inequality and of the convergence of
minimizers is standard, it will be omitted.

Let us show that conditions (C1)–(C3) are satisfied in the periodic case under
consideration. The following result holds.

Proposition 1. Let Ωε be a perforated domain defined in (94). Then conditions
(C1)–(C3) of Theorem 3.4 are fulfilled and

ρ = measY ⋆ and T (x,b) =

∫

Y ⋆

1

p0(x)

∣∣∇yUb(p0(x), y) − b
∣∣p0(x)

dy. (101)
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The proof of Proposition 1 will be presented in Appendix. Due to this proposi-
tion, Theorem 6.1 it a consequence of Theorems 3.3 and 3.4.

We proceed with the direct proof of Theorem 6.1.

Γp0(·)–convergence of the family {Jε}(ε>0). First we justify the “lim inf”–
inequality for the functional Jε defined in (95). To this end we cover the domain Ω
with the cubes Kα

h = xα + [−h/2, h/2]n centered at the points {xα}, where {xα}
is a set of points in Ω that form a space lattice with a period h in each coordinate
directions, we assume that 0 < ε ≪ h ≪ 1. For any α we define the functional
Jε

α,h : Lpε(·)(Kα
h ∩ Ωε) −→ R ∪ {+∞} :

Jε
α,h[u] =





∫

Kα
h
∩Ωε

{
1

pε(x)

(
|∇u|pε(x) + |u|pε(x)

)
− fu

}
dx, if u ∈ W 1,pε(·)(Kα

h ∩ Ωε);

+∞, otherwise.
(102)

Now we introduce the values pα,h such that, for ε sufficiently small,

pα,h 6 min
K

α

h

{p0(x), pε(x)}, max
K

α

h

|pε(x) − pα,h| = o(1),

max
K

α

h

|p0(x) − pα,h| = o(1), as h → 0;
(103)

such a choice of pα,h is possible due to the continuity of p0 and the uniform conver-

gence of pε to p0. We define the functional J̃ε
α,h : Lpε(·)(Kα

h ∩ Ωε) −→ R ∪ {+∞}:

J̃ε
α,h[u] =





∫

Kα
h
∩Ωε

{
1

pε(x)

(
|∇u|pα,h + |u|pε(x)

)
− fu

}
dx, if u ∈ W 1,pα,h(Kα

h ∩ Ωε);

+∞, otherwise.

(104)
By arguments similar to those used in the proof of the inequality (64) from

Section 5.1 we obtain that, for any u ∈ W 1,p0(·)(Ω) and any sequence {uε} which
converges to the function u strongly in the space Lp0(·)(Ωε),

lim
ε→0

Jε
α,h[uε] > lim

ε→0
J̃ε

α,h[uε]. (105)

Since the exponent pα,h in the definition of the functional J̃ε
α,h does not depend

on the space variable, the Γ–convergence result for J̃ε
α,h is well known (see, e.g.,

[15]). In particular, the “lim inf”–inequality for J̃ε
α,h reads:

lim
ε→0

J̃ε
α,h[uε] >

∫

Kα
h

{
Tα,h(∇u) +

ρ

pα,h
|u|p0(x) − ρ f u

}
dx ≡ Jα,h[u] (106)

for any {uε} which converges to u in Lp0(x)(Kα
h ); here

ρ = measY ⋆ and Tα,h(b) =
1

pα,h

∫

Y ⋆

∣∣∇yUb(pα,h, y) − b
∣∣pα,h

dy, (107)

Now from (105), (106), for any u ∈ W 1,p0(·)(Ω) and any sequence {uε} which
converges to the function u strongly in the space Lp0(·)(Ωε), we get:

lim
ε→0

Jε
α,h[uε] > Jα,h[u]. (108)
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Denote

T (p,b) =

∫

Y ⋆

1

p

∣∣∇yUb(p, y) − b
∣∣p dy.

Then T (x,b) = T (p0(x),b). Our analysis will also rely on the following statement.

Lemma 6.2. The function T (p,b) is continuous in p, i.e.,

|T (p + δ,b) − T (p,b)| = o(1) as δ → 0. (109)

The proof of the lemma relies on the properties of solution Ub of the cell problem
(97), (98) (see Lemma 6.4 in Appendix).

Lemma 6.2 implies that, for x ∈ Kα
h ,

Tα,h(b) = T (x,b) + o(1) as h → 0. (110)

Then from the inequality (108) and the relation (110) we obtain:

lim
ε→0

Jε
α,h[uε] >

∫

Kα
h

{
T (x,∇u) +

ρ

p0(x)
|u|p0(x) − ρf u

}
dx + o(hn), as h → 0.

(111)
Summing up (111) over α leads to the desired “lim inf”–inequality for the func-

tional Jε, i.e., for any u ∈ W 1,p0(·)(Ω) and any sequence {uε} which converges to u
strongly in Lp0(·)(Ωε),

lim
ε→0

Jε[uε] > Jhom[u], (112)

where the functional Jhom is given in (99). This completes the proof of the “lim
inf”–inequality.

The proof of the “lim sup”–inequality is standard, we should just use the conti-
nuity of T (p,b) stated in Lemma 6.2.

The convergence of minimizers is a consequence of the Γ-convergence result and
the extension properties of uε. This completes the proof of Theorem 6.1.

6.2. A locally periodic example. In this section we generalize the result ob-
tained in Section 6.1 to the case of locally periodic perforation.

Let Ω be a bounded domain in R
n with sufficiently smooth boundary and let

{xk,ε}, xk,ε = εk, k ∈ Z
n, be an ε–periodic grid in the space R

n. We cover R
n with

cubes Kk
ε = εk + εY , Y = [−1/2, 1/2]n

Let Θ(x, y) : Ω × Y 7→ Y be a smooth function such that for each x ∈ Ω the
mapping Θ(x, ·) : Y 7→ Y is a diffeomorphism which keeps all the points of ∂Y
fixed. Given a smooth domain F , F̄ ⊂ Y , we introduce

Fε
k

=

{
x ∈ Kk

ε : Θ
(
εk,

x − εk

ε

)
∈ F

}
, k ∈ Z

n.

Then, as in previous section, the symbol Kε stands for the union of k ∈ Z
n such

that Kk
ε ⊂ Ω. We set

Ωε = Ω \
⋃

k∈Kε

Fε
k

(113)

and study the asymptotic behaviour of functionals Jε defined in (95) and their
minimizers, as ε → 0.
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Before we formulate the main result of this Section, we introduce some notation.

Let Ub = Ub(p, x, y) be a minimizer in W
1,p0(·)
per (Y ⋆

x ) of the following variational
problem: ∫

Y ⋆
x

1

p

∣∣∇yUb − b
∣∣p dy −→ min, u ∈ W 1,p

per(Y
⋆
x ). (114)

where Y ⋆
x = {y ∈ Y : Θ(x, y) ∈ Y \ F}, and b is a vector in R

n. If p > 2, then
Ub(p, x, y) solves the problem





divy

(∣∣∇yUb
∣∣p−2

∇yUb

)
= 0 in Y ⋆

x ;
(∣∣∇yUb

∣∣p−2
∇yUb − b, ~ν

)
= 0 on ∂Fx;

y → Ub(y) Y − periodic,

(115)

here x ∈ Ω is a parameter, Fx = {y ∈ Y : Θ(x, y) ∈ F}, and ~ν is the outward
normal vector to ∂Fx.

The main result of this section is given by the following theorem.

Theorem 6.3. The functional Jε Γp0(·)–converges to the functional Jhom :

W 1,p0(·)(Ω) −→ R given by:

Jhom[u] ≡

∫

Ω

{
T (x,∇u) +

ρ(x)

p0(x)
|u|p0(x) − ρ(x) f(x)u

}
dx, (116)

where

ρ = meas Y ⋆
x and T (x,b) =

∫

Y ⋆
x

1

p0(x)

∣∣∇Ub(p0(x), x, y) − b
∣∣p0(x)

dy. (117)

Moreover, the minimizer uε of the functional Jε converges strongly in the space
Lp0(·)(Ωε) to the minimizer of the homogenized functional Jhom.

Proof of Theorem 6.3. The proof of Theorem 6.3 is similar to the proof of
Theorem 6.1.

Appendix. Proof of Proposition 1. Let Kz
h be an open cube z + (−h/2, h/2)n

centered at z ∈ Ω with 0 < ε ≪ h < 1. As for the condition (C1), it is easy to
show that

meas (Kx
h ∩ Ωε) =

hn

εn
meas (ε Y ⋆) + o(hn). (118)

Then the condition (C1) is satisfied and the function ρ(x) is given by (101).

The fact that the extension condition (C2) holds in a disperse periodic medium
is well known, see for instance [1].

It remains to prove that the condition (C3) is fulfilled with T (x,b) given by
formula (101). Let {pε(·)} be a family of continuous functions in Ω̄ which converges

to p0(·) uniformly in Ω̄. We recall the definition of cε,h
pε(·)(z,b). It reads:

cε,h
pε(·)(z,b) = inf

vε

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇vε|pε(x) + h−γ−pε(x)|vε − (x − z,b)|pε(x)

}
dx,

(119)
where 0 < γ < p−, b ∈ R

n, and the infimum is taken over vε ∈ W 1,pε(·)(Kz
h ∩ Ωε).
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Let Ub = Ub(p, y) be a Y –periodic extension of the function Ub(p, y) (the solu-
tion of the cell problem (98)) on R

n \ F, where F =
⋃

k∈Zn

(k + F ). The regularity

properties of the function Ub are given by the following lemma.

Lemma 6.4. The function Ub possesses the following properties:

Ub ∈ Lq(Y ⋆) and ∇Ub ∈ Lp+δ(Y ⋆), (120)

where δ > 0 and

q =





pn

n − p
if p < n,

any number if p > n.

In the cube Kz
h we introduce the function

W ε(x) = (x − z,b) − ε Ub

(
p0(z),

x

ε

)
in Kz

h. (121)

The property (120) of the function Ub implies that W ε ∈ W 1,pε(·)(Kz
h ∩ Ωε) for

small enough h. Then

cε,h
pε(·)(z,b) 6 Wε,h(z,b), (122)

where

Wε,h(z,b) =

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇W ε|pε(x) + h−γ−pε(x)|W ε − (x − z,b)|pε(x)

}
dx.

(123)
Using the definition of the function W ε it is easy to obtain that, for ε sufficiently
small,

Wε,h(z,b) = hn

∫

Y ⋆

1

p0(z)

∣∣∇Ub(p0(z), y) − b
∣∣p0(z)

dy + o(hn) as h → 0. (124)

This yields the upper bound

T (z,b) 6

∫

Y ⋆

1

p0(z)

∣∣∇Ub(p0(z), y) − b
∣∣p0(z)

dy.

In order to estimate the functional cε,h(z,b) from below we denote vε,h
min = vε,h

min(x)
the minimizer of (119) and represent this function as follows:

vε,h
min(x) = (x − z,b) + ζε

h(x). (125)

Clearly, the function ζε
h(x) provides the minimum in the following problem

cε,h
pε(·)(z,b) = inf

ζ(x)

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇ζ − b|pε(x) + h−γ−pε(x)|ζ|pε(x)

}
dx, (126)

with ζ ∈ W 1,pε(·)(Kz
h ∩ Ωε).

We want to show that in the definition of the local characteristics T (z,b) one
can assume that the test functions are equal to zero at the boundary of Kz

h. Denote

ĉε,h
pε(·)(z,b) = inf

ζ(x)

∫

Kz
h
∩Ωε

{
1

pε(x)
|∇ζ − b|pε(x) + h−γ−pε(x)|ζ|pε(x)

}
dx, ζ

∣∣
Kz

h

= 0.
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Lemma 6.5. The following inequality holds true

lim
h→0

lim
ε→0

h−nĉε,h
pε(·)(z,b) 6 lim

h→0
lim
ε→0

h−ncε,h
pε(·)(z,b)

Proof. We use the cut-off function φz
h(x) having the following properties:

φz
h ∈ C∞

0 (Kz
h); φz

h = 1 for x ∈ z + [−h/2 + h1+γ0 , h/2 − h1+γ0 ], 0 6 φz
h 6 1,

|∇φz
h| 6 2h−1−γ0 . Substituting the function ζ(x) = ζε

hφz
h(x) as a test function in

(126) and choosing γ0 sufficiently small one can easily obtain the estimate
∫

Kz
h
∩Ωε

{
1

pε(x)
|∇(ζε

hφz
h) − b|pε(x) + h−γ−pε(x)|ζε

hφz
h|

pε(x)

}
dx 6 cε,h

pε(·)(z,b) + o(hn)

This implies the desired statement.

Denote ph
ε = min

x∈Kz
h

pε(x). Notice that

lim
h→0

lim
ε→0

(max
x∈Kz

h

pε(x) − min
x∈Kz

h

pε(x)) = 0.

Using the same arguments as in the proof of (64), we can show that

lim
h→0

lim
ε→0

h−nĉε,h
ph

ε
(z,b) 6 lim

h→0
lim
ε→0

h−nĉε,h
pε(·)(z,b) (127)

with

ĉε,h
ph

ε
(z,b) = inf

ζ(x)

∫

Kz
h
∩Ωε

{
1

ph
ε

|∇ζ − b|p
h
ε + h−γ−ph

ε |ζ|p
h
ε

}
dx, ζ

∣∣
Kz

h

= 0. (128)

Without loss of generality we assume that (h/2) is an integer multiplier of ε, so

that Kz
h consists of integer number of solid periods. Denote ζ̂h

ε the function which

provides the minimum in (128). We extend ζ̂h
ε periodically from Kz

h to the whole

R
n, the extended function has period [−h/2, h/2]n. Moreover, since ζ̂h

ε

∣∣
Kz

h

= 0,

the extended function belongs to W
1,ph

ε

loc (Rn). We keep for this function the same

notation ζ̂h
ε .

Now, letting

X h
ε (x) =

εn

hn

∑

k∈Zn∩[0,h/ε]n

ζ̂h
ε (x + εk)

and considering the convexity of the integrand in (128), we conclude that
∫

Kz
h
∩Ωε

{
1

ph
ε

|∇X h
ε − b|p

h
ε + h−γ−ph

ε |X h
ε |

ph
ε

}
dx 6 ĉε,h

ph
ε

(z,b).

It remains to notice that, by construction, the function X h
ε is (εY )-periodic. There-

fore, ∫

Y ⋆

1

ph
ε

∣∣∇Ub(ph
ε , y) − b

∣∣ph
ε dy 6 h−nĉε,h

ph
ε

(z,b). (129)

Since lim
h→0

lim
ε→0

ph
ε = p0(z), and by Lemma 6.2 the function T (p,b) is continuous in

p, then∫

Y ⋆

1

p0(z)

∣∣∇Ub(p0(z), y) − b
∣∣p0(z)

dy = lim
h→0

lim
ε→0

∫

Y ⋆

1

ph
ε

∣∣∇Ub(ph
ε , y) − b

∣∣ph
ε dy
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Combining this relation with (129), (127) and Lemma 6.5, we obtain the desired
inequality ∫

Y ⋆

1

p0(z)

∣∣∇Ub(p0(z), y) − b
∣∣p0(z)

dy 6 T (z,b).

This completes the proof of Proposition 1.
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