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Averaging of nonstationary parabolic operators
with large lower order terms
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Abstract: In this note we study the homogenization problem for a singularly perturbed
non-stationary parabolic operator with lower order terms. We assume a self-similar scaling
of spatial and temporal variables and prove the existence of rapidly moving coordinates
in which a solution of the corresponding Cauchy problem is asymptotically given as the
product of the ground state of periodic cell problem and a solution of parabolic equation
with constant coefficients.

1. Introduction.

This paper deals with a homogenization problem for a non stationary parabolic equation of
the form

∂

∂t
uε =

∂

∂xi

(
aij

( t

ε2
,
x

ε

) ∂

∂xj

uε
)

+
1

ε
bi

( t

ε2
,
x

ε

) ∂

∂xi

uε +
1

ε2
c
( t

ε2
,
x

ε

)
uε (1)

with a small positive parameter ε, all the coefficients being periodic both in spatial and
temporal variables. We will mostly study a Cauchy problem for this equation.

The main difficulties here are coming from both fast oscillation of the coefficients not
only in spatial variables but also in time and the presence of large parameters in front of the
lower order terms. In particular, due to the presence of a large convection term in (1) we
have to introduce rapidly moving coordinates, while the presence of a large potential in the
equation results in the fast oscillation of uε so that a proper factorization is required. Also,
since the coefficients of (1) are not stationary, the corresponding cell eigenproblem involves
a parabolic operator with periodic boundary conditions in all the variables including time.

The appearance of the large factors in (1) is natural in the framework of long term
behaviour of solutions to a second order parabolic equation with lower order terms. Indeed,
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if we consider an equation

∂

∂s
u =

∂

∂zi

(
aij(s, z)

∂

∂zj

u
)

+ bi(s, z)
∂

∂zi

u + c(s, z)u (2)

with periodic coefficients, and make the diffusive (self-similar) change of variables x = z/ε,
t = s/ε2, then after multiplying by ε2 we arrive at an equation of the form (1).

Previously, the elliptic and stationary parabolic operators with lower order terms were
studied in [6], [11]. It was shown that in this case the factorization with the principal
eigenfunction of the elliptic cell problem reduces the original operator to that without zero
order terms and with divergence free first order terms.

An example of non-stationary equations was considered in [5], it was supposed that time
oscillation is slower than the spatial one, and that the effective drift is equal to zero.

Some other model problems for parabolic operators with large lower order terms were
studied in [1], [9], [4], [2].

The main result of the present work is Theorem 4 which states that a solution of Cauchy
problem for the equation (1) admits a representation

uε = p
( t

ε2
,
x

ε

)
exp(−λ0t/ε

2)(v0(t, x− b̄

ε
t) + o(1)),

where (λ0, p(s, z) is the principal eigenpair of the periodic cell problem, b̄ is a constant
vector, o(1) vanishes as ε → 0, and v0(t, x) is a solution of a homogenized parabolic equation
with constant coefficients and adapted initial conditions, see Section .

In order to justify this limit behaviour of uε we make use of asymptotic expansion tech-
nique and build three leading terms of formal asymptotic series including the initial layer, the
solvability of auxiliary cell problems being studied in Section . Then the a priori estimates
obtained in Section , allow us to conclude.

2. Setting the problem

Given [0, 1]n+1-periodic functions aij(s, y), bi(s, y) and c(s, y) such that

aijξiξj ≥ c1|ξ|2, ξ ∈ Rn, c1 > 0;

|aij| ≤ c2, |bi| ≤ c2, |c| ≤ c2,
(3)

we consider on the set (0, T )× Rn the Cauchy problem

∂

∂t
uε =

∂

∂xi

(
aij

( t

ε2
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x

ε

) ∂

∂xj

uε
)

+
1

ε
bi

( t

ε2
,
x

ε

) ∂

∂xi

uε +
1

ε2
c
( t

ε2
,
x

ε

)
uε,

uε|t=0 = u0(x) ∈ L2(Rn)

(4)

with a small positive parameter ε, ε → 0. Under the assumptions (3) this problem has for
each ε > 0 a unique solution uε ∈ L2(0, T ; H1(Rn)) ∩ C(0, T ; L2(Rn)), no regularity of the
coefficients except for the measurability being assumed.

We are aimed at studying the asymptotic behaviour of uε as ε → 0.
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3. Auxiliary problems

Our analysis relies on the following auxiliary problems. In the cylinder Q0 = (0, +∞)× Tn

consider the equation

∂

∂s
p− ∂

∂zi

aij(s, z)
∂

∂zj

p− bi(s, z)
∂

∂zi

p− c(s, z)p = 0; (5)

here and afterwards we identify periodic functions with the corresponding functions on the
standard torus Tn. For any q(z) ∈ L2(Tn) denote by (Ssq)(z) a solution p(s, z) of equation
(5) with the initial condition

p|s=0 = q(z).

Due to the Nash estimates (see [8]) there are constants γ > 0 and C > 0 which only depend
on c1 and c2 in (3), such that

‖S1q‖Cγ (Tn) ≤ C‖q‖L2(Tn)

Therefore, S1 is a compact operator in L2(Tn) and in Cγ/2(Tn), and it has the same spectrum
in the both mentioned spaces.

By the maximum principle, for any q(z) > 0 the solution p(s, z) is positive. Thus
according to Theorem 9.2 and 11.5 in [7] there is a simple real eigenvalue λ0 > 0 of the
operator S1 such that the rest of the spectrum of S1 belongs to the disk λ ∈ C : ‖λ‖ < λ0.
Moreover, the corresponding eigenfunction q0(z) is also real and, under proper normalization,
strictly positive.

If we denote Λ0 = ln λ0, then the function

p0(s, z) = exp(−Λ0s)(Ssq0)(z)

is a [0, 1]n+1-periodic (that is periodic both in spatial and temporal variables) solution of the
equation

∂

∂s
p− ∂

∂zi

(
aij(s, z)

∂

∂zj

p
)
− bi(s, z)

∂

∂zi

p− c(s, z)p = Λ0p (6)

We summarize this in the following statement

Proposition 1 There is a Λ0 ∈ R such that the equation (6) has a positive periodic in s
and z solution. This Λ0 is unique, and (6) has a unique, up to a multiplicative constant,
solution.

In what follows the choice of p0 is fixed by the normalization condition
∫

Tn+1

p0(s, z)dsdz = 1 (7)

By the same arguments the adjoint operator

− ∂

∂s
p− ∂

∂zi

(
aij(s, z)

∂

∂zj

p
)

+
∂

∂zi

(bi(s, z)p)− c(s, z)p (8)

has a simple eigenvalue at Λ0, and the corresponding eigenfunction is positive. We denote
it by p∗0(s, z).

The statement below is a consequence the Fredholm theorem
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Proposition 2 The equation

∂

∂s
v − ∂

∂zi

(
aij(s, z)

∂

∂zj

v
)
− bi(s, z)

∂

∂zi

v − (c(s, z) + Λ0)v = f(s, z), (9)

f ∈ L2(Tn+1), is solvable on Tn+1 if and only if

∫

Tn+1

f(s, z)p∗0(s, z)dsdz = 0. (10)

A solution is unique up to an additive constant.

4. A priori estimates

We factorize a solution of problem (4) as follows

uε(t, x) = exp
(
Λ0t/ε

2
)
p0

( t

ε2
,
x

ε

)
vε(t, x). (11)

This allows us to get rid of the exponential growth or decay of the solution and of its fast
oscillation. We are going to show that vε admits uniform in ε energy estimate. To this end we
substitute (11) in the equation (4) and use the equation (6). This gives after straightforward
rearrangements

p0

( t

ε2
,
x

ε

) ∂

∂t
vε = div

(
p0

( t

ε2
,
x

ε

)
a
( t

ε2
,
x

ε

)
∇vε

)

+
1

ε
a
( t

ε2
,
x

ε

)
∇zp0

( t

ε2
,
x

ε

)
· ∇vε +

1

ε
p0

( t

ε2
,
x

ε

)
b
( t

ε2
,
x

ε

)
· ∇vε

vε|t=0 = p−1
0 (0,

x

ε
)u0(x).

(12)

In what follows for the sake of brevity we denote for a generic function g = g(s, z)

gε(t, x) = g
( t

ε2
,
x

ε

)
, ∇zg

( t

ε2
,
x

ε

)
= ∇zg

ε(t, x) = ∇zg
( t

ε2
, z

)|z=x
ε
,

∇sg
( t

ε2
,
x

ε

)
= ∇sg

ε(t, x) = ∇sg
(
s,

z

ε

)|s= t
ε2

.

We will also use the notation

ã(s, z) = p0(s, z)a(s, z), b̃(s, z) = a(s, z)∇zp0(s, z) + p0(s, z)b(s, z).

Multiplying the last equation by p∗0
(

t
ε2 ,

x
ε

)
vε and integrating the resulting relation over [0, T ]×

Rn, we get after simple transformations

− 1

2ε2

T∫

0

∫

Rn

(
(p∗,ε0 (x, t)∂sp

ε
0(x, t) + pε

0(x, t)∂sp
∗,ε
0 (x, t)

)
(vε)2dxdt+



Averaging of parabolic operators with large lower order terms 157

1

2

∫

Rn

pε
0(x, T )p∗,ε0 (x, T )(vε(x, T ))2dx− 1

2

∫

Rn

pε
0(x, 0)p∗,ε0 (x, 0)(vε(x, 0))2dx =

−
T∫

0

∫

Rn

pε
0(x, t)p∗,ε0 (x, t)aε(x, t)∇vε · ∇vεdxdt+

1

2ε

T∫

0

∫

Rn

{
p∗,ε0 (x, t)aε(x, t)∇zp

ε
0(x, t)− pε

0(x, t)aε(x, t)∇zp
∗,ε
0 (x, t)+

bε(x, t)pε
0(x, t)p∗,ε0 (x, t)

}∇((vε)2)dxdt.

Integrating by parts on the right hand side of this relation gives

1

2

∫

Rn

pε
0(x, T )p∗,ε0 (x, T )(vε(x, T ))2dx+

T∫

0

∫

Rn

pε
0(x, t)p∗,ε0 (x, t)aε(x, t)∇vε · ∇vεdxdt =

=
1

2

∫

Rn

pε
0(x, 0)p∗,ε0 (x, 0)(u0(x))2dx +

1

2ε2

T∫

0

∫

Rn

{
p∗,ε0 (x, t)∂sp

ε
0(x, t)+

pε
0(x, t)∂sp

∗,ε
0 (x, t) + aε(x, t)∇zp

ε
0(x, t)∇zp

∗,ε
0 (x, t)

−p∗,ε0 (x, t)∇z(a
ε(x, t)∇zp

ε
0(x, t))− aε(x, t)∇zp

ε
0(x, t)∇zp

∗,ε
0 (x, t)+

pε
0(x, t)∇z(a

ε(x, t)∇zp
∗,ε
0 (x, t))− pε

0(x, t)∇z · (bε(x, t)p∗,ε0 (x, t))

−p∗,ε0 bε(x, t)∇zp
ε
0(x, t)

}
(vε)2dxdt =

1

2

∫

Rn

pε
0(x, 0)p∗,ε0 (x, 0)(u0(x))2dx+

1

2ε2

T∫

0

∫

Rn

{
∂sp

ε
0(x, t)−∇z(a

ε(x, t)∇zp
ε
0(x, t))− bε(x, t)∇zp

ε
0(x, t)

−cε(x, t)pε
0(x, t)

}
p∗,ε0 (x, t))(vε)2dxdt +

1

2ε2

T∫

0

∫

Rn

{
∂sp

∗,ε
0 (x, t)+

∇z(a
ε(x, t)∇zp

∗,ε
0 (x, t))−∇z · (bε(x, t)p∗,ε0 (x, t)) + cε(x, t)p∗,ε0 (x, t)

}
pε

0(x, t)(vε)2dxdt

=
1

2

∫

Rn

pε
0(x, 0)p∗,ε0 (x, 0)(u0(x))2dx.

This implies the bound

‖vε‖2
L∞(0,T ;L2(Rn)) + ‖vε‖2

L2(0,T ;H1(Rn) ≤ C‖u0‖2
L2(Rn). (13)
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In the presence of the right hand side the equation (12) takes the form

pε
0(t, x)

∂

∂t
wε = div(pε

0(t, x)aε(t, x)∇wε) +

1

ε

(
aε(t, x)∇zp

ε
0(t, x) + pε

0(t, x)bε(t, x)
)
· ∇wε + f(t, x) + divf1(t, x)

wε|t=0 = w0(x).

(14)

In this case the following estimate can be obtained in the same way as (13)

‖wε‖2
L∞(0,T ;L2(Rn)) + ‖wε‖2

L2(0,T ;H1(Rn) ≤

≤ C‖w0‖2
L2(Rn) + C‖f‖2

L2(0,T ;L2(Rn)) + ε−1C‖f1‖2
L2(0,T ;L2(Rn)).

(15)

5. Asymptotic expansion

We now proceed by constructing three leading terms of the asymptotic expansion of vε. As
usually, the asymptotic expansion technique requires some regularity of the data. Here we
assume that the initial function in (4) is smooth enough, say C2 function, and has a finite
support. Non-smooth data will be discussed later on.

We represent vε as follows

vε ∼ v0
(
t, x− b̄

ε
t
)

+ εχ
( t

ε2
,
x

ε

)∇xv
0
(
t, x− b̄

ε
t
)
+ (16)

+ε2ψij
( t

ε2
,
x

ε

) ∂2

∂xi∂xj

v0
(
t, x− b̄

ε
t
)

+ . . . ,

where b̄ is a constant vector, χi(s, z) and ψij(s, z) are periodic in s and z functions, v0(t, x)
does not depend on ε. All of them are to be determined.

Identification of b̄.
Substituting the expansion (16) in the equation (12) and collecting power-like terms in

the resulting relation gives the following equations
(
p0(s, z)

∂

∂s
χk − ∂

∂yi

(
ãij(s, y)

∂

∂yj

χk
)− b̃i(s, y)

∂

∂yj

χk+

∂

∂zi

ãik(s, z) + b̃k(s, z) + p0(s, y)b̄k

) ∂

∂xk

v0
(
t, x− b̄

ε
t
)

= 0.

(17)

and

p0(s, y)
∂

∂t
v0

(
t, x− b̄

ε
s
)∣∣∣

s=t
=

(
− p0(s, z)

∂

∂s
ψij+

∂

∂yk

(
ãkl(s, y)

∂

∂yl

ψij
)− b̃i(s, y)

∂

∂yi

ψij
) ∂2

∂xi∂xj

v0
(
t, x− b̄

ε
t
)
+

(
ãkl(s, z) + ãkj(s, z)

∂

∂yj

χl(s, y) +
∂

∂yi

(ãil(s, z)χk(s, y))+

b̃k(s, z)χl(s, y) + p0(s, y)b̄kχ
l(s, y)

) ∂2

∂xk∂xl

v0
(
t, x− b̄

ε
t
)
.

(18)
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Considering (6) and (11), one can show that the vector-function θ(s, z) = p0(s, z)χ(s, z)
satisfies the equation

( ∂

∂s
θk − ∂

∂yi

(
aij(s, y)

∂

∂yj

θk
)− bi(s, y)

∂

∂yj

θk − (c(s, z)− Λ0)θ
k+

+
∂

∂zi

aik(s, z) + bk(s, z) + b̄k

) ∂

∂xk

v0
(
t, x− b̄

ε
t
)

= 0.

(19)

By (9) this equation has a periodic solution iff

b̄ =

∫

Tn+1

(div a(s, z) + b(s, z))p∗0(s, z) dz ds. (20)

Thus b̄ is determined uniquely.

Derivation of the limit equation.
Our next step is to write down the compatibility condition for the equation (18). To this

end we first observe that the function p∗0 satisfies the equation

∂

∂s

(
p0(s, z)p∗0(s, z)

)
+ div

(
ã(s, z)∇p∗0(s, z)

)− div
(
b̃(s, z)p∗0(s, z)

)
= 0,

moreover, a solution is unique up to an additive constant. Indeed, if we denote

A =
∂

∂s
− ∂

∂zi

aij(s, z)
∂

∂zj

− bi(s, z)
∂

∂zi

− (c(s, z) + Λ0),

Ã = p0
∂

∂s
− ∂

∂zi

ãij(s, z)
∂

∂zj

− b̃i(s, z)
∂

∂zi

,

then, by the definition of Ã, we have Ãg = A(p0g), therefore the kernels of the adjoint
operators coincide.

By the Fredholm theorem the equation (18) has a periodic solution ψ = ψij(s, z) if the
following relation holds

( ∫

Tn+1

p0(s, y)p∗0(s, y) dsdy

)
∂

∂t
v0

(
t, x− b̄

ε
r
)∣∣∣

r=t
=

( ∫

Tn+1

p∗0(s, z)
{

ãkl(s, z) + ãkj(s, z)
∂

∂yj

χl(s, y) +
∂

∂yi

(ãil(s, z)χk(s, y))+

b̃k(s, z)χl(s, y) + p0(s, y)b̄kχ
l(s, y)

}
dsdz

)
∂2

∂xk∂xl

v0
(
t, x− b̄

ε
t
)
.

Thus we end up with the following equation for the function v0(t, x)):

σ̄
∂

∂t
v0(t, x) = āij ∂2

∂xi∂xj

v0(t, x) (21)
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with

σ̄ =

∫

Tn+1

p0(s, y)p∗0(s, y) dsdy,

āij =

∫

Tn+1

p∗0(s, z)
{

ãij(s, z) + ãik(s, z)
∂

∂yk

χj(s, y)+

∂

∂yk

(ãki(s, z)χj(s, y)) + b̃i(s, z)χj(s, y) + p0(s, y)b̄iχ
j(s, y)

}
dsdz.

(22)

Since both p0 and p∗0 are strictly positive functions, we have σ̄ > 0.

Ellipticity of the effective equation.
Let us show that the effective matrix āij is positive definite. To this end we are going to

show that âξ · ξ = āξ · ξ for any ξ ∈ Rn with

âij =

∫

Tn+1

p∗0(s, z)(I +∇χ(s, z))tã(s, z)(I +∇χ(s, z)) dzds, (23)

where the index t stands for an adjoint matrix. Indeed,

âijξ
iξj =

∫

Tn+1

ξiξjp∗0(δik +
∂

∂zk

χi)ãkl(δlj +
∂

∂zl

χj) dzds =

∫

Tn+1

ξiξjp∗0
{

ãij + ãik
∂

∂yk

χj
}

dzds +

∫

Tn+1

ξiξjp∗0
{

ãlj + ãlk
∂

∂yk

χj
} ∂

∂yl

χi dzds.

The second integral on the r.h.s. can be rearranged as follows

∫

Tn+1

ξiξjp∗0
{

ãlj + ãlk
∂

∂yk

χj
} ∂

∂yl

χi dzds = −
∫

Tn+1

ξiξjχi ∂

∂yl

p∗0
{

ãlj + ãlk
∂

∂yk

χj
}

dzds

−
∫

Tn+1

ξiξjp∗0χ
i ∂

∂yl

{
ãlj + ãlk

∂

∂yk

χj
}

dzds =

∫

Tn+1

ξiξjp∗0
∂

∂yl

(
ãljχ

i
)

dzds+

−1

2

∫

Tn+1

ξiξj ãlk
∂

∂yl

p∗0
∂

∂yk

(χiχj) dzds−
∫

Tn+1

ξiξjp∗0χ
i
(
p0

∂

∂s
χj−

−b̃j − b̃k
∂

∂yk

χj − p0b̄i

)
dzds =

∫

Tn+1

ξiξjp∗0
{ ∂

∂yl

(
ãljχ

i
)

+ χib̃j + χip0b̄j

}
dzds+

+
1

2

∫

Tn+1

ξiξjχiχj
{ ∂

∂s
(p0p

∗
0) +

∂

∂yk

(
ãlk

∂

∂yl

p∗0
)
− ∂

∂yk

(b̃kp
∗
0)

}
dzds =

∫

Tn+1

ξiξjp∗0
{ ∂

∂yl

(
ãljχ

i
)

+ χib̃j + χip0b̄i

}
dzds
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Combining the last two relations we conclude that âξ · ξ = āξ · ξ. The positive definiteness
of â is evident.

The effective initial condition.
Also, we have to provide an initial condition for the function v0. Since vε(0, x) = p−1

0

(
0, x

ε

)
is a rapidly oscillating function, we cannot just borrow the initial conditions from (4). Instead
we consider the following auxiliary Cauchy problem

∂

∂s
ζ0 = div

(
ã(s, z)∇ζ0

)
+ b̃(s, z)∇ζ0, (s, z) ∈ (0,∞)× Tn (24)

ζ0(0, z) = p−1
0 (0, z).

It is known (see [8]) that this problem has a unique solution. Moreover, using the maximum
principle one can show that this solution converges at exponential rate to a constant which
in fact is equal to

p̄ =

∫

Tn

p−1
0 (0, z)p∗0(0, z)dz.

In other words, there is a γ > 0 such that

‖ζ0(s, ·)− p̄‖L∞(T n) ≤ Ce−γs,

∫ t+1

t

‖∇ζ0(s, ·)‖L2(T n)ds ≤ Ce−γt (25)

for all positive t and s.
The limit equation (21) should now be equipped with the initial condition

v0(0, x) = p̄u0(x). (26)

Main results
Let us recall the definition of b̄, σ̄ and ā:

b̄ =

∫

Tn+1

(div a(s, z) + b(s, z))p∗0(s, z) dz ds,

σ̄ =

∫

Tn+1

p0(s, y)p∗0(s, y) dsdy,

āij =

∫

Tn+1

p∗0(s, z)(I +∇χ(s, z))tã(s, z)(I +∇χ(s, z)) dzds.

The asymptotic behaviour of vε is described by the following statement.

Theorem 3 Under our standing assumptions the solution vε of problem (12) satisfies the
following limit relation

lim
ε→0

∫ T

0

∫

Rn

(
vε(t, x)− v0

(
t, x− b̄

ε
t
))2

dxdt = 0.



162 P. Donato and A. Piatnitski

where v0 is a solution of Cauchy problem

σ̄
∂

∂t
v0(t, x) = āij ∂2

∂xi∂xj

v0(t, x) in (0, T )× Rn,

v0(0, x) = p̄u0(x). (27)

Proof:
We combine the interior expansion (16) with the initial layer of the form

(
ζ̃0

( t

ε2
,
x

ε

)− 1)v0
(
t, x− b̄

ε
t
)

+ εζ1

( t

ε2
,
x

ε

)∇v0
(
t, x− b̄

ε
t
)
,

where ζ̃0(s, z) = p̄−1ζ0(s, z), ζ0(s, z) is a solution of (24) and ζ1 is to be determined. Denote

V ε(t, x) = v0
(
t, x− b̄

ε
t
)

+ εχ
( t

ε2
,
x

ε

)∇xv
0
(
t, x− b̄

ε
t
)
+

+ε2ψij
( t

ε2
,
x

ε

) ∂2

∂xi∂xj

v0
(
t, x− b̄

ε
t
)

+
(
ζ̃0

( t

ε2
,
x

ε

)− 1)v0
(
t, x− b̄

ε
t
)
+

+εζ1

( t

ε2
,
x

ε

)∇v0
(
t, x− b̄

ε
t
)

Substituting this ansatz in the equation (12) and considering (17), (18) and (24), one gets

∂

∂t
V ε − ∂

∂xi

(
ãij

( t

ε2
,
x

ε

) ∂

∂xj

V ε
)
− 1

ε
b̃i

( t

ε2
,
x

ε

) ∂

∂xi

V ε =

= εχi,ε ∂2

∂xi∂t
v0

(
t, x− b̄

ε
r
)∣∣

r=t
− εãε

ijχ
k,ε ∂3

∂xi∂xj∂xk

v0
(
t, x− b̄

ε
t
)−

−εãε
ij

∂

∂zj

ψkl,ε ∂3

∂xi∂xk∂xl

v0
(
t, x− b̄

ε
t
)− ε

∂

∂zi

(
ãε

ijψ
kl,ε

) ∂3

∂xj∂xk∂xl

v0
(
t, x− b̄

ε
t
)

−εb̃ε
iψ

kl,ε ∂3

∂xi∂xk∂xl

v0
(
t, x− b̄

ε
t
)− εb̄iψ

kl,ε ∂3

∂xi∂xk∂xl

v0
(
t, x− b̄

ε
t
)

−ε2ψkl,ε ∂3

∂xk∂xl∂t
v0

(
t, x− b̄

ε
r
)∣∣

r=t
− ε2ψkl,εãε

ij

∂4

∂xk∂xl∂xi∂xj

v0
(
t, x− b̄

ε
t
)

−ε−1ãε
ij

∂

∂zj

ζε
0

∂

∂xi

v0
(
t, x− b̄

ε
t
)− ε−1 ∂

∂zi

(
ãε

ij(ζ
ε
0 − p̄)

) ∂

∂xj

v0
(
t, x− b̄

ε
t
)

−ε−1b̃ε
i (ζ

ε
0 − p̄)

∂

∂xi

v0
(
t, x− b̄

ε
t
)− ε−1b̄i(ζ

ε
0 − p̄)

∂

∂xi

v0
(
t, x− b̄

ε
t
)
+

+(ζε
0 − p̄)

∂

∂t
v0

(
t, x− b̄

ε
r
)∣∣

r=t
− ãε

ij(ζ
ε
0 − p̄)

∂2

∂xi∂xj

v0
(
t, x− b̄

ε
t
)

+ε−1 ∂

∂s
ζε
1,k

∂

∂xk

v0
(
t, x− b̄

ε
t
)− ε−1 ∂

∂zi

(
ãε

ij

∂

∂zj

ζε
1,k

) ∂

∂xk

v0
(
t, x− b̄

ε
t
)
+
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−ãε
ij

∂

∂zj

ζε
1,k

∂2

∂xi∂xk

v0
(
t, x− b̄

ε
t
)− ∂

∂zi

(
ãε

ijζ
ε
1,k

) ∂2

∂xj∂xk

v0
(
t, x− b̄

ε
t
)

−b̃ε
iζ

ε
1,k

∂2

∂xi∂xk

v0
(
t, x− b̄

ε
t
)

+ εζε
1,k

∂2

∂t∂xk

v0
(
t, x− b̄

ε
r
)∣∣

r=t
−

−εãε
ijζ

ε
1,k

∂3

∂xi∂xj∂xk

v0
(
t, x− b̄

ε
t
)
.

The structure of the right hand side here suggests that the function ζ1 should satisfy the
equation

∂

∂s
ζ1,k − ∂

∂zi

(
ãij(s, z)

∂

∂zj

ζ1,k

)
= ãkj(s, z)

∂

∂zj

ζ̃0(s, z)+ (28)

+
∂

∂zi

(
ãik(s, z)(ζ̃0(s, z)− 1)

)
+ b̃k(s, z)(ζ̃0(s, z)− 1) + b̄k(ζ̃0(s, z)− 1),

where (s, z) ∈ (0, +∞)×Tn. Due to (25) the terms on the right hand side decay exponentially.
Namely, ∫ τ+1

τ

‖ãik(s, ·)(ζ̃0(s, ·)− 1)‖L2(Tn)ds ≤ Cε−γτ ,

∥∥ ∂

∂zi

(
ãik(s, ·)(ζ̃0(s, ·)− 1)

)
+ (b̃k(s, ·) + b̄)(ζ̃0(s, ·)− 1)

∥∥
W−1,∞(Tn)

≤ Cε−γs.

According to [] this implies that the equation (28) with the initial condition ζ1(0, z) = 0, has
a solution that stabilizes at the exponential rate to a constant. Subtracting this constant,
we obtain a solution of (28) that tends to zero at the exponential rate, as t → +∞. For this
solution we keep the notation ζ1. Finally, under this choice of ζ1, we have

∂

∂t
V ε − ∂

∂xi

(
ãij

( t

ε2
,
x

ε

) ∂

∂xj

V ε
)
− 1

ε
b̃i

( t

ε2
,
x

ε

) ∂

∂xi

V ε =

= εRε
1(x, t) + ε2∇Rε

2(x, t)

+(ζε
0 − p̄)

∂

∂t
v0

(
t, x− b̄

ε
r
)∣∣

r=t
− ãε

ij(ζ
ε
0 − p̄)

∂2

∂xi∂xj

v0
(
t, x− b̄

ε
t
)

−ãε
ij

∂

∂zj

ζε
1,k

∂2

∂xi∂xk

v0
(
t, x− b̄

ε
t
)− ∂

∂zi

(
ãε

ijζ
ε
1,k

) ∂2

∂xj∂xk

v0
(
t, x− b̄

ε
t
)

−b̃ε
iζ

ε
1,k

∂2

∂xi∂xk

v0
(
t, x− b̄

ε
t
)

+ εζε
1,k

∂2

∂t∂xk

v0
(
t, x− b̄

ε
r
)∣∣

r=t
−

−εãε
ijζ

ε
1,k

∂3

∂xi∂xj∂xk

v0
(
t, x− b̄

ε
t
)

=

= εRε
1(x, t) + ε2∇Rε

2(x, t) + Rε
3(x, t) + ε∇Rε

4(x, t),

here
‖Rε

1‖L2((0,T )×Rn) ≤ C, ‖Rε
2‖L∞((0,T )×Rn) ≤ C,

and Rε
3, Rε

4 are initial layer functions satisfying the estimates

‖Rε
3‖L2((0,T )×Rn) ≤ Cε, ‖Rε

4‖L2((0,T )×Rn) ≤ Cε.
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Considering the initial condition

V ε(0, x) = v0(0, x) + εχ
(
0,

x

ε

)∇xv
0(0, x)+

+ε2ψij
(
0,

x

ε

) ∂2

∂xi∂xj

v0(0, x) +
(
ζ̃0

(
0,

x

ε

)− 1)v0(0, x)+

+εζ1

(
0,

x

ε

)∇v0(0, x) = p0(0,
x

ε
)u0(x) + O(ε),

the estimate (15) gives

‖vε − V ε‖2
L∞(0,T ;L2(Rn)) + ‖vε − V ε‖2

L2(0,T ;H1(Rn) ≤ Cε.

This yields the desired statement.

Next we want to show that the statement of last theorem holds true for any initial
condition u0(x) ∈ L2(Rn). To this end it suffices to approximate u0(x) in L2(Rn) by the
sequence of C∞

0 functions and to use the estimate (13).
As a consequence of the above statements we obtain the following result for the Cauchy

problem (4).

Theorem 4 A solution uε(t, x) of problem (4) admits the following representation

uε(t, x) = eΛ0t/ε2

p0

( t

ε2
,
x

ε

)(
v0

(
t, x− b̄

ε
t
)

+ rε(t, x)
)
,

where
lim
ε→0

‖rε‖L2((0,T )×Rn) = 0,

and v0(t, x) is a solution to problem (27).
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