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HOMOGENIZATION OF A POROUS MEDIUM WITH RANDOMLY
PULSATING MICROSTRUCTURE∗

DOINA CIORANESCU† AND ANDREY PIATNITSKI‡

Abstract. We study a parabolic operator in a perforated medium with random rapidly pulsating
perforation. Assuming that the geometry of the perforations is spatially periodic and stationary
random in time with good mixing properties, we show that this problem admits homogenization in
moving coordinates, and derive the homogenized problem.
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1. Introduction. This note deals with the homogenization problem for the heat
equation stated in a perforated medium with periodic microstructure rapidly pulsating
in time. It is assumed that the geometrical characteristics of the microstructure are
random stationary ergodic rapidly oscillating functions of time.

These equations model the long-term behavior of artificial materials with a peri-
odic microstructure whose characteristics depend on atmosphere temperature, pres-
sure, etc.

Throughout this paper we denote by ε the microscopic length scale of the medium.
Our goal is to show that under proper mixing and regularity assumptions the studied
problem admits “homogenization in law” in moving coordinates (x′, t) = (x + b̄

ε t, t)
with a constant deterministic vector b̄, and that the homogenized equation is a stochas-
tic partial differential equation (SPDE). Namely, we will prove that in the said moving
coordinates a solution of the original problem converges in law, as ε → 0, in the energy
functional space to a solution of the homogenized SPDE. The homogenized problem
is well posed and determines the limit measure uniquely.

It can be shown that the homogenized SPDE has in general a nontrivial covariance
operator so that we cannot expect a.s. homogenization.

A similar problem in the case of periodically pulsating holes has been studied in
our earlier work [2], where it was shown that the homogenization takes place on the
background of a large convection.

In the existing literature there are examples of homogenization problems for ran-
dom parabolic operators such that the corresponding homogenized models involve
SPDEs. This phenomenon was observed in the works [3], [8] and [9] devoted to
homogenization of nonstationary parabolic equations with large lower order terms.
However, in all these examples the limit behavior is diffusive due to the presence of
large lower order terms, while for the divergence form random parabolic equations
stated either in a solid medium or in a perforated domain with time independent
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perforation, the a.s. homogenization result holds, and the limit equation is a standard
parabolic PDE; see [6], [5].

Basic results on homogenization in perforated domains and random homogeniza-
tion can be found for instance in [4] and [7], respectively.

In the case of an initial boundary problem posed in a bounded “perforated”
cylinder, the asymptotic behavior of solutions depends crucially on whether b̄ = 0
or not. If b̄ = 0, then the result similar to that of Theorem 3.4 holds. However, if
b̄ �= 0, then the above-mentioned moving coordinates do not make sense in a bounded
domain. In this case, if at the exterior boundary of the cylinder the homogeneous
Dirichlet or Fourier boundary condition is posed, then for any initial function u0 ∈ L2

a solution of the studied initial boundary problem converges to zero as ε → 0 for any
positive time.

We now outline the techniques used in this work. To obtain the limit (homoge-
nized) problem, in particular the value of the (large) effective convection coefficient,
we apply the multiscale asymptotic expansion technique with the diffusive scaling of
the “fast” spatial and temporal variables.

The structure of the perforation suggests that the terms of the expansion are to
be periodic in the fast spatial variables and stationary in the fast temporal variable.
By substituting the expansion in the original problem and equating like powers of
ε, we obtain in a standard way a sequence of auxiliary parabolic problems (see (3.1)
and (3.2) below). We then derive necessary and sufficient condition of the existence
of a stationary solution to these problems; this is the subject of Lemmas 3.1 and 3.3
below.

In order to make the first nontrivial auxiliary problem solvable, we introduce
moving coordinates of the form (x′, t) =

(
x + b

ε t + 1
εβ

(
t
ε2

)
, t
)

with a constant vec-

tor b and stationary zero mean value random process β(s), the drift 1
εβ

(
t
ε2

)
being

responsible for the presence of a stochastic term in the limit equation.
This allows us to find formally two leading terms of the expansion. To justify

the convergence we need one more term. At this point we face a technical difficulty,
namely, the data of the corresponding auxiliary equation for the third term do not
satisfy the compatibility conditions. In order to make this equation solvable we modify
its right-hand side by adding an extra term. Then we have to show, and this is an
essential part of the work, that the contribution of this “compensator” vanishes as
ε → 0.

Let us also note that a priori estimates for solutions of the original problem are
not straightforward. To obtain them we use a solution of the adjoint auxiliary problem
as a weight function in the energy estimates. Although this weight function is random
and rapidly oscillating, it admits uniform positive lower and upper bounds so that we
get uniform estimates for the H1 norm of the solution.

2. The setup. We begin by describing the geometry. Given a standard proba-
bility space (Ω,F ,P), let Ft = Ft,ω, t ∈ (−∞,+∞) be a random stationary field of
diffeomorphisms R

n −→ R
n that have the following properties:

1. Periodicity. For each t ∈ R and ω ∈ Ω the mapping Ft is compatible with
[0, 1]n periodic structures in R

n, that is,

Ft(x + z) = Ft(x) + z for all x ∈ R
n and z ∈ Z

n.

2. Stationarity. The random field Ft is stationary in t.
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Fig. 2.1. Randomly pulsating perforation.

3. Regularity. The functions Ft(x) and F−1
t (x) are a.s. continuously differen-

tiable in x and t, moreover,∣∣∣∣∂Ft(x)

∂x

∣∣∣∣ ≤ C,

∣∣∣∣∂F
−1
t (x)

∂x

∣∣∣∣ ≤ C,

∣∣∣∣∂Ft(x)

∂t

∣∣∣∣ ≤ C,

∣∣∣∣∂F
−1
t (x)

∂t

∣∣∣∣ ≤ C

with a nonrandom constant C.
4. Mixing condition. Denote by F≤0 and F≥r the σ-algebras

σ{Fs , s ≤ 0}, σ{Fs , s ≥ r},

respectively. We suppose that the function

α(r) = sup
A1 ∈ F≤0

A2 ∈ F≥r

|P(A1 ∩A2) − P(A1)P(A2)|

called strong mixing coefficient, satisfies the condition∫ ∞

0

√
α(r)dr < ∞.(2.1)

Denote

B0 = {y ∈ R
n : |y| ≤ 1

4
}, B =

⋃
z∈Zn

(B0 + z),

and let G(s) = Fs(R
n\B). By construction, G(s) is a periodic connected set in R

n; its
geometric characteristics are random stationary in s. We now introduce a randomly
pulsating perforated medium (see Figure 2.1) as follows:

Qε
T =

{
(x, t) ∈ R

n × [0, T ] : x ∈ εG

(
t

ε2

)}
.
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In the domain Qε
T we study a problem

∂

∂t
uε = Δuε, (x, t) ∈ Qε

T ,

∂

∂nε
x

uε = 0 on

{
x ∈ ε∂G

(
t

ε2

)
, 0 < t < T

}
,

uε(x, 0) = u0(x), u0 ∈ L2(Rn),

(2.2)

where nε
x = nε

x(x, t) is an exterior unit normal to ε∂G
(

t
ε2

)
.

3. Main results. In order to formulate the main result of the note, we consider
two auxiliary equations

∂

∂s
ψ = Δψ + f(y, s), y ∈ G(s), s ∈ R

∂

∂n
ψ = g(y, s) on ∂G(s)

(3.1)

and

∂

∂s
p + Δp = 0, y ∈ G(s), s ∈ R

∂

∂n
p + nsp = 0 on ∂G(s),

(3.2)

where ns is the (n + 1)-th component of the unit normal vector on ∂Q with Q =
{(y, s) ∈ Tn × (−∞,+∞) : y ∈ G(s)}. We are going to consider solutions of (3.1)
and (3.2) (as well as of other auxiliary problems appearing in the paper) which are
periodic in y.

Throughout this paper we will identify periodic functions and sets in R
n with the

corresponding functions and sets on the standard torus T
n.

Lemma 3.1. Equation (3.2) has a stationary, periodic in y solution. Under the
normalization condition ∫

Tn∩G(0)

p(y, 0)dy = 1(3.3)

this solution is unique and the estimate holds

C1 ≤ p(y, s) ≤ C2, 0 < C1 < C2.(3.4)

Proof. Consider two auxiliary Cauchy problems

∂

∂s
ζ − Δζ = 0, y ∈ (Tn ∩G(s)), s > s0

∂

∂n
ζ = 0 on ∂G(s), ζ(y, s0) = φ(y).

(3.5)

and

∂

∂s
η + Δη = 0, y ∈ (Tn ∩G(s)), s < N

∂

∂n
η + nsη = 0 on ∂G(s), η(y,N) = ϕ(y).

(3.6)
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Exploiting the strong maximum principle and compactness arguments one can show
that for any continuous φ(y) the solution ζ of problem (3.5) satisfies the inequality

osc
Tn∩G(s0+1)

ζ(s0 + 1, ·) ≤ (1 − γ) osc
Tn∩G(s0)

φ(·),

where oscϕ(·) = maxϕ(·) − minϕ(·), and γ > 0 is a deterministic constant that does
not depend on φ(y), nor on s0. Combining this with the standard parabolic estimates
we conclude that

|ζ(y, s) − Cφ| ≤ C exp(−κ(s− s0))‖φ‖L2(Tn), s > s0 + 1,(3.7)

for some (random) constant Cφ. Integrating the equation (3.6) by parts over the set
{(y, s) ∈ Tn × (s1, s2) : y ∈ G(s)} one can easily show that∫

G(s2)

η(y, s2)dy =

∫
G(s1)

η(y, s1)dy,

for any s1 < s2 ≤ N , and∫
G(s2)

ζ(y, s2)η(y, s2)dy =

∫
G(s1)

ζ(y, s1)η(y, s1)dy

for any s0 ≤ s1 < s2 ≤ N (see [2] for detailed computations). Together with (3.7)
this yields

∣∣∣
∫
G(s0)

φ(y)η(s0, y)dy
∣∣∣ =

∣∣∣
∫
G(s0)

(φ(y) − Cφ)η(s0, y)dy
∣∣∣

=
∣∣∣
∫
G(N)

(ζ(y,N) − Cφ)ϕ(y)dy
∣∣∣ ≤ C exp(−κ(N − s0))‖φ‖L2(G(s0))‖ϕ‖L2(G(N))

for any ϕ ∈ L2(G(N)) such that
∫
G(N)

ϕ(y)dy = 0, and any φ ∈ L2(G(s0)). Therefore,

‖η(s0, ·)‖L2(G(s0)) ≤ C exp(−κ(N − s0))‖ϕ‖L2(G(N)).(3.8)

Let pN be a solution of the Cauchy problem

∂

∂s
pN + ΔpN = 0, y ∈ (Tn ∩G(s)), s < N,

∂

∂n
pN + nspN = 0 on ∂G(s), pN (y,N) = 1.

(3.9)

From (3.8) it follows that pN converges, as N → ∞, to a solution of (3.2) uniformly
on compact sets. Clearly the function pN+s(y, s) converges to the same limit function
denoted by p(y, s). By construction, the function pN+s(y, s) is stationary; so is p(y, s).
The uniqueness of a stationary solution that satisfies (3.3) easily follows from the
estimate (3.7), and the bounds (3.4) from the maximum principle.

Denote

b̄ = E

∫
∂G(s)

p(y, s)ns(y, s)Hn−1(dy)

and

β(s) =

∫
∂G(s)

p(y, s)ns(y, s)Hn−1(dy) − b̄,
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where Hn−1(dy) is an element of surface volume on ∂G(s). Notice that b̄ is well
defined due to the stationarity of p and G(s). We also introduce a matrix Λ = Λij ,
such that

{ΛΛ∗}ij =
1

2

∫ ∞

0

E(βi(s)βj(0) + βi(0)βj(s))ds.

The two statements below can be proved in the same way as Lemma 3 and Lemma
4 in [8].

Lemma 3.2. Under our standing assumptions the process β(·) satisfies the func-
tional Central Limit Theorem (CLT) with correlation matrix ΛΛ∗, that is, the process

ε

∫ t

0

β(
s

ε2
)ds

converges in law, as ε → 0, in the space (C[0, T ])n to the process ΛWt, where Wt is a
standard n-dimensional Wiener process.

Lemma 3.3. Let f(y, s) and h(y, s), (y, s) ∈ Tn×(−∞,∞), be stationary, ergodic
random functions such that

E(‖f(·, s)‖L2(Tn) + ‖h(·, s)‖H1(Tn)) < ∞,

∫
G(s)

f(y, s)p(y, s)dy +

∫
∂G(s)

h(y, s)p(y, s)H1(dx) = 0.(3.10)

Then the equation

∂

∂s
θ − Δθ = f(y, s), y ∈ (Tn ∩G(s)),

∂

∂n
θ = h(y, s) on ∂G(s)

(3.11)

has a stationary ergodic solution. Under the normalization∫
G(s)

p(y, s)θ(y, s)dy = 0,(3.12)

this solution is unique.
We now proceed with the convergence result. It is convenient to extend a solution

uε of problem (2.2) inside the “holes” (Rn × (0, T )) \Qε
T , the notation uε being kept

for the extended function. According to [1] there is an extension that satisfies the
inequality

‖uε‖L2(0,T ;H1(Rn)) + ‖uε‖C(0,T ;L2(Rn))

≤ C
(
‖uε‖L2(0,T ;H1(εG(t/ε2))) + ‖uε‖C(0,T ;L2(G(t/ε2)))

)
with a constant C which does not depend on ε. The notation vε is used for uε written
in moving coordinates:

vε(x, t) = uε

(
x− b̄

ε
t, t

)
.

Denote

V = L2
w(0, T ;H1(Rn)) ∩ C(0, T ;L2

w(Rn)),
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where symbol w indicates that the corresponding functional space is equipped with
its weak topology.

The main result of this note is summarized in the following theorem.
Theorem 3.4. Under assumptions 1–4, a solution vε of problem (2.2) converges

in law, as ε → 0, in the spaces V and L2(Rn × (0, T )) to a solution of the following
SPDE

du = Âudt + Λ∇udWt, u(x, 0) = u0(x)(3.13)

with

Â = âij
∂2

∂xi∂xj

and

â = E

(∫
G(0)

(I + ∇θ(y, 0))(I + ∇θ(y, 0))∗p(y, 0)dy

)
+

1

2
ΛΛ∗.

Remark 3.5. If the Neumann boundary condition at the border of perforation in
problem (2.2) is replaced by a Dirichlet or Robin condition, then for any u0 ∈ L2(Rn)
the solutions uε would tend to zero, as ε → 0, for all t > 0. In this case, since the
(n−1)-dimensional volume of the perforation boundary tends to infinity, the boundary
condition is getting increasingly dissipative as ε → 0. One can try to divide uε by a
proper small parameter so that the ratio has a nontrivial finite limit, but this kind of
analysis is not in the scope of the present work.

Remark 3.6. In our previous work [2] dealing with periodically pulsating perfo-
ration, we provided an example of a perforated structure in R

2 for which b̄ �= 0. In
this example the shape of inclusions does not depend on time and is given by

S0 =

[
−1

6
, L

]
×
[
−1

3
,
1

3

]
\ [0, L] ×

[
−1

6
,
1

6

]

with big enough L, the cell of periodicity being (0, L + 1) × (0, 1). This perforation
just moves periodically forward and backward along the first coordinate axis.

Letting now

G(0) = R
2 \

⋃
i,j∈Z

(S0 + ie1 + (L + 1)je2),

where e1 and e2 are the coordinate unit vectors, we introduce a randomly pulsating
periodic perforation as follows:

G(t) =

{
G(0) + (−1)ξj (t− j), j ≤ t ≤ j + T,
G(0) + (−1)ξj (2T + j − t), j + T ≤ t ≤ j + 2T ;

here j = 0,±1,±2, . . ., and {ξj} is a collection of independently and identically dis-
tributed (i.i.d.) random variables taking on the values 1 and 2 with probability 1/2.

Exactly in the same way as in [2], one can show that in this example for large
enough L and T , the first component of the vector b̄ is not equal to zero.

Proof of Theorem 3.4. Let us first introduce a function

zε(x, t) = uε

(
x +

b̄

ε
t +

1

ε

∫ t

0

β
( s

ε2

)
, t

)
.(3.14)



RANDOMLY PULSATING MICROSTRUCTURE 177

We are going to show that this function converges a.s., as ε → 0, to a solution of
a deterministic parabolic equation with constant coefficients, i.e., that problem (2.2)
admits a.s. homogenization in the randomly moving coordinates

(Xε
+, t) =

(
x +

b̄

ε
t +

1

ε

∫ t

0

β
( s

ε2

)
ds , t

)
.

To this end we substitute into (2.2) an ansatz of the form

ũε = z0(Xε
−, t) + εχ

(
x

ε
,
t

ε2

)
∇z0(X

ε
−, t) + ε2ψ

(
x

ε
,
t

ε2

)
∇∇z0(X

ε
−, t)(3.15)

with

Xε
− = x− b̄

ε
t− 1

ε

∫ t

0

β
(s
ε

)
ds,

and collect like powers of ε in the obtained equation. This yields

(
∂

∂s
χj

(
x

ε
,
t

ε2

)
− Δyχ

j

(
x

ε
,
t

ε2

))
∂

∂xj
z0(Xε

−, t)

+

(
−b̄j − βj

(
t

ε2

))
∂

∂xj
z0(Xε

−, t) = 0 in QT
ε

(3.16)

(
nε
j +

∂

∂nε
χj

(
x

ε
,
t

ε2

))
∂

∂xj
z0(Xε

−, t) = 0

on {(x, t) ∈ ∂QT
ε : 0 < t < T};

(3.17)

and (
∂

∂s
ψij

(
x

ε
,
t

ε2

)
− Δyψ

ij

(
x

ε
,
t

ε2

))
∂2

∂xi∂xj
z0(Xε

−, t)

+
∂

∂t
z0(Xε

−, t) − Δz0(Xε
−, t) +

(
b̄j + βj

(
t

ε2

))
χi

(
x

ε
,
t

ε2

)
∂2

∂xi∂xj
z0(Xε

−, t)

+ 2
∂

∂yj
χi

(
x

ε
,
t

ε2

)
∂2

∂xi∂xj
z0(Xε

−, t) = 0,

(3.18) (
nε
iχ

j

(
x

ε
,
t

ε2

)
+

∂

∂nε
ψij

(
x

ε
,
t

ε2

))
∂2

∂xi∂xj
z0(Xε

−, t) = 0

on {(x, t) ∈ ∂QT
ε : 0 < t < T}.

(3.19)

By Lemma 3.3 and the definition of b̄ and β(s), the equation

∂

∂s
χ− Δχ = b̄− β(s), y ∈ (Tn \G(s)),

∂

∂n
χ = −n(y, s) on ∂G(s)

(3.20)

has a stationary ergodic solution, which is uniquely defined by the normalization
(3.12). Under this choice of χ the equation (3.16)–(3.17) is satisfied for any function z0.
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We now turn to problem (3.18)–(3.19). Considering fast and slow arguments as
independent, and writing down an evident necessary condition of the existence of a
stationary solution in (3.18)–(3.19), one has

∂

∂t
z0(Xε

−, t) − Δz0(Xε
−, t)

+

{
E

∫
G(s)

(
b̄j + βj(s)

)
χi(y, s)p(y, s)dy + 2E

∫
G(s)

p(y, s)
∂

∂yj
χi(y, s)dy

+ E

∫
∂G(s)

ni(y, s)χ
i(y, s)p(y, s)Hn−1(dy)

}
∂2

∂xi∂xj
z0(Xε

−, t) = 0.

(3.21)

The first integral in the figure brackets is equal to zero due to the normalization
condition on χ. Taking into account the definition of p(y, s) and χ(y, s), one can show
that

E

∫
G(s)

p(y, s)

(
δij + 2

∂

∂yj
χi(y, s)

)
dy + E

∫
∂G(s)

ni(y, s)χ
i(y, s)p(y, s)Hn−1(dy)

= E

∫
G(s)

(Id + ∇χ)p(y, s)(Id + ∇χ)∗.

Therefore, the matrix of coefficients of (3.21) is positive definite and coincides with
â− 1

2ΛΛ∗. Denote this matrix by ā.
We choose the function z0(x, t) to be a solution of the problem

∂

∂t
z0 = āij

∂2

∂xi∂xj
z0, z0(x, 0) = u0.

Then the equation (3.18)–(3.19) takes the form

∂

∂s
ψij

(
x

ε
,
t

ε2

)
− Δyψ

ij

(
x

ε
,
t

ε2

)
+

(
b̄j + βj

(
t

ε2

))
χi

(
x

ε
,
t

ε2

)

+ 2
∂

∂yj
χi

(
x

ε
,
t

ε2

)
− λij = 0 in QT

ε ,

(3.22)

nε
iχ

j

(
x

ε
,
t

ε2

)
+

∂

∂nε
ψij

(
x

ε
,
t

ε2

)
= 0 on {(x, t) ∈ ∂QT

ε },

where

λij = E

{
2

∫
G(s)

p(y, s)
∂

∂yj
χi(y, s)dy +

∫
∂G(s)

p(y, s)n(y, s)Hn−1(dy)

}
.

The latter problem does not satisfy the conditions of Lemma 3.3, thus we cannot
claim the existence of its stationary periodic in y = x

ε solution. If we let now

μij(s) = 2

∫
G(s)

p(y, s)
∂

∂yj
χi(y, s)dy +

∫
∂G(s)

p(y, s)n(y, s)Hn−1(dy) − λij ,
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then μ(s) is a stationary ergodic bounded zero average process. The functions ψij are
introduced as solutions of the following modified problem

∂

∂s
ψij

(
x

ε
,
t

ε2

)
− Δyψ

ij

(
x

ε
,
t

ε2

)
+

(
b̄j + βj

(
t

ε2

))
χi

(
x

ε
,
t

ε2

)
+ μij

(
t

ε2

)

+ 2
∂

∂yj
χi

(
x

ε
,
t

ε2

)
− λij = 0,

(
x

ε
,
t

ε2

)
∈
{

T
n × R

1 :
x

ε
∈ G

(
t

ε2

)}
,

nε
iχ

j

(
x

ε
,
t

ε2

)
+

∂

∂nε
ψij

(
x

ε
,
t

ε2

)
= 0,

x

ε
∈ ∂G

(
t

ε2

)
.

(3.23)
By the definitions of μij(s), λij and βj(s), we have

∫
G(s)

p(y, s)

(
2

∂

∂yj
χi(y, s) + (b̄j + βj(s))χi(y, s) + μij(s) − λij

)
dy

+

∫
∂G(s)

p(y, s)n(y, s)Hn−1(dy) = 0,

Therefore, Lemma 3.3 applies and the last problem has a stationary ergodic periodic
in y matrix valued solution ψ(y, s).

All the terms in the expression (3.15) are now defined. The estimate of the
discrepancy (uε − ũε) is based on the following statements whose proof is similar to
that of Proposition 3.1 in [2].

Lemma 3.7. A solution vε of a Cauchy problem

∂

∂t
vε = Δvε + f(x, t), (x, t) ∈ Qε

T ,

∂

∂nε
x

vε = g(x, t) on

{
x ∈ ε∂G

(
t

ε2

)
, 0 < t < T

}
,

vε(x, 0) = v0(x)

(3.24)

obeys the estimate

∫
QT

ε

|∇vε(x, t)|2dxdt + sup
0≤t≤T

∫
Rn\G( t

ε2
)

|vε(x, t)|2dx

≤ C(‖f‖2
L2(QT

ε ) + ‖v0‖2
L2(Rn) + ε−1‖g‖2

L2(∂QT
ε ))

We should also estimate the contribution of the additional term μij on the right-
hand side of (3.23).

Lemma 3.8. Let u0 be a C∞
0 function, and let V ε be a solution of the following

Cauchy problem

∂

∂t
V ε = ΔV ε + μij

(
t

ε2

)
∂

∂xi∂xj
z0(Xε

−, t), (x, t) ∈ Qε
T ,

∂

∂nε
x

V ε = 0 on

{
x ∈ ε∂G

(
t

ε2

)
, 0 < t < T

}
,

V ε(x, 0) = 0.

(3.25)
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Then the expression

E

(∫
QT

ε

|∇V ε(x, t)|2dx dt + sup
0≤t≤T

∫
Rn\G( t

ε2
)

|V ε(x, t)|2 dx
)

tends to zero, as ε → 0.
Proof. The function εF−1

t/ε2(
x
ε ) with Ft introduced in the beginning of section 2,

maps {x ∈ ε∂G
(

t
ε2

)
} onto R

n \ εB for all t. Denote Q̃T
ε = (Rn \ εB)× (0, T ). In the

coordinates (ζ, t) = (εF−1
t/ε2(

x
ε ), t), problem (3.25) reads

∂

∂t
V ε = AεV ε + μ

(
t

ε2

)
Z̃0
ε (x(ζ, t), t) in Q̃T

ε ,

∂

∂na,ε
ζ

V ε = 0 on ε∂B × (0, T ),

V ε(ζ, 0) = 0,

(3.26)

where Z̃0
ε (x(ζ, t), t) =

∂

∂xi∂xj
z0(Xε

−(x(ζ, t), t)),

Aε = aij
(
ζ

ε
,
t

ε2

)
∂2

∂ζi
∂ζjV

ε +
1

ε
bi
(
ζ

ε
,
t

ε2

)
∂

∂ζi
V ε,

and a(y, s) and b(y, s) are defined by

aij(ζ, t) =

n∑
k=1

∂(F−1
t )i

∂xk

∂(F−1
t )j

∂xk
, bi(ζ, t) =

n∑
k=1

∂2(F−1
t )i

∂x2
k

.

Under our assumptions z0(x, t) is a C∞ Schwartz class function. Therefore,

|Z̃0(x(ζ, t), t) − Z̃0(ζ, t)| ≤ Cε,

and due to Lemma 3.7 one can replace the function Z̃0(Xε
−(x(ζ, t), t)) on the right-

hand side of (3.26) by Z̃0(Xε
−(ζ, t)).

Denote tεm = mε3/2. We represent V ε(x, t) as the sum

V ε(x, t) =

[T/ε3/2]∑
m=0

vεm(x, t),(3.27)

where vεm solves the problem

∂

∂t
vεm = Aεvεm + μ

(
t

ε2

)
Z̃0
ε (ζ, t)1tεm≤t≤tε

m+1
in Q̃T

ε ,

∂

∂na,ε
ζ

vεm = 0 on ε∂B × (0, T ),

vεm(ζ, 0) = 0.

(3.28)

Further analysis is based on the following statement.
Proposition 3.9. The relation holds

vεm(ζ, tεm+1) = ε3/2

∫ m+1

m

μ
( s

ε1/2

)
ds Z̃0(Xε

−(ζ, tεm)) + rε(ζ, tεm+1),(3.29)
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where

‖rε(·, tεm+1)‖L∞(Rn) ≤ Cε2,

and C is a nonrandom constant.
We will proof this proposition later on.
Now to complete the proof of Lemma 3.8 we notice that by the maximum principle

|vεm(ζ, t)| <
∣∣∣∣ε3/2

∫ m+1

m

μ
( s

ε1/2

)
ds

∣∣∣∣ |Z̃0(Xε
−(ζ, tεm))| + Cε2

for all t ≥ tεm+1. This implies

sup
t≥tε

m+1

‖vεm(·, t)‖L∞ <

∣∣∣∣ε3/2

∫ m+1

m

μ
( s

ε1/2

)
ds

∣∣∣∣ ‖Z̃0‖L∞ + Cε2.

Combining this with evident relations

vm(ζ, t) = 0 for t ≤ tεm, |vm(ζ, t)| ≤ Cε3/2,

and taking into account (3.27) and the stationarity of μ(s), we get

E‖V ε‖L∞(Qε
T

) ≤ ‖Z̃0‖L∞E

∣∣∣∣
∫ 1

0

μ
( s

ε1/2

)
ds

∣∣∣∣ + Cε1/2.

The first term on the right-hand side tends to zero, as ε → 0 by the Birkhoff ergodic
theorem.

Remark 3.10. More careful analysis shows that L∞ norm of V ε vanishes a.s. as
ε → 0. We will not use this convergence.

Multiplying now (3.25) by p
(x
ε
,
t

ε2

)
V ε(x, t) and integrating the result over the

set QT
ε , after multiple integration by parts we obtain

∫
QT

ε

p

(
x

ε
,
t

ε2

)
|∇V ε(x, t)|2dxdt +

∫
Rn\G( T

ε2
)

p

(
x

ε
,
T

ε2

)
|V ε(x, T )|2dx

=

∫
QT

ε

p

(
x

ε
,
t

ε2

)
μ

(
t

ε2

)
∂2

∂xi∂xj
z0(Xε

−, t)V
ε(x, t)dxdt.

The integral on the right-hand side here admits the bound

∣∣∣∣
∫
QT

ε

p

(
x

ε
,
t

ε2

)
μ

(
t

ε2

)
∂2

∂xi∂xj
z0(Xε

−, t)V
ε(x, t)dxdt

∣∣∣∣ ≤ C‖V ε‖L∞(QT
ε ),

and the desired estimate follows.
Proof of Proposition 3.9. Fix an arbitrary point ζ0 and represent the right-hand

side in (3.28) as follows:

μ

(
t

ε2

)
Z̃0(Xε

−(ζ, t)) = μ

(
t

ε2

)
Z̃0(Xε

−(ζ0, t
ε
m))

+μ

(
t

ε2

)(
Z̃0(Xε

−(ζ, t)) − Z̃0(Xε
−(ζ0, t

ε
m))

)
.



182 DOINA CIORANESCU AND ANDREY PIATNITSKI

Clearly, the first term on the right-hand side here gives us a solution which coincides
with the first term on the right-hand side in (3.29). The remainder rε(ζ, t) satisfies
the problem

∂

∂t
rε = Aεrε + μ

(
t

ε2

)
(Z̃0(ζ, t) − Z̃0(ζ0, t

ε
m))1tεm≤t≤tε

m+1
in Q̃T

ε ,

∂

∂na,ε
ζ

rε = 0 on ε∂B × (0, T ),

rε(ζ, 0) = 0.

(3.30)

We make use of the probabilistic representation of rε(ζ, t). Denote by ξε,ζ0s the diffu-
sion process in R

n \ εB with reflection at ε∂B, whose Kolmogorov equation is

∂

∂s
Ψ = aij

(ζ
ε
,
tεm+1 − s

ε2

) ∂2

∂ζi∂ζj
Ψ +

1

ε
bi
(ζ
ε
,
tεm+1 − s

ε2

) ∂

∂ζi
Ψ;

the index ζ0 indicates the initial condition ξε,ζ00 = ζ0. Denote by P̃ and Ẽ, respectively,
the probability and the expectation related to ξ. Then

rε(ζ0, t
ε
m+1) = Ẽ

∫ ε3/2

0

μ

(
tεm+1 − s

ε2

)(
Z̃0(ξεs , t

ε
m+1 − s) − Z̃0(ζ0, t

ε
m)

)
ds.

Since a(ζ, s) and b(ζ, s) are uniformly bounded, for sufficiently small ε the inequality
holds

P̃{ sup
tεm≤s≤tε

m+1

|ξε,ζ0s − ζ0| ≥ ε1/2} < ε.

Therefore,

|rε(ζ0, tεm+1)| ≤ (Cε1/2 + Cε)ε3/2

with a nonrandom constant C.
In order to justify the expansion (3.15), assume for a while that u0 is C∞

0 function.
Then, taking into account the definition of ũε, one has by Lemma 3.7

‖uε − ũε − V ε‖L2(0,T ;H1(Rn)) + ‖uε − ũε − V ε‖C(0,T ;L2(Rn)) ≤ Cε

with a nonrandom constant C. Combining this bound with the statement of the last
lemma yields

lim
ε→0

E
(
‖uε − ũε‖L2(0,T ;H1(Rn)) + ‖uε − ũε‖C(0,T ;L2(Rn))

)
= 0.

This implies the estimate

lim
ε→0

E ‖uε − z0(Xε
−, t)‖L2((0,T )×Rn) = 0.(3.31)

In order to obtain this estimate for a general u0 ∈ L2(Rn) one can approximate
u0 by a sequence of C∞

0 functions and apply Lemma 3.7.
Notice that (3.31) is equivalent to the bound

lim
ε→0

E‖uε

(
x +

b̄

ε
t, t

)
− z0

(
x− 1

ε

∫ t

0

β
( s

ε2

)
ds, t

)
‖L2((0,T )×Rn) = 0.(3.32)
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From Lemma 3.2 it follows that z0(x − 1
ε

∫ t

0
β
(

s
ε2

)
ds, t) converges in law, as ε → 0,

in the space L2((0, T ) × R
n) to the function z0(x − ΛWt, t), where Wt is a standard

n-dimensional Wiener process. Together with (3.32) this implies that uε(x + b̄
ε t, t)

converges in law in L2((0, T ) × R
n) to z0(x− ΛWt, t).

It remains to apply Ito’s formula to the function z0(x−ΛWt, t) in order to obtain
the limit SPDE (3.13). Indeed,

dz0(x− ΛWt, t) =
∂

∂t
z0(X, t)|X=x−ΛWy

+
1

2
ΛΛ∗ ∂2

∂xi∂xj
z(x− ΛWt, t)

−Λ
∂

∂x
z0(x− ΛWt, t)dWt = (Âz0)(x− ΛWt, t) + Λ∇z0(x− ΛWt, t)dWt.
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