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a b s t r a c t

In this paper, we establish a homogenization result for a nonlinear degenerate
system arising from two-phase flow through fractured porous media with periodic
microstructure taking into account the temperature effects. The mathematical
model is given by a coupled system of two-phase flow equations, and an energy
balance equation. The microscopic model consists of the usual equations derived
from the mass conservation of both fluids along with the Darcy–Muskat and the
capillary pressure laws. The problem is written in terms of the phase formulation,
i.e. the saturation of one phase, the pressure of the second phase and the
temperature are primary unknowns. The fractured medium consists of periodically
repeating homogeneous blocks and fractures, the permeability being rapidly
oscillating discontinuous function. Over the matrix domain, the permeability is
scaled by ε2, where ε is the size of a typical porous block. Furthermore, we will
consider a domain made up of several zones with different characteristics: porosity,
absolute permeability, relative permeabilities and capillary pressure curves. The
model involves highly oscillatory characteristics and internal nonlinear interface
conditions accounting for discontinuous capillary pressures. We then show by a
rigorous mathematical argument that the solution of this microscopic problem
converges as ε tends to zero to the solution of a double-porosity model of the global
macroscopic flow. Our techniques make use of the two-scale convergence method
combined to extension and dilation operators in the homogenization context. The
memory effects of usual double porosity media are reproduced by this model. We
show how the effective coefficients of the porous medium are determined in a
precise way by certain physical and geometric features of the microscopic fracture
domain, the microscopic matrix blocks, and the interface between them.
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1. Introduction

Modeling two-phase flow through fractured porous media is of interest for a wide range of science
fields, including energy and environmental engineering. Examples include geothermal systems, oil reservoir
engineering, ground-water hydrology, and thermal energy storage, see for instance [1,2]. More recently,
modeling multiphase flow received an increasing attention in connection with gas migration in a nuclear
waste repository and sequestration of CO2. Furthermore, fractured rock domains corresponding to the
o-called Excavation Damaged Zone (EDZ) receives increasing attention in connection with the behavior
f geological isolation of radioactive waste after drilling the wells and shafts, see, e.g., [3]. Efficient heat
xploitation strategies from geothermal systems demand for modeling of coupled flow-heat equations on
arge-scale heterogeneous fractured formation, see, e.g. [4,5] and the references therein.

Dual-porosity models are typically used to simulate multiphase flow in fractured formations. Naturally
ractured reservoirs can be modeled by two superimposed continua, a connected fracture system and a
ystem of topologically disconnected matrix blocks. The fracture system has low storage capacity but high
onductivity, while the matrix block system has low conductivity and large storage capacity. The majority
f fluid transport will occur along flow paths through the fissure system. When the system of fissures is so
ell developed the matrix is broken into individual blocks or cells that are isolated from each other, there

s consequently no flow directly from cell to cell, but only an exchange of fluid between each cell and the
urrounding fissure system. For more details on the physical formulation of such problems see, e.g., [6–8].

The study of two-phase fluid flow through fractured porous media is a challenging nonlinear multiscale
roblem with obvious multiphysics features. During the last decade, there appeared a significant body of
iterature devoted to the modeling of such problems. Many works have been devoted to perform upscaling of
wo-phase fluid flow in porous media by different approaches. Here we comment only on those publications
hich are related to the present work. Namely, we restrict ourselves to the mathematical homogenization
ethods of such models.
The mathematical analysis and the homogenization of the system describing the flow of isothermal

ingle and incompressible two-phase flow in porous media are quite understood. A recent review of the
athematical homogenization methods developed for incompressible single phase flow, incompressible

mmiscible two-phase flow in porous media and compressible miscible flow in porous media can be viewed
n [9–18] and the references therein. The situation is quite different for immiscible compressible two-phase
ow in porous media, where, only recently, few results have been obtained, see for instance [19–22] and the
eferences therein.

However, as reported in [23,24], all the aforementioned works do not include any temperature dependence
nd are restricted to the case where flows are under isothermal conditions, contrary to the present work.
his assumption is too restrictive for some realistic problems, such as thermally enhanced oil recovery,
eothermal energy production, high-level radioactive waste repositories. For such systems, the temperature
ependence is essential. The present work was motivated by a need to incorporate the thermal behavior for
uch problems. The purpose of this paper is to carry out investigations of a generalized two-phase model for
ractured porous media which accounts for varying reservoir temperature to capture flow physics accurately.

In a previous paper [23], we gave an existence result of weak solutions for such a model under some realistic
ssumptions on the data. A model fully coupling the two-phase flow and heat transfer was developed to
nvestigate immiscible incompressible two-phase flow in porous media under nonisothermal conditions. The
orresponding homogenization problem for a single rock type model was proposed and analyzed in [24]. We
rovided a rigorous derivation of an upscaled model by means of the two-scale convergence. To the best
nowledge of the authors, the homogenization of such coupled models under nonisothermal conditions for
ractured media is still missing. Closer to the present problem, recently homogenization for a Richard’s model

rising from the heat and moisture flow through a partially saturated porous medium was obtained in [25].
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In [26], a model for nonisothermal single phase flow in double porosity media is constructed by the technique
of homogenization. Concerning the numerical simulation of such upscaled models for nonisothermal flows in
fractured media, we refer for instance to [5,27,28] and the references therein.

Here, we extend the model by developing a general approach that would allow us to incorporate the tem-
perature effects into two-phase flow in double porosity media made of several types of rocks accounting for
discontinuous capillary pressures. More precisely, the fluids are assumed immiscible and incompressible and
the solid matrix is non-deformable. The fractured medium consists of periodically repeating homogeneous
blocks and fractures, the permeability being highly discontinuous. Over the matrix domain, the permeability
is scaled by ε2, where ε is the size of a typical porous block. Furthermore, we will consider a domain made
p of several zones with different characteristics: porosity, absolute permeability, relative permeabilities
nd capillary pressure curves. The mathematical model is given by a coupled system of two-phase flow
quations, and an energy balance equation. The model consists of the usual equations derived from the
ass conservation of both fluids along with the Darcy–Muskat and the capillary pressure laws. The problem

s written in terms of the phase formulation, i.e. the saturation of one phase, the pressure of the second
hase and the temperature are primary unknowns. The model involves highly oscillatory characteristics and
nternal nonlinear interface conditions. This leads to a system of three coupled nonlinear partial differential
quations, a degenerate parabolic two-phase flow system and a parabolic diffusion-convection one. As we
nclude temperature effects in fluid flow, the resulting model is much more complex. Including temperature
ffects requires a new equation: energy conservation. The coupling between these equations raises several
ssues in the upscaling process that are to be elaborated on. Our aim is to study the macroscopic behavior
f solutions of this system of equations as ε tends to zero and give a rigorous mathematical derivation
f upscaled models by means of the two-scale convergence method combined with the dilation technique.
he major difficulties related to this model are in the nonlinear degenerate structure of the two-phase flow
quations, as well as in the coupling in the system and the transient fracture–matrix interactions. The
quations in the matrix blocks are analyzed by the dilatation technique and the passage to the limit in
hese equations is achieved by an adaptation of the monotonicity argument developed in [29]. It should be
mphasized that in the nonisothermal model both a priori estimates and passage to the limit in the two-
hase flow equations is rather involved, especially in the part related to the fracture–matrix interactions.
hus, we extend the results of our previous paper [24] to the case of highly heterogeneous porous media
ith discontinuous capillary pressures for nonisothermal immiscible incompressible two-phase flow through

ractured porous media.
The rest of the paper is organized as follows. Section 2 is devoted to the formulation of the homogenization

roblem considered in the paper. Then we recall the notion of the so-called nonisothermal global pressure. We
lso provide the assumptions on the data and we give the definition of a weak solution to our problem. In
ection 3 we obtain the basic a priori estimates for a weak solution of the problem under consideration.
amely, for the phase pressures, the saturation, and the temperature. In Section 4 we establish the

ompactness and the two-scale convergence results which will be used in the proof of the main result of the
aper. Namely, first, we extend the global pressure and the saturation functions defined in the fissure system.
hen in Section 4.2 we obtain the compactness result for the family of the extended saturation functions and,
sing the ideas from [24], we also establish the compactness result for the family of temperature functions. In
ection 4.3 we make use of the compactness results from the previous Subsections in order to prove rigorously
he convergence of the homogenization process by means of two-scale convergence approach (see, e.g., [30]).
ection 5 is devoted to the properties of the dilated functions defined in the matrix blocks. Namely, first,
n Section 5.1 we introduce the definition of the dilation operator and describe its main properties. Then
n Section 5.2 we obtain the equations for the dilated saturation and the global pressure functions, the
orresponding uniform estimates and the convergence results. In Section 6 we formulate the main result
f the paper and we complete its proof. The resulting homogenized problem is a dual-porosity type model
3
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that contains a term representing memory effects which could be seen as a source term or as a time delay.
The proof is done in several steps. The main difficulty with the phase pressure functions is that they do
not possess the uniform H1-estimates. To overcome the difficulties, we pass to the equivalent formulation
f the problem in terms of the global pressure, saturation, and the temperature functions. Then using the
onvergence and compactness results from Section 4 we pass to the limit in the corresponding equations.
his is done in Section 6.1. The homogenized equations contain some additional nonlocal in time terms
hich depend on the saturation function in the matrix block. Section 6.2 is devoted to the derivation of the
ffective equations in terms of the global pressure, the saturation and the temperature. In order, to obtain
he homogenized phase pressures we make use of the change of the unknown functions. Then we rewrite the
imit system obtained in terms of the global pressure and the saturation in terms of the homogenized phase
ressures (see Section 6.3). The passage to the limit in the matrix blocks makes use of the dilation operator.
hen in Section 6.4 we pass to the equivalent problem for the imbibition equation and, finally, obtain the

ocal problem in the matrix block. Lastly, some concluding remarks are forwarded.

. Formulation of the problem

In this section we formulate the homogenization problem. First, in Section 2.1 we introduce the adimen-
ionalized system of equations describing a nonisothermal immiscible incompressible two-phase flow in a
eservoir with double porosity. Then in Section 2.2 we define the so-called nonisothermal global pressure.
ection 2.3 provides the main assumptions on the data. Finally, in Section 2.4 we give the definition of a
eak solution to our problem.

.1. Governing equations

We consider a reservoir Ω ⊂ Rd (d ⩾ 2) which is assumed to be a bounded, connected Lipschitz domain
ith a periodic microstructure. More precisely, we scale a given periodic structure in Rd with a scaling
arameter ε which represents the ratio of the cell size to the size of the whole region Ω . We assume that
< ε ≪ 1 that is ε is a small positive parameter tending to zero. Let Y def= (0, 1)d be a basic cell of
fractured porous medium. For the sake of simplicity and without loss of generality, we assume that Y is
ade up of two homogeneous porous media Ym and Yf corresponding to the parties of the mesoscopic domain

ccupied by the matrix block and the fracture, respectively. Thus Y = Ym ∪Yf ∪Γfm, where Γfm denotes the
nterface between the two media. Let Ωε

ℓ with ℓ = “f” or “m” denotes the open set filled with the porous
edium ℓ. Then Ω = Ωε

m ∪ Γ ε
fm ∪ Ωε

f , where Γ ε
fm

def= ∂Ωε
f ∩ ∂Ωε

m ∩ Ω and the subscripts m and f refer to the
matrix and fracture, respectively. For the sake of simplicity, we assume that Ωε

m ∩∂Ω = ∅. We also introduce
the notation:

ΩT
def= Ω × (0,T), Ωε

ℓ,T
def= Ωε

ℓ × (0,T), Σ ε
T

def= Γ ε
fm × (0,T) (T > 0 is fixed). (2.1)

We focus our attention on a model where both fluids are assumed incompressible, that is the densities of
the wetting and non-wetting phases are strictly positive constants, and the skeleton density is also assumed
to be a strictly positive constant. It is assumed that no exchange of mass between the two phases can
take place and each phase remains homogeneous. Then the flow can be described in terms of the following
adimensionalized characteristics: Φε(x) = Φ(x, x

ε ) is the porosity of the medium Ω ; Kε(x) = K(x, x
ε ) is the

bsolute permeability tensor of Ω ; ϱw, ϱn, and ϱs are the mass densities of the wetting and non-wetting
hases, and the skeleton, respectively; Sε

ℓ = Sε
ℓ (x, t) is the saturation of the wetting phase in Ωε

ℓ,T; k(ℓ)
r,w(Sε

ℓ )
nd k

(ℓ)
r,n(Sε

ℓ ) are the relative permeabilities of the wetting and non-wetting phases in the medium Ωε
ℓ,T

ε ε (x, t), pε = pε (x, t) are the pressures of wetting and non-wetting phases in Ωε ;
ℓ = f,m); pℓ,w = pℓ,w ℓ,n ℓ,n ℓ,T

4
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Pℓ,c (Sε
ℓ ) is the capillary pressure in Ωε

ℓ,T; T ε = T ε(x, t) is the temperature; Cw,Cn are the constant heat
apacities of the wetting and non-wetting phases, respectively; Cε

s(x) = Cs( x
ε ) is the heat capacity of the solid

art; µε
w = µw(T ε) and µε

n = µn(T ε) are the viscosities of the wetting and non-wetting phases, respectively;
ε
T (x) = kT ( x

ε ) is the thermal conductivity of the combined three-phase system. For all S, T ∈ R, the mobility
unctions λℓ,w, λℓ,n are defined by:

λℓ,w(S, T ) def= k
(ℓ)
r,w(S)
µw(T ) ; λℓ,n(S, T ) def= k

(ℓ)
r,n(S)
µn(T ) (ℓ = f,m). (2.2)

In what follows, each function fε := Sε, pε
w, p

ε
n, T

ε,Cε
s is defined as:

fε def= fε
f (x, t) 1ε

f (x) + fε
m(x, t) 1ε

m(x),

here 1ε
ℓ(x) = 1ℓ( x

ε ) is the characteristic function of the subdomain Ωε
ℓ for ℓ = f,m. In a similar way, we

efine the functions λw, λn, Pc. Namely,

λσ

(x
ε
, Sε, T ε

)
def= λf,σ (Sε

f , T
ε
f ) 1ε

f (x) + λm,σ (Sε
m, T

ε
m) 1ε

m(x) (σ = w, n);

Pc

(x
ε
, Sε

)
def= Pf,c (Sε

f ) 1ε
f (x) + Pm,c (Sε

m) 1ε
m(x).

In what follows, for the sake of presentation simplicity, we neglect the source terms. Then the conservation
f mass in each phase and conservation of energy relations read (see, e.g., [31–33]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ⩽ Sε ⩽ 1 in ΩT;
Φε ∂Sε

∂t − div
{
Kελw

(
x
ε , S

ε, T ε
) (

∇pε
w − r⃗w

)}
= 0 in ΩT;

−Φε ∂Sε

∂t − div
{
Kελn

(
x
ε , S

ε, T ε
) (

∇pε
n − r⃗n

)}
= 0 in ΩT;

∂Ψε

∂t − div
{
KεT ε

[
Cwλw

(
x
ε , S

ε, T ε
) (

∇pε
w − r⃗w

)
+ Cnλn

(
x
ε , S

ε, T ε
) (

∇pε
n − r⃗n

)]}
−div

{
kε

T ∇T ε
}

= 0 in ΩT;
Pc

(
x
ε , S

ε
)

= pε
n − pε

w in ΩT,

(2.3)

here r⃗w
def= ϱw g⃗, r⃗n

def= ϱn g⃗ with g⃗ being the gravity vector, and

Ψε
(x
ε
, Sε, T ε

)
def=

{(
CwS

ε + Cn[1 − Sε]
)
Φε + Cε

s

[
1 − Φε

]}
T ε. (2.4)

The exact form of the porosity function, the function Cε
s, the thermal conductivity, and the absolute

permeability tensor corresponding to the double porosity model studied in this paper will be specified in
conditions (A.1), (A.2), (A.3), and (A.4) in Section 2.3.

The model (2.3) has to be completed with appropriate interface, boundary and initial conditions.
The interface conditions on Σ ε

T are the continuity of the phase fluxes, the phase pressures, and the
temperature: ⎧⎪⎪⎨⎪⎪⎩

q⃗ ε
f,w · ν⃗ = q⃗ ε

m,w · ν⃗ and q⃗ ε
f,n · ν⃗ = q⃗ ε

m,n · ν⃗ on Σ ε
T;

kε
T ∇T ε

f · ν⃗ = kε
T ∇T ε

m · ν⃗ on Σ ε
T;

pε
f,w = pε

m,w and pε
f,n = pε

m,n on Σ ε
T,

T ε
f = T ε

m on Σ ε
T,

(2.5)

where Σ ε
T is defined in (2.1), ν⃗ is the unit outer normal on Γ ε

fm, and the fluxes q⃗ ε
ℓ,w, q⃗

ε
ℓ,n are given by:

q⃗ ε
ℓ,σ

def= −Kελℓ,σ(Sε
ℓ,σ, T

ε
ℓ )

[
∇pε

ℓ,σ − r⃗σ

]
(ℓ = f,m; σ = w, n).

The boundary ∂Ω consists of two parts ΓD and ΓN such that ΓD ∩ΓN = ∅, ∂Ω = ΓD ∪ΓN and |ΓD| > 0.
ere Γ , Γ are Lipschitz subsets of ∂Ω . On Γ the pressures and the temperature satisfy homogeneous
D N D

5
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Dirichlet boundary condition while on ΓN the corresponding fluxes through the boundary are equal to zero,
hat is: {

pε
n(x, t) = pε

w(x, t) = T ε(x, t) = 0 on ΓD × (0,T);
q⃗ ε

w · ν⃗ = q⃗ ε
n · ν⃗ = kε

T ∇T ε · ν⃗ = 0 on ΓN × (0,T), (2.6)

where the fluxes q⃗ ε
w, q⃗

ε
n are defined as follows:

q⃗ ε
σ

def= −Kε(x)λσ

(x
ε
, Sε, T ε

) (
∇pε

σ − r⃗σ

)
(σ = w, n).

he initial conditions read:

pε
w(x, 0) = p0

w(x), pε
n(x, 0) = p0

n(x), T ε(x, 0) = T 0(x) in Ω . (2.7)

.2. The concept of nonisothermal global pressure

In the sequel, we deal with a formulation of problem (2.2)–(2.7) obtained after a proper change of unknown
unctions. This transformation uses the concept of the so-called nonisothermal global pressure. For the
sothermal incompressible immiscible two-phase flow, this concept was introduced for the first time in [34,35].
hen it was generalized to the nonisothermal case in [36]. This concept plays a crucial mathematical role

or a priori estimates and compactness results. Notice that in contrast to the gradients of phase pressures
hich do not have uniform estimates with respect to ε because of the degeneration of the mobilities (see
emma 3.1 below), the gradients of the nonisothermal global pressure possess the corresponding uniform
stimates (see Lemma 3.4 below). This fact is then used in the proof of the main result of the paper given
n Section 6.1. Following [36], for any subdomain Ωε

ℓ (ℓ = f,m), we define the nonisothermal global pressure
ε
ℓ as follows:

pε
ℓ,n = Pε

ℓ +
∫ Sε

ℓ

1

λℓ,w

λℓ
(ξ, T ε

ℓ )P ′
ℓ,c(ξ) dξ def= Pε

ℓ + Gℓ,n(Sε
ℓ , T

ε
ℓ ), (2.8)

here
λℓ(Sε

ℓ , T
ε
ℓ ) def= λℓ,w(Sε

ℓ , T
ε
ℓ ) + λℓ,n(Sε

ℓ , T
ε
ℓ ).

hen using the capillary pressure relation (2.3)5, one can easily calculate that

pε
ℓ,w = Pε

ℓ −
∫ Sε

ℓ

1

λℓ,n

λℓ
(ξ, T ε

ℓ )P ′
ℓ,c(ξ) dξ def= Pε

ℓ + Gℓ,w(Sε
ℓ , T

ε
ℓ ). (2.9)

t is easy to see that
∇pε

ℓ,n = ∇Pε
ℓ + λℓ,w

λℓ
(Sε

ℓ , T
ε
ℓ ) ∇Pℓ,c(Sε

ℓ ) + Bε
ℓ ∇T ε

ℓ

nd
∇pε

ℓ,w = ∇Pε
ℓ − λℓ,n

λℓ
(Sε

ℓ , T
ε
ℓ ) ∇Pℓ,c(Sε

ℓ ) + Bε
ℓ ∇T ε

ℓ ,

here
Bε

ℓ = Bℓ(Sε
ℓ , T

ε
ℓ ) def=

∫ Sε
ℓ

1

∂

∂T

[
λℓ,w

λℓ
(ξ, T ε

ℓ )
]
P ′

ℓ,c(ξ) dξ. (2.10)

As in [23], we introduce the following functions that depend on the saturation only:

βℓ(Sε
ℓ ) def=

∫ Sε
ℓ

0
αℓ(ξ) dξ with αℓ(ξ)

def=

⎛⎜⎝ k
(ℓ)
r,w(ξ)
Mw

· k
(ℓ)
r,n(ξ)
Mn

k
(ℓ)
r,w(ξ)
mw

+ k
(ℓ)
r,n(ξ)
mn

⎞⎟⎠
1/2

|P ′
ℓ,c(ξ)|, (2.11)

where the constants Mw,Mn,mw,mn are defined in condition (A.7) below. Furthermore, we set

Λ
(ℓ)
0 (Sε

ℓ , T
ε
ℓ ) def= MnMw

m m
k

(ℓ)
r,n(Sε

ℓ )mw + k
(ℓ)
r,w(Sε

ℓ )mn

(ℓ) ε ε (ℓ) ε ε
; (2.12)
n w kr,n(Sℓ )µw(Tℓ ) + kr,w(Sℓ )µn(Tℓ )
6
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S

Λ
(ℓ)
1 (Sε

ℓ , T
ε
ℓ ) def=

√
Λ

(ℓ)
0 (Sε

ℓ , T
ε
ℓ )

√
λℓ,w(Sε

ℓ , T
ε
ℓ )λℓ,n(Sε

ℓ , T
ε
ℓ )

λℓ(Sε
ℓ , T

ε
ℓ ) . (2.13)

Due to (A.6) and (A.7), the function Λ
(ℓ)
0 (ℓ = f,m) satisfies the estimates

0 < Λ0,min ⩽ Λ
(ℓ)
0 (Sε

ℓ , T
ε
ℓ ) ⩽ Λ0,max < +∞, (2.14)

with some constants Λ0,min and Λ0,max. The function Λ
(ℓ)
1 keeps the degenerations in (2.3) as it is zero for

ε
ℓ = 0 and Sε

ℓ = 1. With these new functions we can write:

λℓ,n∇pε
ℓ,n = λℓ,n∇Pε

ℓ − Λ
(ℓ)
1 ∇βℓ(Sε

ℓ ) + λℓ,nBε
ℓ ∇T ε

ℓ ; (2.15)

λℓ,w∇pε
ℓ,w = λℓ,w∇Pε

ℓ + Λ
(ℓ)
1 ∇βℓ(Sε

ℓ ) + λℓ,wBε
ℓ ∇T ε

ℓ ; (2.16)

λℓ,n |∇pε
ℓ,n|2 + λℓ,w |∇pε

ℓ,w|2 = λℓ |∇Pε
ℓ |2 + Λ

(ℓ)
0 |∇βℓ(Sε

ℓ )|2 + λℓ [Bε
ℓ ]2 |∇T ε

ℓ |2 + 2λℓ Bε
ℓ ∇Pε

ℓ · ∇T ε
ℓ . (2.17)

In what follows we also make use of the function β̂ defined by

β̂(s) def=
∫ s

0
α̂(ξ) dξ with α̂(s) def= min

{
αf(s), αm

(
P−1(s)

)}
, (2.18)

where
P(s) def= (P−1

f,c ◦ Pm,c)(s), s ∈ [0, 1]. (2.19)

Remark 1. Notice that due to the properties of the capillary pressure functions Pf,c and Pm,c (see condition
(A.5) below), the function P is a smooth, increasing function with a bounded derivative. Moreover, P(0) = 0
and P(1) = 1.

2.3. Main assumptions

The main assumptions on the data (A.1)–(A.10) are listed below. In the rest of this paper we assume
that these assumptions hold.

(A.1) The porosity function Φε is given by:

Φε(x) def= Φε
f (x) 1ε

f (x) + Φm

(x
ε

)
1ε

m(x),

where Φε
f ∈ L∞(Ω) and there are positive constants ϕf

−, ϕ
f
+ independent of ε such that 0 < ϕf

− ⩽
Φε

f (x) ⩽ ϕf
+ < 1 a.e. in Ω . Moreover,

Φε
f −→ ΦH

f strongly in L2(Ω).

Φm = Φm(y) is Y -periodic, Φm ∈ L∞(Y ) and there are positive constants ϕm
−, ϕ

m
+ independent of ε

and such that 0 < ϕm
− ⩽ Φm(y) ⩽ ϕm

+ < 1 a.e. in Y .
(A.2) The absolute permeability tensor Kε(x) = Kε(x, x

ε ) is defined as

Kε(x, y) def= Kf(x, y) 1ε
f (x) + ε2 Km(x, y) 1ε

m(x),

where Kℓ ∈ (L∞(Ω ;C#(Y )))d×d with ℓ = f,m; the subindex # indicates that Kℓ(x, y) is periodic in
y. Moreover, there exist constants kmin, k

max such that 0 < kmin ≤ kmax and

kmin|ξ|2 ⩽ (Kℓ(x, y) ξ, ξ) ⩽ kmax|ξ|2 for all ξ ∈ Rd, a.e. in Ω × Y.
7
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(A.3) The heat capacity of the solid part is given by Cε
s(x) def= Cs( x

ε ) where Cs is a Y -periodic function,

Cs(y) def= Cf,s 1f(y) + Cm,s 1m(y) with 0 < Cf,s,Cm,s < +∞,

where the constants Cf,s,Cm,s do not depend on ε. The fluid heat capacities Cw and Cn are strictly
positive constants.

(A.4) The thermal conductivity tensor kε
T is given by:

kε
T (x) def= kf,T 1ε

f (x) I + km,T 1ε
m(x) I,

where I is the unit tensor and kf,T , km,T are positive parameters that do not depend on ε.
(A.5) The capillary pressure function Pℓ,c(s) ∈ C1([0, 1];R+) (ℓ = f,m). Moreover, P ′

ℓ,c(s) < 0 in [0, 1],
Pℓ,c(1) = 0 and Pf,c(0) = Pm,c(0).

(A.6) The functions k(ℓ)
r,w, k

(ℓ)
r,n, belong to the space C1(R) and satisfy the following properties:

(i) 0 ⩽ k
(ℓ)
r,w, k

(ℓ)
r,n ⩽ 1 on R; (ii) k(ℓ)

r,w(S) = 0 for S⩽0 and k(ℓ)
r,n(S) = 0 for S⩾1; k(ℓ)

r,w(S) = 1 for S⩾1
and k

(ℓ)
r,n(S) = 1 for S⩽0; (iii) there is a positive constant k0 such that k(ℓ)

r,w(S) + k
(ℓ)
r,n(S) ⩾ k0 > 0

for all S ∈ R.
(A.7) The viscosities µw, µn ∈ C1(R) are functions of the temperature T . Moreover, these functions, for

any T ∈ R, satisfy the following bounds:

0 < mσ ⩽ µσ(T ) ⩽ Mσ, |µ′
σ(T )| ⩽ Mσ < +∞ (σ = w, n).

(A.8) The function αℓ defined in (2.11) is such that αℓ ∈ C1([0, 1];R+). Moreover, αℓ(0) = αℓ(1) = 0 and
αℓ > 0 in (0, 1). In addition, there exists a constant C > 0 such that

αm(s) ⩽ Cαf(s) for all s ∈ [0, 1]. (2.20)

(A.9) The function β̂−1, inverse of β̂ defined in (2.18), is a Hölder function of order θ on the interval
[0, β̂(1)] with θ ∈ (0, 1). That is there exists a positive constant Cβ such that for all u1, u2 ∈ [0, β̂(1)]
the following inequality holds: ⏐⏐⏐β̂−1(u1) − β̂−1(u2)

⏐⏐⏐ ⩽ Cβ |u1 − u2|θ.

A.10) The initial data for the phase pressures are such that p0
n, p

0
w ∈ L2(Ω) and 0 ⩽ p0

n − p0
w ⩽ Pc(0).

The initial data for the saturation 0 ⩽ S0,ε ⩽ 1 is defined by the capillary pressure law: p0
n − p0

w =
Pc(x/ε, S0,ε). The initial temperature T 0 ∈ L∞(Ω) satisfies the bounds Tm ⩽ T 0(x) ⩽ TM a.e. in Ω

for some constants Tm and TM , Tm ⩽ 0 ⩽ TM .

emark 2. According to (A.6) and (A.7) the mobility functions λℓ,w, λℓ,n defined in (2.2) belong to the
pace C(R × R;R+) and satisfy the following properties:

(i) λℓ,w(0, T ) = 0 and λℓ,n(1, T ) = 0 for all T ∈ R;
ii) there is a positive constant L0 such that

λℓ(S, T ) def= λℓ,w(S, T ) + λℓ,n(S, T ) ⩾ L0
def= min{mn,mw} k0

Mw Mn
> 0 for all S, T ∈ R. (2.21)

It also easily follows from conditions (A.6), (A.7) that

λℓ(S, T ) = k
(ℓ)
r,w(S)
µw(T ) + k

(ℓ)
r,n(S)
µn(T ) ⩽

1
mw

+ 1
mn

def= L1. (2.22)
8
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Remark 3. Notice that the initial data for the nonisothermal global pressure function, P0,ε, can be
alculated with the help of the definition (2.8) and the initial data for the phase pressures and saturation
unction determined in condition (A.10).

emark 4. Since the derivative of the capillary pressure functions is bounded from below and from above
see condition (A.5)), the function P has a strictly positive derivative, i.e., mins∈[0,1] P

′(s) > 0. Then it holds,

Cβ

⏐⏐⏐β̂(P(S1)) − β̂(P(S2))
⏐⏐⏐θ

⩾ |P(S1) − P(S2)| ⩾ min
s∈[0,1]

P ′(s) |S1 − S2| ,

here the function β̂ is defined in (2.18). This inequality shows that the inverse of the function C(s) def=
β̂◦P)(s) is Hölder continuous with the same exponent θ as for the inverse function of β̂ (see condition (A.9)).

The same fact is true for the unbounded capillary pressure functions, with, possibly, smaller exponent θ, if
we assume that the inverse of the capillary function Pf,c is Hölder continuous.

We also note that the function βf (see definition (2.11)) is Hölder continuous with the exponent θ since

Cβ |βf (S1) − βf (S2)|θ = Cβ

⏐⏐⏐⏐⏐
∫ S1

S2

αf (s) ds

⏐⏐⏐⏐⏐
θ

⩾ Cβ

⏐⏐⏐⏐⏐
∫ S1

S2

α̂(s) ds

⏐⏐⏐⏐⏐
θ

= Cβ

⏐⏐⏐β̂(S1) − β̂(S2)
⏐⏐⏐θ

⩾ |S1 − S2| ,

and therefore the same bound is valid for βf ◦ P.

Remark 5. If we define S0
ℓ

def= P−1
ℓ,c (p0

ℓ,n − p0
ℓ,w), for ℓ ∈ {f,m}, then the initial saturation defined in

condition (A.10) is given by
S0,ε(x) = S0

f (x) 1ε
f (x) + S0

m(x) 1ε
m(x).

Remark 6. The assumptions (A.1)–(A.10) are classical and physically meaningful for two-phase flow in
porous media. They are similar to the assumptions made in our previous work [23] that dealt with the
existence of a weak solution for the studied problem.

2.4. Definition of a weak solution

In order to define a weak solution to problem (2.3)–(2.7) we introduce the following Sobolev space:

H1
ΓD

(Ω) def=
{
u ∈ H1(Ω) : u = 0 on ΓD

}
.

The space H1
ΓD

(Ω) is a Hilbert space when it is equipped with the norm ∥u∥H1
ΓD

(Ω) = ∥∇u∥(L2(Ω))d .

Definition 2.1. We say that a quadruple function ⟨pε
w, p

ε
n, S

ε, T ε⟩ is a weak solution to problem (2.3)–(2.7)
if, for any ε > 0,

(i) 0 ⩽ Sε ⩽ 1 a.e. in ΩT.
(ii) Tm ⩽ T ε ⩽ TM a.e. in ΩT.

(iii) The functions pε
n, p

ε
w, S

ε, T ε have the following regularity properties:

pε
w, p

ε
n ∈ L2(ΩT) and

√
λw

(x
ε
, Sε, T ε

)
∇pε

w,

√
λn

(x
ε
, Sε, T ε

)
∇pε

n ∈ L2(ΩT); (2.23)

T ε ∈ L2(0,T;H1
ΓD

(Ω)). (2.24)

(iv) For any φw, φn, φT ∈ C1([0,T];H1(Ω)) satisfying φw = φn = φT = 0 on ΓD × (0,T) and
φ (x,T) = φ (x,T) = φ (x,T) = 0, we have:
w n T

9
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Wetting phase pressure equation:

−
∫
ΩT

Φε(x)Sε ∂φw

∂t
dx dt−

∫
Ω

Φε(x)S0,ε(x)φw(x, 0) dx

+
∫
ΩT

Kε(x)λw

(x
ε
, Sε, T ε

) [
∇pε

w − r⃗w

]
· ∇φw dx dt = 0;

(2.25)

Non-wetting phase pressure equation:

∫
ΩT

Φε(x)Sε ∂φn

∂t
dx dt+

∫
Ω

Φε(x)S0,ε(x)φn(x, 0) dx

+
∫
ΩT

Kε(x)λn

(x
ε
, Sε, T ε

) [
∇pε

n − r⃗n

]
· ∇φn dx dt = 0;

(2.26)

Temperature equation:

−
∫
ΩT

Ψε ∂φT

∂t
dx dt−

∫
Ω

Ψ0,εφT (x, 0) dx+
∫
ΩT

kε
T (x)∇T ε · ∇φT dx dt (2.27)

+
∫
ΩT

{
T εKε(x)

[
Cwλw

(x
ε
, Sε, T ε

) (
∇pε

w − r⃗w

)
+ Cnλn

(x
ε
, Sε, T ε

) (
∇pε

n − r⃗n

)]}
· ∇φT dx dt = 0,

here the function Ψε is defined in (2.4) and

Ψ0,ε def=
{(

CwS
0,ε + Cn[1 − S0,ε]

)
Φε + Cε

s

[
1 − Φε

]}
T 0. (2.28)

According to [23] and its direct generalization to the case of multiple rock types, under assumptions
(A.1)–(A.10) problem (2.3)–(2.7) has at least one weak solution.

Notational convention. From now on C,C1,C0, . . . stand for the generic constants that do not depend on
ε.

3. Uniform estimates for a solution to problem (2.3)–(2.7)

In this section we obtain the a priori estimates for a solution to problem (2.3)–(2.7). Inspired by [23,24]
we obtain the following results.

Lemma 3.1. Let a quadruple function ⟨pε
w, p

ε
n, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then∫
ΩT

Kε(x)
{
λw

(x
ε
, Sε, T ε

)
|∇pε

w|2 + λn

(x
ε
, Sε, T ε

)
|∇pε

n|2
}
dx dt ⩽ C0. (3.1)

orollary 3.1. Taking into account condition (A.2) the bound (3.1) implies that∫
Ωε

f,T

{
λf,w(Sε

f , T
ε)|∇pε

f,w|2 + λf,n(Sε
f , T

ε)|∇pε
f,n|2

}
dx dt

+ ε2
∫
Ωε

m,T

{
λm,w(Sε

m, T
ε)|∇pε

m,w|2 + λm,n(Sε
m, T

ε)|∇pε
m,n|2

}
dx dt ⩽ C0. (3.2)

emma 3.2. Let a quadruple function ⟨pε
w, p

ε
n, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then∫
ΩT

|∇T ε|2 dx dt ⩽ C1. (3.3)
10
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Remark 7. In the derivation of (3.3) the crucial role plays condition (A.4) where the thermal symmetric
conductivity tensor kε

T (in contrast to the global permeability tensor Kε) is of order one with respect to ε
oth in the matrix part and the fissures system.

Now we turn to the estimates of the nonisothermal global pressure Pε
ℓ and the function βℓ(Sε

ℓ ) (ℓ = f,m)
efined above in Section 2.2. To this end we make use of the relation (2.17) in which we first estimate the
uantity Bε

ℓ . The following result holds true.

emma 3.3. Let a quadruple function ⟨pε
n, p

ε
w, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then

|Bε
ℓ | ⩽ CB with CB

def= Pℓ,c(0)
[

Mn

mn
+ Mw

mw

]
, (3.4)

where the constants Mn,mn,Mw,mw are defined in condition (A.7).

The Proof of Lemma 3.3 is presented in Lemma 3.3 from [24]. □

The gradients of the nonisothermal global pressure Pε
ℓ and the function βℓ(Sε

ℓ ) (ℓ = f,m) admit the
following estimates.

Lemma 3.4. Let a quadruple function ⟨pε
n, p

ε
w, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then∫
Ωε

f,T

|∇Pε
f |2 dx dt+ ε2

∫
Ωε

m,T

|∇Pε
m|2 dx dt ⩽ C1; (3.5)

∫
Ωε

f,T

|∇βf(Sε
f )|2 dx dt+ ε2

∫
Ωε

m,T

|∇βm(Sε
m)|2 dx dt ⩽ C2. (3.6)

where the function βℓ(Sε
ℓ ) is defined in (2.11).

The Proof of Lemma 3.4 can be done by the arguments similar to those from Lemma 3.4 in [24]. □

Lemma 3.5. Let a quadruple function ⟨pε
n, p

ε
w, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then under
assumptions (A.1)–(A.10) the following uniform in ε estimates hold true:

∥Pε
f ∥L2(Ωε

f,T) ⩽ C and ∥Pε
m∥L2(Ωε

m,T
) ⩽ C. (3.7)

Proof of Lemma 3.5. In the proof of the lemma we follow the lines of the proof of Lemma 3.2 from [9].
The first bound in (3.7) follows immediately from Friedrichs’ inequality and the uniform estimate (3.5).

Now we turn to the derivation of the second bound in (3.7). Since the global pressure is a discontinuous
function on the interface Γ ε

fm (see (2.1) for the definition), then we make use of the ideas from [37,38]. For
Pε

m ∈ L2(0,T;H1(Ωε
m)) and Pε

f − PΓD
∈ L2(0,T;H1

ΓD
(Ωε

f )) it is proved in [38] (see estimates (3.10), (3.11)
n Theorem 3.1) that there exists a constant C independent of ε such that

∥Pε
m∥L2(Ωε

m,T
) ⩽ C

[
ε ∥∇Pε

m∥L2(Ωε
m,T

) +
√
ε ∥Pε

m∥L2(Σε
T

)

]
, (3.8)

√
ε ∥Pε

f ∥L2(Σε
T

) ⩽ C
[
ε ∥∇Pε

f ∥L2(Ωε
f,T) + ∥Pε

f ∥L2(Ωε
f,T)

]
. (3.9)

Note that inequalities (3.8) and (3.9) follow from the Poincaré inequality, the trace inequality and the scaling

argument.

11
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t

Then due to the definition of the global pressure Pε

m, (2.8), and the interface condition (2.5) written in
erms of the global pressure, one obtains the following estimate:

∥Pε
m∥L2(Σε

T
) ⩽ ∥Pε

m + Gm,w(Sε
m, T

ε
m)∥L2(Σε

T
) + ∥Gm,w(Sε

m, T
ε
m)∥L2(Σε

T
)

= ∥Pε
f + Gf,w(Sε

f , T
ε
f )∥L2(Σε

T
) + ∥Gm,w(Sε

m, T
ε
m)∥L2(Σε

T
)

⩽ ∥Pε
f ∥L2(Σε

T
) + ∥Gf,w(Sε

f , T
ε
f )∥L2(Σε

T
) + ∥Gm,w(Sε

m, T
ε
m)∥L2(Σε

T
).

(3.10)

Now, taking into account the boundedness of Gℓ,w(Sε
ℓ , T

ε
ℓ ), the geometry of Ωε

m,T, (3.8)–(3.10), we obtain:

∥Pε
m∥L2(Ωε

m,T
) ⩽ C

(
ε∥∇Pε

m∥L2(Ωε
m,T

) + 1
)
. (3.11)

By using (3.5), from (3.11) we get the desired inequality (3.7). Lemma 3.5 is proved. □

Let us pass to the uniform bounds for the time derivatives of Sε. In a standard way (see, e.g., [39]) we
get:

Lemma 3.6. Let a quadruple function ⟨pε
n, p

ε
w, S

ε, T ε⟩ be a weak solution to (2.3)–(2.7). Then under
assumptions (A.1)–(A.10) the following uniform in ε estimates hold true:

{∂t(Φε
ℓS

ε
ℓ )}ε>0 is uniformly bounded in L2(0,T;H−1(Ωε

ℓ )); (3.12)

{∂tΨ
ε
ℓ}ε>0 is uniformly bounded in L2(0,T;H−1(Ωε

ℓ )); (3.13)

where
Ψε

ℓ = Ψε
ℓ(Sε

ℓ , T
ε
ℓ ) def=

{(
CwS

ε
ℓ + Cn[1 − Sε

ℓ ]
)
Φε

ℓ + Cε
s

[
1 − Φε

ℓ

]}
T ε

ℓ (3.14)

and where Φε
f ,Φ

ε
m are defined in condition (A.1).

4. Compactness and convergence results

The outline of this section is as follows. First, in Section 4.1 we extend the functions Pε
f and Sε

f from the
subdomain Ωε

f to the whole Ω and obtain uniform estimates for the extended functions. Then in Section 4.2,
using these uniform estimates we prove the compactness result for the family {S̃ε

f }ε>0. In Section 4.2 we
establish the compactness result for the sequence of functions {T ε}ε>0.

4.1. Extensions of the functions Pε
f , Sε

f

The goal of this subsection is to extend the functions Pε
f , Sε

f defined in the subdomain Ωε
f to the whole

Ω and to derive the uniform in ε estimates for the extended functions.
Extension of the function Pε

f . First, we introduce the extension by reflection operator from the subdomain
Ωε

f to the whole Ω . Taking into account the results of [40] we conclude that there exists a linear continuous
extension operator Π ε : H1(Ωε

f ) −→ H1(Ω) such that: (i) Π εu = u in Ωε
f and (ii) for any u ∈ H1(Ωε

f ),

∥Π εu∥L2(Ω) ⩽ C ∥u∥L2(Ωε
f ) and ∥∇(Π εu)∥L2(Ω) ⩽ C ∥∇u∥L2(Ωε

f ), (4.1)

where C is a constant that does not depend on u and ε. Now it follows from (3.5), (3.7) that

∥∇(Π εPε
f )∥L2(ΩT) + ∥Π εPε

f ∥L2(ΩT) ⩽ C. (4.2)

Notational convention. In what follows we will denote P̃ε
f = Π εPε

f .
12
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Extension of the function Sε
f . In order to extend Sε

f , following the ideas of [29], we make use of the function
β̂ defined in (2.18). It is evident that β̂ is a monotone function of s. Let S ε be the function defined by:

S
ε def=

{
Sε

f in Ωε
f

P(Sε
m) in Ωε

m,
(4.3)

here the function P is defined in (2.19). Then we introduce L2(0,T;H1
ΓD

(Ω)) function:

β̂ε(x, t) def= β̂(S ε) =
∫ S

ε

0
α̂(ς) dς, (4.4)

here the function α̂ is defined in (2.18). As in [37] (see Lemma 4.1) using (3.6) and the definition (2.18) of
the function β̂, one can show that there is a constant C which does not depend on ε such that

∥∇β̂(Sε
f )∥L2(Ωε

f,T) = ∥∇β̂(S ε)∥L2(Ωε
f,T) ⩽ C and ε∥∇β̂(S ε)∥L2(Ωε

m,T
) ⩽ C. (4.5)

et now the function Bε be the extension of the function β̂(Sε
f ) to the whole domain Ω , i.e.,

Bε def= Π εβ̂(Sε
f ) in ΩT with Bε = β̂(Sε

f ) in Ωε
f,T.

hen it follows from the extension by reflection and (4.5) that

0 ⩽ Bε ⩽ max
s∈[0,1]

β̂(s) a.e. in ΩT and ∥∇Bε∥L2(ΩT) ⩽ C, (4.6)

ow we can extend Sε
f from Ωε

f to the whole Ω . We denote this extension by S̃ε and define it as follows:

S̃ ε def= β̂−1(Bε). (4.7)

This implies that ∫
ΩT

⏐⏐∇β̂(
S̃ ε

)⏐⏐2
dx dt ⩽ C and 0 ⩽ S̃ε ⩽ 1 a.e. in ΩT. (4.8)

.2. Compactness results for the sequences {S̃ε}ε>0 and {T ε}ε>0

The main goal of this subsection is to establish the compactness and corresponding convergence results for
he sequence {S̃ε}ε>0 constructed in the previous section (see the definition (4.7)). To this end we obtain an
uxiliary estimate of the modulus of continuity with respect to time variable for the saturation function Sε.
his result is also used below in the proof of the compactness and convergence results for the temperature

unction T ε. In this section we apply the ideas of the papers [41] and [23]. The main result of the section is
hen given in Proposition 4.2.

emma 4.1. Under our standing assumptions, for h sufficiently small,∫
Ω

ε,h
f,T

[
Sε

f (t) − Sε
f (t− h)

] [
β̂(Sε

f )(t) − β̂(Sε
f )(t− h)

]
dx dt ⩽ C h; (4.9)

∫
Ω

ε,h
m,T

[
Sε

m(t) − Sε
m(t− h)

] [
β̂(P(Sε

m))(t) − β̂(P(Sε
m))(t− h)

]
dx dt ⩽ C h, (4.10)

here Ωε,h
f,T

def= Ωε
f × (h,T), Ωε,h

m,T

def= Ωε
m × (h,T) and C is a constant that does not depend on ε and h.
13
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Proof of Lemma 4.1. First, we rewrite Eq. (2.25) as follows. For any function φw ∈ L2(0,T;H1(Ω)) such
that φw = 0 on ΓD × (0,T) it holds:∫

ΩT

Φε(x)∂S
ε

∂t
φw dx dt+

∫
Ωε

f,T

Kf

(
x,
x

ε

)
λf,w(Sε

f , T
ε)

(
∇pε

f,w − r⃗w

)
· ∇φw dx dt

+ ε2
∫
Ωε

m,T

Km

(
x,
x

ε

)
λm,w(Sε

m, T
ε)

(
∇pε

m,w − r⃗w

)
· ∇φw dx dt = 0.

(4.11)

ollowing the ideas of the proof of Lemma 6.3 from [41], we introduce the function χε:

χε(x, t) def=
∫ min{t+h,T}

max{t,h}
h

[
∂hβ̂(S ε)

]
(x, τ) dτ with ∂hu

def= u(t) − u(t− h)
h

. (4.12)

hen, due to Lemma 3.4 and the boundary conditions for the function β̂(S ε), we have χε ∈ L2(0,T;H1
ΓD

(Ω))
or any ε > 0. Setting φw = χε in (4.11), by the Fubini theorem we have:∫

ΩT

Φε(x)∂S
ε

∂t
χε dxdt =

∫ T

h

∫
Ω

Φε(x)h2
[
∂hSε

] [
∂hβ̂(S ε)

]
dx dτ. (4.13)

hen from (4.11) with φw = χε and relation (4.13) we obtain the following relation:∫ T

h

∫
Ω

Φε(x)h2
[
∂hSε

] [
∂hβ̂(S ε)

]
dx dτ = Iε[χε],

here

Iε[χε] def= −
∫
Ωε

f,T

Kf

(
x,
x

ε

)
λf,w(Sε

f , T
ε)

(
∇pε

f,w − r⃗w

)
· ∇χε dx dt

− ε2
∫
Ωε

m,T

Km

(
x,
x

ε

)
λm,w(Sε

m, T
ε)

(
∇pε

m,w − r⃗w

)
· ∇χε dx dt.

ow by Lemma (3.1), estimate (4.5) and Cauchy’s inequality we obtain that⏐⏐Iε[χε]
⏐⏐ ⩽ C h,

here C is a constant that does not depend on ε, h. It is clear that∫ T

h

∫
Ω

Φεh2
[
∂hSε

] [
∂hβ̂(S ε)

]
dx dτ

=
∫
Ωε

f,T

Φε
f (x)(Sε

f (x, t) − Sε
f (x, t− h))

(
β̂(Sε

f (x, t)) − β̂(Sε
f (x, t− h))

)
dxdt

+
∫
Ωε

m,T

Φε
m(x)(Sε

m(x, t) − Sε
m(x, t− h))

(
β̂(P(Sε

m(x, t))) − β̂(P(Sε
m(x, t− h)))

)
dxdt.

ince β̂ and P are monotonically increasing functions, then both integrals on the right hand side are positive
nd we find the bounds (4.9) and (4.10). This completes the proof of Lemma 4.1. □

orollary 4.1. Under our standing assumptions, for h sufficiently small,∫
Ωh
T

⏐⏐β̂(S̃ε)(t) − β̂(S̃ε)(t− h)
⏐⏐2
dx dt ⩽ C h; (4.14)

∫
h

⏐⏐S̃ε(t) − S̃ε(t− h)
⏐⏐2/θ

dx dt ⩽ C h; (4.15)

Ω
T

14
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∫
Ωh
T

⏐⏐Sε(t) − Sε(t− h)
⏐⏐2/θ

dx dt ⩽ C h. (4.16)

ere Ωh
T

def= Ω × (h,T); S̃ε is the extension of the function Sε
f to the whole Ω defined by (4.7); θ is defined in

ondition (A.9); C is a constant that does not depend on ε and h.

roof of Corollary 4.1. It follows from the definition (2.18) of the function β̂ and condition (A.8) that⏐⏐β̂(Sε(t)) − β̂(Sε(t− h))
⏐⏐ ⩽ max

s∈[0,1]
α̂(s) |Sε(t) − Sε(t− h)|.

⏐⏐β̂(P(Sε(t))) − β̂(P(Sε(t− h)))
⏐⏐ ⩽ max

s∈[0,1]
{α̂(P(s))} max

s∈[0,1]
{P′(s)} |Sε(t) − Sε(t− h)|.

Then from (4.9) we get:∫
Ω

ε,h
f,T

⏐⏐β̂(Sε
f (t)) − β̂(Sε

f (t− h))
⏐⏐2
dx dt

⩽ C

∫
Ω

ε,h
f,T

[
Sε

f (t) − Sε
f (t− h)

] [
β̂(Sε

f (t)) − β̂(Sε
f (t− h))

]
dx dt ⩽ C h,

(4.17)

where C is a constant that does not depend on ε, h. In the same way we obtain that∫
Ω

ε,h
m,T

⏐⏐β̂(P(Sε
m(t))) − β̂(P(Sε

m(t− h)))
⏐⏐2
dx dt ⩽ C h. (4.18)

The inequality (4.14) stated in the whole domain Ωh
T is a consequence of the bound (4.17) and the

properties (4.1) of the extension operator Π ε.
From condition (A.9) we have:∫

Ωh
T

⏐⏐S̃ε(t) − S̃ε(t− h)
⏐⏐2/θ

dx dt =
∫
Ωh
T

⏐⏐β̂−1(β̂(S̃ε))(t) − β̂−1(β̂(S̃ε))(t− h)
⏐⏐2/θ

dx dt

⩽ C

∫
Ωh
T

⏐⏐β̂(S̃ε)(t) − β̂(S̃ε)(t− h)
⏐⏐2
dx dt.

hen from (4.14) we obtain the desired bound (4.15). Taking into account Remark 4 we know that the
nverse of the function β̂ ◦ P is Hölder continuous with the same exponent θ and therefore we get:∫
Ω

ε,h
m,T

⏐⏐Sε
m(t) − Sε

m(t− h)
⏐⏐2/θ

dx dt =
∫
Ω

ε,h
m,T

⏐⏐(β̂ ◦ P)−1(β̂(P(Sε
m)))(t) − (β̂ ◦ P)−1(β̂(P(Sε

m)))(t− h)
⏐⏐2/θ

dx dt

⩽ Ĉ

∫
Ω

ε,h
m,T

⏐⏐β̂(P(Sε
m)(t)) − β̂(P(Sε

m)(t− h))
⏐⏐2
dx dt.

ombining this inequality with (4.18) and the restriction of (4.15) to Ωε,h
f,T we obtain (4.16). Corollary 4.1

s proved. □

The main result of the section reads.

roposition 4.2. Under our standing assumptions there is a function S such that 0 ⩽ S ⩽ 1 in ΩT and,
p to a subsequence,

S̃ε → S strongly in Lq(ΩT) for any q ⩾ 1. (4.19)
15
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Proof of Proposition 4.2. By (4.8) the sequence {β̂(S̃ε)}ε>0 is uniformly bounded in L2(0,T;H1(Ω)).
ince this sequence also satisfies (4.14), it follows from [42] that {β̂(S̃ε)}ε>0 is a relatively compact set
n the space L2(ΩT). Therefore, for a subsequence, β̂(S̃ε) → β̂⋆ strongly in the space L2(ΩT). Letting

= β̂−1(β̂⋆) we get S̃ε → S strongly in L2/θ(ΩT). In view of the uniform boundedness of the functionsˆ(S̃ε) this implies the strong convergence in the space Lq(ΩT) for any 1 ⩽ q < ∞. This completes the proof
f Proposition 4.2. □

Relying on (4.16) one can repeat the proof of Proposition 4.4 in [24] and prove the following compactness
or the temperature:

roposition 4.3. Under our standing assumptions there is a function T such that Tm ⩽ T ⩽ TM in ΩT

nd, up to a subsequence,
T ε → T strongly in Lq(ΩT) for any q ⩾ 1. (4.20)

.3. Two-scale convergence results

In this Subsection, taking into account the compactness results from the previous section, we formulate
he convergence results for the sequences {P̃ ε

f }ε>0, {S̃ε}ε>0, and {T ε}ε>0. In this paper the homogenization
rocess is rigorously obtained by using the two-scale approach (see, e.g., [30]). For reader’s convenience, we
ecall the definitions of the two-scale convergence.

efinition 4.4. A sequence of functions {vε}ε>0 ⊂ L2(ΩT) two-scale converges to v ∈ L2(ΩT × Y ) if
vε∥L2(ΩT) ⩽ C, and for any test function φ ∈ C∞(ΩT;C#(Y )) the following relation holds:

lim
ε→0

∫
ΩT

vε(x, t)φ
(
x, t,

x

ε

)
dx dt =

∫
ΩT×Y

v(x, t, y)φ(x, t, y) dy dx dt.

his convergence is denoted by vε(x, t) 2s
⇀ v(x, t, y).

Now we summarize the convergence results for the sequences {P̃ ε
f }ε>0, {S̃ε}ε>0 and {T ε}ε>0. We have:

emma 4.2. There exist a function S such that 0 ⩽ S ⩽ 1 a.e. in ΩT, βf(S) ∈ L2(0,T;H1
ΓD

(Ω)), and
unctions P, T ∈ L2(0,T;H1

ΓD
(Ω)), wp,ws,wT ∈ L2(ΩT;H1

per(Y )) such that up to a subsequence:

S̃ε(x, t) −→ S(x, t) strongly in Lq(ΩT) ∀ 1 ⩽ q < +∞; (4.21)

P̃ε
f (x, t) ⇀ P(x, t) weakly in L2(0,T;H1(Ω)); (4.22)

∇P̃ε
f (x, t) 2s

⇀ ∇P(x, t) + ∇ywp(x, t, y); (4.23)

βf(S̃ε) −→ βf(S) strongly in Lq(ΩT) ∀ 1 ⩽ q < +∞; (4.24)

∇βf(S̃ε)(x, t) 2s
⇀ ∇βf(S)(x, t) + ∇yws(x, t, y); (4.25)

T ε(x, t) −→ T (x, t) strongly in Lq(ΩT) ∀ 1 ⩽ q < +∞; (4.26)

T ε(x, t) ⇀ T (x, t) weakly in L2(0,T;H1(Ω)); (4.27)

∇T ε(x, t) 2s
⇀ ∇T (x, t) + ∇ywT (x, t, y); (4.28)

Proof of Lemma 4.2. The proof of Lemma 4.2 is based on the a priori estimates for the functions βf(Sε
f ),

Pε
f and T ε obtained in Section 3, the extension results from Section 4.1, Propositions 4.2 and 4.3. The

two-scale convergence results are obtained by arguments similar to those in [30]. Lemma 4.2 is proved. □
16
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5. Dilation operator and convergence results

It is known that due to the nonlinearities and the strong coupling of the problem, the two-scale
convergence does not provide an explicit form for the source terms appearing in the homogenized model, see
for instance [13,29,41]. To overcome this difficulty the authors make use of the dilation operator. Here we
refer to [10,13,29,41] for the definition and main properties of the dilation operator. Let us also notice that
the notion of the dilation operator is closely related to the notion of the unfolding operator. We refer here,
e.g., to [43] for the definition and the properties of this operator.

The outline of this section is as follows. First, in Section 5.1 we introduce the definition of the dilation
operator and describe its main properties. Then in Section 5.2 we obtain the equations for the dilated
saturation and the global pressure functions, the corresponding uniform estimates and the convergence
results.

5.1. Definition and preliminary results

Definition 5.1. For a given ε > 0, we define a dilation operator Dε mapping measurable functions defined
n Ωε

m,T to measurable functions defined in ΩT × Ym by

(Dεφ) (x, t, y) def=
{
φ (cε(x) + ε y, t) , if cε(x) + ε y ∈ Ωε

m;
0, elsewhere, (5.1)

here cε(x) def= ε k if x ∈ ε (Y + k) with k ∈ Zd denotes the lattice translation point of the ε-cell domain
ontaining x.

The basic properties of the dilation operator are given by the following lemma (see, e.g., [10,41]).

emma 5.1. Let φ,ψ ∈ L2(0,T;H1(Ωε
m)). Then we have:

∇yD
εφ = εDε(∇xφ) a.e. in ΩT × Ym; (5.2)

∥Dεφ∥L2(ΩT×Ym) = ∥φ∥L2(Ωε
m,T

);

∥∇yD
εφ∥L2(ΩT×Ym) = ε ∥Dε∇x φ∥L2(ΩT×Ym) = ε ∥∇x φ∥L2(Ωε

m,T
);

(Dεφ,Dεψ)L2(ΩT×Ym) = (φ,ψ)L2(Ωε
m,T

) .

The following lemma gives the link between the two-scale and the weak convergence (see, e.g., [29]).

Lemma 5.2. Let {φε}ε>0 be a uniformly bounded sequence in L2(Ωε
m,T) satisfying: (i) Dεφε ⇀ φ0 weakly

in L2(ΩT;L2
per(Ym)); (ii) 1ε

m(x)φε 2s
⇀ φ⋆ ∈ L2(ΩT;L2

per(Ym)). Then φ0 = φ⋆ a.e. in ΩT × Ym.

Finally, we also have the following result (see, e.g., [13,41]).

Lemma 5.3. If φε ∈ L2(Ωε
m,T) and 1ε

m(x)φε 2s→ φ ∈ L2(ΩT;L2
per(Ym)) then Dεφε converges to φ strongly

in L2(ΩT ×Ym). Here 2s→ denotes the strong two-scale convergence. If φ ∈ L2(ΩT) is considered as an element
of L2(ΩT × Ym) constant in y, then Dεφ converges strongly to φ in L2(ΩT × Ym).
17
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5.2. The dilated functions DεSε
m, D

εP ε
m, D

εT ε
m and their properties

In this section we derive the equations for the dilated functions DεSε
m,D

εP ε
m,D

εT ε
m and obtain the

orresponding uniform estimates. In what follows we also make use of the notation:

DεSε
m

def= sε
m, DεPε

m
def= pε

m and DεTε
m

def= θε
m. (5.3)

he equations for the dilated functions sε
m, p

ε
m are given by the following lemma.

emma 5.4. For x ∈ Ω , the functions sε
m, p

ε
m satisfy in the space L2(0,T;H−1(Ym)) the following system

of equations:

Φm(y)∂s
ε
m

∂t
− divy

{
Km(x, y)

[
λm,w(sε

m, θ
ε
m)[∇yp

ε
m − εr⃗w]+Λ

(m)
1 (sε

m, θ
ε
m)∇yβm(sε

m)

+λm,wBm(sε
m, θ

ε
m)∇yθ

ε]
}

= 0; (5.4)

−Φm(y)∂s
ε
m

∂t
− divy

{
Km(x, y)

[
λm,n(sε

m, θ
ε
m)[∇yp

ε
m − εr⃗n]−Λ

(m)
1 (sε

m, θ
ε
m)∇yβm(sε

m)

+λm,nBm(sε
m, θ

ε
m)∇yθ

ε]
}

= 0. (5.5)

The Proof of Lemma 5.4 is given in [29,41]. The system of equations (5.4)–(5.5) is provided with the
following boundary conditions:

βm(sε
m) = M(βf(DεS̃ε)) on Γfm for (x, t) ∈ Ωε

m,T, (5.6)

here
M def= βm ◦ (Pm,c)−1 ◦ Pf,c ◦ (βf)−1 = βm ◦ (βf ◦ P)−1. (5.7)

e also have

pε
m + Gm,w(sε

m, θ
ε
m) = DεP̃ε

f + Gf,w(DεS̃ε,DεT ε
f ) on Γfm for (x, t) ∈ Ωε

m,T;
pε

m + Gm,n(sε
m, θ

ε
m) = DεP̃ε

f + Gf,n(DεS̃ε,DεT ε
f ) on Γfm for (x, t) ∈ Ωε

m,T.

The initial conditions are

sε
m(x, y, 0) = (DεS0

m)(x, y) and pε
m(x, y, 0) = (DεP0

m)(x, y) in Ωε
m × Ym, (5.8)

where S0
m,P0

m are the functions defined in (A.10) and Remark 5.
The dilations of the functions defined on the fracture system can be defined in a way similar to that

already used for the functions defined on the matrix part.
Now we establish a priori estimates for the functions sε

m, p
ε
m. They are given by the following lemma.

Lemma 5.5. Let ⟨sε
m, p

ε
m, θ

ε
m⟩ be dilated functions defined in (5.3). Then:

0 ⩽ sε
m ⩽ 1, a.e. in ΩT × Ym, (5.9)

∥∇yβm(sε
m)∥L2(ΩT ;L2

per(Ym)) ⩽ C, (5.10)

∥θε
m∥L2(ΩT ;L2

per(Ym)) ⩽ C, ∥∇yθ
ε
m∥L2(ΩT ;L2

per(Ym)) ⩽ Cε. (5.11)
18
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Proof of Lemma 5.5. Statement (5.9) is evident. The uniform estimate for the gradient of the function
βm(sε

m) follows from the uniform bounds of Lemmas 3.4 and 5.1. Finally, the uniform estimates (5.11) follow
from Lemmas 3.2 and 5.1. Lemma 5.5 is proved. □

Since our fluid system is incompressible we can show that the global pressure in the matrix blocks
converges to a constant, independent of the fast variable y. This is the subject of the following lemma.

emma 5.6. For all ϕ ∈ L2(ΩT;H1
0 (Ym)) it holds⏐⏐⏐⏐⏐

∫
ΩT×Ym

Km(x, y)λm(sε
m, θ

ε
m)∇yp

ε
m · ∇yϕ dy dx dt

⏐⏐⏐⏐⏐ ⩽ C ε

∫
ΩT

∥∇yϕ∥L2(Ym) dx dt. (5.12)

roof of Lemma 5.6. From (5.4) and (5.5), by summing the equations we eliminate the saturation and
btain:

divy

{
Km(x, y) [λm(sε

m, θ
ε
m)∇yp

ε
m − ελm,w(sε

m, θ
ε
m)r⃗w − ελm,n(sε

m, θ
ε
m)r⃗n + λmBm(sε

m, θ
ε
m)∇yθ

ε
m]

}
= 0,

here λm = λm,w + λm,n. The weak formulation of this equation is as follows: for any ϕ ∈ L2(0,T;H1
0 (Ω)),∫

ΩT×Ym

{
Km(x, y)λm(sε

m, θ
ε
m)∇yp

ε
m · ∇yϕ

}
dy dx dt

=
∫
ΩT×Ym

{
Km(x, y) [ελm,w(sε

m, θ
ε
m)r⃗w + ελm,n(sε

m, θ
ε
m)r⃗n − λmBm(sε

m, θ
ε
m)∇yθ

ε
m] · ∇yϕ

}
dy dx dt.

sing the boundedness of the functions λm,w, λm,n and λmBm, together with the estimate (5.11) we conclude
hat there is a constant C which does not depend on ε, such that (5.12) holds. Lemma 5.6 is proved. □

Lemma 5.2 imply the following convergence results.

emma 5.7. Let ⟨sε
m, p

ε
m, θ

ε
m⟩ be the dilated functions defined in (5.3). Then, up to a subsequence, we have:

1ε
m(x)Sε

m
2s
⇀ s ∈ L2(ΩT;L2

per(Ym));
sε

m ⇀ s weakly in L2(ΩT × Ym).
(5.13)

emma 5.8. The weak formulation of Eq. (5.4) for the dilated matrix saturation sε
m has the form:∫

ΩT×Ym
Φm(y)∂s

ε
m

∂t
φ dy dx dt+

∫
ΩT×Ym

{Km(x, y)∇yβ
∗
m(sε

m, T ) + F ε} · ∇yφdy dx dt = 0, (5.14)

or all φ ∈ L2(ΩT;H1
0 (Ym)), where β∗

m is the function introduced in (6.6), the temperature T = T (x, t) is
given in Proposition 4.3, and

F ε = Km(x, y)
[
λm,w(sε

m, θ
ε
m)[∇yp

ε
m − εr⃗w]

+ [Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )]∇yβm(sε
m) + λm,wBm(sε

m, θ
ε
m)∇yθ

ε
m

]
.

(5.15)

urthermore, we have

|Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )| → 0 a.e. in ΩT × Ym as ε → 0. (5.16)
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Proof of Lemma 5.8. From direct calculation we get

Λ
(ℓ)
1 (S, T ) =

√
MnMw

mnmw

√
[k(ℓ)

r,n(S)mw + k
(ℓ)
r,w(S)mn]k(ℓ)

r,w(S)k(ℓ)
r,n(S)

k
(ℓ)
r,n(S)µw(T ) + k

(ℓ)
r,w(S)µn(T )

,

nd consequently by (A.7) there is a constant C > 0 such that

|Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )| ⩽ C
[
|µw(θε

m) − µw(T )| + |µn(θε
m) − µn(T )|

]
.

ue to the strong convergence given in Proposition 4.3 and Lemma 5.3, we get (5.16). Furthermore, using
he fact that T = T (x, t), we introduce the function β∗

m = β∗
m(S, T ) given by the relation

d

dS
β∗

m(S, T ) = Λ
(m)
1 (S, T )β′

m(S)

hen we have
Λ

(m)
1 (sε

m, T )∇yβm(sε
m) = ∇yβ

∗
m(sε

m, T ). (5.17)

ne can easily verify that
Λ

(m)
1 (S, T )β′

m(S) = λm,w(S, T )λm,n(S, T )
λm,w(S, T ) + λm,n(S, T ) .

Therefore, the function β∗
m introduced in (5.17) coincides with the function β∗

m defined by (6.6) below in
Section 6. The weak formulationn Eq. (5.14)–(5.15) follow now directly from (5.4) and (5.17). Lemma 5.8 is
proved. □

6. Statement of the homogenization result

In this section we formulate the main result of the paper and we complete its proof.
First, we introduce the notation. By S, Pw, Pn and T we denote the homogenized wetting phase

saturation, wetting phase pressure, nonwetting phase pressure and temperature, respectively.

- Φ⋆ = Φ⋆(x) denotes the effective porosity and it is given by:

Φ⋆(x) def= ΦH
f (x) |Yf |/|Ym|, (6.1)

where the function ΦH
f is defined in condition (A.1) and |Yℓ| is the measure of the set Yℓ (ℓ = f,m).

- K⋆ is the homogenized permeability tensor with the entries (K⋆)i,j defined by:

(K⋆)i,j(x) def= 1
|Ym|

∫
Yf

Kf(x, y) [∇yξi + e⃗i] · [∇yξj + e⃗j ] dy, (6.2)

where ξj = ξj(x, y) (j = 1, . . . , d) is a Y -periodic solution to the auxiliary cell problem:⎧⎨⎩−divy

{
Kf(x, y)(∇yξj + e⃗j)

}
= 0 in Yf ;

∇yξj · ν⃗y = −e⃗j · ν⃗y on Γfm;
y ↦→ ξj(y) Y − periodic.

(6.3)

- K⋆
T is the homogenized thermal conductivity tensor with the entries (K⋆

T )ij defined by:

(K⋆
T )i,j

def= 1
|Ym|

∫
Y

kT (y)[∇yηj + e⃗j ] · [∇yηi + e⃗i]dy. (6.4)

where ηj = ηj(y) (j = 1, . . . , d) is a Y -periodic solution to the auxiliary cell problem:{
−divy

{
kT (y)(∇yηj + e⃗j)

}
= 0 in Y ;

y ↦→ ηj(y) Y − periodic. (6.5)
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- For a fixed value of the temperature function T ∈ R we define:

β⋆
m(s, T ) =

∫ s

0

λm,w(ς, T )λm,n(ς, T )
λm(ς, T ) |P ′

m,c(ς)| dς. (6.6)

We study the asymptotic behavior of the solution to problem (2.3)–(2.7) as ε → 0. In particular, we
are going to show that the effective model, expressed in terms of the homogenized phase pressures and the
temperature function reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ⩽ S ⩽ 1 in ΩT;

Φ⋆ ∂S

∂t
− div

{
K⋆λf,w(S, T )(∇Pw − r⃗w)

}
= ∂Qw

∂t
in ΩT;

−Φ⋆ ∂S

∂t
− div

{
K⋆λf,n(S, T )(∇Pn − r⃗n)

}
= ∂Qn

∂t
in ΩT;

∂Ψ⋆

∂t
− div

{
CwT K⋆λf,w(S, T )[∇Pw − r⃗w] + CnT K⋆λf,n(S, T )[∇Pn − r⃗n]

}
− div

{
K⋆

T ∇T
}

= (Cw − Cn) ∂
∂t

(QwT ) in ΩT;

Pf,c(S) = Pn − Pw in ΩT

(6.7)

with
Ψ⋆(S, T ) def=

[(
Cw S + Cn[1 − S]

)
Φ⋆ + C⋆

m,s + C⋆
f,s + Cn Φm

]
T, (6.8)

here Φm is the mean value of the function Φm over Ym and the constants C⋆
m,s,C⋆

f,s are given by:

C⋆
m,s

def= Cm,s

[
1 − Φm

]
and C⋆

f,s
def= Cf,s

[
|Yf |/|Ym| − Φ⋆(x)

]
. (6.9)

For almost every point x ∈ Ω the system for flow in a matrix block Ym ⊂ Rd is given by the so-called
mbibition equation: ⎧⎪⎪⎨⎪⎪⎩

Φm(y)∂s
∂t

− divy

{
Km(x, y)∇yβ

⋆
m(s, T (x, t))

}
= 0 in Ym × ΩT;

s(x, y, t) = P−1(S(x, t)) on Γfm × ΩT;
s(x, y, 0) = S0

m(x) in Ym × Ω ,

(6.10)

here P(S) is defined in (2.19), s denotes the wetting liquid saturation in the matrix block Ym and S0
m is

defined in Remark 5.

Remark 8. The inequalities from Remark 4 show that the parabolic operator in the imbibition equation
(6.10) is degenerate and thus important qualitative properties (such as, for instance, the finite speed of
propagation) remain true even in the nonisothermal case. This can be justified by means of the local in
space energy methods such as given in [44].

For any x ∈ Ω and t > 0, the matrix–fracture sources have the form:

Qw
def= − 1

|Ym|

∫
Ym

Φm(y) s(x, y, t) dy = −Qn. (6.11)

he boundary conditions for the effective system (6.7) are given by:⎧⎨⎩Pw = Pn = T = 0 on ΓD × (0,T);
K⋆ λn(S, T ) (∇Pw − g⃗) · ν⃗ = K⋆ λw(S, T )(∇Pn − g⃗) · ν⃗ = 0 on ΓN × (0,T);

⋆
(6.12)
KT ∇T · ν⃗ = 0 on ΓN × (0,T).
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Finally, the initial conditions read:

S(x, 0) = S0
f (x) and T (x, 0) = T 0(x) in Ω . (6.13)

The main result of the paper is given by the following theorem.

Theorem 6.1. Let assumptions (A.1)–(A.10) be fulfilled. Then the solution of the initial problem (2.3)–(2.7)
converges (up to a subsequence) in the two-scale sense to a weak solution of the homogenized problem (6.7),
(6.10), (6.11)–(6.13).

Proof of Theorem 6.1. The proof is done in several steps. We start our analysis by considering the
system (2.3). The main difficulty with the initial unknown functions pε

w, p
ε
n in this system is that they do

not possess the uniform H1-estimates (see Lemma 3.1). To overcome the difficulties appearing due to the
absence of the uniform H1-estimates, we pass to the equivalent formulation of the problem in terms of the
global pressure, saturation, and the temperature function. Then using the convergence and compactness
results from Section 4 we pass to the limit in Eqs. (2.25), (2.26), (2.27). This is done in Section 6.1. In order,
to pass to the homogenized phase pressures we make use of the change of the unknown functions. Namely,
we set, by the definition of the global pressure: Pw

def= P + Gf,w(S, T ) and Pn
def= P + Gf,n(S, T ). Then we

rewrite the limit system obtained in terms of the global pressure and saturation in terms of the homogenized
phase pressures (see Section 6.3). The passage to the limit in the matrix blocks makes use of the dilation
operator (see Section 5). Then in Section 6.4 we pass to the equivalent problem for the imbibition equation
and, finally, obtain the local problem (6.10).

6.1. Passage to the limit in Eqs. (2.25), (2.26), (2.27)

In this section we pass to the limit, as ε → 0, in Eqs. (2.25), (2.26), (2.27). This will be done in the
following way. We replace the gradients of the functions pε

w, p
ε
n by their representations in terms of the

global pressure and saturation (see (2.15), (2.16)) and then pass to the limit in this equivalent formulation.
The homogenized equations are then obtained in terms of the homogenized global pressure, the homogenized
saturation, and the homogenized temperature function.

Passage to the limit in Eq. (2.25). In order to pass to the limit in (2.25), we make use of the relation
(2.16) for the gradient of the function pw. Then we set:

φw

(
x, t,

x

ε

)
def= φ(x, t) + ε ζε

(
x, t,

x

ε

)
= φ(x, t) + ε ζ1(x, t) ζ2

(x
ε

)
, (6.14)

here φ ∈ D(Ω × [0,T)), ζ1 ∈ D(ΩT), ζ2 ∈ C∞
per(Y ), and plug the function φw in the equivalent form of

2.25) in terms of the global pressure and saturation. This yields:

−
∫
ΩT

Φε
f (x) S̃ε

[
∂φ

∂t
+ ε

∂ζε

∂t

]
1ε

f (x) dx dt−
∫
Ω

Φε
f (x)S0

f 1ε
f (x)φ(x, 0) dx

+
∫
ΩT

Kε
f (x)

{
λf,w(S̃ε, T ε)

(
∇P̃ε

f − r⃗w

)
+ Λ

(f)
1 (S̃ε, T ε)∇βf(S̃ε) + λf,w(S̃ε, T ε) Bf (S̃ε, T ε)∇T ε

}
·
{

∇φ+ ε∇xζ
ε + ∇yζ

ε
}

1ε
f (x) dx dt

−
∫
Ωε

m,T

Φm

(x
ε

)
Sε

m

[
∂φ

∂t
+ ε

∂ζε

∂t

]
dx dt−

∫
Ωε

m

Φε
m(x)S0

mφ(x, 0) dx

+ ε2
∫
Ωε

m,T

Kε
m(x)

{
λm,w(Sε

m, T
ε) (∇Pε

m − r⃗w) + Λ
(m)
1 (Sε

m, T
ε)∇βm(Sε

m)

+ λm,w(Sε
m, T

ε) Bm(Sε
m, T

ε)∇T ε

}
·
{

∇φ+ ε∇xζ
ε + ∇yζ

ε
}
dx dt = 0,

(6.15)
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f

where Kε
f (x) = K(x, x

ε )1ε
f (x), Kε

m(x) = K(x, x
ε )1ε

m(x), and S̃ε, P̃ε
f are the extensions of the functions Sε

f ,
ε
f from Ωε

f to the whole Ω that were defined in Section 4.
Now taking into account the uniform bounds given in Lemmata 3.2, 3.4 and the convergence results of

emmata 4.2, 5.7 we pass to the limit in (6.15) as ε → 0 and obtain the following homogenized equation:

−|Yf |
∫
ΩT

ΦH
f S

∂φ

∂t
dxdt− |Yf |

∫
Ω

ΦH
f S

0
f φ(x, 0)dx+

∫
ΩT×Yf

Kf(x, y)
{
λf,w(S, T )

[
∇P + ∇ywp − r⃗w

]
+Λ

(f)
1 (S, T )[∇βf(S) + ∇yws] + λf,w(S, T )Bf(S, T )[∇T + ∇ywT ]

}
·
{

∇φ+ ζ1∇yζ2

}
dy dx dt

=
∫
ΩT×Ym

Φm(y) s(x, y, t)∂φ
∂t

dy dx dt+
∫
Ω×Ym

Φm(y)S0
m(x)φ(x, 0) dy dx. (6.16)

assage to the limit in Eq. (2.26). In a similar way, using relation (2.15) for the gradient of the function
pn, we obtain the second homogenized equation. It reads:

|Yf |
∫
ΩT

ΦH
f S

∂φ

∂t
dx dt+ |Yf |

∫
Ω

ΦH
f S

0
f φ(x, 0)dx+

∫
ΩT×Yf

Kf(x, y)
{
λf,n(S, T )

[
∇P + ∇ywp − r⃗n

]
−Λ

(f)
1 (S, T )[∇βf(S) + ∇yws] + λf,n(S, T )Bf(S, T )[∇T + ∇ywT ]

}
·
{

∇φ+ ζ1∇yζ2

}
dy dx dt

= −
∫
ΩT×Ym

Φm(y)s(x, y, t)∂φ
∂t
dy dx dt−

∫
Ω×Ym

Φm(y)S0
m(x)φ(x, 0) dy dx. (6.17)

Here in (6.16), (6.17) the function s is defined in (5.13).

assage to the limit in Eq. (2.27). Taking into account the relations (2.15), (2.16) and then using the test
unction (6.14), after passing to the limit as ε → 0, we get:

−
∫
ΩT×Yf

{
ΦH

f (x)
(
CwS + Cn[1 − S]

)
+

(
1 − ΦH

f (x)
)
Cs(y)

}
T
∂φ

∂t
dx dy dt

−
∫
Ω×Yf

{
ΦH

f (x)(CwS
0
f + Cn[1 − S0

f ]) + (1 − ΦH
f (x))Cs(y)

}
T 0φ(x, 0) dx dy

+
∫
ΩT×Yf

CwTKf(x, y)
{
λf,w(S, T )[∇P + ∇ywp − r⃗w]+Λ

(f)
1 (S, T )[∇βf(S) + ∇yws]

+λf,w(S, T ) Bf(S, T ) [∇T + ∇ywT ]
}

·
{

∇φ+ ζ1∇yζ2

}
dx dy dt

+
∫
ΩT×Yf

CnTKf(x, y)
{
λf,n(S, T )[∇P + ∇ywp − r⃗n]−Λ

(f)
1 (S, T )[∇βf(S) + ∇yws]

+λf,n(S, T ) Bf(S, T )[∇T + ∇ywT ]
}

·
{

∇φ+ ζ1∇yζ2

}
dx dy dt

−
∫
ΩT×Ym

{
Φm(y)(Cws+ Cn[1 − s]) + (1 − Φm(y))Cs(y)

}
T
∂φ

∂t
dx dy dt+

−
∫
Ω×Ym

{
Φm(y)(CwS

0
m + Cn[1 − S0

m]) + (1 − Φm(y))Cs(y)
}
T 0φ(x, 0) dx dy

+
∫
ΩT×Y

kT (y) [∇T + ∇ywT ] ·
{

∇φ+ ζ1∇yζ2

}
dx dy dt = 0. (6.18)

It remains to identify the corrector functions wp, ws, wT appearing in Eqs. (6.16), (6.17), (6.18) in the
standard way (see, e.g., [16]). By setting φ ≡ 0 in these equations and by multiplying (6.16) and (6.17)
23
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by CwT and CnT , respectively, and subtracting from (6.18), and taking into account the fact that the
emperature T does not depend on the fast variable y, we get

wT (x, y, t) =
d∑

j=1
ηj(y) ∂ T

∂xj
(x, t), (6.19)

here ηj = ηj(y) (j = 1, . . . , d) are the Y -periodic solution of the auxiliary cell problem (6.5).
Adding Eqs. (6.16), (6.17) and dividing by λf(S, T ), which does not depend on y and is strictly positive

ue to (2.21), we obtain:

wp(x, y, t) =
d∑

j=1

(
∂ P
∂xj

(x, t) − rw,j

)
ξj(y) + Bf(S, T )

d∑
j=1

∂ T

∂xj
(x, t)χj(y), (6.20)

here the functions ξj(x, y) satisfy the local problems (6.3) and χj(x, y) satisfy the following local problems:⎧⎨⎩−divy

{
Kf(x, y)∇yχj

}
= divy

{
Kf(x, y)(∇yηj + e⃗j)

}
in Yf ;

∇yχj · ν⃗y = −(∇yηj + e⃗j) · ν⃗y on Γfm;
y ↦→ χj(y) Y − periodic.

(6.21)

ote that from the uniqueness of the solution to problem (6.21), we have

χj + ηj = ξj (6.22)

p to an additive constant.
Finally, we can identify

ws(x, y, t) =
d∑

j=1
ξj(y)∂ βf(S)

∂xj
(x, t). (6.23)

.2. Effective equations in terms of the global pressure and saturation

In this section we derive the homogenized equations for the wetting, nonwetting phases, and the
emperature. By setting ζ2 = 0 in (6.16)–(6.18) and using the representations of the corrector functions
btained in the previous section, we derive the following homogenized equations:

−
∫
ΩT

Φ⋆ S
∂φ

∂t
dx dt−

∫
Ω

Φ⋆S0
f φ(x, 0)dx

+
∫
ΩT

K⋆(x)
{
λf,w(S, T ) (∇P − r⃗w) + Λ

(f)
1 (S, T )∇βf(S) + λf,w(S, T ) Bf(S, T ) ∇T

}
· ∇φdx dt

= −
∫
ΩT

Qw
∂φ

∂t
dx dt+

∫
Ω

ΦmS
0
m(x)φ(x, 0) dx.

(6.24)

here the homogenized porosity Φ⋆ is given by (6.1), Φm is the mean value of the function Φm over Ym, the
homogenized permeability tensor K⋆ is defined in (6.2), Qw stands for the source term given by (6.11) and
the function s = s(x, y, t) is defined in (5.13).

Homogenized nonwetting phase equation is given by:∫
ΩT

Φ⋆ S
∂φ

∂t
dx dt+

∫
Ω

Φ⋆S0
f φ(x, 0)dx

+
∫
ΩT

K⋆(x)
{
λf,n(S, T ) (∇P−r⃗n)−Λ

(f)
1 (S, T ) ∇βf(S) + λf,n(S, T ) Bf(S, T ) ∇T

}
· ∇φdx dt

= −
∫
ΩT

Qn
∂φ

∂t
dx dt−

∫
Ω

ΦmS
0
m(x)φ(x, 0) dx,

(6.25)

here Q = −Q (see (6.11)).
w n
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Homogenized equation for the temperature is given by:

−
∫
ΩT

{
Φ⋆(Cw S + Cn[1 − S]) + C⋆

m,s + C⋆
f,s + Cn Φm

}
T
∂φ

∂t
dxdt

−
∫
Ω

{
Φ⋆(CwS

0
f + Cn[1 − S0

f ]) + C⋆
m,s + C⋆

f,s + Cn Φm

}
T 0φ(x, 0) dx

+
∫
ΩT

Cw T K⋆
{
λf,w(S, T )[∇P − r⃗w]+Λ

(f)
1 (S, T )∇βf(S) + λf,w(S, T ) Bf(S, T ) ∇T

}
· ∇φdx dt

+
∫
ΩT

Cn T K⋆
{
λf,n(S, T )[∇P − r⃗n]−Λ

(f)
1 (S, T )∇βf(S) + λf,n(S, T ) Bf(S, T ) ∇T

}
· ∇φdx dt

+
∫
ΩT

K⋆
T ∇T · ∇φdx dt = −

∫
ΩT

(Cw − Cn)Qw T
∂φ

∂t
dxdt+ Φm(Cw − Cn)

∫
Ω

S0
mT

0φ(x, 0) dx,

(6.26)

here C⋆
m,s and C⋆

f,s are given by (6.9) and K⋆
T is the homogenized thermal conductivity tensor defined in

(6.4)–(6.5).

6.3. Effective equations in terms of the phase pressures

The variational equations (6.24)–(6.26) can be written in the differential form as follows:

Φ⋆ ∂S

∂t
− div

{
K⋆

[
λf,w(S, T )(∇P − r⃗w)+Λ

(f)
1 (S, T )∇βf(S) + λf,w(S, T )Bf(S, T )∇T

]}
= ∂Qw

∂t
.

(6.27)

−Φ⋆ ∂S

∂t
− div

{
K⋆

[
λf,n(S, T )(∇P − r⃗n)−Λ

(f)
1 (S, T )∇βf(S) + λf,n(S, T )Bf(S, T )∇T

]}
= ∂Qn

∂t
.

(6.28)

∂

∂t

{[
Φ⋆(Cw S + Cn[1 − S]) + C⋆

m,s + C⋆
f,s + Cn Φm

]
T

}
− div

{
Cw T K⋆

{
λf,w(S, T ) [∇P − r⃗w]+Λ

(f)
1 (S, T )∇βf(S) + λf,w(S, T ) Bf(S, T ) ∇T

}}
− div

{
Cn T K⋆

{
λf,n(S, T ) [∇P − r⃗n]−Λ

(f)
1 (S, T )∇βf(S) + λf,n(S, T ) Bf(S, T ) ∇T

}}
− div

{
K⋆

T ∇T
}

=
(
Cw − Cn

) ∂

∂t

(
Qw T

)
,

(6.29)

ith the following boundary conditions:

P = T = 0, S = 1 on ΓD × (0,T); (6.30)

nd the Neumann boundary conditions on ΓN × (0,T):

K⋆
{
λf,w(S, T ) [∇P − r⃗w]+Λ

(f)
1 (S, T )∇βf(S) + λf,w(S, T ) Bf(S, T ) ∇T

}
· ν⃗ = 0, (6.31)

K⋆
{
λf,n(S, T ) [∇P − r⃗n]−Λ

(f)
1 (S, T )∇βf(S) + λf,n(S, T ) Bf(S, T ) ∇T

}
· ν⃗ = 0, (6.32)

K⋆
T ∇T · ν⃗ = 0. (6.33)

t is straightforward to show that the initial conditions read,

Φ⋆S(x, 0) + 1 ∫
Φm(y) s(x, y, 0) dy = Φ⋆S0

f (x) + ΦmS
0
m(x), T (x, 0) = T 0(x) for x ∈ Ω . (6.34)
|Yf | Ym
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Let us introduce now the functions

pw
def= P + Gf,w(S, T ) and pn

def= P + Gf,n(S, T ), (6.35)

here the functions Gf,w,Gf,n are defined in Section 2.2. We call these functions homogenized phase pressures.
hen using relations (2.15) and (2.16) it is easy to see that the homogenized equations (6.27), (6.28), and

6.29) become the desired equations (6.7)2–(6.7)4. The boundary conditions (6.12) follow from (6.30)–(6.33).

.4. Flow equations in the matrix block

In preceding section we have shown that the homogenized phase pressures pw and pn, homogenized
etting phase saturation S and homogenized temperature T satisfy the homogenized equations (6.7)2–(6.7)4
nd the boundary conditions (6.12). The source terms Qw and Qn are given by (6.11) with the function
(x, y, t) given as a weak limit of the dilated functions sε

m (see Lemma 5.7). Furthermore, only a combination
f the functions appearing on the left hand side in (6.34) has enough regularity to satisfy corresponding initial
onditions. In this section it is shown by the asymptotic analysis of Eqs. (5.4) and (5.5) satisfied by dilated
unctions sε

m, pε
m and θε

m, that homogenized matrix block saturation s, given as a weak limit of sε
m, satisfies

he imbibition equation (6.10), which completes the homogenized model. In that way it is also shown that
he function s has sufficient regularity in temporal variable and satisfies the initial condition (6.10)3, which
ogether with (6.34) gives the initial condition

S(x, 0) = S0
f (x) for x ∈ Ω . (6.36)

In this section we proceed with the monotonicity arguments similar to ones from [29]. Let us temporarily
enote by s∗ = s∗(x, y, t) a solution to problem (6.10), Then, for any φ ∈ L2(ΩT;H1

0 (Ym)),∫
ΩT×Ym

Φm(y) ∂s
∗

∂t
φ dy dx dt+

∫
ΩT×Ym

Km(x, y)∇yβ
∗
m(s∗, T ) · ∇yφdy dx dt = 0.

ubtracting this equation from (5.14) we get:∫
ΩT×Ym

Φm(y) ∂
∂t

(sε
m − s∗)φdy dx dt

+
∫
ΩT×Ym

{
Km(x, y) [∇yβ

∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )] · ∇yφ+ F ε · ∇yφ

}
dy dx dt = 0,

(6.37)

here F ε is given in (5.15).
In order to pass to the limit as ε → 0 in (6.37) we consider the following auxiliary problem:{

−divy

{
Km(x, y)∇yw

ε
}

= Φm(y)
[
sε

m(x, y, t) − s∗(x, y, t)
]

in Ym ;
wε = 0 on Γm,

(6.38)

or all t ∈ (0,T). From (6.38) we obtain that for a.e. (x, t) ∈ ΩT,

∥∇yw
ε(x, ·, t)∥L2(Ym) ⩽ C∥sε

m(x, ·, t) − s∗(x, ·, t)∥L2(Ym), (6.39)

here C is a constant that does not depend on (x, t).
Since sε

m(x, y, 0) = (DεS0
m)(x, y) and s∗(x, y, 0) = S0

m(x), for t = 0,{
−divy

{
Km(x, y)∇yw

ε
}

= Φm(y)
[
DεS0

m(x, y) − S0
m(x)

]
in Ym ;

wε = 0 on Γm.
(6.40)
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Lemma 6.1. Let sε
m be dilated matrix saturation defined in (5.3) and let s∗ be the solution to (6.10). Then,

0 ⩽
∫
ΩT×Ym

Φm(y)
[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]

(sε
m − s∗) dy dx dt

⩽ −
∫
ΩT×Ym

Km(x, y) ∇yβ
∗
m(P−1(DεS̃ε), T ) · ∇yw

ε dy dx dt

+
∫
ΩT×Ym

Φm(y)
[
β∗

m(P−1(DεS̃ε), T ) − β∗
m(P−1(S), T )

]
(sε

m − s∗) dy dx dt

+1
2

∫
Ω×Ym

Km(x, y)|∇yw
ε(x, y, 0)|2 dx dy + C ε

∫
ΩT

∥∇yw
ε∥L2(Ym) dx dt

+C
∫
ΩT×Ym

⏐⏐Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )
⏐⏐ |∇yβm(sε

m)| |∇yw
ε| dy dx dt.

(6.41)

roof of Lemma 6.1. We plug wε in (6.37) as the test function. We get:∫
ΩT×Ym

Φm(y) ∂
∂t

(sε
m − s∗)wε dy dx dt

+
∫
ΩT×Ym

{
Km(x, y)

[
∇yβ

∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )

]
· ∇yw

ε + F ε · ∇yw
ε

}
dy dx dt = 0.

(6.42)

ow we rearrange the terms in this equation. This is done in several steps.

tep 1. Integration by parts with respect to time in the first term of (6.42). Using (6.38) we get:∫
ΩT×Ym

Φm(y) ∂
∂t

(sε
m − s∗)wε dx dt dy = −

∫
ΩT×Ym

Φm(y)
[
sε

m − s∗] ∂wε

∂t
dy dx dt

+
∫
Ω×Ym

Φm(y)
[
sε

m(x, y,T) − s∗(x, y,T)
]
wε(x, y,T) dy dx

−
∫
Ω×Ym

Φm(y)
[
sε

m(x, y, 0) − s∗(x, y, 0)
]
wε(x, y, 0) dy dx = −

∫
ΩT×Ym

Φm(y)
[
sε

m − s∗]∂wε

∂t
dy dx dt

+
∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y,T)|2 dy dx−

∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y, 0)|2 dy dx.

Using integration by parts with respect to time variable in (6.38) we get:∫
ΩT×Ym

Φm(y)
[
sε

m − s∗] ∂wε

∂t
dx dt dy =

∫
ΩT×Ym

Km(x, y) ∇yw
ε(x, y, t) · ∇y

∂wε

∂t
(x, y, t) dy dx dt

=
∫ T

0

1
2
∂

∂t

∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y, t)|2 dy dx dt

= −1
2

∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y, 0)|2 dy dx+ 1

2

∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y,T)|2 dy dx.

aking into account this two transformations in (6.42) we get:∫
ΩT×Ym

Km(x, y)
[
∇yβ

∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )

]
· ∇yw

ε dy dx dt

= −1
2

∫
Ω×Ym

Km(x, y) |∇yw
ε(x, y,T)|2 dx dy

+ 1 ∫
Km(x, y) |∇yw

ε(x, y, 0)|2 dy dx−
∫

F ε · ∇yw
ε dy dx dt.

(6.43)
2 Ω×Ym ΩT×Ym
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Step 2. Integration by parts with respect to space variable in (6.38). Taking into account the

uxiliary problem (6.38) we get:

∫
ΩT×Ym

Km(x, y)
[

∇yβ
∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )

]
·∇yw

ε dy dx dt

=
∫
ΩT×Ym

divy

{[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]
Km(x, y)∇yw

ε

}
dy dx dt

−
∫
ΩT×Ym

[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]

divy

{
Km(x, y)∇yw

ε
}
dy dx dt

=
∫
ΩT×∂Ym

[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]
Km(x, y)∇yw

ε · n dSy dx dt

+
∫
ΩT×Ym

Φm(y)
[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]
(sε

m − s∗) dy dx dt.

Note that the boundary condition (5.6) implies that sε
m = P−1(DεS̃ε) a.e. on ∂Ym × ΩT and, therefore,

β∗
m(sε

m, T ) = β∗
m(P−1(DεS̃ε), T ) on Γfm for (x, t) ∈ Ωε

m,T.

In the same way, since s∗ = P−1(S) a.e. on ∂Ym × ΩT, we have that

β∗
m(s∗, T ) = β∗

m(P−1(S), T ) on Γfm for (x, t) ∈ Ωε
m,T.

Since the boundary values are well defined in the whole ΩT × Y we can substitute them in the integral over
Ym and perform again the integration by parts. We get:

∫
ΩT×Ym

Km(x, y)
[
∇yβ

∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )

]
· ∇yw

ε dy dx dt

=
∫
ΩT×∂Ym

[
β∗

m(P−1(DεS̃ε), T ) − β∗
m(P−1(S), T )

]
Km(x, y)∇yw

ε · n dSy dx dt

+
∫
ΩT×Ym

Φm(y)
[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]
(sε

m − s∗) dy dx dt.

he integration by parts now gives:

∫
ΩT×Ym

Km(x, y)[∇yβ
∗
m(sε

m, T ) − ∇yβ
∗
m(s∗, T )] · ∇yw

ε dy dx dt

=
∫
ΩT×Ym

Km(x, y)∇yβ
∗
m(P−1(DεS̃ε), T ) · ∇yw

ε dy dx dt

−
∫
ΩT×Ym

Φm(y)
[
β∗

m(P−1(DεS̃ε), T ) − β∗
m(P−1(S), T )

]
(sε

m − s∗) dy dx dt

+
∫

Φm(y)[β∗
m(sε

m, T ) − β∗
m(s∗, T )](sε

m − s∗) dy dx dt,

ΩT×Ym
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where we have taken into account the auxiliary problem (6.38) and also the fact that ∇yβ
∗
m(P−1(S), T ) = 0.

lugging now this equality into (6.43) we get:

0 ⩽
∫
ΩT×Ym

Φm(y)
[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]

(sε
m − s∗) dy dt dt

⩽ −
∫
ΩT×Ym

Km(x, y) ∇yβ
∗
m(P−1(DεS̃ε), Tx) · ∇yw

ε dy dx dt

+
∫
ΩT×Ym

Φm(y)
[
β∗

m(P−1(DεS̃ε), T ) − β∗
m(P−1(S), T )

]
(sε

m − s∗) dy dx dt

− 1
2

∫
Ω×Ym

Km(x, y)
⏐⏐∇yw

ε(x, y,T)
⏐⏐2
dy dx+ 1

2

∫
Ω×Ym

Km(x, y)
⏐⏐∇yw

ε(x, y, 0)
⏐⏐2
dy dx

−
∫
ΩT×Ym

F ε · ∇yw
ε dy dx dt,

(6.44)

here we used the monotonicity of the function s ↦→ β∗
m(s, T ).

The boundedness of the functions λm,w, λm,n, λmBm and estimate (5.11) imply that⏐⏐⏐⏐⏐
∫
ΩT×Ym

F ε · ∇yw
ε dy dx dt

⏐⏐⏐⏐⏐ ⩽
⏐⏐⏐⏐⏐
∫
ΩT×Ym

Km(x, y)λm,w(sε
m, θ

ε
m) ∇yp

ε
m · ∇yw

ε dy dx dt

⏐⏐⏐⏐⏐
+C

∫
ΩT×Ym

⏐⏐Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )
⏐⏐ ⏐⏐∇yβm(sε

m)
⏐⏐ ⏐⏐∇yw

ε
⏐⏐ dy dx dt+ C ε

∫
ΩT

∥∇yw
ε∥L2(Ym) dx dt.

hen, from (5.12) it follows the estimate:⏐⏐⏐⏐⏐
∫
ΩT×Ym

F ε · ∇yw
ε dy dx dt

⏐⏐⏐⏐⏐ ⩽ C ε

∫
ΩT

∥∇yw
ε∥L2(Ym) dx dt

+ C

∫
ΩT×Ym

⏐⏐Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )
⏐⏐ ⏐⏐∇yβm(sε

m)
⏐⏐ ⏐⏐∇yw

ε
⏐⏐ dy dx dt. (6.45)

inally, the bound (6.41) immediately follows from (6.44) and (6.45). Lemma 6.1 is proved. □

Now we turn to the main result of the section. This is done by studying the asymptotic behavior of the
ight-hand side of (6.41) as ε → 0. We have.

emma 6.2. Let s ∈ L2(ΩT × Ym) be the limit function from (5.13) and let s∗ be the weak solution of the
mbibition equation (6.10). Then s = s∗ a.e. in ΩT × Ym.

roof of Lemma 6.2. We will show that all terms on the right hand side in (6.41) converge to zero as
→ 0. First note that by (6.39) the functions wε are uniformly bounded in L2(ΩT;H1(Ym)) and, therefore,

ε

∫
ΩT

∥∇yw
ε∥L2(Ym) dx dt → 0 as ε → 0. (6.46)

y Lemma 5.8 and the bound (5.10) we have:∫
ΩT×Ym

⏐⏐Λ(m)
1 (sε

m, θ
ε
m) − Λ

(m)
1 (sε

m, T )
⏐⏐ ⏐⏐∇yβm(sε

m)
⏐⏐ ⏐⏐∇yw

ε
⏐⏐ dy dx dt → 0 as ε → 0.

Proposition 4.2 implies that S̃ε → S strongly in L2(ΩT) and from Lemma 5.3 we have that DεS̃ε → S

trongly in L2(ΩT × Ym). This leads to∫
Φm(y)

[
β∗

m(P−1(DεS̃ε), T ) − β∗
m(P−1(S), T )

]
(sε

m − s∗) dy dx dt → 0 as ε → 0.

ΩT×Ym
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From (6.39), (6.40), and Lemma 5.3 we get:∫
Ω×Ym

Km(x, y)
⏐⏐∇yw

ε(x, y, 0)
⏐⏐2
dy dx ⩽ C

∫
Ω

∥DεS0
m(x, ·) − S0

m(x)∥2
L2(Ym) dx → 0 as ε → 0.

In order to estimate the first integral on the right hand side in (6.41) we note that⏐⏐∇yβ
∗
m(P−1(DεS̃ε), T )

⏐⏐ =
⏐⏐Λ(m)

1 (P−1(DεS̃ε), T )∇yβm(P−1(DεS̃ε))
⏐⏐ ⩽ C

⏐⏐∇yD
εβm(P−1(S̃ε))

⏐⏐.
ith the help of the inequality (2.20) in condition (A.8) and (4.8), from the last inequality we obtain that∫

ΩT

∥∇yβ
∗
m(P−1(DεS̃ε), T )∥2

L2(Ym) dx dt ⩽ C

∫
ΩT

∥∇yD
εβm(P−1(S̃ε))∥2

L2(Ym) dx dt

= C ε2
∫
Ωε

m,T

⏐⏐∇xβm(P−1(S̃ε))
⏐⏐2
dx dt ⩽ C ε2

∫
Ωε

m,T

⏐⏐∇xβ̂(S̃ε)
⏐⏐2
dx dt → 0 as ε → 0.

he above convergence result and (6.41) imply that

0 ⩽
∫
ΩT×Ym

Φm(y)
[
β∗

m(sε
m, T ) − β∗

m(s∗, T )
]

(sε
m − s∗) dx dt dy → 0 as ε → 0.

his enables us to conclude that the limit of sε
m is equal to s∗, which is the solution of problem (6.10).

emma 6.2 is proved. □
Let us also note that by standard arguments (see, e.g., [45]) we have the uniqueness of a solution to the

mbibition equation (6.10) for a fixed value of the temperature T .
This completes the proof of Theorem 6.1. □

. Concluding remarks

We have presented a homogenization result for a degenerate system modeling nonisothermal immiscible
ncompressible two-phase flow through a double porosity medium made of several types of rocks. We have
ssumed that the porosity, the absolute permeability, the capillary and relative permeabilities curves are
ifferent in each type of porous medium. This leads to nonlinear transmission conditions representing the
ontinuity of some physical characteristics such as wetting and nonwetting pressures, at the interfaces that
eparate different media. Then the saturation and some other characteristics become discontinuous at the
nterface. We proved the homogenized results by using the two-scale convergence method combined with the
ilation technique. This homogenization result improves previous results that were obtained for isothermal
odel in highly heterogeneous porous media with discontinuous capillary pressures. The study still needs to
e improved by developing a general approach that would allow us to incorporate the cases of compressible
hases and double porosity media. These more complicated cases appear in various applications. Further
ork on these important issues is in progress, in particular the homogenization of nonisothermal immiscible
ompressible two-phase flow through a double porosity medium as well as the corresponding existence results
or such kind of flow.
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