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Homogenization of a singular random one dimensional PDE

Etienne Pardoux and Andrey Piatnitski

Abstract: We study the homogenization problem for a 1D parabolic operator with a random
large statistically homogeneous potential. It is shown that under proper normalization and
mixing conditions this operator admits homogenization in law, the limits operator being a
parabolic operator with random coefficients.

1. Introduction.

Our goal is to study the limits, as ε → 0, of the solutions of the two linear parabolic
one–dimensional PDEs





∂uε
1

∂t
(t, x) =

1

2

∂2uε
1

∂x2
(t, x) +

1√
ε
c
(x

ε

)
uε

1(t, x), t ≥ 0, a < x < b;

uε
1(0, x) = g(x), a < x < b uε

1(t, a) = g(a), uε
1(t, b) = g(b), t ≥ 0,

(1)

and 



∂uε
2

∂t
(t, x) =

1

2

∂2uε
2

∂x2
(t, x) +

1√
ε
c
(x

ε

)
uε

2(t, x), t ≥ 0, x ∈ IR;

uε
2(0, x) = g(x), x ∈ IR.

(2)

where {c(x), x ∈ IR} is a zero–mean stationary mixing random field. We note that the
highly oscillating factor 1/

√
ε is different from the correct factor 1/ε in the case of a periodic

potential c, see [7] and [2]. Our results are stronger for the first equation, for which we have
a uniqueness result for the limiting equation. In both cases, we obtain the convergence of
the whole sequence to a well identified limit, using a Feynman–Kac representation.

The paper is organized as follows. Section 2 contains the assumptions and the statement
of the main result. Section 3 contains weak convergence results, and section 4 combines
those with some uniform integrability estimates, in order to prove the main result. Finally
section 5 is concerned with the PDEs satisfied by the limits.



292 E. Pardoux, A. Piatnitski

2. Set up and statement of the main result

We make the following assumptions:
(A.1) The initial condition g belongs to C([a, b]) (resp. to L2(IR) ∩ Cb(IR)).
(A.2) The coefficient {c(x), x ∈ IR} is a stationary centered and bounded random field

defined on a probability space (Σ,A, P ), and we assume that

c0 ≡
∫ ∞

−∞
|Ec(0)c(x)|dx < ∞, (3)

where E denotes expectation with respect to the probability measure P .
(A.3) Let

Gx := σ{c(y), y ≤ x}, Gx := σ{c(y), y ≥ x}.
We assume that the random field c is φ-mixing in the following sense. Define, for h > 0,
φ(h) the mixing coefficient with respect to the algebras from above as

φ(h) := sup
{A∈Gx,B∈Gx+h,P (A)>0}

|P (B|A)− P (B)|.

We suppose that ∫ ∞

0

φ
1
2 (h)dh < ∞. (4)

Let {Bt, t ≥ 0} denote a standard one–dimensional Brownian motion, defined on a
probability space (Ω,F , IP), and let

Xx
t := x + Bt, , x ∈ IR, t ≥ 0.

The Feynman-Kac formula for the solution of equation (1) reads

uε
1(t, x) = IE

[
g(Xx

t∧τx
) exp

(
1√
ε

∫ t∧τx

0

c

(
Xx

s

ε

)
ds

)]
, (5)

where IE denotes expectation with respect to IP, and τx denotes the first exit time from [a, b]
by the process {x + Bs, s ≥ 0}, and the same formula for the solution of (2) reads

uε
2(t, x) = IE

[
g(Xx

t ) exp

(
1√
ε

∫ t

0

c

(
Xx

s

ε

)
ds

)]
. (6)

Considering the assumption (A.2), we define the finite quantity

c2 =

∫ ∞

−∞
E[c(0)c(x)] dx. (7)

The main result of this paper is given by

Theorem 1.

uε
1(t, x) → u1(t, x) := IE

[
g(Xx

t∧τx
) exp

(
c

∫

IR

Ly−x
t∧τx

W (dy)

)]
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uε
2(t, x) → u2(t, x) := IE

[
g(Xx

t ) exp

(
c

∫

IR

Ly−x
t W (dy)

)]

in P law, as ε → 0, where W denotes a one dimensional standard Brownian motion defined
on the probability space (Σ,A, P ) and Ly

t is the local time at time t and point y of the process
{X0

t , t ≥ 0}.
We introduce the notation

Y ε,x
t :=

1√
ε

∫ t

0

c

(
Xx

s

ε

)
ds.

The first step in the proof of Theorem 1 is to establish the weak convergence of the process
{Y ε,x

t } in the space (Σ× Ω,A⊗F , P × IP), which is done in the next section.

3. Weak convergence

The aim of this section is to prove the

Theorem 2. For each t > 0,

Y ε,x
t ⇒ Y x

t := c

∫

IR

Ly−x
t W (dy),

weakly, as ε → 0, where, as above, Ly
t is the local time at point y and time t of the Brownian

motion {X0
t , t ≥ 0} defined on (Ω,F , IP), and {W (y), y ∈ IR} is a Wiener process defined

on (Σ,A, P ), so that (X,L) and W are independent.

We define

Wε(x) =
1

c
√

ε

∫ x

0

c
(y

ε

)
dy.

We first prove the

Proposition 3. The sequence of random processes {Wε} converges weakly, as ε → 0, in the
space C(IR), to a standard Wiener process {W} defined on (Σ,A, P ).

Proof: Denote, for x ≥ 0, W 1
ε (x) = Wε(x) and W 2

ε (x) = Wε(−x). According to the
assumptions (A.1), (A.2) and the functional central limit theorem (see e.g. [1], pages 178,
179), it follows that

(W 1
ε ,W 2

ε )
D−→ (W 1,W 2),

where {W 1(x), x ≥ 0} and {W 2(x), x ≥ 0} are mutually independent standard Brownian
motions. Finally we denote by {W (x), x ∈ IR} the process defined by

W (x) := W 1(x), for x ≥ 0, W (x) := W 2(−x), for x < 0.

We can now proceed with the
Proof of Theorem 2 : We deduce from Itô’s formula that, if

Φε(x) :=

∫ x

0

Wε(y)dy,
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Φε(X
x
t ) = Φε(x) +

∫ t

0

Wε(X
x
s )dXx

s +
1

2

∫ t

0

W ′
ε(X

x
s )ds,

consequently

Y ε,x
t = c

∫ t

0

W ′
ε(X

x
s )ds

= 2c[Φε(X
x
t )− Φε(x)−

∫ t

0

Wε(X
x
s )dXx

s ].

The mapping f → ∫ ·
0
f(y)dy is a continuous mapping from C(IR) into itself. Hence it follows

from Proposition 3 that (Wε, Φε) ⇒ (W, Φ) in C(IR)2 as ε → 0, where Φ(x) =
∫ x

0
W (y)dy,

x ∈ IR. Moreover the mapping

f →
∫ t

0

f(Xx
s )dXx

s

is continuous from C(IR) into L0(Ω,F , IP), equipped with the topology of convergence in
probability. Hence

Y ε,x
t → 2c[Φ(Xx

t )− Φ(x)−
∫ t

0

W (Xx
s )dXx

s ]

in P law and IP probability, hence also in P × IP law. The result now follows from the

Lemma 4. The following relation holds a.s.

Φ(Xx
t ) = Φ(x) +

∫ t

0

W (Xx
s )dXx

s +
1

2

∫

IR

Ly−x
t W (dy).

Proof : Let

Wn(x) = (W ∗ ρn)(x), (8)

where ρn(x) = nρ(nx) and ρ is a smooth map from IR into IR+ with compact support, whose
integral over IR equals one, and Φn denote the indefinite integral of Wn. Then from Itô’s
formula

Φn(Xx
t ) = Φn(x) +

∫ t

0

Wn(Xx
s )dXx

s +
1

2

∫ t

0

W ′
n(Xx

s )ds

= Φn(x) +

∫ t

0

Wn(Xx
s )dXx

s +
1

2

∫

IR

Ly−x
t W ′

n(y)dy.

The Lemma now follows by taking the limit as n → ∞. In particular the last term in the
above right hand side converges to

∫

IR

Ly−x
t W (dy)

in L2(Σ,A, P ) for almost all ω ∈ Ω, where the last integral is interpreted as a Wiener integral
for each fixed trajectory of L·−x

t (ω).
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4. Convergence of the sequence uε

In order to deduce Theorem 1 from Theorem 2, we shall need some type of uniform integra-
bility for

{
exp

[
1√
ε

∫ t

0

c

(
Xx

s

ε
, σ

)
ds

]
, ε > 0

}

under IP, for P almost all σ.

We first define the following IR+–valued random variables, for 0 < γ < 1/2 :

ξγ
ε = sup

x∈IR

|Wε(x)|
(1 + |x|)1−γ

.

We have the

Lemma 5. For any 0 < γ < 1/2 and ε0 > 0, the collection of random variables {ξγ
ε , 0 <

ε ≤ ε0} is tight.

Proof. Due to the symmetry it is sufficient to estimate |Wε(x)| for x > 0. We have

E(|Wε(r)|2) = ε

r/ε∫

0

r/ε∫

0

E(c(s)c(t))dsdt

≤ 2ε

r/ε∫

0

∞∫

0

|E(c(0)c(s))|dsdt

≤ 2rc0.

Denote

ηt =

∞∫

0

E(c(s + t)|Gt)ds

Combining the estimate (2.23) in the case p = ∞ in Proposition 7.2.6. from [4] with our
condition (4), we deduce that the stationary process {ηt, t ≥ 0} satisfies |ηt| ≤ c1 a.s. for all
t > 0, with a non-random constant c1. Moreover,

∫ t

0

c(r)dr − ηt

is a square integrable Gt martingale. Denote it by Nt. Clearly

Wε(t) =

√
ε

c̄

∫ t/ε

0

c(s)ds

=

√
ε

c̄
Nt/ε +

√
ε

c̄
ηt/ε,
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and thus we deduce from Doob’s inequality

E
(

sup
0≤t≤r

|Wε(t)|2
)
≤ 2

c̄2
E( sup

0≤t≤r/ε

(√
εN t

)2
) + 2

c2
1ε

c2

≤ 4

c̄2
E((

√
εNr/ε)

2) + 2
c2
1ε

c2

≤ 8E(|Wε(r)|2) + 10
c2
1ε

c2

≤ C(ε + r),

provided C = (16c0) ∨ (10c2
1/c

2). Now for j ≥ 1, M > 0,

P

(
sup

2j−1<r≤2j

|Wε(r)|
(1 + r)1−γ

≥ M

)
≤ P

(
sup

0≤r≤2j

|Wε(r)| ≥ (1 + 2j−1)1−γM

)

≤ C(ε + 2j)

M2(1 + 2j−1)2−2γ

≤ (ε ∨ 1)
2C

M2
(1 + 2j−1)2γ−1.

Summing up over j ≥ 1, we deduce that

P (ξγ
ε ≥ M) ≤ 2P

(
sup
r>0

|Wε(r)|
(1 + r)1−γ

≥ M

)

≤ (ε ∨ 1)
4C

M2

∞∑
j=0

(1 + 2j)2γ−1

≤ (ε ∨ 1)
C ′

M2
.

The Lemma is established.

Remark 6. We can in fact show that, as ε → 0,

ξγ
ε ⇒ sup

x∈IR

|W (x)|
(1 + |x|)1−γ

,

provided again 0 < γ < 1/2, but we shall not use that result.

Before proving the next result, we state an elementary Lemma, which will be needed in
the sequel, and whose proof relies on the following obvious inequality : whenever x > 0,

0 < p < 2, cxp ≤ 2−p
2

(4c)
2

2−p + x2

4
.

Lemma 7. Let Z be an N(0, 1) random variable, c > 0 and 0 < p < 2. Then

IE exp(c|Z|p) ≤
√

2 exp

[
2− p

2
(4c)

2
2−p

]
.

We next establish the
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Proposition 8. For any 0 < γ < 1/2, there exists a continuous mapping Ψγ : IR+ → IR+

such that

IE

[(
exp

( 1√
ε

∫ t

0

c
(Xx

s

ε

)
ds

))2
]
≤ Ψγ(ξ

γ
ε ). (9)

Proof. Since

1√
ε

∫ t

0

c

(
Xx

s

ε

)
ds = 2c

∫ x+Bt

x

Wε(y)dy − 2c

∫ t

0

Wε(x + Bs)dBs,

we obtain

IE

(
exp

( 1√
ε

∫ t

0

c
(Xx

s

ε

)
ds

)2
)

= IE exp

(
4c

∫ x+Bt

x

Wε(y)dy − 4c

∫ t

0

Wε(x + Bs)dBs

)

≤
(

IE exp
(
8c

∫ x+Bt

x

Wε(y)dy
))1/2 (

IE exp
(
− 8c

∫ t

0

Wε(x + Bs)dBs

))1/2

(10)

Clearly, it suffices to estimate each factor on the r.h.s. of (10) separately.

IE exp
(
8c

∫ x+Bt

x

Wε(y)dy
)
≤ IE exp

(
8c

∫ x+Bt

x

|Wε(y)|dy
)

≤ IE exp
(
8c

∫ x+Bt

x

ξγ
ε (1 + |y|)1−γdy

)

≤ IE exp
( ξγ

ε

2− γ
(1 + |y|)2−γ

∣∣x+Bt

x

)

≤ IE exp
( ξγ

ε

2− γ

(
(1 + |x|)2−γ + |Bt|2−γ

))

≤
√

2 exp

[
ξγ
ε

2− γ
(1 + |x|)2−γ +

γ

2

(
4

ξγ
ε

2− γ
t1−γ/2

)2/γ
]

The second factor on the r.h.s. of (10) can be estimated as follows

IE exp
(
− 8c

∫ t

0

Wε(x + Bs)dBs

)

≤
(

IE exp
(
− 16c

∫ t

0

Wε(x + Bs)dBs − 128c2

∫ t

0

W 2
ε (x + Bs)ds

))1/2

×
(

IE exp
(
128c2

∫ t

0

W 2
ε (x + Bs)ds

))1/2

The first term on the r.h.s. does not exceed 1. For the second one we have by Jensen’s
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inequality

IE exp
(
128c2

∫ t

0

W 2
ε (x + Bs)ds

)
≤ t−1

∫ t

0

IE exp
(
128c2tW 2

ε (x + Bs)
)
ds

≤ t−1

∫ t

0

IE exp
(
128c2t(ξγ

ε )2(1 + |x + Bs|)2−2γ
)
ds

≤ exp
[
256c2t(ξγ

ε )2(1 + |x|)2−2γ + γ
(
1024c2t1−γ(ξγ

ε )2
)1/γ

]
.

The result clearly follows.
We can now proceed with the

Proof of Theorem 1 We treat the sequence {uε
2(t, x)} only, and we delete the index 2, as

well as the parameters t and x. It suffices to show that for any ϕ ∈ Cb(IR), ϕ increasing, as
ε → 0,

Eϕ (IE[g(X) exp(Y ε)]) → Eϕ (IE[g(X) exp(Y )]) , (11)

where X = Xx
t = x + Bt,

Y ε = 2c

[∫ x+Bt

x

Wε(y)dy −
∫ t

0

Wε(x + Bs)dBs

]
,

Y = 2c

[∫ x+Bt

x

W (y)dy −
∫ t

0

W (x + Bs)dBs

]
.

We note that for all M > 0, ε > 0, 0 < γ < 1/2,

IE[g(X) exp(Y ε)] = IE[g(X){exp(Y ε) ∧M}] + ρε,M ,

and

0 ≤ ρε,M = IE[g(X){exp(Y ε)−M}1exp(Y ε)>M ]

≤ M−1IE[g(X){exp(Y ε)}2]

≤ ‖g‖∞
M

Ψγ(ξ
γ
ε ),

where we have used Proposition 8. Consequently

Eϕ (IE[g(X){exp(Y ε) ∧M}]) ≤ Eϕ (IE[g(X) exp(Y ε)])

≤ Eϕ

(
IE[g(X){exp(Y ε) ∧M}] +

‖g‖∞
M

Ψγ(ξ
γ
ε )

)
.

Since both {W ε, ε ≤ 1} and {ξγ
ε , ε ≤ 1} are tight, we have the convergence in law

(W εn , ξγ
εn

) ⇒ (W,Z) along some subsequence εn → 0. Moreover for each M > 0,

IE[g(X){exp(Y ε) ∧M}] = ΦM(W ε),

where

ΦM(f) := IE

{
g(X)

[
exp

(
2c

∫ x+Bt

x

f(y)dy − 2c

∫ t

0

f(x + Bs)dBs

)
∧M

]}
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is a continuous mapping from C(IR) into IR (see Lemma 9 below), hence we can take the
limit in the above along the subsequence {εn}, yielding

Eϕ (IE[g(X){exp(Y ) ∧M}]) ≤ lim inf
n→∞

Eϕ (IE[g(X) exp(Y εn)])

≤ lim sup
n→∞

Eϕ (IE[g(X) exp(Y εn)])

≤ Eϕ

(
IE[g(X){exp(Y ) ∧M}]] +

‖g‖∞
M

Ψγ(Z)

)
.

Taking now the limit as M →∞, we conclude that (11) holds along the subsequence {εn}.
But from any subsequence of the left hand side of (11), we can extract a further subsequence
which converges to the right hand side of (11). So the whole sequence converges, and the
theorem is established.

Lemma 9. Whenever fn → f in C(IR), (i. e. uniformly on compacts),

∫ x+Bt

x

fn(y)dy →
∫ x+Bt

x

f(y)dy IP a. s.,

∫ t

0

fn(x + Bs)dBs →
∫ t

0

f(x + Bs)dBs in IP probability.

Proof The first statement is obvious. The second follows from the following inequality

IE

[
1 ∧

∣∣∣∣
∫ t

0

[f(x + Bs)− fn(x + Bs)]dBs

∣∣∣∣
]

≤ 3IE

[
1 ∧

(∫ t

0

|f(x + Bs)− fn(x + Bs)|2ds

)1/2
]

,

and the fact that, as n →∞,

∫ t

0

|f(x + Bs)− fn(x + Bs)|2ds → 0 IP a. s.

5. The PDEs for the limits u1 and u2

Formally, the limiting SPDE for u2 reads




∂u2

∂t
(t, x) =

1

2

∂2u2

∂x2
(t, x) + cu2(t, x) ◦W (dx), t ≥ 0, x ∈ IR;

u2(0, x) = g(x), x ∈ IR,
(12)

where the above stochastic integral is understood in the sense of the anticipative Stratonovich
integral (see [6] or [5]). But it seems very hard to study such an equation. Therefore, we
will now change our point of view, by rewriting the original equation (2) in a different way.
Note that the last term in (2) reads

cW ′
ε(x)uε

2(t, x) = c
∂(Wεu

ε
2)

∂x
(t, x)− cWε(x)

∂uε
2

∂x
(t, x)
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Consequently equation (2) can be rewritten as

∂uε
2

∂t
(t, x) =

1

2

∂2uε
2

∂x2
(t, x) + c

∂(Wεu
ε
2)

∂x
(t, x)− cWε(x)

∂uε
2

∂x
(t, x), t ≥ 0, x ∈ IR;

uε
2(0, x) = g(x), x ∈ IR.

(13)

Hence the limiting equation can be rewritten as follows

∂u2

∂t
(t, x) =

1

2

∂2u2

∂x2
(t, x) + c

∂(Wu2)

∂x
(t, x)− cW (x)

∂u2

∂x
(t, x), t ≥ 0, x ∈ IR;

u2(0, x) = g(x), x ∈ IR.
(14)

and similarly for u1

∂u1

∂t
(t, x) =

1

2

∂2u1

∂x2
(t, x) + c

∂(Wu1)

∂x
(t, x)− cW (x)

∂u1

∂x
(t, x), t ≥ 0, a < x < b;

u1(0, x) = g(x), a < x < b, u1(t, a) = g(a), u1(t, b) = g(b), t ≥ 0.
(15)

Our aim in the remaining of this section is to establish the two following results

Theorem 10. The parabolic PDE (15) has a unique solution u1 ∈
L2

loc(IR+; H1(a, b)) a.s., which is given by the Feynman–Kac formula

u1(t, x) := IE

[
g(Xx

t∧τx
) exp

(
c

∫

IR

Ly−x
t∧τx

W (dy)

)]
(16)

Theorem 11. The parabolic PDE (14) has a solution u2 ∈ L2
loc(IR+; H1

loc(IR)) a.s., which is
given by the Feynman–Kac formula

u2(t, x) := IE

[
g(Xx

t ) exp

(
c

∫

IR

Ly−x
t W (dy)

)]
(17)

Proof of theorem 10: Recall the definition (8) of the smooth approximation {Wn} of the
Wiener process {W}, and consider the sequence of “approximating” PDEs

∂un
1

∂t
(t, x) =

1

2

∂2un
1

∂x2
(t, x) + cW ′

n(x)un
1 (t, x), t ≥ 0, a < x < b;

un
1 (0, x) = g(x), a < x < b, un

1 (t, a) = g(a), un
1 (t, b) = g(b), t ≥ 0.

(18)

The Feynman-Kac formula (see e.g.[3]) yields

un
1 (t, x) = IE

[
g(x + Bt∧τx) exp

(
c

∫ t∧τx

0

W ′
n(x + Bs)ds

)]

= IE

[
g(x + Bt∧τx) exp

(
c

∫

IR

W ′
n(z)Lz−x

t∧τx
dz

)]
,

(19)

where {B} stands for a standard Brownian motion defined on (Ω,F , IP) and Ly
s denotes it’s

local time at time s and point y.
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As in the proof of Lemma 4, we get

∫

IR

W ′
n(z)Lz−x

t∧τx
dz →

∫

IR

Lz−x
t∧τx

W (dz),

in L2(Σ), IP a.s., as n →∞. This allows us to take the limit in (19), provided we establish
a uniform integrability estimate analogous to that contained in Lemma 5 and Proposition
8. The argument is essentially the same as that in section 4., but simpler than there, and
we do not repeat it.

Moreover, the un
1 equation can be rewritten as

∂un
1

∂t
(t, x) =

1

2

∂2un
1

∂x2
(t, x) + c

∂(Wnun
1 )

∂x
(t, x)− cWn(x)

∂un
1

∂x
(t, x),

un
1 (0, x) = g(x).

(20)

Now since for each σ ∈ Σ, there exists K(σ) < ∞ such that

sup
x∈[a,b]

|W (x, σ)| ≤ K(σ), sup
x∈[a,b],n∈IN

|Wn(x, σ)| ≤ K(σ),

it is an easy matter to show that

un
1 → u1 in the space L2

loc(IR+; H1(a, b)) a.s.,

where u1 is the unique solution in the space L2
loc(IR+; H1(a, b)) of the PDE (15).

Proof of theorem 11: The general strategy is the same as that of the proof of Theorem 10.
We need to show that u2, given by the formula

u2(t, x) = IE

[
g(Xx

t ) exp

(
c

∫

IR

Ly−x
t W (dy)

)]
,

belongs to L2
loc(IR+; H1

loc(IR)), and solves the parabolic PDE (14).
For that sake, we define a new approximation of the Wiener process W , as

W̄n(x) = [Wn(x) ∧ n] ∨ (−n),

where Wn(x) has been defined in (8). Let un
2 denote the solution of the approximating PDE

∂un
2

∂t
(t, x) =

1

2

∂2un
2

∂x2
(t, x) + cW̄ ′

n(x)un
2 (t, x), t ≥ 0, x ∈ IR;

un
2 (0, x) = g(x), x ∈ IR.

(21)

Again from the Feynman–Kac formula,

un
2 (t, x) = IE

[
g(x + Bt) exp

(
c

∫ t

0

W̄ ′
n(x + Bs)ds

)]

= IE

[
g(x + Bt) exp

(
c

∫

IR

W̄ ′
n(z)Lz−x

t dz

)]
,

(22)
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where {B} stands for a standard Brownian motion defined on (Ω,F , IP) and Ly
s denotes it’s

local time at time s and point y.
As in the proof of Theorem 10, as n →∞,

IE

[
g(x + Bt) exp

(
c

∫

IR

W̄ ′
n(z)Lz−x

t dz

)]
→ IE

[
g(x + Bt) exp

(
c

∫

IR

Lz−x
t W (dz)

)]
.

For each M > 0, we now write an equation satisfied by un
2 on IR+ × [−M,M ].

∂un
2

∂t
(t, x) =

1

2

∂2un
2

∂x2
(t, x) + c

∂(Wnun
2 )

∂x
(t, x)− cWn(x)

∂un
2

∂x
(t, x),

t > 0, −M < x < M

un
2 (0, x) = g(x), un

2 (t,−M) = ξn(t,−M), un
2 (t,M) = ξn(t,M),

(23)

where ξn denotes the right hand side of (22). It is now easy to show that

vn
2 (t, x) := un

2 (t, x)− x
ξn(t,M)− ξn(t,−M)

2M
− ξn(t,M) + ξn(t,−M)

2

solves the equation (23) but with homogeneous Dirichlet boundary conditions. Now vn
2

converges strongly in L2
loc(IR+; H1

0 (−M,M)), P a. s., towards the solution of the parabolic
PDE

∂v2

∂t
(t, x) =

1

2

∂2v2

∂x2
(t, x) + c

∂(Wv2)

∂x
(t, x)− cW (x)

∂v2

∂x
(t, x),

t ≥ 0, −M < x < M, ;

v2(0, x) = g(x), −M < x < M, v2(t,−M) = v2(t,M) = 0.

(24)

We conclude the u2 := limn→∞ un
2 belongs to the space L2

loc(IR+; H1
loc(IR)) a. s., and it

satisfies (14) in the variational sense, i.e. for any t > 0, any ϕ ∈ C2(IR) with compact
support, and a. s. (< ., . > denotes the scalar product in L2(IR)),

< u2(t), ϕ >=< g, ϕ >

+

∫ t

0

[
1

2
< u2(s), ϕ

′′ > −c < Wu2(s), ϕ
′ > −c < W

∂u2

∂x
(s), ϕ >

]
ds.
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Université de Provence
39, rue F.Joliot-Curie,
13453 Marseille,
France
e-mail: Etienne.Pardoux@cmi.univ-mrs.fr

Andrey Piatnitski
Narvik University College
Postbox 385
8505 Narvik
Norway
and
Lebedev Physiscal Institute RAS,
Leninski prospect 53
119991 Moscow
Russia
e-mail: andrey@sci.lebedev.ru


