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a b s t r a c t

We studied the asymptotic behavior of the solution of a nonlinear parabolic equation with
nonstandard growth in a ε-periodic fractured medium, where ε is the parameter that
characterizes the scale of themicrostructure tending to zero.We consider a double porosity
type model describing the flow of a compressible fluid in a heterogeneous anisotropic
porous medium obeying the nonlinear Darcy law. We assume that the permeability
ratio of matrix blocks to fractures is of order εpε(x), where pε is a continuous positive
function. We obtained the convergence of the solution and a macroscopic model of the
problem was constructed using the notion of two-scale convergence combined with the
variational homogenization method in the framework of Sobolev spaces with variable
exponents.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Motivation for the following mathematical problem arises in the area of modeling flow and transport in fractured
porous media for problems related to the environment and energy. Many difficult problems arise in numerical simulation
in fractured porous media of fluid processes in reservoir simulation, subsurface contaminant transport and remediation,
sequestration of CO2 and other applications. Exact mesoscopic models of flow in a fractured medium customarily treat the
fissures and the matrix systems as two porous media with different physical parameters. Discontinuities in the parameter
values across the matrix-fissure interfaces are severe, with the ratios of their values in the fissures and blocks usually being
of some orders of magnitude; moreover, the characteristic width of the fissures will be very small in comparison with the
size of the blocks. Consequently, the exact mesoscopic model, written as a classical interface problem, is numerically and
analytically intractable. A common technique used to overcome this difficulty is to constructmodelswhich describe the flow
on two scales, macroscopic and mesoscopic (see, e.g., [27–29]). In this paper, we focus our attention on the homogenization
of a double porosity type model describing the flow of a compressible fluid in a heterogeneous anisotropic porous medium
obeying the nonlinear Darcy law (see, e.g., [8]).
Modeling of flow in fracturedmedia is a subject of intensive research inmany engineering disciplines, such as petroleum

engineering, water resources management, civil engineering (see for instance [14,29,33]). More recently, fractured rock
domains corresponding to the so-called Excavation Damaged Zone (EDZ) receives increasing attention in connection with
the behavior of geological isolation of radioactive waste after the drilling of wells or shafts [19]. A fractured medium is a
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structure consisting of a porous and permeable matrix which is interlaced on a fine scale by a system of highly permeable
fissures. The majority of fluid transport will occur along flow paths through the fissure system, and the relative volume and
storage capacity of the porous matrix is much larger than that of the fissure system. When the system of fissures is so well
developed that the matrix is broken into individual blocks or cells that are isolated from each other, there is consequently
no flow directly from cell to cell, but only an exchange of fluid between each cell and the surrounding fissure system. For
more details on the physical formulation of such problems see, e.g., [14,29,33]. Therefore the large-scale description will
have to incorporate the two different flow mechanisms. For some permeability ratios and fissure widths, the large-scale
description is achieved by introducing the so-called double porosity model. It was first introduced for describing the global
behavior of fractured porousmedia by Barenblatt et al. [13]. It has been since used in a wide range of engineering specialties
related to geohydrology, petroleum reservoir engineering, civil engineering or soil science. The usual linear double porosity
model assumes that the width of the fracture containing highly permeable porous media is of the same order as the block
size. The related homogenization problem was first studied in [11], and was then revisited in the mathematical literature
by many other authors (see, e.g., [2,15,25–29,32,37] and references therein). Let us mention that results on the rate of
convergence for the linear double porosity model, for a large range of contrast, were obtained in [32]. Linear double porosity
models with thin fissures were studied in [4,5,7,16,31]. Also some nonlinear models were treated, see for instance [6,18,
21,23,24,30,34] and references therein. A general non-periodic model and a random model were considered in [17,20],
respectively.
The goal of the present paper is to investigate, bymean ofmathematical homogenization, the global behavior for the flow

of a single phase, compressible fluid, in a fractured medium obeying the nonlinear Darcy law. We shall apply general ideas
of homogenization (see [2,28,38]) and the specific framework introduced in [12]) for modeling of flows in fractured media.
More precisely, let ε be the size ratio of the matrix blocks to the whole medium and let the width of the fracture planes and
the porous block diameter be in the same order. We assume that the permeability ratio of matrix blocks to fracture planes
is of order εpε(x), where pε is a smooth positive oscillating function satisfying some conditions which will be specified later.
The nonlinear Darcy law combined with the continuity equation lead to the following equation [8]:

ωε(x)
∂uε

∂t
− div

(
kε(x)∇uε|∇uε|pε(x)−2

)
= g(t, x) in ]0, T [×Ω, (1.1)

whereΩ is a bounded domain in Rn (n = 2, 3), T > 0 is given, uε is the density of the fluid, ωε , kε are the porosity and the
permeability of the medium and g is a source term. We consider the fissured part to be a porous mediumwith permeability
of order 1, and the porous blocks (or matrix) made of porous material with a small permeability of order εpε(x). This ratio
is exactly the one leading to the dual-porosity model. An exterior boundary condition and an initial condition must also be
specified, but they do not enter into the derivation of the limit model.
Such types of equations are called pε(x)-Laplacian equations with nonstandard growth conditions. Here, problem (1.1)

is stated in the framework of Sobolev spaces with variable exponents which will be briefly described in Section 3. In
recent years, increasing attention has been paid to the study of elliptic and parabolic equations with nonstandard growth
condition when there is no dependence on the small parameter motivated by their applications to mathematical modeling
in continuummechanics. Such equations arise, for example, frommodeling non-Newtonian fluids with thermo-convective
effects, modeling electro-rheological fluids, the thermistor problem, the problem of image recovery, and the motion of a
compressible fluid in a heterogeneous anisotropic porous medium obeying the nonlinear Darcy law. There is an extensive
literature on this subject. We will not attempt a review of the literature here, but merely refer to [9,10] and references
therein. Recently, there also appeared a research group on variable exponent Lebesgue and Sobolev spaces; we refer to their
web page http://www.math.helsinki.fi/analysis/varsobgroup/.
The homogenization and Γ -convergence problems for Lagrangians with variable exponents p(x) in the spaceW 1,r with

constant r were considered in [35,36,38]. It was shown that the homogenized Lagrangians might be distinct for different
values of r (the so called Lavrentiev phenomenon). Let us alsomention that homogenization of the Dirichlet elliptic problem
for Lagrangians of nonstandard growth in Sobolev spaces with variable exponent has been studied in [3]. To our knowledge,
the homogenization problems for parabolic equations with nonstandard growth have not been studied before. In this paper,
we study the asymptotic behavior of the solution of problem (1.1) as ε tends to zero. We derive the homogenized model
by combining the technique of two-scale convergence (see, e.g., [2,37]) and the variational homogenization method (see,
e.g., [22,28,38] and references therein) in the framework of Sobolev spaces with variable exponents.
The outline of the rest of the paper is as follows. In Section 2 all necessary mathematical notation is defined, the

mesoscopic problem is formulated, and the general assumptions are stated. In Section 3, for the sake of completeness,
we recall the definition and main results on the Lebesgue and Sobolev spaces with variable exponents and the two-
scale convergence which will be used in the sequel. A priori estimates for the solutions of the mesoscopic problem and
some preliminary results are proven. The proof of our main results on convergence of the homogenization process is
carried out is Section 4. The function pε is assumed to be a continuous positive function in Ω satisfying some standard
conditions and such that γε(x) := pε(x)− 2 is a positive function which converges uniformly to zero inΩ . The macroscopic
models depend on the behavior of the function α(x) = limε→0 εγε(x), x ∈ Ω . It is shown that if α 6≡ 0 the resulting
homogenizedmodel is of dual-porosity typewith effective coefficients depending on the functionα, but ifα ≡ 0 it is a single
porosity model.

http://arxiv.org///www.math.helsinki.fi/analysis/varsobgroup/
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2. Statement of the problem and assumptions

In this section, we describe a mesoscopic double porosity model in a periodic fracturedmedium.We consider a reservoir
Ω ⊂ Rn (n = 2, 3) to be a bounded connected domain with a periodic structure. More precisely, we will scale this periodic
structure by a parameter ε which represents the ratio of the cell size to the size of the whole regionΩ and we will assume
that ε is a parameter tending to zero. Let Y = ]0, 1[n represent themesoscopic domain of the basic cell of a fractured porous
medium. For the sake of simplicity andwithout loss of generality, we assume that Y is made up of two homogeneous porous
media M b Y and F corresponding to parties of the mesoscopic domain occupied by the matrix block and the fracture,
respectively. Thus Y = M ∪ Γm,f ∪ F , where Γm,f denotes the interface between the two media and the subscriptsm and f
refer to the matrix and fracture, respectively. LetΩε

i with i = m or f denote the open set filled with the porous medium i.
ThenΩ = Ωε

m ∪ Γ
ε
m,f ∪Ω

ε
f , where Γ

ε
m,f = ∂Ω

ε
m ∩ ∂Ω

ε
f . For the sake of simplicity, we will assume that ∂Ω ∩Ω

ε
m = ∅.

Let us introduce the nonstandard growth function used in this paper. We assume that a family of continuous functions
pε = pε(x), ε > 0, is defined inΩ and satisfies the following conditions:

(i) functions pε are bounded from below such that:

pε(x) ≥ 2 in Ω;

(ii) for any x, y ∈ Ω and any ε > 0, we have

|pε(x)− pε(y)| ≤ $ε(|x− y|) with lim
τ→0

$ε(τ ) ln
(
1
τ

)
≤ C;

(iii) the function γε(x) = pε(x)− 2 converges uniformly to zero inΩ .

Now let us introduce the permeability coefficient and the porosity of the porous mediumΩ . We set

K ε(x) = kmεpε(x) 1εm(x)+ kf 1
ε
f (x) and ωε(x) = ωm 1εm(x)+ ωf 1

ε
f (x),

where kf is the permeability or the hydraulic conductivity of fissures, km is the permeability or the hydraulic conductivity
of blocks, ωf is the porosity of fissures, ωm is the porosity of blocks; 1εf = 1εf (x) and 1εm = 1εm(x) denote the (periodic)
characteristic functions of the setsΩε

f andΩ
ε
m, respectively. Here 0 < kf , km, ωf , ωm < +∞.

We consider the following initial boundary value problem for the function uε : Q 7→ R:
ωε(x)

∂uε

∂t
− div

(
kε(x)∇uε|∇uε|pε(x)−2

)
= g(t, x) in Q ;

uε = 0 on ]0, T [×∂Ω;
uε(0, x) = u0(x) in Ω,

(2.1)

where Q denotes the cylinder ]0, T [×Ω , T > 0 is given and g, u0 are given functions.
For simplicity andwithout loss of generality, we restrict the presentation to a homogeneous Dirichlet boundary condition

on ∂Ω , but it is easy to see that all results also hold for other boundary conditions.
Throughout the paper, C will denote a generic positive constant, independent of ε and may take different values for

different occurrences.

3. Preliminary results

The goal of this section is to obtain some a priori estimates on the solution uε of problem (2.1). For this let us define
certain function spaces and notation. In what follows we use standard notation for Sobolev spaces. We refer to [9] and the
bibliography therein for properties of Sobolev spaces with variable exponents. Following [9], for any ε > 0, we introduce
the Sobolev spaceW 1,pε(·)(Ω)with a variable exponent pε defined by

W 1,pε(·)(Ω) =
{
φ ∈ Lpε(·)(Ω) : |∇ φ| ∈ Lpε(·)(Ω)

}
.

Here by Lpε(·)(Ω)we denote the space of measurable functions φ inΩ such that

Apε(·)(φ) =
∫
Ω

|φ(x)|pε(x)dx < +∞. (3.1)

This space equipped with the norm

‖φ‖Lpε(·)(Ω) = inf
{
λ > 0 : Apε(·)

(
φ

λ

)
≤ 1

}
becomes a Banach space.
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The existence and uniqueness result for problem (2.1) is given by the following result (see for instance [10]).

Theorem 3.1. Let g ∈ C(0, T ; L2(Ω)) and u0 ∈ H2(Ω). Then, for any ε > 0, there exists a unique solution uε = uε(t, x) of
the boundary value problem (2.1) in the space L∞(0, T ;W 1,pε(·)(Ω)). Furthermore, this solution satisfies the following a priori
estimates, for a.e. t ∈]0, T [:

‖uε(t)‖2L2(Ω) +
∫ t

0
dt
∫
Ω

∣∣∣∣∂uε∂t
∣∣∣∣2 dx+ ∫

Ω

kε(x)|∇uε|pε(x)dx ≤ C; (3.2)

and

‖uε(t + δt)− uε(t)‖L2(Ω) ≤ C (δt)
κ with 0 < κ < 1, (3.3)

where δt > 0 is a time step which tends to zero.

In what follows we make use of Hölder’s inequality for Sobolev spaces with variable exponents. Let φ ∈ Lp(·)(Ω),
ψ ∈ Lq(·)(Ω)with

1
p(x)
+
1

q(x)
= 1, 1 < p− ≤ p(x) ≤ p+ < +∞, 1 < q− ≤ q(x) ≤ q+ < +∞,

then ∫
Ω

|φ ψ |dx ≤ 2 ‖φ‖Lp(·)(Ω) ‖ψ‖Lq(·)(Ω) . (3.4)

We also make use of the following results from the theory of Sobolev spaces with variable exponents p = p(x). Let
the function p(x) satisfy the conditions 1 < p− = infΩ p(x) ≤ p(x) ≤ supΩ p(x) = p+ < +∞, and, for all x, y ∈ Ω ,
|p(x)− p(y)| ≤ $(|x− y|)with lim

τ→0
$(τ) ln

( 1
τ

)
≤ C . Then


min

(
‖φ‖

p−

Lp(·)(Ω)
, ‖φ‖

p+

Lp(·)(Ω)

)
≤ Ap(·)(φ) ≤ max

(
‖φ‖

p−

Lp(·)(Ω)
, ‖φ‖

p+

Lp(·)(Ω)

)
;

min
(
A
1

p−

p(·)(φ), A
1

p+

p(·)(φ)

)
≤ ‖φ‖Lp(·)(Ω) ≤ max

(
A
1

p−

p(·)(φ), A
1

p+

p(·)(φ)

)
,

(3.5)

where Ap(·)(φ) is defined in (3.1).
We study the asymptotic behavior of the solution uε of problem (2.1) as ε→ 0. For this, it is convenient to introduce the

following notation:

uε =
{
ρε inΩε

f ;

σ ε inΩε
m;

and to rewrite the Eq. (2.1) separately in the domainsΩε
f ,Ω

ε
m with appropriate interface conditions. Namely, in the domain

Ωε
f the Eq. (2.1) reads:

ωf
∂ρε

∂t
− div (kf∇ρε|∇ρε|pε(x)−2) = g(t, x) in ]0, T [×Ωε

f ;

kf∇ρε|∇ρε|pε(x)−2 · Eν = kmεpε(x)∇σ ε|∇σ ε|pε(x)−2 · Eν on ]0, T [×Γ ε
m,f ;

ρε = 0 on ]0, T [×∂Ω;
ρε(0, x) = u0(x) inΩε

f ,

(3.6)

where Eν is the outward normal vector to Γ ε
mf . In the domainΩ

ε
m the Eq. (2.1) reads:

ωm
∂σ ε

∂t
− div

(
kmεpε(x)∇σ ε|∇σ ε|pε(x)−2

)
= g(t, x) in ]0, T [×Ωε

m;

σ ε = ρε on ]0, T [×Γ ε
mf ;

σ ε(0, x) = u0(x) inΩε
m.

(3.7)

To establish a preliminary compactness result, first we notice that the a priori estimate (3.2), conditions (i), (iii) along
with (4.1), and inequalities (3.4)–(3.5) imply the bound for a.e. t ∈]0, T [:

‖uε(t)‖L2(Ω) +
∫ t

0
dt
∫
Ω

∣∣∣∣∂uε∂t
∣∣∣∣2 dx+ ∫

Ωεf

|∇uε|2dx+ ε2
∫
Ωεm

|∇uε|2dx ≤ C . (3.8)
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Therefore, from (3.6)–(3.8), we have for a.e. t ∈]0, T [:

‖ρε(t)‖L2(Ωεf ) +
∫ t

0
dt
∫
Ωεf

∣∣∣∣∂ρε∂t
∣∣∣∣2 dx+ ∫

Ωεf

|∇ρε|2dx ≤ C; (3.9)

‖σ ε(t)‖L2(Ωεm) +
∫ t

0
dt
∫
Ωεm

∣∣∣∣∂σ ε∂t
∣∣∣∣2 dx+ ε2 ∫

Ωεm

|∇σ ε|2dx ≤ C . (3.10)

The next result relies on the two-scale approach (see, e.g., [2]). For the reader’s convenience, let us recall the definition
of the two-scale convergence.

Definition 3.2. A sequence of functions vε ∈ L2(Ω) two-scale converges to v(x, y) ∈ L2(Ω × Y ) if, ‖vε‖L2(Ω) ≤ C and for
any function ϕ(x, y) ∈ D(Ω; C∞# (Y )), it holds

lim
ε→0

∫
Ω

vε(x)ϕ
(
x,
x
ε

)
dx =

∫
Ω×Y

v(x, y)ϕ(x, y)dxdy.

This convergence is denoted by vε(x)
2s
⇀ v(x, y).

Now using the bounds (3.9)–(3.10) along with the extension result [1], it is easy to prove the following compactness
result.

Lemma 3.1. Let uε = 〈ρε, σ ε〉 be the solution of problem (2.1). Then there exists a subsequence, still denoted by {uε}, and
functions uf = uf (t, x), vf = vf (x, y), um = um(t, x, y) such that

(a.1) uf ∈ H1(0, T ; L2(Ω)) ∩ L∞(0, T ;H1(Ω)), vf ∈ L2(Ω;H1#(F) \ R);
(a.2) um ∈ H1(0, T ; L2(Ω × Y )) ∩ L∞(0, T ; L2(Ω;H1(M))), with um(t, x, y) = uf (t, x) for y ∈ ∂M;

(b) for any t ∈]0, T [, ρε
2s
⇀ uf and σ ε

2s
⇀ um;

(c) for any ϕ ∈ L∞(0, T ; L2(Ω; C#(Y ))),∫ T

0
dt
∫
Ωεf

∂uε

∂t
ϕ
(
t, x,

x
ε

)
dx −→

∫ T

0
dt
∫
Ω×F

∂uf
∂t

ϕ(t, x, y)dxdy;

∫ T

0
dt
∫
Ωεm

∂uε

∂t
ϕ
(
t, x,

x
ε

)
dx −→

∫ T

0
dt
∫
Ω×M

∂um
∂t

ϕ(t, x, y)dxdy;

(d) for a.e. t ∈]0, T [, ∇ρε
2s
⇀ (∇xuf +∇yvf )1f (y) and ∇σ ε

2s
⇀ ∇yum1m(y).

4. Homogenization results

In this section, we formulate the main results of the paper. We present homogenization results for the problem (2.1).
Convergence of the homogenization process is obtained by combining the technique of two-scale convergence (see, e.g., [2,
37]) and the variational homogenization method (see, e.g., [22,28,38] and references therein).
The idea of the proof is the following. First wewill reduce our parabolic problem to an elliptic one depending on the time

variable as a parameter. Then we introduce a functional corresponding to this elliptic problem and study the minimization
problem for it in the limit of small ε. Then we obtain the limit functional corresponding to the homogenized problem.
Regarding the variational technique, it is worth mentioning one trick used in the paper. In order to obtain the lower bound
for the original functional, we first replace the original exponent pε(x) by a new one p0 = 2, and consider the corresponding
family of auxiliary functionals. Then the lower semicontinuity property of convex functionals with respect to the two-scale
convergence implies the desired inequality. Finally, it is not difficult to show that the limit functional for the auxiliary family
does not exceed the limiting functional for the original one.
Now we are in position to formulate the first homogenization result of the paper.

Theorem 4.1. Let uε = uε(t, x) be the solution of the boundary value problem (2.1) and let conditions (i)–(iii) be satisfied.
Moreover, we assume that there exists a positive function α ∈ C(Ω) such that, for any x ∈ Ω ,

lim
ε→0

εγε(x) = α(x). (4.1)

Then, for a.e. t ∈]0, T [, uε two-scale converges to u∗ ∈ L2(]0, T [×Ω × Y ) such that

u∗(t, x, y) =
{
uf (t, x) in Q × F;
um(t, x, y) in Q ×M,

(4.2)
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where the couple (uf , um) ∈ L2(0, T ;H1(Ω))× L∞(0, T ; L2(Ω;H1(M))) is the unique solution of the homogenized problem:
ωf |F |

∂uf
∂t
− divx(K ∗ ∇xuf ) = S(x, um) in Q ;

uf = 0 on (0, T )× ∂Ω and uf (0, x) = u0(x) in Ω;

ωm
∂um
∂t
− K̃ ∗(x)∆yum = g(t, x) in Q ×M;

um(t, x, y) = uf (t, x) on Q × ∂M and um(0, x, y) = u0(x) in Ω ×M,

(4.3)

where |F | is the measure of the set F and K ∗ = {k∗ij} is the homogenized permeability tensor defined by:

k∗ij = kf

∫
F
(Eei +∇ywi) · (Eej +∇ywj)dy (4.4)

with {Ee1, Ee2, . . . , Een} the canonical basis of Rn andwi being the unique solution in H1#(F) \ R of{
−kf∆ywi = 0 in F;
(Eei +∇ywi) · Eν = 0 on ∂M;
y→ wi(x, y) Y-periodic;

(4.5)

where Eν = Eν(y) is the outer normal vector at ∂M and the effective coefficient K̃ ∗ in the local problem is given by

K̃ ∗(x) = α(x) km; (4.6)

and the effective source term S(x, um) is given by

S(x, um) = |F | g(t, x)− K̃ ∗(x)
∫
∂M
(∇yum · Eν)dsy. (4.7)

Remark 1. The source term which appears in the right-hand side of the first equation in (4.3) is well defined, since
um ∈ L∞(0, T ; L2(Ω;H1(M))), and it follows from the third equation of (4.3) that

−∆yum ∈ L2(0, T ;H−1/2(∂M))

which allows one to define (∇yum · Eν) as an element of L2(0, T ;H−1/2(∂M)).

Proof. We consider our parabolic boundary value problem (2.1) as an elliptic one depending on the time variable t as a
parameter. Namely, we consider the following boundary value problem, for a.e. t ∈]0, T [,{

−div
(
kε(x)∇uε|∇uε|pε(x)−2

)
= Gε in Q ;

uε = 0 on ]0, T [×∂Ω, (4.8)

where the function Gε ,

Gε = Gε(t, x) = g(t, x)− ωε(x)
∂uε

∂t
(t, x), (4.9)

is considered as a given function. Then, for any∆t ⊂ [0, T ], uε minimizes the functional:

Jε[u] =
∫
∆t

dt
∫
Ω

{
kε(x)
pε(x)

|∇u|pε(x) − Gεu
}
dx (4.10)

over u ∈ L∞(0, T ;W 1,pε(·)(Ω)).
In the following sections we study the minimization problem for the functional Jε in the limit of small ε and obtain the

homogenized functional.

4.1. Upper bound for the functional Jε

We want to show that for any admissible

φf ∈ L∞(0, T ; C1(Ω)), φm ∈ L∞(0, T ; C1(Ω;H1(M) ∩ C1#(Y ))), ζ ∈ L∞(0, T ; C1(Ω; C1#(Y )))

such that φm(t, x, y)|y∈∂M = φf (t, x), the inequality holds:

lim
ε→0
Jε[uε] ≤ Jhom[φf , φm], (4.11)
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where Jhom is the functional corresponding to the homogenized problem. It reads

Jhom[φf , φm] =
∫
∆t

dt
∫
Ω

{
1
2

(
K ∗ ∇xφf · ∇xφf

)
− |F |

(
g(t, x)− ωf

∂uf
∂t

)
φf

}
dx

+

∫
∆t

dt
∫
Ω×M

{
α(x)

km
2

∣∣∇yφm∣∣2 − (g(t, x)− ωm ∂um
∂t

)
φm

}
dxdy. (4.12)

In order to prove (4.11), we introduce the test function

wε =


φf (t, x)+ εζ

(
t, x,

x
ε

)
inΩε

f ;

φm

(
t, x,

x
ε

)
+ εζ

(
t, x,

x
ε

)
inΩε

m.
(4.13)

It is clear that

lim
ε→0
Jε[uε] ≤ lim

ε→0
Jε[wε]. (4.14)

Due to the regularity of the functions φf , φm, ζ and by condition (iii), for a.e. t ∈]0, T [, we have∫
Ω

kε(x)
pε(x)

|∇wε|
pε(x) dx = kf

∫
Ωεf

1
pε(x)

∣∣∣∇ (φf (t, x)+ εζ (t, x, x
ε

))∣∣∣pε(x) dx
+ km

∫
Ωεm

εpε(x)

pε(x)

∣∣∣∇ (φm (t, x, x
ε

)
+ εζ

(
t, x,

x
ε

))∣∣∣pε(x) dx
−→
ε→0

kf
2

∫
Ω×F

∣∣∇xφf +∇yζ ∣∣2 dxdy+ km2
∫
Ω×M

α(x)
∣∣∇yφm∣∣2 dxdy. (4.15)

In addition, assertion (c) of Lemma 3.1 implies that, as ε→ 0,∫
∆t

dt
∫
Ω

Gεwεdx =
∫
∆t

dt
∫
Ωεf

{
g(t, x)

(
φf (t, x)+ εζ

(
t, x,

x
ε

))
− ωf

∂ρε

∂t

(
φf (t, x)+ εζ

(
t, x,

x
ε

))}
dx

+

∫
∆t

dt
∫
Ωεm

{
g(t, x)

(
φm

(
t, x,

x
ε

)
+ εζ

(
t, x,

x
ε

))
− ωm

∂σ ε

∂t

(
φm

(
t, x,

x
ε

)
+ εζ

(
t, x,

x
ε

))}
dx

−→

∫
∆t

dt
{∫

Ω×F

(
g(t, x)− ωf

∂uf
∂t

)
φf dxdy+

∫
Ω×M

(
g(t, x)− ωm

∂um
∂t

)
φmdxdy

}
. (4.16)

Then, it follows from (4.15), (4.16) and (4.1) that

lim
ε→0
Jε[wε] = J[φf , φm, ζ ], (4.17)

where

J[φf , φm, ζ ] =
∫
∆t

dt
∫
Ω×F

{
kf
2

∣∣∇xφf +∇yζ ∣∣2 − (g(t, x)− ωf ∂uf
∂t

)
φf

}
dxdy

+

∫
∆t

dt
∫
Ω×M

{
α(x)

km
2

∣∣∇yφm∣∣2 − (g(t, x)− ωm ∂um
∂t

)
φm

}
dxdy. (4.18)

Letting

ζ (t, x, y) =
n∑
i=1

∂φf

∂xi
(t, x) wi(y), (4.19)

where wi (i = 1, 2, . . . , n) is the solution of the cell problem (4.5), and taking into account the regularity of wi, we obtain
the desired estimate (4.11).
It is clear that (4.11) holds for any (φf , φm) ∈ L∞(0, T ;H1(Ω))×L∞(0, T ; L2(Ω;H1(M))) such thatφm(t, x, y) = φf (t, x)

for y ∈ ∂M .
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4.2. Lower bound for the functional Jε

The proof of the lower bound is done in two steps. At the first step we introduce an auxiliary functional J̃ε and obtain
a lower bound for this functional. This bound for the auxiliary functional implies the desired lower bound for the original
functional Jε . This will be justified at the second step.
Step 1. Define the functional:

J̃ε[u] =
∫
∆t

dt
∫
Ω

{
kε(x)
pε(x)

|∇u|2 − Gεu
}
dx, (4.20)

where Gε is specified in (4.9). In the same way as in the proof of the upper bound for the functional Jε , one can show that

lim
ε→0
J̃ε[uε] ≤ Jhom[φf , φm] (4.21)

for any pair of functions (φf , φm) ∈ L∞(0, T ;H1(Ω))× L∞(0, T ; L2(Ω;H1(M))) such that φm(t, x, y) = φf (t, x) for y ∈ ∂M .
By Lemma 3.1, condition (4.1), and the lower semicontinuity property of convex functionals with respect to the two-scale

convergence (see, e.g., [2]) we have:

lim
ε→0

∫
∆t

dt
∫
Ω

{
kε(x)
pε(x)

|∇uε|2 − g(t, x)uε
}
dx ≥

∫
∆t

dt
∫
Ω

{
1
2

(
K ∗ ∇xuf · ∇xuf

)
− |F | g(t, x)uf

}
dx

+

∫
∆t

dt
∫
Ω×M

{
α(x)

km
2

∣∣∇yum∣∣2 − g(t, x)um} dxdy. (4.22)

Combining (4.21) and (4.22), we obtain:

lim
ε→0

∫
∆t

dt
∫
Ω

∂uε

∂t
uεdx ≤ ωf |F |

∫
∆t

dt
∫
Ω

∂uf
∂t
uf dx+ ωm

∫
∆t

dt
∫
Ω×M

∂um
∂t
umdxdy. (4.23)

On the other hand

lim
ε→0

∫ T

0
dt
∫
Ω

∂uε

∂t
uεdx =

1
2
lim
ε→0

(
‖uε(T )‖2L2(Ω) − ‖u0‖

2
L2(Ω)

)
=
1
2
lim
ε→0

(
‖ρε(T )‖2L2(Ωεf )

− ‖u0‖2L2(Ωεf )

)
+
1
2
lim
ε→0

(
‖σ ε(T )‖2L2(Ωεm) − ‖u0‖

2
L2(Ωεm)

)
≥
1
2

(
‖uf (T )‖2L2(Ω×F) − ‖u0‖

2
L2(Ω×F)

)
+
1
2

(
‖um(T )‖2L2(Ω×M) − ‖u0‖

2
L2(Ω×M)

)
= ωf |F |

∫ T

0
dt
∫
Ω

∂uf
∂t
uf dx+ ωm

∫ T

0
dt
∫
Ω×M

∂um
∂t
umdxdy. (4.24)

Comparing (4.23) and (4.24), we conclude that

lim
ε→0

∫
∆t

dt
∫
Ω

∂uε

∂t
uεdx = ωf |F |

∫
∆t

dt
∫
Ω

∂uf
∂t
uf dx+ ωm

∫
∆t

dt
∫
Ω×M

∂um
∂t
umdxdy.

This yields

lim
ε→0
J̃ε[uε] ≥ Jhom[uf , um]. (4.25)

Step 2. Denote

Iε[uε] = Jε[uε] − J̃ε[uε] =
∫
∆t

dt
∫
Ω

kε(x)
pε(x)

{
|∇uε|pε(x) − |∇uε|2

}
dx. (4.26)

It is clear that

Iε[uε] ≥ −
∫
∆t

dt
∫
{|∇uε |<1}∩Ω

kε(x)
pε(x)

{
|∇uε|2 − |∇uε|pε(x)

}
dx. (4.27)

Let us show that the function ϕε(η) = η2 − ηpε(·) converges uniformly to zero on the interval [0, 1]. To this end notice
that the maximum of ϕε(η) is attained at

ηεmax =

(
2
pε(·)

) 1
pε(·)−2

.
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Then we have:

max
0≤η≤1

ϕε(η) = ϕε(ηεmax) =

(
2
pε(·)

) 2
pε(·)−2

−

(
2
pε(·)

) pε(·)
pε(·)−2

−→ 0 as ε→ 0. (4.28)

Now the inequalities (4.25) and (4.27), and the relations (4.26) and (4.28) immediately imply that

lim
ε→0
Jε[uε] ≥ Jhom[uf , um]. (4.29)

From the inequalities (4.11) and (4.29) it is easy to derive that

Jhom[uf , um] ≤ Jhom[φf , φm]

for any pair of admissible functions (φf , φm). Therefore, (uf , um) is the minimizer of the homogenized functional Jhom. The
statement of Theorem 4.1 follows from the uniqueness of a solution to the corresponding Euler equation.
Theorem 4.1 is proved. �

The macroscopic model corresponding to the second situation is given by the following convergence result.

Theorem 4.2. Let uε = 〈ρε, σ ε〉 be the solution of the boundary value problem (2.1) and let conditions (i)–(iii) be satisfied.
Moreover, we assume that for any x ∈ Ω ,

lim
ε→0

εγε(x) = 0. (4.30)

Then, for a.e. t ∈]0, T [,

1. the function ρε two-scale converges to uf ∈ L2(0, T ;H1(Ω)), the solution of{
ωf |F |

∂uf
∂t
− divx(K ∗ ∇xuf ) = |F | g(t, x) in Q ;

uf = 0 on ]0, T [×∂Ω and uf (0, x) = u0(x) in Ω,
(4.31)

where K ∗ = {k∗ij} is the homogenized permeability tensor defined in (4.4)–(4.5);
2. the function σ ε two-scale converges to um ∈ L2(Q ) defined by

um(t, x) = u0(x)+
1
ωm

∫ t

0
g(τ , x)dτ in Q . (4.32)

Proof. The proof is exactly the same to that of Theorem 4.1 except that the third term in (4.12) is zero when α(x) = 0. �

Remark 2. Notice that the structure of the limit problem depends crucially on the rate of convergence of (pε(·)−2) to zero.
The critical rate of convergence is

(pε(·)− 2) ∼
1
| ln ε|

.

More precisely, if

lim
ε→0
| ln ε|(pε(x)− 2) < +∞,

then the limit model is of a double porosity type. If

lim
ε→0
| ln ε| (pε(x)− 2) = +∞,

then in the limit we obtain a single porosity model.

Remark 3. Having the statements of Theorems 4.1 and 4.2 proved, it is natural to raise a question on the rate of convergence
for the solution uε . Clearly, without additional assumptions on the behavior of |pε − p0|, as ε → 0, we cannot expect any
estimates for the rate of convergence of |uε(t, x)−u∗(t, x, x

ε
)| to zero. The corresponding example can be easily constructed

if we consider problem (2.1) with exponents pε independent of x. In this case the convergence rate for uε will be governed
by that for pε .
The authors are not aware of any qualified estimates for the rate of convergence in the case of homogenization problems

for equations with nonlinearity of non standard growth conditions.
We believe that fast enough convergence of pε to p0 will imply good estimates for the discrepancy |uε(t, x)−u∗(t, x, xε )|.

This interesting problem is out of the scope of this work. It will be studied somewhere else.
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