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SUMMARY

A complete asymptotic expansion is constructed for the transport equation with di�usion term small
with respect to the convection. Error estimates are obtained by using matched asymptotic expansion
technique and building all the boundary layer terms in time and in space, necessary for obtaining an
accurate error estimate. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Starting with the pioneering work of Aris [1] and Taylor [2] on �ow through a tube, during
the last decades there had been considerable discussion, in the engineering literature, for a
better understanding of the e�ect of heterogeneities on dispersion in saturated porous media.
This problem is relevant to a broad range of applications in chemical, civil, geological, me-
chanical, hydrological and petroleum engineering and was investigated by means of particles
methods or volume averaging (see, for instance, References [3–5]).
One of the �rst rigorous mathematical investigation in this area [6] was made under the

assumption that the convection �eld has zero mean value. Unfortunately, that assumption on
the convection is not consistent with the model utilized for describing solute transport in
porous media where the convection is coming from the Darcy law.
Our present approach is based on assuming two di�erent scales, the �rst one L associated

to the �eld scale and the second one l, associated to the local heterogeneity size, and on
renormalizing the model by considering the ratio of these two scales l=L= �. The local het-
erogeneity size (microscopic length scale) is much smaller than the characteristic �eld size
(macroscopic scale) so that in the sequel � is a small positive parameter, ��=1.
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At the local level, we consider a linear convection–di�usion equation (see Equation (1))
describing, for instance, the transport of non-reacting non-adsorbing solutes in rigid saturated
heterogeneous porous media. The linearity of the equation follows from the assumption that the
mass density and the viscosity of the �uid are constant. The velocity �eld is given by Darcy’s
law (see Equation (2)) with the gravity term neglected. Then the equation for the pressure (see
Equation (3)) is linear elliptic equation, completely decoupled from the convection–di�usion
equation for the concentration of the solute (concentration equation). To simplify further, the
turbulent di�usion is neglected and only the molecular di�usion is considered. In order to see
the in�uence of local heterogeneities on the dispersion in the �eld scale transport equation,
we assume that convection and di�usion have the same order at the local scale. Therefore, at
the �eld scale, the di�usion is dominated by the convection introducing at the macroscopic
scale a singular perturbation of order � in the equation.
Our approach is based on the mathematical homogenization theory, as in [7–9], including

the e�ect of boundary layers.
Since the main mechanism producing dispersion is known to come from the presence of

a high number of local heterogeneities, for the sake of simplicity we are assuming spatial
periodicity of the medium characteristics (molecular di�usion and rock permeability).
In Section 2, we introduce the equations describing the local level and provide the mathe-

matical setting of the model.
In Section 3 we construct the asymptotic expansion for Darcy’s velocity and give the error

estimates in Theorem 3.3. This part being standard in the framework of homogenization theory,
see References [7–11], we only describe brie�y the procedure of constructing the asymptotic
expansion including the boundary layer correctors. However, since we work in an unbounded
domain we present details of the convergence proof.
In Section 4 the asymptotic expansion for the solution of the transport equation is developed.

The expansion consists of the interior periodically oscillating terms plus time and spatial
boundary layer correctors. It is shown that the leading term of the expansion satis�es the
�rst-order equation which makes the choice of boundary conditions and construction of the
boundary layers a rather non-standard problem.
In Section 5 the main results of this work are presented. We give an estimate of the error

obtained by approximating the solution of the original problem by the sum of the �rst two
leading terms in the asymptotic expansion.
Finally, in Section 6 we show that the homogenized solution satis�es an equation that

involves a dispersion operating like a regularization of order � for the limit �rst-order equation.

2. SETTING OF THE PROBLEM

For simplicity in the treatment of boundary e�ects we assume the domain � to be an Rd

layer, i.e. �=Rd−1×(a; b) and for any x∈� we will use the notation x=(x′; xd). We will
also refer to Rd−1×{a} and Rd−1×{b} as the lower and the upper boundary of the layer �.
We are taking into account the presence of local heterogeneities by assuming the molecular

di�usion tensor D, the rock permeability tensor K and the rock porosity � to be periodically
oscillating, with period �, ��1: D=D(x=�), K=K(x=�) and �=�(x=�). Hence the convection
is driven by Darcy’s velocity q̃� which then is �uctuating according to the permeability
�uctuations.
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In the transport equation, written at the �eld (or macroscopic) scale, the di�usion is assumed
to be small compared to the convection. By choosing the characteristic convection time as
the macroscopic characteristic time, we have then the di�usion of order � in the �eld scale
transport equation:

�
(x
�

) @c�

@t
+ q̃� · ∇c�= � div

(
D
(x
�

)
∇c�

)
in �×(0; T ) (1)

q̃�= −K
(x
�

)
∇P� (2)

div q̃�=0 in � (3)

P�=P+; c�= c+ for xd= a; t∈(0; T ) (4)

P�=P−; c�= c− for xd= b; t∈(0; T ) (5)

c�= cinit for x∈�; t=0 (6)

Note that the pressure equation (3) is decoupled from the concentration equation (1) and that
the di�usion tensor D is independent of the Darcy velocity. Then, in the sequel, we will
consider �rst the asymptotic for (2)–(3) and later use it for the asymptotic related to the
concentration.
Denoting the rescaled unit cell Y = {y∈(0; 1)d⊂Rd}, where y= x=�, we assume in (1)–

(6) the following ellipticity and regularity conditions to hold: the porosity � :Rd →R+ is a
strictly positive Y -periodic function and the di�usion D and permeability K are symmetric,
Y -periodic matrix functions satisfying

�|�|26D(y)� · �; K(y)� · �6�|�|2 (7)

for all �∈Rd, with 0¡�¡�;
there exists �¿0 such that

D;K∈(C1+�
per ( �Y ))

d2 ; �∈C�
per( �Y ) (8)

boundary and initial data (4)–(6) have at least the following regularity:

P+; P−∈C 2+�(Rd−1) (9)

cinit∈C 2+�( ��); c+; c−∈C 2+�;1+�=2(Rd−1×[0; T ]) (10)

and verify the compatibility conditions of order one (see Reference [12; Chapter4]).
Under the above assumptions, problem (1)–(6) has a unique bounded solution c�∈C 2+�;1+�=2

( ��×[0; T ]), P�∈C 2+�( ��). In fact, for simplicity we will assume stronger compatibility
conditions (see (54)–(56)) to hold. Further on, for simplicity we also assume that (b− a)=�
is an integer.

3. ASYMPTOTIC EXPANSION OF DARCY’S VELOCITY

We denote �=(�1; �2; : : : ; �k)= (�′; �k)= (�′′; �k−1; �k)∈Ik with I= {1; 2; : : : ; d}. Then we
denote by @k

� or @k=@x� the kth order derivative @=@x�1 · · · @=@x�k and for consistency we set
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I0 = ∅: By |�| we denote the number of components of �. The mean value of a function f
over the unit cell Y is denoted as usually by 〈f〉.

3.1. Structure of the expansion

The structure of Equations (1)–(6) and of the domain � suggests a microscopic periodic
behaviour of the solution in the interior of the domain but perturbed in the vicinity of the �
boundaries. This is why we seek an asymptotic expansion for the pressure P� as

P�(x)≈P0(x) + �P1
(
x;

x
�

)
+ �2P2

(
x;

x
�

)
+ �3P3

(
x;

x
�

)
+ · · · (11)

where the terms Pk , for k¿1, are (see for instance Reference [7]):

Pk
(
x;

x
�

)
=

k∑
i=0

∑
|�|=i

’i
�

(x
�

)
@i
�
�Pk−i(x) (12)

with ’k
� being split in a Y -periodic part �k;#

� and two boundary layer parts �k;±
� :

’k
�

(x
�

)
= �k;#

�

(x
�

)
+ �k;+

�

(
x′

�
;
xd − a

�

)
+ �k;−

�

(
x′

�
;
xd − b

�

)
; �∈Ik ; k¿1

For consistency in (12) for k=0 we have set �0;#(y)= �0;#∅ (y)≡ 1, �0;±(y)= �0;±∅ (y)≡ 0 and
P0(x)= �P0(x). If we introduce the new variables �y=(y′; ��) and y=(y′; �); ��=(xd−a)=� and
�=(xd − b)=�, then the boundary layer functions �k;+

� (y′; ��) and �k;−
� (y′; �) are Y ′-periodic in

the variable y′=(y1; : : : ; yd−1) and decay exponentially in the last variable (Figure 1). That
is, if we de�ne the cylindrical sets Y+;Y−⊂Rd

Y+ =Y ′×(0;+∞); Y−=Y ′×(−∞; 0) with Y ′=(0; 1)d−1

then

�k;±
� : Y± →R; |�k;+

� (y′; ��)|6 c1e−c2 ��; |�k;−
� (y′; �)|6 c1ec2�; c1; c2¿0 (13)

Figure 1.
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The boundary layer functions �k;±
� are introduced to cancel periodic oscillations in the

term Pk(x; x=�) on the boundaries of the layer � since the boundary conditions in problem
(1)–(6) do not oscillate. Therefore, we set

�k;+
�

(
x′

�
;
xd − a

�

)∣∣∣∣
xd = a

=− �k;#
�

(x
�

)∣∣∣
xd=a

− 	k;+
� (14)

�k;−
�

(
x′

�
;
xd − b

�

) ∣∣∣xd=b= − �k;#
�

(x
�

)∣∣∣
xd = b

− 	k;−
� (15)

where the constants 	k;±
� will be determined so that �k;±

� vanish at in�nity. For the succes-
sive terms of expansion (11) the boundary conditions (4), (5) take the form P0 =P± on
xd= a; b and Pk =0 on xd= a; b for k¿1, which leads to the following boundary conditions
for �Pk; k¿1:

�Pk(x)=
k−1∑
i=0

∑
|�|=k−i

	 k−i;±
� @k−i

�
�Pi(x) for xd= a; b

where + and − are taken on the lower and upper boundary. In view of (13), the terms
Pk(x; x=�) satisfy the boundary conditions up to an exponentially small discrepancy, which is
always neglected in further analysis.
Now with the above notations and de�nitions, by substituting expansion (11) into (2), we

obtain the asymptotic expansion of the Darcy velocity

q̃� ≈ Q̃0 + �Q̃1 + �2Q̃2 + · · · (16)

and of its divergence

−div
(
K
(x
�

)
∇P�

)
≈ 1

�
divy Q̃0 + divx Q̃0 + divy Q̃1 + �(divx Q̃1 + divy Q̃2)

+ · · ·+ �k−1(divx Q̃ k−1 + divy Q̃ k) + · · ·

This leads to a sequence of the equations in the product domain �×Y ×Y+×Y−

divx Q̃ k−1 + divy Q̃ k =0 (17)

k=0; 1; 2; : : : ; where Q̃−1≡ 0. The Darcy velocity terms, for any k¿0, have the form

Q̃ k = −K
k∑

i=0

∑
|�|=k+1−i

(∇y’k+1−i
� + ’k−i

�′ ẽ�k+1−i)@
k+1−i
�

�Pi (18)

and can be further decomposed in periodic and boundary layer parts

Q̃ k = Q̃ k;# + Q̃ k;+ + Q̃ k;− (19)

all of them having the structure analogous to (18).
Grouping separately the periodic terms and the boundary layer terms, we arrive at a

sequences of problems de�ning �k;#
� and �k;±

� . These problems are studied in the following
two sections.
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3.2. Local periodic problems

Separation of variables in the periodic equations leads to a sequence of auxiliary periodic
problems in Y . Necessary conditions for the existence of the solution of these problems give
the equations for �Pk . Since the calculations are standard (see Reference [7] for instance) we
omit the details and give the auxiliary periodic problems. For any �∈Ik , k¿1

−divy(K∇y�k;#
� )=Fk;#

� in Y (20k)

In (20k) F1;#
� =divy(Kẽ�)) and for �∈Ik ; k¿2:

Fk;#
� =divy(Kẽ�k �

k−1;#
�′ ) + (K(∇y�k−1;#

�′ + �k−2;#
�′′ ẽ�k−1)

−〈K(∇y�k−1;#
�′ + �k−2;#

�′′ ẽ�k−1)〉) · ẽ�k

By standard arguments we have then:

Lemma 3.1
For any k¿1 and any �∈Ik Equation (20k) has a unique periodic solution with zero mean
value, �k;#

� ∈C 2+�
per ( �Y ).

3.3. Boundary layers

In this section we consider the boundary layer equations. These equations are de�ned on the
product domains �×Y+ and �×Y−. Since the two boundary layers have completely analo-
gous structure, we only consider that associated to the lower boundary of �. After separation
of slow and fast variables we arrive at the following auxiliary problems de�ned in Y+:

−div�y(K∇�y ��k;+
� )=Fk;+

� ; in Y+

��k;+
� (y′; 0)= − �k;#

� (y
′; 0) for y′∈Y ′

y′ �→ ��k;+
� (y′; ��) is Y ′-periodic

(21k)

where F1;+
� =0 and for �∈Ik ; k¿2:

Fk;+
� =div�y(Kẽ�k �

k−1;+
�′ ) +K(∇�y�k−1;+

�′ + �k−2;+
�′′ ẽ�k−1) · ẽ�k

The boundary layer function �k;+
� is then de�ned by �k;+

� = ��k;+
� − 	k;+

� where the constants
	k;+
� are given by the following lemma.

Lemma 3.2
For any k¿1 problem (21k) has a unique bounded solution ��k;+

� ∈C 2+�( �Y+). Moreover, there
exist constants 	k;+

� , C1¿0 and c2¿0 such that

| ��k;+
� (y′; ��)− 	k;+

� |6C1e−c2 ��; |∇ ��k;+
� (y′; ��)|6C1e−c2 ��

|∇2 ��k;+
� (y′; ��)|6C1e−c2 ��; [∇2 ��k;+

� (·; ��)]�;Y ′6C1e−c2 ��

for all �∈Ik and y∈Y+.
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Proof
The existence, uniqueness and exponential stabilization of the solution ��k;+

� is a consequence
of Theorem 1 from Reference [13] (see also Reference [11]). Exponential decay of the �rst
two derivatives then follows from the Schauder estimates.

The boundary layer functions �k;−
� , k¿1, are constructed in the same way.

3.4. E�ective equations

Associated to the local periodic problems (20k) we de�ne the e�ective matrix, for all
�∈I:

Khẽ�= 〈K(∇y�1;#� + ẽ�)〉
and the e�ective tensors, for all �∈Ik ; k¿2:

Nk
� = 〈K(∇y�k;#

� + �k−1;#
�′ ẽ�k )〉

The matrix Kh is symmetric and positive de�nite (see Reference [7]).
For k=0 we have

divx(Kh∇ �P0)=0 in �

�P0=P+ on xd= a (220)

�P0=P− on xd= b

and for any k¿1, boundary conditions are set to cancel the non-oscillatory error appearing
in the boundary layer correctors:

−divx(Kh∇ �Pk) =
k+1∑
i=2

divx


∑

|�|=i

Ni
�@

i
�
�Pk+1−i


 in �

�Pk(x) =
k−1∑
i=0

∑
|�|=k−i

	 k−i;+
� @k−i

�
�Pi(x) on xd= a (22k)

�Pk(x) =
k−1∑
i=0

∑
|�|=k−i

	 k−i;−
� @k−i

�
�Pi(x) on xd= b

Theorem 3.1
Assume for some l¿1, P+; P−∈Cl+2+�(Rd−1). Then problems (22k) have unique bounded
solutions �Pk ∈Cl+2−k+�( ��), for k=0; 1; : : : ; l.

The proof is standard and we omit it.
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Corollary 3.1
Let Q̃l;# and Q̃l;± be de�ned by (19), and assume for some l¿0 and k¿1, P±∈Ck+l+1+�

(Rd−1). Then Q̃l;# + Q̃l;±∈(Ck( ��;C1+�( �Y±)))d and Q̃l;± satisfy the uniform bounds
∣∣∣∣@

|�|

@x�

@|
|

@y
 Q̃l;±(x; y)
∣∣∣∣6C1e−c2|yd|; C1; c2¿0

for all |�|6k and |
|61.

3.5. Error estimates

Let us now assume that the �rst k + 1 terms in expansion (11) are constructed. Then we
denote

pk+1
� (x)=P0(x) + �P1

(
x;

x
�

)
+ �2P2

(
x;

x
�

)
+ · · ·+ �k+1Pk+1

(
x;

x
�

)

The velocity �eld Q̃ k+1=2; �(x)= −K(x=�)∇pk+1
� (x) is then given by

Q̃ k+1=2; �= Q̃0 + �Q̃1 + �2Q̃2 + · · ·+ �kQ̃ k + �k+1Q̃ k+1=2 (23)

where for j=0; 1; : : : ; k

Q̃ j= −K(y)(∇yPj+1 +∇xPj) and Q̃ k+1=2 = −K(y)∇xPk+1 (24)

The discrepancy uk+1
� =P� − pk+1

� is the solution of the problem

div
(
K
(x
�

)
∇uk+1

�

)
= �kH�(x) in � (25)

uk+1
� (x)=0 on xd= a; b (26)

where

H�(x)=divx Q̃ k
(
x;

x
�

)
+ divy Q̃ k+1=2

(
x;

x
�

)
+ � divx Q̃ k+1=2

(
x;

x
�

)

From Lemmas 3.1 and 3.2 and Theorem 3.1 we obtain the following uniform estimate:

|H�|0;� + ��[H�]�;�6C (27)

Theorem 3.2
Let uk+1

� be the k + 1 order discrepancy term, as de�ned in (25)–(26), and assume that for
some k¿1

P+; P−∈Ck+5+�(Rd−1) (28)

Then there are constants �0¿0 and C¿0 such that for any �∈(0; �0) it holds

|uk+1
� |0;�6C�k+2 (29)
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Proof
Using the fact that problem (25), (26) is well posed and that the right-hand side H� is
uniformly bounded we get immediately the uniform estimate

|uk+1
� |0;�6C�k

Estimate (29) is a consequence of a special structure of the problem. With the assumed
regularity (28) we can construct two further terms in the asymptotic expansion (11) and use
pk+3

� to obtain better uniform norm estimate.
In the rest of the proof we deal with the well posedness of problem (25), (26). First we

construct a barrier function as follows:

v�
(
x;

x
�

)
= v0(xd) + �

∑
|�|=1

�1;#�

(x
�

)
@�v0(xd) + �2

∑
|�|=2

�2;#�

(x
�

)
@2� v0(xd)

where v0 is a solution of the problem

div(Kh∇v0)=−1 in �

v0|xd = a= v0|xd = b=1

Then v�(x; x=�) satis�es

div
(
K
(x
�

)
∇v�

)
=−1 + �r�

(
xd;

x
�

)
in �

v�|xd=a;b =1+ �g�
(
xd;

x
�

)

where r� and g� are bounded functions and therefore, for � su�ciently small, we have

div
(
K
(x
�

)
∇v�

)
6−1

2
in �

v�|xd=a; b¿ 1
2

We will now show that the solution of problem (25), (26) is uniformly bounded in � as
soon as the right-hand side is uniformly bounded. Since we cannot apply directly the max-
imum principle in an unbounded domain we will consider problem (25), (26) in a cylinder
�n=�∩{|x′|¡n}, for large n, with zero boundary condition on the surface |x′|= n. The so-
lution of this problem in �n will be denoted by u�; n. Let C be a bound on the right-hand side
in (25). Then

div
(
K
(x
�

)
∇(2Cv� − u�; n)

)
60 in �n

2Cv� − u�; n¿0 on xd= a; b

2Cv� − u�; n=2Cv� on |x′|= n
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and we apply the maximum principle to get

2Cv�(x)− u�; n(x)¿min
{
0; 2C inf

�
v�
}

and therefore u�; n(x)6 2C|v�|0;�. Since v� is uniformly bounded by C1 for su�ciently small
�, we obtain u�; n(x)6C1C. By similar construction we obtain uniform lower bound, leading
�nally to the estimate |u�; n|0;�6C1C: Applying now the Schauder estimates we can pass to
the limit as n→∞ and obtain the same estimate for u� in �. That proves the well posedness
of the problem.

By means of the change of variable y= x=� and the change of function Uk+1
� (y)= uk+1

� (�y)
from (25) we obtain the equation in the rescaled domain ��=Rd−1×(a=�; b=�):

d∑
i; j=1

ki; j(y)
@2Uk+1

�

@yi@yj
+

d∑
i; j=1

@ki; j
@yi

(y)
@Uk+1

�

@yj
= �k+2H�(�y) (30)

with homogeneous boundary conditions. The rescaling does not change uniform estimate (29)
and therefore |Uk+1

� |0;�� 6C�k+2. Applying interior and boundary Schauder estimates (see
Reference [14]) to Equation (30) we obtain

|Uk+1
� |2+�;��6C(�k+2|H�(�·)|�;�� + |Uk+1

� |0;��)6C�k+2

where we used (27). The constant in the Schauder estimates only depends on the di�erential
operator and thus is independent of �. In particular, we obtain the estimate

|̃q�(�·)− Q̃ k+1=2; �(�·)|1+�;��6C�k+1

and since the last term Q̃ k+1=2 in (23) is uniformly bounded we obtain

Theorem 3.3
Let

Q̃ k; �= Q̃0 + �Q̃1 + �2Q̃2 + · · ·+ �kQ̃ k

where Q̃i are de�ned by (18) and assume (28) is ful�lled for some k¿1. Let q̃� be Darcy’s
velocity solution of Equations (1)–(6). Then, for su�ciently small �, q̃� can be approximated
by Q̃ k; � with the following accuracy:

|̃q�(�·)− Q̃ k; �(�·)|1+�;��6C�k+1

Moreover, in the domain �, the discrepancy for the Darcy velocity is given by

|̃q� − Q̃ k; �|0; � + �|∇(̃q� − Q̃ k; �)|0;� + �1+�[∇(̃q� − Q̃ k; �)]�;�6C�k+1

4. ASYMPTOTIC EXPANSION FOR CONCENTRATION

We are seeking formal asymptotic expansion for the concentration c�, knowing that the Darcy
velocity q̃� has an asymptotic expansion of the form (16), where each term Q̃ k , k=0; 1; : : : ;
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is decomposed in periodic and boundary-layer parts as in (19). From the structure of problem
(1)–(6) and from the asymptotic expansion for the Darcy velocity we then postulate an
expansion for the concentration with terms for the inner microscopic periodic behaviour and
boundary layer terms for both the e�ects of the two boundaries a and b of � and for the
initial time boundary.

4.1. Structure of the expansion

We write down the asymptotic expansion for the concentration in a very general form

c�(x; t)≈ c0
(
x; t;

x
�
;
t
�

)
+ �c1

(
x; t;

x
�
;
t
�

)
+�2c2

(
x; t;

x
�
;
t
�

)
+ · · · (31)

where each ck = ck(x; t; y; �); for k=0; 1; 2; : : : ; is decomposed into the sum of a periodic term,
two spatial boundary layer terms and a time boundary layer term as follows:

ck
(
x; t;

x
�
;
t
�

)
= ck

#

(
x; t;

x
�

)
+ ck

+

(
x′; t;

x′

�
;
xd − a

�

)

+ ck
−

(
x′; t;

x′

�
;
xd − b

�

)
+ ck

in

(
x; t;

x
�
;
t
�

)
(32)

The periodic term ck
# (x; t; y) and the initial time boundary layer term ck

in(x; t; y; �) are Y -periodic
functions in y, the function � �→ ck

in(x; t; y; �) decays exponentially as �→+∞. The spatial
boundary layer terms ck

+(x
′; t; �y), �y∈Y+, and ck

−(x
′; t; y), y∈Y−, are Y ′-periodic functions

in y′. The functions �� �→ ck
+(x

′; t; y′; ��) and � �→ ck
−(x

′; t; y′; �) decay exponentially as �� and �
tends to +∞ and −∞, respectively. All the details of the structure of the asymptotic expansion
terms and corresponding error estimates are studied in the next section.
Now we plug series (16) and (31) in Equation (1) and then collect the terms of the same

order of �. This gives a sequence of equations de�ning successive terms in expansion (31).
Considering the terms of order k − 1 we get the equations for the periodic terms ck

# on the
unit cell Y , with periodic boundary conditions, and they read

−divy(D∇yc k
# ) + Q̃0;# · ∇yc k

# =Fk
# (33)

In (33), the right-hand side is F0
# = 0 and for k¿1, F

k
# is given by

Fk
# =−�

@ck−1
#

@t
+ divy(D∇xc k−1

# ) + divx(D(∇yc k−1
# +∇xc k−2

# ))

− Q̃0;# · ∇xc k−1
# −

k∑
j=1

Q̃ j;# · (∇yc
k−j
# +∇xc

k−j−1
# ) (34)

where we set c−1# ≡ 0. The variables x and t appear as parameters in Equations (33) and (34).
We will now proceed with the spatial and time boundary layer equations. The former

equations are de�ned in the domains Y+ and Y−, respectively, while the latter ones in the
cylinder Y ×(0;∞).
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First we introduce the following di�erential operators:

A+ =−divy(D(y)∇y) + (Q̃0;#(x; y) + Q̃0;+(x; y))|xd=a · ∇y (35)

A−=−divy(D(y)∇y) + (Q̃0;#(x; y) + Q̃0;−(x; y))|xd=b · ∇y (36)

and state the spatial boundary layer equations for k¿0:

A±ck
±=Fk

± (37)

In (37), F0
±=0 for k=0 but to compute Fk

± for k¿1, we need to develop in the Taylor
series the periodic terms and the boundary layer Darcy’s velocity terms in the vicinity of
xd= a or b. Then, denoting

Q̃l;#
(k) =

@k

@xk
d

Q̃l;#; Q̃l;±
(k) =

@k

@xk
d

Q̃l;±; cl#(k) =
@k

@xk
d

cl#

on the boundary xd= a we have

Q̃l;# = Q̃l;#

∣∣∣∣
xd=a

+
@
@xd

Q̃l;#

∣∣∣∣
xd=a

(xd − a) +
1
2!

@2

@x2d
Q̃l;#

∣∣∣∣
xd=a

(xd − a)2 + · · ·

= Q̃l;#|xd = a + �Q̃l;#
(1)|xd = a

��+ �2
1
2!

Q̃l;#
(2)

∣∣∣∣
xd=a

��2 + · · ·

and after direct calculations, we get

Fk
+ =−�

@ck−1
+

@t
+ divy(D∇x c k−1

+ ) + divx(D(∇yc k−1
+ +∇x c k−2

+ ))

− (Q̃0;# + Q̃0;+)|xd=a · ∇x c k−1
+

−
k−1∑
j=0

��k−j

(k − j)!
(Q̃0;#

(k−j) + Q̃0;+
(k−j))|xd=a · (∇yc

j
+ +∇x c

j−1
+ )

−
k∑

j=1

j∑
i=1

��k−j

(k − j)!
(Q̃i;#

(k−j) + Q̃i;+
(k−j))|xd = a · (∇yc

j−i
+ +∇x c

j−i−1
+ )

−
k∑

j=1

j−1∑
i=0

k−j∑
l=0

��k−j−l

(k − j − l)!l!
Q̃i;+
(k−j−l) · (∇y( ��lc j−i

#(l) ) +∇x( ��lc j−i−1
#(l) ))|xd=a (38)

with c−1+ ≡ 0.
For Fk

− , very similar expressions are obtained in the neighborhood of xd= b, involving cl−,
Q̃l;− and �.
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Boundary conditions for ck
± will be speci�ed later on to compensate periodic oscillations

at the boundary of �. As in the case of the Darcy velocity, we always neglect exponentially
small terms.
Now we proceed with the initial time boundary layer equations. By introducing the di�er-

ential operator Ain

Ain =�(y)
@
@�
+ Q̃0;#(x; y) · ∇y − divy(D(y)∇y) (39)

we get the initial time boundary layer equations for k¿0:

Ainck
in =Fk

in (40)

The right-hand side in (40) for k¿1 reads

Fk
in =−�

@ck−1
in

@�
+ divy(D∇x c k−1

in ) + divx(D(∇yc k−1
in +∇x c k−2

in ))

− Q̃0;# · ∇x c k−1
in −

k∑
j=1

Q̃ j;# · (∇yc
k−j
in +∇x c

k−j−1
in ) (41)

with c−1in ≡ 0, and F0
in = 0.

On the right-hand side of the initial layer equations (40) and (41) we did not take into
account the following non-periodic terms

−
k∑

j=0

(Q̃ j;+ + Q̃ j;−) · (∇yc
k−j
in +∇x c

k−j−1
in ) (42)

arising in the vicinity of the ‘corner’ sets {(x; t): xd= a; b; t=0}. It will be shown that
under suitable compatibility conditions (see (54)–(56)) these terms are of order O(�l), with
su�ciently large l. Moreover in (40), (41) we will choose later in Section 4.4 the periodic
initial conditions in order to compensate spatial periodic oscillations at t=0. The existence
of the initial time boundary layers ck

in de�ned in (40) is now given by applying the following
standard result:

Lemma 4.1
Let g∈C( ��;C 2+�( �Y )) and f∈C( ��;C�( �Y ×[0;+∞))) be Y -periodic functions and let f
satisfy uniform bound

|f(x; y; �)|6C1e−c2�; C1; c2¿0

Then, with Ain de�ned in (39), the problem

Ainu=f(x; y; �) in Y ×(0;∞)
u(x; y; �)=g(x; y) at �=0

y �→ u(x; y; �) is Y -periodic
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has a unique solution u∈C( ��;C 2+�( �Y ×[0;∞))). Moreover, there exists a function �in(x),
�in∈C( ��), such that

|u(x; y; �)− �in(x)|6C3e−c4�;

|∇yu(x; y; �)|6C3e−c4�; |∇2
y u(x; y; �)|6C3e−c4�

The constants C3; c4¿0 are independent of x, y and �.

By applying Lemma 4.1 recursively to Equations (40) and (41) we get at any order k

|ck
in(x; y; �)− �k

in(x)|6C3e−c4�

|∇yc k
in(x; y; �)|6C3e−c4�; |∇2

y c k
in(x; y; �)|6C3e−c4�

4.2. Spatial boundary layers

In order to prove the solvability of the forthcoming e�ective equations (57) and (71) and
boundary layer equations (37) we simplify the hypothesis on the e�ective behaviour of the
Darcy �ow by assuming existence of a constant D¿0, such that

〈Q̃0;#〉 · ẽd6 −D¡0 in �� (43)

With this additional assumption we can now formulate the two following lemmas which state
existence and the rate of decay for the boundary layer problems (37) and (38).

Lemma 4.2
Consider the problem

A+u=f+(x′; t; �y) in Y+ (44)

u(x′; t; y′; ��)= g(x′; t; y′) on ��=0 (45)

y′ �→ u(x′; t; y′; ��) is Y ′-periodic (46)

with A+ de�ned in (35), and assume that

f+∈C(Rd−1×[0; T ];C1( �Y+)); g∈C(Rd−1×[0; T ];C 2+�( �Y+))

are Y ′-periodic functions and that f+ satis�es uniform bounds

|f+(x′; t; �y)|; |∇yf+(x′; t; �y)|6C1e−c2| ��|; C1; c2¿0

Then, under condition (43) there exists a unique solution u∈C(Rd−1×[0; T ];C 2+�(Y+)) of
problem (44)–(46) in the class of functions that decay exponentially as ��→∞. More
precisely, there are constants C3¿0, c4¿0, independent of x′ and t, such that

|u(x′; t; �y)|6C3e−c4| ��|

|∇yu(x′; t; �y)|6C3e−c4| ��|; |∇2
y u(x

′; t; �y)|6C3e−c4| ��|
(47)
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If in addition

f+∈C1(Rd−1×[0; T ]; C1(Y+)); g∈C1(Rd−1×[0; T ]; C 2+�(Y+))

and the derivatives of f+ with respect to x′ and t decay exponentially as �� → ∞, uniformly
in x′ and t, then u∈C1(Rd−1×[0; T ];C 2+�(Y+)) and bounds (47) hold for the derivatives of
u with respect to x′ and t.

Proof
By (43) we have

lim
N→∞

∫ N+1

N

∫
Y×{ ��}

(Q0;#
d +Q0;+

d ) dy′d ��= 〈Q0;#
d 〉6−D¡0

Since the vector �eld Q̃0;#(x; ·)+Q̃0;+(x; ·) is divergence free, by Theorem 2 in Reference [13]
problem (44)–(46) has a bounded solution that decays exponentially as ��→∞, and the
solution with this property is unique. Furthermore, by the Schauder estimates we obtain the
exponential decay of the �rst two derivatives (47). The constant c4 only depends on c2; D; �
and � (see (7)); C3 also depends on C1, |g(x′; t; ·)|0;Y ′ and they are thus independent of x′

and t.
In order to prove the second part of the theorem it is su�cient to show that ∇x′u and @tu

are solutions of the problems obtained by di�erentiating problem (44)–(46). Then we can
again apply Theorem 2 from Reference [13] and obtain the desired bounds. Justi�cation of
the formal di�erentiation relies on Schauder’s estimates and the following maximum norm
estimate:

|u(x′; t; ·)|0;Y+6|g(x′; t; ·)|0;Y ′ + C|ec2 ��f+(x′; t; ·)|0;Y+ (48)

Lemma 4.3
Consider the problem

A−u=f−(x′; t; y) in Y− (49)

u(x′; t; y′; �)= g(x′; t; y′) on �=0 (50)

y′ �→ u(x′; t; y′; �) is Y ′-periodic (51)

with A− de�ned in (36), and assume that

f−∈C(Rd−1×[0; T ];C1(Y−)); g∈C(Rd−1×[0; T ];C 2+�(Y−))

are Y ′-periodic functions and that f− satis�es uniform bounds

|f−(x′; t; y)|; |∇yf−(x′; t; y)|6C1e−c2|�|; C1; c2¿0

Then, under condition (43) there exists a unique bounded solution u∈C(Rd−1×[0; T ];C 2+�

(Y−)) of problem (49)–(51) that stabilizes exponentially as �→ −∞ to a function �(x′; t),
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�∈C(Rd−1×[0; T ]), that does not depend on y. More precisely, there are constants C3¿0;
c4¿0, independent of x′ and t, such that

|u(x′; t; y)− �(x′; t)|6C3e−c4|�|

|∇yu(x′; t; y)|6C3e−c4|�|; |∇2
y u(x

′; t; y)|6C3e−c4|�|
(52)

If in addition

f−∈C1(Rd−1×[0; T ];C1(Y−)); g∈C1(Rd−1×[0; T ];C 2+�(Y−))

and the derivatives of f− with respect to x′ and t decay exponentially as �→−∞, uniformly
in x′ and t, then u∈C1(Rd−1×[0; T ];C 2+�( �Y

−
)) and bounds (52) hold for the derivatives of

u with respect to x′ and t, with � replaced by its corresponding derivatives.

Proof
The proof relies on Theorem 2 from Reference [13] and is identical to the proof of Lemma 4.2.
Boundedness and continuity of the function � follows from the estimate

|�(x′; t)|6C|e−c2�f−(x′; t; ·)|0;Y−

and can be proved in the same way as (48).

By applying recursively Lemmas 4.2 and 4.3 to problems (37), (38) we obtain the
exponential stabilization of ck

±, for any k¿0.

4.3. Zero-order terms

We consider the �rst c0(x; t; y) term in (31), and with assumption (43) we can solve suc-
cessively the interior periodic problems given by Equations (33), the two spatial boundary
layer problems (37) and the initial time boundary layer problem (40). To avoid cumbersome
calculations we only construct the �rst two terms in the asymptotic expansion (31). However,
to obtain error estimate for these two terms we have to construct the third term and there-
fore we will need regularity and compatibility of the initial and boundary value data for the
construction of the �rst three terms in (31). Namely, we assume

D;K∈(C 2+�
per ( �Y ))

d2 ; P±∈C7+�(Rd−1)

cinit∈C5( ��); c±∈C5(Rd−1×[0; T ])
(53)

for some �¿0, and

cinit|xd=a= c+|t = 0; cinit|xd=b= c−|t = 0 (54)

@|�|

@x� cinit = 0; at xd= a; b for 16|�|65 (55)

@k

@tk
@|�|

@x� c±=0 at t=0 for 16|�|+ k65 (56)
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We study now the structure of the zero-order term c0(x; t; y) by computing the regular part
c0# and the corresponding boundary layer term c0+. From (33) it follows immediately that c0#
does not depend on y, so we write in (32)

c0#(x; t; y)= �c
0(x; t)

where the function �c0 is determined from the condition 〈F1
# 〉=0. This implies the following

problem for �c0:

Lh �c0 = 0 in �×(0; T ) (57)

�c0 = c− for xd= b and t¿0 (58)

�c0 = cinit for x∈� and t=0 (59)

where the operator Lh is given by

Lh= 〈�〉 @
@t
+ 〈Q̃0;#〉(x) · ∇x

Since Equation (57) is of the �rst order, we only keep the boundary condition associated
to the in�ow i.e. the upper boundary of the layer. We also note that problem (57)–(59) is
well posed due to (43), and that �c0 is at least C5( ��×[0; T ]) function, due to compatibility
conditions (54)–(56).
In order to �t the boundary condition on the lower boundary we use a boundary layer c0+,

correcting the e�ects of �c0:

A+c0+ =0 in Y+ (60)

c0+(x
′; t; �y)= c+(x′; t)− �c0(x′; a; t) on ��=0 (61)

y′ �→ c0+(x
′; t; y′; ��) is Y ′-periodic (62)

By Lemma 4.2 problems (60)–(62) have a unique bounded solution c0+(x
′; t; �y), decaying

exponentially as ��→∞. We set then

c0− ≡ 0; c0in ≡ 0 (63)

4.4. First-order terms

The �rst-order term c1 in (31) is decomposed in a sum of an oscillating term c1#, an initial
time boundary layer term c1in and two spatial boundary layer terms c1+ and c1−.
The oscillating term c1# is the solution of problem (33) for k=1, and it can be written as

a sum of an oscillating term

c̃1#(x; t; y)=
∑
|�|=1

 1� �(x; y)@� �c
0(x; t) (64)
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plus a non-oscillating term �c1(x; t), where  1� , �∈I, is a solution of the cell problem on Y :

−divy(D(y)(∇y 1� + ẽ�)) + Q̃0;# · ∇y 1� =
[
�(y)
〈�〉 〈Q̃0;#〉 − Q̃0;#

]
· ẽ� (65)

 1� is Y -periodic; 〈� 1� 〉=0 (66)

and where �c1(x; t) will be de�ned later on, in (71)–(73).
To correct the oscillations on the boundary, produced by c̃1#, we introduce a boundary layer

term c1− on the upper boundary by

A− �c1−=F1
− (x

′; t; y) in Y−

y′ �→ �c1−(x
′; t; y′; �) is Y ′-periodic

�c1−(x
′; t; y)= −

∑
|�|=1

 1� (x
′; b; y)@� �c0(x′; b; t) on �=0

(67)

This problem, by Lemma 4.3, has a unique bounded solution that stabilizes exponentially
as �→ − ∞ towards some function �1−(x

′; t), independent of y. Then we set c1−(x
′; t; y)=

�c1−(x
′; t; y)− �1−(x

′; t). This boundary layer problem (67) was designed to cancel the oscillatory
error on the upper boundary, but it produces then a non-oscillating error on this boundary
which will be eliminated later on with the help of the function �c1.
For correcting the trace of c̃1# at the initial time, we �rst introduce the function �c

1
in de�ned

by

Ain �c1in = 0 in Y ×(0;∞) (68)

y �→ �c1in(x; y; �) is Y -periodic (69)

�c1in(x; y; �)= − c̃1#(x; 0; y) for �=0 (70)

By Lemma 4.1 there exists a function �1in(x) such that

| �c1in(x; y; �)− �1in(x)|6c1e−c2�; c1; c2¿0

Then we de�ne c1in(x; y; �)= �c
1
in(x; y; �)−�1in(x), where in fact, from (66) it is easy to see that

�1in ≡ 0.
Remark 4.1
The structure of initial condition (70) suggests the following representation of the solution of
problem (68)–(70):

c1in(x; y; �)=
∑
|�|=1

c1in; �(x; y; �)@�cinit(x)

and since, from (55), ∇cinit has a fourth-order zero at xd= a; b, the term

(Q̃0;+ + Q̃0;−) · ∇yc1in
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is of order O(�4). This justi�es a posteriori that we did not need to incorporate these terms
in the initial time boundary layer Equation (40).

We proceed with the term �c1 that corrects the non-oscillating error arising from the boundary
layer corrector c1− on the upper boundary. To obtain �c1 we average Equation (33), for k=2.
This gives, after simple transformations

Lh �c1=divx(Dh∇x �c0)− 〈Q̃1;#〉 · ∇x �c0 in � (71)

�c1=�1− on xd= b; t¿0 (72)

�c1=0 for x∈�; t=0 (73)

where the tensor Dh is de�ned, for �∈I, by

Dh(x)̃e�= 〈D(∇y 1� + ẽ�)〉 − 〈Q̃0;# 1� 〉 (74)

Then, it is not di�cult to verify from (54)–(56) that �c1 is C4( ��×[0; T ]) function. We can
�nally construct boundary layer corrector c1+ that will correct on the lower boundary both
the errors coming from the oscillatory and non-oscillatory terms. To this end we consider the
problem

A+c1+ =F1
+(x

′; t; �y) in Y+ (75)

c1+(x
′; t; �y)= − c1#(x

′; a; t; y) on ��=0 (76)

y′ �→c1+(x
′; t; y′; ��) is Y ′-periodic (77)

By Lemma 4.2 the right-hand side F1
+, de�ned by (38), decays exponentially as �� → ∞ and

therefore this problem has a unique bounded solution, which decays exponentially as ��→∞.
This completes the construction of the �rst order terms in expansion (31).
Obviously, if the initial and boundary value data in problem (1)–(6) are regular enough

and satisfy compatibility conditions, then this procedure can be continued further and the
higher-order terms of the expansion can be constructed.

5. CONVERGENCE RESULTS

In this section we summarize the results from previous sections and state the main convergence
result for the approximation given by the �rst two terms in expansion (16), (31) of the solution
(̃q�; c�) of (1).
We set

c1; �= c0 + �c1; Q̃1; �= Q̃0 + �Q̃1

and we formulate the main theorem:

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:95–117



114 A. BOURGEAT, M. JURAK AND A. L. PIATNITSKI

Theorem 5.1
Let c1; �= c0 + �c1 where c0, c1 are the �rst two terms in the asymptotic expansion (31),
constructed in previous two sections, for the solution c� of problem (1)–(6). Assume the
regularity hypotheses (43), (53)–(56) ful�lled. Then there is a constant C, independent of �,
such that for su�ciently small �

|c� − c1; �|0; QT6C�2;
∣∣∣∣ @@t c� − @

@t
c1; �

∣∣∣∣
0;QT

6C�

|∇c� −∇c1; �|0;QT6C�

Proof
We write down the equations veri�ed by c1; �:

�
(x
�

) @c1; �

@t
+ Q̃1; � · ∇c1; � − � div(D

(x
�

)
∇c1; �)=F� in �×(0; T ) (78)

c1; � = c+ on xd= a (79)

c1; � = c− on xd= b (80)

c1; � = cinit at t=0 (81)

In (78) the right-hand side F�(x; t; y; �) includes the �rst- and second-order terms obtained by
plugging the two �rst terms of the c� and q̃� expansions in the original transport equation (1).
Denoting y= x=�, �= t=� and introducing C1; �(y; �)= c1; �(x; t) we see that the function C1; �

is the solution of the following transformed problem:

�(y)
@C1; �

@ �
+ Q̃1; �(�y; y) · ∇yC1; � − divy(D(y)∇yC1; �)

= �F�(�y; ��; y; �) in Q�
T

(82)

C1; �(y; �) = c+(�y′; ��) on yd= a=� (83)

C1; �(y; �) = c−(�y′; ��) on yd= b=� (84)

C1; �(y; �) = cinit(�y) at �=0 (85)

in Q�
T =��×(0; T=�).

To go further we need the following result.

Lemma 5.1
Let regularity assumptions (43), (53)–(56) be ful�lled. Then the right-hand side in (78) is
bounded as follows:

|F�(� ·; ·; � ·; ·)|�; �=2;Q�
T
6C�
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where the constant C does not depend on �, and

F�
(
x; 0;

x
�
; 0
)
=0 at xd= a; b

The proof is straightforward from (43), (53)–(56). We only note that the regularity condi-
tions (43) ensure that all periodic, initial and boundary layer problems have su�ciently regular
solutions with respect to the parameters x and t. By the compatibility conditions (54)–(56)
then all e�ective equations have su�ciently regular solutions and all boundary layer functions
vanish at t=0, together with their corresponding derivatives with respect to x′ and t.
Now by Lemma 5.1 the compatibility conditions of the �rst order for the transformed

problem (82)–(85) are ful�lled and we can apply the Schauder estimates. Using standard
maximum norm estimate for parabolic operator in the space of exponentially growing functions
we obtain, uniformly with respect to �, the estimate

|∇yC 2; �|�; �=2;Q�
T
6C (86)

If we denote v�= c� − c1; � the discrepancy that we want to estimate, then v� is a solution
in �×(0; T ) of

�
(x
�

) @v�

@t
+ q̃� · ∇v� − � div

(
D
(x
�

)
∇v�

)
=−(̃q� − Q̃1; �) · ∇c1; � −F� (87)

with zero initial and boundary conditions. From Theorem 3.3, Lemma 5.1 and bound (86),
it follows immediately that |v�|0;QT6C�. This estimate can be improved like in Theorem 3.2
by constructing the next term in the expansions for the concentration and the Darcy velocity.
This leads to the estimate

|v�|0;QT6C�2 (88)

From (87) the normalized discrepancy V �(y; �)= v�(x; t) satis�es

�(y)
@V �

@�
+ q̃�(�y) · ∇yV � =divy(D(y)∇yV �)

− (̃q�(�y)− Q̃1; �(�y; y))· ∇yC1; �(y; �)

− �F�(�y; ��; y; �) in Q�
T

with homogeneous initial and boundary conditions. Applying Schauder’s estimates we obtain
�nally

|V �|2+�;1+�=2;Q�
T
6C{|V �|0;Q�

T
+ �|F�(� ·; � ·; ·; ·)|�; �=2;Q�

T

+ |̃q�(� ·)− Q̃1; �(�·; ·)|�;�� |∇yC1; �|�; �=2;Q�
T
}6C�2

where we used Lemma 5.1, Theorem 3.3, (86) and (88). By returning to the initial variables
x and t we obtain the required estimates in Theorem 5.1.
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6. DISPERSION AND EFFECTIVE DIFFUSION

We are now interested in the behaviour of the non-oscillatory part of the asymptotic expansion
which describes a homogenized solution of the original problem. Due to singular perturbation
in Equation (1) the zero-order concentration approximation �c0(x; t) satis�es transport equation
(57)–(59) which does not include any di�usion term. The zero-order term �c0(x; t) is convected
by the zero-order mean Darcy’s velocity 〈Q̃0;#〉. The transport equation (57)–(59) is a �rst-
order hyperbolic equation which describes the e�ective transport of the concentration and does
not show the di�usion occurring on the background of the e�ective convection. In order to
see the e�ective di�usion we consider the �rst two non-oscillating terms of the expansion
C1(x; t; �)= �c0(x; t) + � �c1(x; t), and from the above analysis we see that this function satis�es
the equation

〈�〉@C
1

@t
+ 〈Q̃0;# + �Q̃1;#〉(x) · ∇xC

1 = � div(Dh(x)∇C1) +O(�2)

C1=g+ +O(�) on xd= a

C1=c− + ��1− +O(�2) on xd= b

C1=cinit at t=0

(89)

where g+(x′; t)= �c0(x′; a; t). Dropping all the higher-order terms in problem (89) we obtain a
modi�ed problem:

〈�〉@C
∗

@t
+ 〈Q̃0;# + �Q̃1;#〉(x) · ∇xC

∗= � div(Dh(x)∇C∗)

C∗=g+ on xd= a

C∗=c− + ��1− on xd= b

C∗=cinit at t=0

(90)

It is straightforward to see that Dh is uniformly positive-de�nite tensor and therefore prob-
lem (90) is well posed. Furthermore, one can easily verify that the di�erence between the
solution of problem (90) and the solution of problem (89) does not exceed O(�2). Moreover,
the contribution of the boundary term g+ decays exponentially in the neighbourhood of the
hyperplane xd= a.
From these considerations we see that (90)1 is the �rst-order e�ective transport equation

for the concentration. The convective part in (6:90)1 is given by the mean value of the
�rst two oscillating terms in the Darcy velocity expansion (16), (19). The e�ective di�usion
tensor Dh is given by the auxiliary convection type problem (65), (66). Then the e�ective
di�usion matrix Dh depends on the zero-order Darcy’s velocity oscillations Q̃0;#, through
the solution of this local problem (65), (66) and is then including the so-called dispersion.
Finally, we notice that the �rst-order e�ective equation (90) is still parabolic thanks to a
small dispersion=di�usion and its solution could be considered as the viscous approximation
to �c0(x; t), solution of the zero-order e�ective equation.
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Let us �nally note that if we substract from the solution C∗ of Equation (90) the purely
convective term �c0, we see that the normalized di�erence u=(C∗ − �c0)=� obeys a purely
di�usive=dispersive equation with Peclet number of order one.
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