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Averaging in a perforated domain with

an oscillating third boundary condition

A.G. Belyaev, A.L. Pyatnitskĭı, and G.A. Chechkin

Abstract. We study an example averaging problem for a second-order elliptic equa-
tion in a periodically perforated domain with a third boundary condition (Fourier
condition) on the boundary of the holes. Under the assumption that the coefficients
of the boundary operator are bounded and the corresponding averages are small we
construct the leading terms of the asymptotic expansion of the solution and estimate
the error.
Bibliography: 30 titles.

Introduction

The purpose of the present paper is to study an example problem for a second-
order elliptic equation in a perforated domain with a third boundary condition on
the boundary of the cavities. In contrast to the cases studied previously, in which
the compactness of the family of solutions was guaranteed by the smallness of the
corresponding coefficient in the third boundary condition, we do not require this
coefficient to be small, nor do we require that the right-hand side in the boundary
condition be small. We replace these conditions by the weaker condition that the
corresponding averages over the surface of the inclusions be small.
At present there are many mathematical papers devoted to the asymptotic ana-

lysis of problems in perforated domains. Various results on averaging have been
obtained for periodic, almost-periodic and random structures. A detailed biblio-
graphy can be found, for example, in [1]–[6]. In particular, problems with a Neu-
mann condition on the boundary of the cavities were studied in [7], [8], and problems
with a third boundary condition (Fourier condition) on the boundary of the cavities
were studied in [9]–[12], as well as in [13]–[15]. Interesting cases were studied in [16]–
[18], where the asymptotics of the problem with an oblique derivative on the surface
of the cavities and problems of Steklov type were studied. An interesting case was
also studied in [19]. Of particular interest are problems in which the coefficient of
the third boundary condition is not small. In the special case when the problem has
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a dissipative character, which can be guaranteed by the correct choice of the sign
of the corresponding coefficient in the boundary condition, weak convergence of the
solutions of the periodic problem was studied in [13], [20], [21]. The paper [11]
contains a study of the asymptotic behavior of the spectrum of the boundary-value
problem with a third boundary condition on the boundary of the cavities, in which
a large dissipation is compensated for by introducing an unboundedly increasing
potential into the equation.

By applying the method of compensated compactness of [22], [23] or the method
of two-scale convergence in [24], [25] (see also [26], where the method of two-scale
convergence was adapted for perforated domains with a third boundary condition
on the boundary of the cavities), one can construct a limiting problem and prove an
averaging theorem; but these methods do not provide any estimates of the error. In
the present paper we shall use the technique of asymptotic expansions of [27], [28]
(see also [29]), which requires some regularity of the data and coefficients, but makes
it possible to estimate the rate of convergence. For simplicity we assume that the
perforation has a purely periodic structure, although the technique developed in
the paper makes it possible to obtain analogous results in the locally periodic case
as well. We also assume that the perforation does not intersect the outer boundary
of the domain.

The statement of the third boundary condition (the Fourier condition) on the
boundary of the cavities involves a non-trivial potential in the limiting equation;
in the periodic case this potential is a constant. We emphasize that there is a
great difference between the case of a degenerate coefficient in the third boundary
condition (the presence of a small parameter as a factor in the coefficient) and the
case of a coefficient of order one. In the first case the limiting operator contains
only the average of the coefficient over the surface of the hole, while the oscillation
of the coefficient with respect to the mean makes no contribution to the limiting
operator (see [14]). In the second case (which will be the subject of the present
paper) the average is required to be zero (otherwise the solution degenerates rapidly
or “blows up” and to compensate for this effect it is necessary to introduce a large
parameter into the coefficients of the original operator), and a non-trivial potential
arises in the limiting equation as a result of the oscillation. For that reason the
problem including a coefficient with zero average differs essentially from the problem
containing a positive coefficient in the third boundary condition.

The question of coerciveness of this family of operators is not elementary in the
present case. As was shown in [16], the question of coerciveness of the original
problem reduces to verifying the coerciveness of the formally averaged operator.
In this connection estimates of the potential in the averaged operator are relevant.
In this paper we propose a method of obtaining such estimates using an auxiliary
problem of Steklov type. It is also interesting to note that this potential always has
a “bad” sign, that is, it worsens the coercive properties of the problem.

One example leading to the equations studied in this paper is the problem of the
distribution of a stationary temperature field in a porous medium (see Fig. 1).
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Figure 1. Temperature distribution in a perforated body

§ 1. Statement of the problem
Let Ω be a smooth bounded domain in Rd, d � 2. We use the notation

Jε =
{
j ∈ Rd : dist(εj, ∂Ω) � ε

√
d
}
, � ≡

{
ξ : −1

2
< ξj <

1

2
, j = 1, . . . , d

}
.

Introducing a smooth function F (ξ) of period 1 in ξ and such that F (ξ)
∣∣
ξ∈∂� �

const > 0, F (0) = −1, ∇ξF �= 0 for ξ ∈ � \ {0}, we define

Qεj =
{
x ∈ ε(�+ j) : F

(x
ε

)
� 0
}

and we introduce the perforated domain as follows:

Ωε = Ω \
⋃
j∈Jε
Qεj .

In accordance with the construction given above, the boundary ∂Ωε consists of ∂Ω
and the boundaries of the inclusions Sε ⊂ Ω, Sε = (∂Ωε) ∩ Ω.
We denote an inclusion by Q = {ξ : −1

2
< ξj <

1
2
, j = 1, . . . , d, F (ξ) � 0}, the

boundary of the inclusion Q by S = {ξ : F (ξ) = 0}, and the outward normal vector
to S in “stretched” coordinates by ν.
Here and below we shall assume summation over repeated indices. We consider

the following problem:

−Lεuε :=
∂

∂xk

(
akj

(x
ε

) ∂uε
∂xj

)
= f(x) in Ωε,

∂uε

∂γ
+ p
(x
ε

)
uε + εq

(x
ε

)
uε = g

(x
ε

)
on Sε,

uε = 0 on ∂Ω,

(1)

where
∂uε
∂γ
:= akj

∂uε
∂xj
νεk ν

ε = (νε1 , . . . , ν
ε
d) is the unit outward normal vector to the

boundary of the inclusions. It is assumed here that the matrix (akj(ξ)) is symmetric
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and positive-definite, that is, κ1η
2 � akjηkηj � κ2η2 for any vector η, where κ1

and κ2 are positive constants, and that all the functions akj(ξ), p(ξ), q(ξ) and g(ξ)
are of period 1 with respect to ξ ∈ Rd. We further require that

〈p(ξ)〉S = 〈g(ξ)〉S = 0, (2)

where 〈 · 〉S :=
∫
S

· dσ. For convenience, from now on we shall denote the boundary-
value problem (1) by the symbol Aε.

§ 2. Formal asymptotic analysis
We shall seek a solution in the form of a formal asymptotic series

uε(x) ∼ u0(x) + εu1(x, ξ) + ε2u2(x, ξ) + · · · , ξ =
x

ε
, (3)

where all the functions ui(x, ξ) are assumed periodic with respect to ξ. We introduce
the notation (see [29])

−Lαβϕ(x, ξ) :=
∂

∂αk

(
akj(ξ)

∂ϕ(x, ξ)

∂βj

)
,
∂ϕ(x, ξ)

∂γα
:= akj(ξ)

∂ϕ(x, ξ)

∂αj
νk;

here α and β assume the values x or ξ. Substituting the series (3) into the prob-
lem (1) and gathering terms of the same order in ε both in the equation and in the
boundary condition, we obtain a recursive sequence of problems, the leading one of
which has the form

Lξξu1 + Lξxu0 = 0 in � \Q,
∂u1
∂γξ
+
∂u0
∂γx
+ p(ξ)u0 = g(ξ) on S.

(4)

The integral identity of the problem (4) looks as follows:

∫
�\Q
akj
∂u1

∂ξj

∂v

∂ξk
dξ +

∫
�\Q
akj
∂u0

∂xj

∂v

∂ξk
dξ +

∫
S

p(ξ)u0v dσ =

∫
S

g(ξ)v dσ, (5)

where v ∈ H1per(� \Q). The form of the integral identity suggests the structure of
the function u1(x, ξ):

u1(x, ξ) = L(ξ) +M(ξ)u0(x) +Ni(ξ)
∂u0(x)

∂xi
. (6)

Substituting this expression into (5) and grouping the corresponding terms, we
arrive at the following problems for the functions Ni(ξ), M(ξ), and L(ξ):∫

�\Q
akj
∂Ni
∂ξj

∂v

∂ξk
dξ +

∫
�\Q
aki
∂v

∂ξk
dξ = 0 (7)
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or, in classical form,

Lξξ(Ni(ξ) + ξi) = 0 in � \Q,
∂Ni(ξ)

∂γξ
= −aki(ξ)νk on S,

where i = 1, . . . , d; ∫
�\Q
akj
∂M

∂ξj

∂v

∂ξk
dξ +

∫
S

p(ξ)v dσ = 0 (8)

or

LξξM(ξ) = 0 in � \Q,
∂M(ξ)

∂γξ
= −p(ξ) on S

and ∫
�\Q
akj
∂L

∂ξj

∂v

∂ξk
dξ =

∫
S

g(ξ)v dσ (9)

or

LξξL(ξ) = 0 in � \Q,
∂L(ξ)

∂γξ
= g(ξ) on S.

The consistency condition is easily verified in the problem (7) using integration
by parts, and it follows from (2) in problems (8) and (9). We remark that the
functions L(ξ), M(ξ), and Ni(ξ) are defined only up to an additive constant; the
natural normalizing condition is

〈L〉�\Q = 〈M〉�\Q = 〈Ni〉�\Q = 0 ∀ i = 1, . . . , d.

In what follows these conditions are assumed to hold.
The next degree ε gives us the problem of determining u2(x, ξ):

Lξξu2 +Lxξu1 +Lξxu1 + Lxxu0 = −f in � \Q,
∂u2
∂γξ
+
∂u1
∂γx
+ p(ξ)u1 + q(ξ)u0 = 0 on S.

(10)

We shall need the following proposition.

Lemma 1. The functions M(ξ) and Nk(ξ) are related by the following integral
equality:

∂u0(x)

∂xk

(∫
�\Q
akj
∂M

∂ξj
dξ −

∫
S

pNk dσ

)
= 0.
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Proof. Substituting Ni(ξ) as a test function into the identity (8) we obtain∫
�\Q
akj
∂M

∂ξj

∂Ni

∂ξk
dξ +

∫
S

p(ξ)Ni dσ = 0.

Similarly, using M(ξ) as a test function in the identity (7) we have∫
�\Q
akj
∂Ni

∂ξj

∂M

∂ξk
dξ +

∫
�\Q
aki
∂M

∂ξk
dξ = 0.

It follows from the symmetry of the matrix {akj} that∫
�\Q
akj
∂M

∂ξj
dξ =

∫
S

pNk dσ.

The lemma is now proved.

We need the integral identity of the problem (10)∫
�\Q
akj
∂u2

∂ξj

∂v

∂ξk
dξ +

∫
�\Q
akj
∂u1

∂xj

∂v

∂ξk
dξ +

∫
S

p(ξ)u1v dσ + u0(x)

∫
S

q(ξ)v dσ

−
∫
�\Q
akj
∂M

∂ξj
v dξ
∂u0
∂xk
−
∫
�\Q

(
aij
∂Nk
∂ξj
+ aik

)
v dξ

∂2u0
∂xi∂xk

+ |� \Q|f = 0.

The condition for solubility of the problem (10) leads to an equation for the func-
tion u0(x), which is the required formally averaged (limiting) equation. Applying
Lemma 1 we rewrite the equation as follows:

âkj
∂2u0(x)

∂xk∂xj
− u0(x)

(∫
S

q(ξ) dσ +

∫
S

p(ξ)M(ξ) dσ

)

= |� \Q|f(x) +
∫
S

g(ξ)M(ξ) dσ, (11)

where

âik :=

∫
�\Q

(
aij(ξ)

∂Nk(ξ)

∂ξj
+ aik(ξ)

)
dξ.

Thus, the averaged problem has the form

âkj
∂2u0(x)

∂xk∂xj
− 〈q〉Su0(x) +mu0(x) = |� \Q|f(x) + l in Ω,

u0(x) = 0 on ∂Ω,

(12)

where m := −〈pM〉S , l := 〈pL〉S = −〈gM〉S . The symbol Â denotes the operator
of the boundary-value problem (12).

Remark 1. It should be noted that the coerciveness of the limiting operator (12) is
a delicate problem, since the constantm, as will be shown below, is always positive.
In particular, the well-posedness of the problem (12), which is connected with the
coerciveness of the operator, is guaranteed by the inequality m− 〈q〉S < λ0, where
λ0 is the first eigenvalue of the operator âij

∂

∂xi

∂

∂xj
in the space

◦
H1(Ω).
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§3. The basic propositions and estimates
In this section we obtain estimates for the averaged potential in (12), after which

we state the main result of the paper.
Consider the following auxiliary spectral problem of Steklov type:

∂

∂ξk

(
akj(ξ)

∂θ

∂ξj

)
= 0 in � \Q,

∂θ

∂γ
= Υθ on S,

〈θ〉S = 0,

(13)

posed in the space of functions of period 1 with respect to ξ. And let Υ1 be the
first eigenvalue of this problem, which can be found using the formula

Υ1 = inf
ψ∈H1per(�)\{0}

〈ψ〉S=0

a(ψ, ψ)

〈ψ2〉S
,

where a(u, v) :=

∫
�\Q
akj
∂u

∂ξj

∂v

∂ξk
dξ.

The following lemma holds.

Lemma 2. The constant m is positive. Moreover the following estimate holds:

〈p2〉S
〈p2〉S
a(p, p)

�m � 〈p
2〉S
Υ1

. (14)

Remark 2. We note that the equality in the expression (14) is attained at the
functions p(ξ), which belong to the eigenspace of the problem (13) corresponding
to the first eigenvalue Υ1.

Proof. Choosing M(ξ) as a test function in the problem (8), we have∫
�\Q
akj
∂M

∂ξj

∂M

∂ξk
dξ +

∫
S

p(ξ)M dσ = 0.

Therefore,

m = −〈pM〉S =
〈
akj
∂M

∂ξj

∂M

∂ξk

〉
�\Q
> 0,

ifM �= 0. It should be noted thatM is identically zero provided that p is identically
zero.
Consider the variational problem

inf
ψ∈H1per(�)

H(ψ) ≡ inf
ψ∈H1per(�)

{a(ψ, ψ) + 2〈pψ〉S}. (15)

It follows from the integral identity (8) that the infimum in (15) is attained at the
function M . Hence it follows that

− inf
ψ∈H1per(�)

{a(ψ, ψ) + 2〈pψ〉S} = −a(M,M)− 2〈pM〉S = −〈pM〉S =m.
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Substituting ψ = −tp into the functional H(ψ) we obtain

H(−tp) = t2a(p, p)− 2t〈p2〉S .

To find the minimum over t of the function H(−tp), we solve the equation

0 = H ′t(−t0p) = 2t0a(p, p)− 2〈p2〉S .

The result is

t0 =
〈p2〉S
a(p, p)

and, consequently,

H(−t0p) =
(〈p2〉S)2
a(p, p)

− 2(〈p
2〉S)2
a(p, p)

= −(〈p
2〉S)2
a(p, p)

.

Thus the first of inequalities (14) has been proved.
Substituting ψ = −tϕ and using a similar procedure we obtain

H(−t0ϕ) = −
(〈pϕ〉S)2
a(ϕ, ϕ)

.

Since

m = sup
ϕ∈H1per(�)

(〈pϕ〉S)2
a(ϕ, ϕ)

(16)

and the supremum is attained at ϕ = M , it follows that for an arbitrary ϕ we

obtain m � (〈pϕ〉S)
2

a(ϕ, ϕ)
. It follows from (16) that

1

m
= inf
ϕ∈H1per(�)\{0}

a(ϕ, ϕ)

(〈pϕ〉S)2
� inf
ϕ∈H1per(�)\{0}

〈ϕ〉S=0

a(ϕ, ϕ)

〈p2〉S〈ϕ2〉S
=
Υ1
〈p2〉S

.

Finally,

m � 〈p
2〉S
Υ1

,

where Υ1 is the first eigenvalue of the problem (13). Thus the second inequality
of (14) has been proved. The lemma is now proved.

Remark 3. To give a simple explanation of the positivity of the coefficient m in the
equation (12), we modify the problem (1) by substituting a Neumann boundary
condition on the outer boundary, and for simplicity we set q ≡ 0. Then −m is the
first eigenvalue of the limiting problem, which by the variational principle coincides
with the energy of the ground state.
Thus, keeping in mind the convergence of the spectra and the energies of the

prelimiting problem to the spectrum and energy of the averaged problem, it suffices
to verify that the energy of the ground state in the prelimiting problem is negat-
ive. Substituting the constant into the variational formula yields zero, so that the
corresponding infimum is negative, which implies that −m is negative also.
The following theorem justifies the asymptotics constructed for the solution of

the problem (1) and gives an estimate of the remainder term.
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Theorem 1. Let f(x) ∈ H1(Ω), and let p(ξ), q(ξ), and g(ξ) be C1-functions of
period 1. Assume further that

m < λ0 + 〈q〉S , (17)

where λ0 is defined in Remark 1.
Then for all sufficiently small ε the problem (1) has a unique solution and the

following estimate holds:

‖u0 + εu1 − uε‖H1(Ωε) �K1
√
ε : (18)

with a constant K1 > 0 independent of ε. Here u0 is the solution of the problem (12),
and u1 has the form (6) with the functions Ni(ξ), M(ξ), and L(ξ), constructed
in (7), (8), and L(ξ) (9) respectively.

§ 4. Preliminary lemmas
This section is devoted to various technical propositions that will be used in the

subsequent analysis. The proofs of the first two lemmas can be found in [14], [30],
so that only their statements will be given here.

Lemma 3. Let ζ(x, ξ) be a sufficiently smooth function of period 1 in ξand let

Z(x) ≡
∫
S

ζ(x, ξ) dσ. (19)

Then the following estimate holds:

∣∣∣∣ 1

|� \Q|

∫
Ωε
Z(x)u(x)v(x) dx− ε

∫
Sε

ζ
(
x,
x

ε

)
u(x)v(x) ds

∣∣∣∣
� C2ε‖u‖H1(Ωε)‖v‖H1(Ωε), (20)

for any u(x), v(x) ∈ H1(Ωε). The constant C2 is independent of ε.

Remark 4. Similar estimates were obtained in [11], [12], [16].
The proposition given below is essentially a modification of the preceding lemma.

Lemma 4. Let ζ(x, ξ) be a sufficiently smooth function of period 1 and assume
that ∫

�\Q
ζ(x, ξ) dξ ≡ 0. (21)

Then the following estimate holds:∣∣∣∣ 1

|� \Q|

∫
Ωε
ζ
(
x,
x

ε

)
u(x)v(x) dx

∣∣∣∣ � C3ε‖u‖H1(Ωε)‖v‖H1(Ωε)
for any u(x), v(x) ∈ H1(Ωε). The constant C3 is independent of ε.
Let λ0 be defined as in Remark 1. The following lemma holds.
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Lemma 5. If m < λ0 + 〈q〉S , then the problem (12) is coercive.
Proof. Using the variational properties of the operator Â we arrive at the following
relation:

inf
v∈

◦
H1(Ω)

‖v‖L2(Ω)=1

(−Âv, v)L2(Ω) = inf
v∈

◦
H1(Ω)

‖v‖L2(Ω)=1

∫
Ω

(
âij
∂v

∂xi

∂v

∂xj
+ (〈q〉S −m)v2

)
dx

= inf
v∈

◦
H1(Ω)

‖v‖L2(Ω)=1

∫
Ω

âij
∂v

∂xi

∂v

∂xj
dx+ (〈q〉S −m)

= λ0 + 〈q〉S −m.

Thus under the hypotheses of the lemma,

(−Âv, v)L2(Ω) � C4‖v‖2L2(Ω), C4 > 0,

which completes the proof.

The following proposition is really a modified version of Lemma 3. Here we do
not require that the functions u and v be periodic, and we assume that � is any
one of the periodicity cells of the function p(ξ).

Lemma 6. If 〈p〉S = 0, then the following inequality holds:∣∣∣∣
∫
S

p(ξ)u(ξ)v(ξ) dσ

∣∣∣∣ � C5(‖∇u‖L2(�)‖v‖L2(�) + ‖u‖L2(�)‖∇v‖L2(�)), (22)

for any u(ξ), v(ξ) ∈ H1(�). The constant C5 is independent of ε.
Proof. It follows from the hypothesis of the lemma that the problem

∆ξΨ(ξ) = 0 in � \Q,
∂Ψ

∂n
= p(ξ) on S,

∂Ψ

∂n
= 0 on ∂�

(23)

is soluble. Moreover, this solution is unique up to an additive constant.
Wemultiply the equation of the problem (23) by the function uv, where u(ξ), v(ξ)

lie in ∈ H1(�), and we integrate over the domain �\Q. Integration by parts yields∣∣∣∣
∫
S

p(ξ)u(ξ)v(ξ) dσ

∣∣∣∣ =
∣∣∣∣
∫
�\Q
∆ξΨ(ξ)u(ξ)v(ξ) dξ −

∫
S

p(ξ)u(ξ)v(ξ) dσ

∣∣∣∣
�
∣∣∣∣
∫
�\Q

(
(∇ξΨ(ξ)),∇ξ(u(ξ)v(ξ))

)
dξ

∣∣∣∣
� C5

(
‖∇u‖L2(�)‖v‖L2(�) + ‖u‖L2(�)‖∇v‖L2(�)

)
. (24)

The lemma is now proved.

The uniform coerciveness of the bilinear form in the integral identity of the
problem (1) with respect to ε is the subject of Lemma 7, from which it follows in
particular that the problem (1) is well posed.
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Lemma 7. The coerciveness of the averaged problem (12) implies the coerciveness
of the original problem (1) for all sufficiently small ε.

Proof. We begin by showing that∫
Sε

p
(x
ε

)
u2(x) ds � C6

(
α

∫
Ωε
|∇u|2 dx+ 1

α

∫
Ωε
u2 dx

)
(25)

for any α > 0. Indeed, using Lemma 6, we have∣∣∣∣
∫
S

p(ξ)u2(ξ) dσ

∣∣∣∣ � 2C5‖∇u‖L2(�)‖u‖L2(�) � C7
(
α

ε

∫
�
|∇u|2 dξ + ε

α

∫
�
u2 dξ

)
.

Now, passing to coordinates x = εξ and summing over all cells, we obtain the
required inequality (see also [11], [12]).
We shall prove that there exists a sufficiently large Λ independent of ε such that

the operator of the boundary-value problem

Lεuε + Λuε = −f(x) in Ωε,
∂uε
∂γ
+ p
(x
ε

)
uε + εq

(x
ε

)
uε = g

(x
ε

)
on Sε,

uε = 0 on ∂Ω

(26)

is coercive for any ε.
Using Lemmas 3 and 6, we deduce that∫
Ωε
aik

(x
ε

) ∂v
∂xk

∂v

∂xi
dx+

∫
Sε

p
(x
ε

)
v2 ds+ ε

∫
Sε

q
(x
ε

)
v2 ds+

∫
Ωε
Λv2 dx

� κ1‖∇v‖2L2(Ωε) − (C6α+O(ε))‖∇u‖
2
L2(Ωε)

+

(
〈q〉S −

C6

α
+ Λ

)
‖v‖2L2(Ωε).

(27)

Choosing a sufficiently small α and then a sufficiently large Λ, we get the quadratic
form on the right-hand side of inequality (27) to be positive-definite, and hence we
also get the coercivity.
Consider the following spectral problems:

(−Aε + Λ)−1ukε = λkεukε , (28)

(−Â + Λ)−1uk = λkuk, (29)

where Aε is the operator of the boundary-value problem (1), and Â is the operator
for the averaged problem (12).
Keeping in mind the coercivity shown above, one can easily verify that the

operators (−Aε + Λ)−1 and (−Â + Λ)−1 satisfy conditions C1–C4 of the spectral
convergence theorem for families of operators defined in different spaces (see [4],
Ch. III, Theorem 1.9). It follows in particular from this theorem that λ0ε → λ0 as
ε→ 0. We denote by µ0ε and µ0 the first eigenvalues of the operators −Aε and −Â,
respectively. Then µ0ε ≡ −Λ + 1/λ0ε → µ0 ≡ −Λ+ 1/λ0 as ε→ 0.
From this it follows by use of the variational principle that the positive-definite-

ness of the operator −Â implies the positive-definiteness of the operator −Aε for
all sufficiently small ε. The lemma is now proved.
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Remark 5. The device connected with passage to the auxiliary problem by a spec-
tral shift plays a role in the analogous situation in [16], Lemma 3, and the coercivity
of the problem (26) essentially follows from the results of that paper.

§ 5. Justification of the asymptotics

Proof of Theorem 1. We need to estimate the H1-norm of the remainder:

‖u0 + εu1 − uε‖H1(Ωε).

To do this, we substitute the expression

zε

(
x,
x

ε

)
= u0(x) + εu1

(
x,
x

ε

)
− uε(x)

into equation (1). This yields the equality

Lε

(
zε

(
x,
x

ε

))
=
1

ε
Lξxu0(x)

∣∣∣
ξ= xε

+ Lεu0(x) + εLxxu1(x, ξ)
∣∣∣
ξ= xε

+Lξxu1(x, ξ)
∣∣∣
ξ=xε

+ Lxξu1(x, ξ)
∣∣∣
ξ= xε

+
1

ε
Lξξu1(x, ξ)

∣∣∣
ξ= xε

−Lεuε(x).
(30)

Keeping in mind the relations

Lξξu1(x, ξ) = −Lξxu0(x), Lεuε(x) = −f(x),

−Lξxu1(x, ξ) =
∂

∂ξi

(
aij(ξ)

∂u0(x)

∂xj
M(ξ)

)
+
∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)
,

−Lxξu1(x, ξ) = aij(ξ)
∂u0(x)

∂xi

∂M(ξ)

∂ξj
+ aij(ξ)

∂2u0(x)

∂xi∂xk

∂Nk(ξ)

∂ξj

(31)

and

âkj
∂2u0(x)

∂xk∂xj
− 〈q〉Su0(x) +mu0(x) = |� \Q|f(x) − l in Ω, (32)

we can rewrite (30) in the domain Ωε as follows:

−Lε
(
zε

(
x,
x

ε

))
= −εLxxu1(x, ξ)

∣∣∣
ξ=xε

+
∂

∂ξi

(
aij(ξ)

∂u0(x)

∂xj
M(ξ)

)∣∣∣∣
ξ=xε

+
∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ=xε

+ aij(ξ)
∂u0(x)

∂xi

∂M(ξ)

∂ξj

∣∣∣∣
ξ=xε

+ aij(ξ)
∂2u0(x)

∂xi∂xk

∂Nk(ξ)

∂ξj

∣∣∣∣
ξ= xε

−Lεu0(x)

− 1

|� \Q| âkj
∂2u0(x)

∂xk∂xj
+
〈q〉S −m
|� \Q| u0(x) +

l

|� \Q| . (33)
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Similarly, on Sε we have

∂zε(x,
x
ε )

∂γ
= −∂uε(x)

∂γx
+
∂u0(x)

∂γx
+ ε
∂u1(x, ξ)

∂γx

∣∣∣∣
ξ= xε

+
∂u1(x, ξ)

∂γξ

∣∣∣∣
ξ= xε

= p
(x
ε

)
uε(x) + εq

(x
ε

)
uε(x)− g

(x
ε

)
+
∂u0(x)

∂γx
+ ε
∂u1(x, ξ)

∂γx

∣∣∣∣
ξ=xε

+
∂L(ξ)

∂γξ

∣∣∣∣
ξ= xε

+ u0(x)
∂M(ξ)

∂γξ

∣∣∣∣
ξ= xε

+
∂u0(x)

∂xi

∂Ni(ξ)

∂γξ

∣∣∣∣
ξ=xε

.

Now multiplying equation (33) by v(x) ∈
◦
H1(Ω) and integrating over Ωε we obtain

−
∫
Ωε
Lε

(
zε

(
x,
x

ε

))
v(x) dx = −ε

∫
Ωε
Lxxu1(x, ξ)

∣∣∣
ξ= xε

v(x) dx

+

∫
Ωε

∂

∂ξi

(
aij(ξ)

∂u0(x)

∂xj
M(ξ)

)∣∣∣∣
ξ= xε

v(x) dx

+

∫
Ωε

∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ=xε

v(x) dx

+

∫
Ωε
aij(ξ)

∂u0(x)

∂xi

∂M(ξ)

∂ξj

∣∣∣∣
ξ=xε

v(x) dx

+

∫
Ωε
aij(ξ)

∂2u0(x)

∂xi∂xk

∂Nk(ξ)

∂ξj

∣∣∣∣
ξ= xε

v(x) dx −
∫
Ωε
Lεu0(x)v(x) dx

− 1

|� \Q|

∫
Ωε
âkj
∂2u0(x)

∂xk∂xj
v(x) dx+

1

|� \Q|

∫
Ωε
(〈q〉S −m)u0(x)v(x) dx

+
1

|� \Q|

∫
Ωε
lv(x) dx. (34)

On the other hand, using Green’s formula one can transform the left-hand side of
equation (34) as follows:

−
∫
Ωε
Lε

(
zε

(
x,
x

ε

))
v(x) dx =

∫
Sε

∂zε
∂γ
v(x) ds−

∫
Ωε
∇zε∇v(x) dx

=

∫
Sε

p
(x
ε

)
uε(x)v(x) ds+ ε

∫
Sε

q
(x
ε

)
uε(x)v(x) ds−

∫
Sε

g
(x
ε

)
v(x) ds

+

∫
Sε

∂u0(x)

∂γx
v(x) ds+ ε

∫
Sε

∂u1(x, ξ)

∂γx

∣∣∣∣
ξ=xε

v(x) ds

+

∫
Sε

(
∂L(ξ)

∂γξ
+ u0(x)

∂M(ξ)

∂γξ
+
∂u0(x)

∂xi

∂Ni(ξ)

∂γξ

)∣∣∣∣
ξ=xε

v(x) ds

−
∫
Ωε
∇zε
(
x,
x

ε

)
∇v(x) dx. (35)
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From (34) and (35) we deduce

∫
Ωε
∇zε
(
x,
x

ε

)
∇v(x) dx =

∫
Sε

p
(x
ε

)
uε(x)v(x) ds+ ε

∫
Sε

q
(x
ε

)
uε(x)v(x) ds

−
∫
Sε

g
(x
ε

)
v(x) ds+

∫
Sε

∂u0(x)

∂γx
v(x) ds+ ε

∫
Sε

∂u1(x, ξ)

∂γx

∣∣∣∣
ξ= xε

v(x) ds

+

∫
Sε

(
∂L(ξ)

∂γξ
+ u0(x)

∂M(ξ)

∂γξ
+
∂u0(x)

∂xi

∂Ni(ξ)

∂γξ

)∣∣∣∣
ξ=xε

v(x) ds

−
∫
Ωε

∂

∂ξi

(
aij(ξ)

∂u0(x)

∂xj
M(ξ)

)∣∣∣∣
ξ= xε

v(x) dx

−
∫
Ωε

∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ=xε

v(x) dx

−
∫
Ωε
aij(ξ)

∂u0(x)

∂xi

∂M(ξ)

∂ξj

∣∣∣∣
ξ=xε

v(x) dx+ ε

∫
Ωε
Lxxu1(x, ξ)

∣∣∣
ξ=xε

v(x) dx

−
∫
Ωε
aij(ξ)

∂2u0(x)

∂xi∂xk

∂Nk(ξ)

∂ξj

∣∣∣∣
ξ= xε

v(x) dx +

∫
Ωε
Lεu0(x)v(x) dx

+
1

|� \Q|

∫
Ωε
âkj
∂2u0(x)

∂xk∂xj
v(x) dx

− 1

|� \Q|

∫
Ωε
(〈q〉S −m)u0(x)v(x) dx−

1

|� \Q|

∫
Ωε
lv(x) dx. (36)

In view of the obvious relation

∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ=xε

= ε
∂

∂xi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

∣∣∣∣
ξ=xε

)

− ε ∂
∂xi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ=xε

Stokes’s theorem yields

∫
Ωε

∂

∂ξi

(
aij(ξ)

∂2u0(x)

∂xj∂xk
Nk(ξ)

)∣∣∣∣
ξ= xε

v(x) dx

+

∫
Ωε

∂

∂ξi

(
aij(ξ)

∂u0(x)

∂xj
M(ξ)

)∣∣∣∣
ξ= xε

v(x) dx

= ε

∫
Sε

∂u1(x, ξ)

∂γx

∣∣∣∣
ξ= xε

v(x) ds+ O(ε)‖v‖H1(Ωε). (37)
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Using (36) and the boundary condition in (16), we evaluate the expression∣∣∣∣
∫
Ωε
∇zε
(
x,
x

ε

)
∇v(x) dx+

∫
Sε

(
p
(x
ε

)
+ εq

(x
ε

))
zε

(
x,
x

ε

)
v(x) ds

∣∣∣∣
� ε
∣∣∣∣ε
∫
Sε

q
(x
ε

)
u1

(
x,
x

ε

)
v(x) ds

∣∣∣∣ +
∣∣∣∣
∫
Sε

∂L

∂γξ

∣∣∣∣
ξ=xε

v ds−
∫
Sε

gv ds

∣∣∣∣
+

∣∣∣∣
∫
Sε

u0
∂M

∂γξ

∣∣∣∣
ξ=xε

v ds+

∫
Sε

pu0v ds

∣∣∣∣
+

∣∣∣∣ε
∫
Sε

q
(x
ε

)
u0(x)v(x) ds−

1

|� \Q|

∫
Ωε
〈q〉Su0(x)v(x) dx

∣∣∣∣
+

∣∣∣∣ε
∫
Ωε
Lxxu1(x, ξ)

∣∣∣
ξ= xε

v(x) dx+ O(ε)‖v‖H1(Ωε)
∣∣∣∣

+

∣∣∣∣
∫
Sε

(
∂u0(x)

∂γx
+
∂u0(x)

∂xi

∂Ni(x, ξ)

∂γξ

∣∣∣∣
ξ=xε

)
v(x) ds

∣∣∣∣
+

∣∣∣∣
∫
Sε

εM
(x
ε

)
p
(x
ε

)
u0(x)v(x) ds+

1

|� \Q|

∫
Ωε
mu0(x)v(x) dx

∣∣∣∣
+

∣∣∣∣ 1

|� \Q|

∫
Ωε
lv(x) dx+

∫
Sε

εp
(x
ε

)
L
(x
ε

)
v(x) ds

∣∣∣∣
+

∣∣∣∣
∫
Sε

εp
(x
ε

) ∂u0
∂xk
Nk

(x
ε

)
v(x) ds−

∫
Ωε
aij

(x
ε

) ∂u0
∂xi

∂M(ξ)

∂ξj

∣∣∣∣
ξ= xε

v(x) dx

∣∣∣∣
+

∣∣∣∣
∫
Ωε

(
âkj

|� \Q|
∂2u0(x)

∂xk∂xj
v(x) − aij(ξ)

∂2u0(x)

∂xi∂xk

∂Nk(ξ)

∂ξj

∣∣∣∣
ξ= xε

v(x)

+ Lεu0(x)v(x)

)
dx

∣∣∣∣
= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10. (38)

Let us estimate the term I4. According to Lemma 3,

I4 =

∣∣∣∣ε
∫
Sε

q
(x
ε

)
u0(x)v(x) ds−

1

|� \Q|

∫
Ωε

〈q〉Su0(x)v(x) dx
∣∣∣∣

� C2ε‖u0‖H1(Ωε)‖v‖H1(Ωε).

Similarly, using Lemma 3, we can estimate I7 and I8:

I7 � C8ε‖v‖H1(Ωε), I8 � C9ε‖v‖H1(Ωε),

and using Lemma 4 we can estimate the expression I10:

I10 � C10ε‖v‖H1(Ωε).

It is clear that the terms I1 and I5 admit the following estimate:

|I1|+ |I5| � C11ε‖v‖H1(Ωε).

The identities I2 ≡ 0, I3 ≡ 0, and I6 ≡ 0 follow from relations (7)–(9). It follows
from Lemma 1 that I9 ≡ 0.
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The function zε does not vanish on the boundary ∂Ω thanks to the presence of
the corrector u1. Introducing the standard truncation χε(x) in the ε-neighbourhood
of the outer boundary, we consider the test function

v = u0 + εχε(x)u1 − uε.

Here
‖εu1(1− χε)‖H1(Ωε) � C12

√
ε.

Substituting the function v into (38) and keeping in mind all the preceding esti-
mates, we arrive at the required inequality (18). The theorem is now proved.

The idea of writing this paper arose as the result of interesting conversations
with colleagues from the Univerisity of Aizu in the Fukushima Prefecture of Japan,
where G.A. Chechkin spent the month of February 1999. The final version of the
paper was written at the Technological Institute of the city of Narvik (Norway)
during the autumn of 1999. The authors are very grateful for the support of these
organizations.
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