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This paper presents a study of immiscible compressible two-phase, such as water and
gas, flow through highly heterogeneous porous media with periodic microstructure. Such
models appear in gas migration through engineered and geological barriers for a deep
repository for radioactive waste. We will consider a domain made up of several zones with
different characteristics: porosity, absolute permeability, relative permeabilities and cap-
illary pressure curves. Consequently, the model involves highly oscillatory characteristics
and internal nonlinear interface conditions. The microscopic model is written in terms
of the phase formulation, i.e. where the wetting (water) saturation phase and the non-
wetting (gas) pressure phase are primary unknowns. This formulation leads to a coupled
system consisting of a nonlinear parabolic equation for the gas pressure and a nonlinear
degenerate parabolic diffusion-convection equation for the water saturation, subject to
appropriate transmission, boundary and initial conditions. The major difficulties related
to this model are in the nonlinear degenerate structure of the equations, as well as in
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the coupling in the system. Moreover, the transmission conditions are nonlinear and the
saturation is discontinuous at interfaces separating different media. Under some realistic

assumptions on the data, we obtain a nonlinear homogenized coupled system with effec-
tive coefficients which are computed via a cell problem and give a rigorous mathematical
derivation of the upscaled model by means of the two-scale convergence.

Keywords: Homogenization; immiscible compressible; interface conditions; nonlinear
degenerate system; two-phase flow; porous media; nuclear waste, water–gas.

AMS Subject Classification: 35B27, 35K65, 76S05, 76T05, 76T10

1. Introduction

The displacement process of immiscible fluids in porous media occurs in a wide
variety of applications. The most concentrated research in the field of multiphase
flow over the past four decades has focused on unsaturated groundwater flow, and
flow in underground petroleum reservoirs. Most recently, multiphase flow have gen-
erated serious interest among engineers concerned with deep geological repository
for radioactive waste, and for CO2 capture and storage sequestration.

The long-term safety of the disposal of nuclear waste is an important issue in
all countries with a significant nuclear program. Repositories for the disposal of
high-level and long-lived radioactive waste generally rely on a multi-barrier sys-
tem to isolate the waste from the biosphere. The multi-barrier system typically
comprises the natural geological barrier provided by the repository host rock and
its surroundings and an engineered barrier system, i.e. engineered materials placed
within a repository, including the waste form, waste canisters, buffer materials,
backfill and seals.

In this paper, we focus our attention on the modeling of immiscible compressible
two-phase flow in heterogeneous porous media, in the framework of the geological
disposal of radioactive waste. As a matter of fact, one of the solutions envisaged
for managing waste produced by nuclear industry is to dispose it in deep geological
formations chosen for their ability to prevent and attenuate possible releases of
radionuclides in the geosphere. In the frame of designing nuclear waste geological
repositories, a problem of possible two-phase flow of water and gas appears, for more
details see for instance Refs. 27 and 28. Multiple recent studies have established that
in such installations important amounts of gases, mainly hydrogen, are expected to
be produced in particular due to the corrosion of metallic components used in the
repository design. The creation and transport of a gas phase is an issue of concern
with regard to the capability of the engineered and natural barriers to evacuate
the gas phase and avoid overpressure, thus preventing mechanical damages. It has
become necessary to carefully evaluate those issues while assessing the performance
of a geological repository, see e.g. Refs. 19 and 29 and the references therein.

The upscaling or homogenization of multiphase flow through heterogeneous
porous media has been a problem of interest for many years and many meth-
ods have been developed. There is an extensive literature on this subject. We will
not attempt a literature review here, but merely mention a few references. Here
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we restrict ourselves to the mathematical homogenization method as described in
Ref. 25 for flow and transport in porous media. A recent review of the methods
developed for incompressible immiscible two-phase flow in porous media and com-
pressible miscible flow in porous media can be viewed in Refs. 3 and 24. Let us
also mention that few homogenization results were obtained in the case of fields
with different rock types: porosity, absolute permeability, relative permeabilities
and capillary pressure curves being different in each type of porous media, see, e.g.,
Refs. 11, 14, 24 and 30. We refer for instance to Refs. 12, 13, 15–17 and 23 for
more information on the homogenization of one-phase flow in the framework of the
geological disposal of radioactive waste.

However, as reported in Ref. 6, the situation is quite different for immiscible
compressible two-phase flow in porous media, where, only recently few results have
been obtained in the case of a single rock type model. In this model the capil-
lary pressure and relative permeabilities depend solely on the saturation. In Ref. 3
homogenization results were obtained for water–gas flow in porous media using the
phase formulation, i.e. where the phase pressures and the phase saturations are
primary unknowns. In Ref. 6 homogenization results were obtained for immiscible
compressible two-phase flow in porous media, the wetting and non-wetting phases
are treated to be compressible, the problem is formulated in terms of a new global
pressure5,7 and it is fully equivalent to the original equations. To our knowledge,
convergence results on the homogenization of immiscible compressible two-phase
flow in porous media with different rock types are still missing.

This paper is concerned with a nonlinear degenerate system of diffusion–
convection equations modeling the flow and transport of immiscible compressible
fluids through highly heterogeneous porous media, capillary and gravity effects
being taken into account. We will consider a domain made up of several zones with
different characteristics: porosity, absolute permeability, relative permeabilities and
capillary pressure curves. In the literature, this may be rephrased by saying that
we consider a field containing several rock types, see, e.g., Ref. 18. We restrict our
attention to water (incompressible) and gas such as hydrogen (compressible) in
the context of gas migration through engineered and geological barriers for a deep
repository for radioactive waste, however the methodology and the analysis can be
extended to problems where both fluids are assumed to be compressible. For more
details on the formulation of such problems, we refer for instance to Ref. 8 and the
references therein.

For notational convenience we only consider a field which contains two different
rock types. But it is easy to see that all the results are valid in a domain with
several rock types. The model to be presented herein is formulated in terms of the
wetting (water) saturation phase and the non-wetting (gas) pressure phase, and the
feature of the global pressure as introduced in Refs. 9 and 18 for incompressible
immiscible flows is used to establish a priori estimates. The governing equations
are derived from the mass conservation laws of both fluids, along with constitutive
relations relating the velocities to the pressures gradients and gravitational effects.
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Traditionally, the standard Muskat–Darcy law provides this relationship. This for-
mulation leads to a coupled system consisting of a nonlinear parabolic equation for
the gas pressure and a nonlinear degenerate parabolic diffusion–convection equation
for the water saturation, subject to appropriate transmission, boundary and initial
conditions. Let us mention that the main difficulties related to the mathematical
analysis of such equations are the coupling, the degeneracy of the diffusion term in
the saturation equation and the degeneracy of the temporal term in the pressure
equation. Moreover the transmission conditions are nonlinear and the saturation is
discontinuous at the interface separating the two media.

We start with a microscopic model defined on a domain with periodic
microstructure. Here we consider a field which contains two different rock types.
Namely, we consider that the porosity, the absolute permeability, the relative per-
meabilities and the capillary pressure are rapidly oscillating functions of the micro-
scopic scale y = x/ε, where x is the macroscopic scale and ε is a small parameter
which characterizes the microscopic length scale. Our aim is to study the macro-
scopic behavior of solutions of this system of equations as ε tends to zero and give
a rigorous mathematical derivation of an upscaled model by means of the two-scale
convergence. Thus, we extend the results of Ref. 3 to the case of fields with different
rock types.

The paper is organized as follows. At the beginning of Sec. 2 we, first, consider
the microscopic model in terms of the phase formulation. Then in Sec. 2.1 we intro-
duce an additional variable called the global pressure as introduced in Refs. 9 and
18 for incompressible immiscible flows and rewrite the initial system of equations
in terms of the global pressure and the water saturation. In Sec. 2.2 we formulate
the main assumptions on the data. The definition of a weak solution to this system
is then given in Sec. 2.3. Section 3 is devoted to the derivation of the uniform esti-
mates of the solutions and is essentially based on the energy equality by using test
functions introduced in Ref. 22. Section 4 is devoted to the convergence results for
the sequences {Pε

�}ε>0, {Sε
�}ε>0, {Θε

�}ε>0. First, in Sec. 4.1 we construct the exten-
sions of the functions Pε

� , S
ε
� , Θε

� . Then in Sec. 4.2 we prove the compactness results
for the sequences {S̃ε

�}ε>0, {Θ̃ε
�}ε>0. Theses compactness results are rather delicate

due to the discontinuity of the functions of interest at the microscopic interface. To
obtain these results we elaborated a new approach based on the ideas from Ref. 3
and monotonicity arguments. The main result of the paper, i.e. Theorem 5.1, is
given in Sec. 5 in terms of the homogenized phases formulation. The theorem is
then proved in Sec. 6. Since the original system is fully nonlinear and degenerates,
the homogenization procedure is getting nontrivial. Our approach relies on cutoff
techniques. Section 7 is devoted to the study of disperse porous media. Finally, we
conclude in Sec. 8.

2. Microscopic Model and Main Assumptions

We consider a reservoir Ω ⊂ R3 which is assumed to be a bounded, connected
Lipschitz domain with a periodic microstructure. More precisely, we will scale this
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periodic structure by a parameter ε which represents the ratio of the cell size to the
whole region and we assume that 0 < ε � 1 is a small parameter tending to zero.
Let Y = (0, 1)3 be a cell consisting of two subdomains (corresponding to two types
of rocks) called Y1 and Y2. We denote by Γ1,2 the interface between two subdomains
in Y . Let 12(y) be the characteristic function of Y2 extended Y -periodically to the
whole R3. Thus, the medium Ω contains two subdomains Ωε

1 and Ωε
2, representing

two different types of rocks and satisfying:

Ωε
2 ⊂

{
x ∈ Ω : 12

(x
ε

)
= 1
}

and Ωε
1 = Ω\Ωε

2. (2.1)

We assume that both subdomains are connected sets. We also introduce the
notation:

Γε
1,2

def= ∂Ωε
1 ∩ ∂Ωε

2 ∩ Ω, (2.2)

ΩT
def= Ω × (0, T ), Ωε

�,T
def= Ωε

� × (0, T ), Σε
1,2,T

def= Γε
1,2 × (0, T ), (2.3)

where T > 0 is fixed, and, from now on, � = 1, 2.
The water–gas flow in porous reservoirs can be described in terms of the follow-

ing characteristics:

— Φε(x) = Φ(x
ε ) is the porosity of the medium Ω;

— Kε(x) = K(x
ε ) is the absolute permeability tensor of Ω;

— �w, �g are the densities of water and gas, respectively.
— Sε

�,w = Sε
�,w(x, t), Sε

�,g = Sε
�,g(x, t) are the saturations of water and gas in Ω�,

respectively;
— k

(�)
r,w = k

(�)
r,w(Sε

�,w), k(�)
r,g = k

(�)
r,g(Sε

�,g) are the relative permeabilities of water and
gas in the medium Ω�, respectively;

— pε
�,w = pε

�,w(x, t), pε
�,g = pε

�,g(x, t) are the pressures of water and gas in Ωε
�,T ,

respectively.

The conservation of mass in each phase can be written as (see, e.g., Refs. 10, 18
and 26) 

Φε(x)
∂

∂t
(Sε

�,w�w(pε
�,w)) + div(�w(pε

�,w)qε
�,w) = 0 in Ωε

�,T ;

Φε(x)
∂

∂t
(Sε

�,g�g(pε
�,g)) + div(�g(pε

�,g)q
ε
�,g) = 0 in Ωε

�,T ,

(2.4)

where the velocities of the water and gas qε
�,w, qε

�,g are defined by the Darcy–Muskat
law:

qε
�,w = −Kε(x)λ�,w(Sε

�,w)(∇pε
�,w − �w(pε

�,w)g),

with λ�,w(Sε
�,w) =

k
(�)
r,w

µw
(Sε

�,w); (2.5)
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qε
�,g = −Kε(x)λ̃�,g(Sε

�,g)(∇pε
�,g − �g(pε

�,g)g),

with λ̃�,g(Sε
�,g) =

k
(�)
r,g

µg
(Sε

�,g). (2.6)

Here g, µw, µg are the gravity vector and the viscosities of the water and gas,
respectively. From now on we assume that the density of the water is constant, which
for the sake of simplicity will be taken equal to one, i.e. �w(pε

�,w) = const. = 1, and
the gas density �g is a smooth monotone function such that

�g(p) = �min for p ≤ pmin; �g(p) = �max for p ≥ pmax;

�min ≤ �g(p) ≤ �max �′g(p) > 0 for pmin < p < pmax.
(2.7)

Here the pair of constants �min, �max and pmin, pmax satisfies the bounds:

0 < �min < �max < +∞ and 0 < pmin < pmax < +∞. (2.8)

To close the system, we need two additional supplementary equations. The first
is the saturation balance,

Sε
�,w + Sε

�,g = 1 with Sε
�,w, S

ε
�,g ≥ 0. (2.9)

and the second describes the relation between the pressures,

P�,c(Sε
� ) = pε

�,g − pε
�,w with P ′

�,c(S
ε
� ) < 0 for all Sε

� ∈ [0, 1] and P�,c(1) = 0,

(2.10)

where we use the notation:

Sε
�

def= Sε
�,w (2.11)

and where P�,c is a given capillary pressure–saturation function, P ′
�,c(s) denotes the

derivative of the function P�,c(s) with respect to the variable s.
Now due to (2.5)–(2.7), (2.11), and the assumption on the density of the water

phase we rewrite system (2.4) as follows:

Φε(x)
∂Sε

�

∂t
− div(Kε(x)λ�,w(Sε

� )(∇pε
�,w − g)) = 0 in Ωε

�,T ;

Φε(x)
∂(�g(pε

�,g)(1 − Sε
� ))

∂t

−div(Kε(x)λ�,g(S�)�g(pε
�,g)(∇pε

�,g − �g(pε
�,g)g)) = 0 in Ωε

�,T ;

P�,c(Sε
� ) = pε

�,g − pε
�,w in Ωε

�,T ,

(2.12)

where

λ�,g(Sε
� ) = λ̃�,g(1 − Sε

� ). (2.13)
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The phase fluxes and pressures are required to be continuous on the interface
Γε

1,2. Namely,{
qε

1,w · ν = qε
2,w · ν and qε

1,g · ν = qε
2,g · ν on Σε

1,2,T ;

pε
1,w = pε

2,w and pε
1,g = pε

2,g on Σε
1,2,T ,

(2.14)

where Σε
1,2,T is defined in (2.3), ν is the unit outer normal to Γε

1,2, and the fluxes
qε

�,w,q
ε
�,g, in the notation (2.11), (2.13) are given by:

qε
�,w = −Kε(x)λ�,w(Sε

� )(∇pε
�,w − g),

qε
�,g = −Kε(x)λ�,g(Sε

� )(∇pε
�,g − �g(pε

�,g)g).

Now we specify the boundary and initial conditions. We suppose that the boundary
∂Ω consists of two parts Γinj and Γimp such that Γinj ∩Γimp = ∅, ∂Ω = Γinj ∪Γimp.
The boundary conditions are given by:{

pε
�,g(x, t) = pε

�,w(x, t) = 0 on Γinj × (0, T );

qε
�,w · ν = qε

�,g · ν = 0 on Γimp × (0, T ).
(2.15)

Finally, the initial conditions read:

pε
w(x, 0) = p0

w(x) and pε
g(x, 0) = p0

g(x) in Ω, (2.16)

where

pε
g(x, t)

def= pε
1,g(x, t)1

ε
1(x) + pε

2,g(x, t)1
ε
2(x);

pε
w(x, t) def= pε

1,w(x, t)1ε
1(x) + pε

2,w(x, t)1ε
2(x),

(2.17)

with 1ε
�(x) = 1�(x

ε ) being the characteristic function of the subdomain Ωε
� .

2.1. Global pressure and useful relations

In what follows we will make use of the so-called global pressure as introduced
in Refs. 9 and 18 for incompressible immiscible two-phase flow. It plays a crucial
mathematical role, in particular, for compactness results. The idea of introducing
the global pressure for each subdomain Ωε

� is as follows. We replace the water–gas
flow in the corresponding medium by a flow of a fictive fluid obeying Darcy’s law
with a non-degenerating coefficient. Namely, we are looking for a pressure Pε

� and
the coefficient γ�(Sε

� ) such that γ�(Sε
� ) > 0 in [0, 1] and

λ�,w(Sε
� )∇pε

�,w + λ�,g(Sε
� )∇pε

�,g = γ�(Sε
� )∇Pε

� . (2.18)

Now, for each subdomain Ωε
� , we define the global pressure Pε

� as follows:

pε
�,w

def= Pε
� + G�,w(Sε

� ) and pε
�,g

def= Pε
� + G�,g(Sε

� ), (2.19)
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where the functions G�,w(s), G�,g(s) are defined by

G�,g(s)
def= G�,g(0) +

∫ s

0

λ�,w(τ)
λ�(τ)

P ′
�,c(τ)dτ (2.20)

and

G�,w(s) def= G�,g(s) − P�,c(s); (2.21)

here

λ�(s)
def= λ�,w(s) + λ�,g(s). (2.22)

Then it is easy to see that (2.18) is satisfied with γ� = λ�. Moreover, it is straight-
forward to check that

∇G�,w(Sε
� ) = −λ�,g(Sε

� )
λ�(Sε

� )
P ′

�,c(S
ε
� )∇Sε

� . (2.23)

From (2.20) and (2.23) we get:

λ�,w(Sε
� )∇G�,w(Sε

� ) = α�(Sε
� )∇Sε

� ,

λ�,g(Sε
� )∇G�,g(Sε

� ) = −α�(Sε
� )∇Sε

� ,
(2.24)

where

α�(s)
def=

λ�,g(s)λ�,w(s)
λ�(s)

|P ′
�,c(s)|. (2.25)

Performing some simple calculations, the following relation can be obtained as in
Refs. 9 and 18:

λ�,g(Sε
� )|∇pε

�,g|2 + λ�,w(Sε
� )|∇pε

�,w|2

= λ�(Sε
� )|∇P�|2 +

λ�,w(Sε
� )λ�,g(Sε

� )
λ�(Sε

� )
|∇P�,c(Sε

� )|2. (2.26)

If we use the global pressure and the saturation as new unknown functions, then
(2.12) reads:

Φε(x)
∂Sε

�

∂t
− div(Kε(x)[λ�,w(Sε

� )∇Pε
� + ∇β�(Sε

� )

−λ�,w(Sε
� )g]) = 0 in Ωε

�,T ;

Φε(x)
∂Θε

�

∂t
− div(Kε(x)�ε

�,g[λ�,g(Sε
� )∇Pε

�

−∇β�(Sε
� ) − λ�,g(Sε

� )�ε
�,gg]) = 0 in Ωε

�,T ,

(2.27)

where for brevity we introduced the notation

Θε
� = Θε

�(S
ε
� ,P

ε
�)

def= �g(Pε
� + G�,g(Sε

� ))(1 − Sε
� ) = (1 − Sε

� )�ε
�,g; (2.28)

�ε
�,g = �g(Pε

� + G�,g(Sε
� )) (2.29)
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and

β�(s)
def=
∫ s

0

α�(ξ)dξ. (2.30)

We have to complete system (2.27) by the corresponding interface, boundary,
and initial conditions. We start by considering the interface conditions (2.14). The
corresponding conditions for the fluxes read:

qε
1,w · ν = qε

2,w · ν and qε
1,g · ν = qε

2,g · ν on Σε
1,2,T , (2.31)

where the fluxes qε
�,w,q

ε
�,g, expressed in terms of global pressure and saturation are

given by:

qε
�,w

def= −Kε(x)[λ�,w(Sε
� )∇Pε

� + ∇β�(Sε
� ) − λ�,w(Sε

� )g]; (2.32)

qε
�,g

def= −Kε(x)[λ�,g(Sε
� )∇Pε

� −∇β�(Sε
� ) − λ�,g(Sε

� )�̃ε
�,gg]. (2.33)

We turn to the continuity of the phase pressures. We recall that

pε
1,w = pε

2,w and pε
1,g = pε

2,g on Σε
1,2,T . (2.34)

As an immediate consequence of the definition of the global pressure and (2.34),
we have

Pε
1 + G1,w(Sε

1) = Pε
2 + G2,w(Sε

2) and Pε
1 + G1,g(Sε

1) = Pε
2 + G2,g(Sε

2)

on Σε
1,2,T . (2.35)

Remark 2.1. Notice that Pε
1 need not be equal to Pε

2 on Σε
1,2,T . Thus, the global

pressure function might be discontinuous at the interface. Also, G1,w(Sε
1) need not

coincide with G2,w(Sε
2) on Σε

1,2,T . This makes the compactness result in Sec. 4
nontrivial.

On the other hand, it follows from the definition of the capillary pressure (2.10)
and (2.34) that

P1,c(Sε
1) = P2,c(Sε

2) on Σε
1,2,T . (2.36)

Thus, the new interface conditions read:
qε

1,w · ν = qε
2,w · ν and qε

1,g · ν = qε
2,g · ν on Σε

1,2,T ;

Pε
1 + G1,w(Sε

1) = Pε
2 + G2,w(Sε

2) on Σε
1,2,T ;

Pε
1 + G1,g(Sε

1) = Pε
2 + G2,g(Sε

2) on Σε
1,2,T ;

P1,c(Sε
1) = P2,c(Sε

2) on Σε
1,2,T .

(2.37)

Consider now the boundary conditions. Since

pε
�,g(x, t) − pε

�,w(x, t) = P�,c(Sε
� ) = 0 on Γinj × (0, T ),
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then it follows from (2.10) that Sε
� = 1 on Γinj × (0, T ). This boundary condition

along with (2.19) imply that Pε
� = const. on Γinj × (0, T ). For the sake of simplicity,

we will assume that this constant is equal to zero. Thus, the boundary conditions
for system (2.27) read:{

Sε
� (x, t) = 1 and Pε

�(x, t) = 0 on Γinj × (0, T );

qε
�,w · ν = qε

�,g · ν = 0 on Γimp × (0, T ),
(2.38)

where the fluxes qε
�,w,q

ε
�,g, written in terms of the global pressure and the satura-

tion, are given by (2.32)–(2.33).
Finally, the initial conditions read:

Sε
� (x, 0) = S0

� (x) and Pε
�(x, 0) = P0

� (x) in Ωε
� , (2.39)

where the initial datum for the global pressure, i.e. P0
� , can be calculated from the

corresponding data for pε
�,g using relations (2.19) and (2.20).

2.2. Main assumptions

The main assumptions on the data are as follows:

(A.1) The function Φ = Φ(y) is a Y-periodic function given by:

Φ(y) def= Φ111(y) + Φ212(y), (2.40)

where Φ1,Φ2 are constants such that 0 < Φ1,Φ2 < 1.
(A.2) The tensor K = K(y) is a Y-periodic function, it belongs to (L∞(Y ))3×3.

Moreover, there exist positive constants K± such that

K−|ξ|2 ≤ (K(y)ξ, ξ) ≤ K+|ξ|2 for all ξ ∈ R
3, a.e. in Y. (2.41)

(A.3) The function �g = �g(p) given by (2.7) is a monotone C1-function in R.
(A.4) The capillary pressure function P�,c(s) ∈ C1([0, 1]; R+). Moreover, P ′

�,c(s) <
0 in [0, 1] and P�,c(1) = 0. We also assume that P1,c(0) = P2,c(0).

(A.5) The functions λ�,w, λ�,g belong to the space C([0, 1]; R+) and satisfy the
following properties:

(i) 0 < λ�,w, λ�,g < 1 in (0, 1);
(ii) λ�,w(0) = 0 and λ�,g(1) = 0;
(iii) there is a positive constant L0 such that λ�(s) = λ�,w(s) + λ�,g(s) ≥

L0 > 0 in [0, 1].

(A.6) The function α� ∈ C1([0, 1]; R+). Moreover, α�(0) = α�(1) = 0 and α� > 0 in
(0, 1).

(A.7) The function β−1
� , inverse of β� defined in (2.30) is a Hölder continuous

function of order θ with θ ∈ (0, 1) on the interval [0, β�(1)]. That is, there
exists a positive constant Cβ such that for all s1, s2 ∈ [0, β�(1)] the following



March 28, 2014 9:19 WSPC/103-M3AS 1450005

Homogenization of immiscible compressible two-phase flow 1431

inequality holds:

|β−1
� (s1) − β−1

� (s2)| ≤ Cβ |s1 − s2|θ. (2.42)

(A.8) The initial data for the phase pressures defined in (2.16) are such that
p0

g , p
0
w ∈ L2(Ω).

(A.9) The initial data for the saturation is such that Sε
0 ∈ L∞(Ω) and 0 ≤ Sε

0 ≤ 1
a.e. in Ω.

Remark 2.2. The assumptions (A.1)–(A.9) are classical and physically meaningful
for two-phase flow in porous media. They are similar to the assumptions made in
our previous work8 that dealt with the existence of a weak solution of the studied
problem.

Remark 2.3. Some of the assumptions (A.1)–(A.9) can be weakened at the price
of additional technical steps in the proofs. In particular, in (A.1) we can assume
that Φ1 and Φ2 are not constant but periodic functions of y. Also, in (A.4) it suffices
to assume that

Pl,c ∈ C([0, 1]; R+), P ′
l,c < 0 on (0, 1), Pl,c(1) = 0 and Pl,c(0) = P2,c(0).

In this case the derivative of P ′
l,c can have a singularity at the end points of

the interval (0, 1). Under these assumptions the compactness results required for
the existence of a solution and for the homogenization remain valid. The case of
unbounded capillary pressure is an open problem.

2.3. Definition of a weak solution

In order to formulate the main result of the paper, we introduce the following
Sobolev space:

H1
Γinj

(Ω) def= {u ∈ H1(Ω) : u = 0 on Γinj}.
The space H1

Γinj
(Ω) is a Hilbert space. The norm in this space is given by

‖u‖H1
Γinj

(Ω) = ‖∇u‖(L2(Ω))3 .
In what follows we make use of two equivalent definitions of the weak solutions

of our problem.
First, we introduce the notation:

Pε(x, t) def= Pε
1(x, t)1

ε
1(x) + Pε

2(x, t)1
ε
2(x);

Sε(x, t) def= Sε
1(x, t)1

ε
1(x) + Sε

2(x, t)1
ε
2(x).

(2.43)

We start by the definition in terms of the phase pressures.

Definition 2.1. We say that the pair of functions 〈pε
w, p

ε
g〉 is a weak solution to

problem (2.12)–(2.16) if:

(i) 0 ≤ Sε ≤ 1 a.e. in ΩT .
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(ii) pε
w, p

ε
g ∈ L2(ΩT ), λw(x

ε , S
ε)∇pε

w ∈ L2(ΩT ), λg(x
ε , S

ε)∇pε
g ∈ L2(ΩT ).

(iii) The interface and boundary conditions (2.14), (2.15) are satisfied.
(iv) For any ϕw, ϕg ∈ C1([0, T ];H1

Γinj
(Ω)) satisfying ϕw(T ) = ϕg(T ) = 0, we have:

Saturation equation:

−
∫

ΩT

Φε(x)Sε ∂ϕw

∂t
dxdt+

∫
Ω

Φε(x)Sε
0(x)ϕw(x, 0)dx

+
∫

ΩT

Kε(x)λw

(x
ε
, Sε
)
∇pε

w · ∇ϕwdxdt

−
∫

ΩT

Kε(x)λw

(x
ε
, Sε
)

g · ∇ϕwdxdt = 0. (2.44)

Pressure equation:

−
∫

ΩT

Φε(x)Θε ∂ϕg

∂t
dxdt +

∫
Ω

Φε(x)Θε
0(x)ϕg(x, 0)dx

+
∫

ΩT

Kε(x)λg

(x
ε
, Sε
)
�g(pε

g)∇pg · ∇ϕwdxdt

−
∫

ΩT

Kε(x)λg

(x
ε
, Sε
)

[�g(pε
g)]

2g · ∇ϕwdxdt = 0, (2.45)

where

λw

(x
ε
, Sε
)

def= λ1,w(Sε
1)1ε

1(x) + λ2,w(Sε
2)1

ε
2(x),

(2.46)
λg

(x
ε
, Sε
)

def= λ1,g(Sε
1)1ε

1(x) + λ2,g(Sε
2)1ε

2(x).

Θε(x, t) def= Θε
1(x, t)1

ε
1(x) + Θε

2(x, t)1
ε
2(x, t), (2.47)

Sε
0(x) def= S0

1 (x)1ε
1(x) + S0

2 (x)1ε
2(x), (2.48)

Θε
0(x) def= Θ0

1(x)1ε
1(x) + Θ0

2(x)1ε
2(x). (2.49)

Definition 2.2. We say that the pair of functions 〈Pε, Sε〉 is a weak solution to
problem (2.27)–(2.29), (2.37)–(2.39) if:

(i) 0 ≤ Sε ≤ 1 a.e. in ΩT .
(ii) Pε

1 ∈ L2(0, T ;H1
Γinj

(Ωε
1)) and Pε

2 ∈ L2(0, T ;H1(Ωε
2)).

(iii) The interface and boundary conditions (2.37), (2.38) are satisfied.
(iv) For any ϕw, ϕg ∈ C1([0, T ];H1

Γinj
(Ω)) satisfying ϕw(T ) = ϕg(T ) = 0, we have:
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Saturation equation:

−
∫

ΩT

Φε(x)Sε ∂ϕw

∂t
dxdt+

∫
Ω

Φε(x)Sε
0(x)ϕw(0, x)dx

+
2∑

�=1

∫
Ωε

�,T

Kε(x)∇β�(Sε
� ) · ∇ϕwdxdt

+
2∑

�=1

∫
Ωε

�,T

Kε(x)λ�,w(Sε
� )(∇Pε

� − g) · ∇ϕwdxdt = 0. (2.50)

Pressure equation:

−
∫

ΩT

Φε(x)Θε ∂ϕg

∂t
dxdt +

∫
Ω

Φε(x)Θε
0(x)ϕg(0, x)dx

−
2∑

�=1

∫
Ωε

�,T

Kε(x)�g(pε
�,g)∇β�(Sε

� ) · ∇ϕgdxdt

+
2∑

�=1

∫
Ωε

�,T

Kε(x)λ�,g(Sε
� )�g(pε

�,g)(∇Pε
� − �g(pε

�,g)g) · ∇ϕgdxdt = 0. (2.51)

According to Ref. 8, for each ε > 0, problem (2.12)–(2.16) (or equivalent problem
(2.27)–(2.29), (2.37)–(2.39)) has at least one weak solution.

The rest of the paper is organized as follows. In Sec. 3, we establish the a priori
uniform estimates for solutions of problem (2.27), (2.37)–(2.39). Then in Sec. 4
we obtain extension and compactness results for the sequences {Pε

�}ε>0, {Sε
�}ε>0,

{Θε
�}ε>0. In Sec. 5, we formulate the main result of the paper which is then proved

in Sec. 6.

Notational convention. In what follows C,C1, . . . denote generic constants that do
not depend on ε.

3. Uniform Estimates for Solutions of Problem (2.27)–(2.29),
(2.37)–(2.39)

In this section we establish a priori estimates for solution of (2.27)–(2.29), (2.37)–
(2.39). These estimates rely on a special choice of test functions in the integral
identities (2.50)–(2.51). We use suitable test functions introduced in Ref. 22 in the
case of a single rock type model.

To obtain the energy equality in the case of a porous medium made of two types
of rocks, we introduce the functions:

R�,w(pε
�,w) def=

∫ pε
�,w

0

dξ = pε
�,w and R�,g(pε

�,g)
def=
∫ pε

�,g

0

dξ

�g(ξ)
. (3.1)

It is clear that

∇R�,w(pε
�,w) = ∇pε

�,w and ∇R�,g(pε
�,g) =

1
�ε

�,g(p
ε
�,g)

∇pε
�,g.
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Then, following the lines of Refs. 22 and 3, one can prove the following statement.

Lemma 3.1. (Energy equality) Let 〈pε
g, p

ε
w〉 be a solution to problem (2.12)–(2.16).

Then

d

dt

∫
Ω

Φε(x)Eε(x, t)dx +
∫

Ω

Kε(x)
{
λw

(x
ε
, Sε
)
∇pε

w · (∇pε
w − g)

+λg

(x
ε
, Sε
)
�g(pε

g)∇pε
g · (∇pε

g − �g(pε
g)g)

}
dx = 0, (3.2)

in the sense of distributions. Here Sε is defined in (2.43),

Eε(x, t) def= Eε
1(x, t)1

ε
1(x) + Eε

2(x, t)12(x),

with

Eε
�

def= (1 − Sε
� )R�(pε

�,g) − �(Sε
� ), (3.3)

where

��(s)
def=
∫ s

0

P�,c(ξ)dξ and R�(p)
def= �g(p)R�,g(p) − p. (3.4)

Furthermore, R�(p) ≥ 0 for all p ∈ R.

As a consequence of the inequality R�(p) ≥ 0 and condition (A.4), we have

Eε
� = (1 − Sε

� )R�(pε
�,g) − �(Sε

� ) ≥ −�(1) ≥ − max
Sε

�∈[0,1]
P�,c(Sε

� ). (3.5)

Our next goal is to obtain a priori estimates for
√
λw(x

ε , S
ε)∇pε

w and√
λg(x

ε , S
ε)∇pε

g.

Lemma 3.2. Let 〈pε
g, p

ε
w〉 be a solution to problem (2.12)–(2.16). Then

∫
ΩT

{
λw

(x
ε
, Sε
)
|∇pε

w|2 + λg

(x
ε
, Sε
)
|∇pε

g|2
}
dx ≤ C. (3.6)

Proof of Lemma 3.2. Consider the energy equality (3.2). We integrate (3.2) with
respect to t ∈ (0, T ). Then the statement of the lemma immediately follows from
the boundedness of the function Eε

� , (3.5), and the Cauchy inequality. Lemma 3.2
is proved.
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Now we are in a position to obtain the a priori estimates for Pε
� and β�(Sε

� ). We
have.

Lemma 3.3. Let 〈pε
g, p

ε
w〉 be a solution of problem (2.12)–(2.16) and let {Pε

�}ε>0

and {β�(Sε
� )}ε>0 be the sequences of functions defined in (2.19) and (2.30), respec-

tively. Then

{Pε
1}ε>0 is uniformly bounded in L2(0, T ;H1

Γinj
(Ωε

1)); (3.7)

{Pε
2}ε>0 is uniformly bounded in L2(0, T ;H1(Ωε

2)); (3.8)

{β�(Sε
� )}ε>0 is uniformly bounded in L2(0, T ;H1(Ωε

�)). (3.9)

Proof of Lemma 3.3. It is easy to see that equality (2.26) along with Lemma 3.2
and the definition of the function β� immediately imply the following bound:∫

Ωε
�,T

{|∇Pε
� |2 + |∇β�(Sε

� )|2}dx ≤ C, � = 1, 2. (3.10)

Now the uniform boundedness of the sequence {Pε
1}ε>0 in the space L2(0, T ;

H1
Γinj

(Ω1)) follows from (3.10), the boundary condition (2.38), and the Friedrich
inequality.

Consider now the sequence {Pε
2}ε>0. As opposed to the function Pε

1, the Friedrich
inequality does not apply to Pε

2. Therefore, we proceed in another way. We make use
of the ideas from Ref. 20. As Pε

2 ∈ L2(0, T ;H1(Ωε
2)) and Pε

1 ∈ L2(0, T ;H1
Γinj

(Ωε
1)),

with techniques proposed in Ref. 20 p. 1055, we have:

‖Pε
2‖L2(Ωε

2,T ) ≤ C(ε‖∇Pε
2‖L2(Ωε

2,T ) +
√
ε‖Pε

2‖L2(Σε
1,2,T )). (3.11)

Then due to the definition of the global pressure Pε
2, (2.19) and the interface con-

dition (2.35) one can obtain the following estimate:

‖Pε
2‖L2(Σε

1,2,T ) ≤ ‖Pε
2 + G2,w(Sε

2)‖L2(Σε
1,2,T ) + ‖G2,w(Sε

2)‖L2(Σε
1,2,T )

= ‖Pε
1 + G1,w(Sε

1)‖L2(Σε
1,2,T ) + ‖G2,w(Sε

2)‖L2(Σε
1,2,T )

≤ ‖Pε
1‖L2(Σε

1,2,T ) + ‖G1,w(Sε
2)‖L2(Σε

1,2,T ) + ‖G2,w(Sε
2)‖L2(Σε

1,2,T ).

(3.12)

Now, taking into account the boundedness of the functions G�,w(Sε
� ), the geom-

etry of the subdomain Ωε
2,T , (3.12), and the estimate

√
ε‖Pε

1‖L2(Σε
1,2,T ) ≤ C(ε‖∇Pε

1‖L2(Ωε
1,T ) + ‖Pε

1‖L2(Ωε
1,T )), (3.13)

we, finally, obtain that

‖Pε
2‖L2(Ωε

2,T ) ≤ C. (3.14)
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Finally, consider the sequence {β�(Sε
� )}ε>0. The desired upper bound (3.9) follows

from condition (A.6) and (3.10). This completes the proof of Lemma 3.3.

Let Θε and Sε be the functions defined in (2.47) and (2.43), respectively. The
uniform bounds of the time derivatives of Θε and Sε are given by the following:

Lemma 3.4. Let 〈pε
g, p

ε
w〉 be a solution to problem (2.12)–(2.16). Then

{∂t(ΦεΘε)}ε>0 is uniformly bounded in L2(0, T ;H−1(Ω)); (3.15)

{∂t(ΦεSε)}ε>0 is uniformly bounded in L2(0, T ;H−1(Ω)). (3.16)

Proof of Lemma 3.4. First, we rewrite system (2.12) as follows:

Φε(x)
∂Sε

∂t
− div

(
Kε(x)λw

(x
ε
, Sε
)

(∇pε
w − g)

)
= 0 in ΩT ;

Φε(x)
∂Θε

∂t
− div

(
Kε(x)λg

(x
ε
, Sε
)
�g(pε

g)(∇pε
g

− �g(pε
g)g)

)
= 0 in ΩT ;

Pc

(x
ε
, Sε
)

= pε
g − pε

w in ΩT .

(3.17)

Consider the first statement of the lemma. Multiplying the second equation in
(3.17) by ϕg ∈ D(ΩT ) and integrating by parts, we get:

−
∫

ΩT

Φε(x)Θε ∂ϕg

∂t
dxdt

=
∫

ΩT

Kε(x)�g(pε
g)
{
λg

(x
ε
, Sε
)

(∇pε
g − �g(pε

g)g)
}
· ∇ϕgdxdt. (3.18)

Then it follows from Cauchy’s inequality and the definition of the function �g that∣∣∣∣∫
ΩT

Φε(x)Θε ∂ϕg

∂t
dxdt

∣∣∣∣ ≤ C

(
1 +

∥∥∥∥√λw

(x
ε
, Sε
)
|∇pε

w|
∥∥∥∥

L2(ΩT )

)
‖∇ϕg‖L2(ΩT ).

(3.19)

Inequality (3.19) along with (3.6) implies the desired bound of the sequence
{∂t(ΦεΘε)}ε>0 in the space L2(0, T ;H−1(Ω)).

The uniform boundedness of {∂t(ΦεSε)}ε>0 in the space L2(0, T ;H−1(Ω)) can
be obtained in a similar way. Lemma 3.4 is proved.

4. Extensions and Compactness Results for {Pε
�}ε>0,

{Sε
� }ε>0, {Θε

�}ε>0

The outline of the section is as follows. First, in Sec. 4.1 we extend the functions Sε
�

and Pε
� from the subdomain Ωε

� to the whole Ω and obtain the uniform estimates
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for the extended functions S̃ε
� , P̃ε

� . Then in Sec. 4.2, using these estimates, we prove
the compactness result for S̃ε

� and Θ̃ε
� , where Θ̃ε

� is an extension of the function Θε
�

from the subdomain Ωε
� to the whole Ω.

4.1. Extensions and additional uniform estimates

To obtain some additional a priori estimates and to homogenize the microscopic
problem, we will extend the functions Pε

� , S
ε
� , Θε

� to the whole Ω. It follows from
Ref. 1 that there exists a linear continuous extension operator Πε

� : H1(Ωε
�) →

H1(Ω) such that:

(i) Πε
�u = u in Ωε

� ,
(ii) for any u ∈ H1(Ωε

�),

‖Πε
�u‖L2(Ω) ≤ C‖u‖L2(Ωε

� ) and ‖∇(Πε
�u)‖L2(Ω) ≤ C‖∇u‖L2(Ωε

�), (4.1)

where C is a constant that does not depend on u, ε.

Then it follows from Lemma 3.3 that there is an extension Πε
�P

ε
� = P̃ε

� such that
P̃ε

� = Pε
� in Ωε

� and ∫
ΩT

(|P̃ε
� |2 + |∇P̃ε

� |2)dxdt ≤ C. (4.2)

Now we turn to the extension of the functions Sε
� . To this end we introduce the

function C defined by:

C(s) def= P−1
2,c (P1,c(s)) for s ∈ [0, 1]. (4.3)

Notice that due to the properties of the capillary pressure functions, C is a smooth
increasing function such that C(0) = 0 and C(1) = 1.

According to the relation (2.36), we define the extensions of the functions Sε
1 , S

ε
2

from the subdomains Ωε
1,Ω

ε
2 to the whole Ω by the following formula:

S̃ε
1(x, t)

def=

{
Sε

1 in Ωε
1 × (0, T );

C−1(Sε
2) in Ωε

2 × (0, T );
S̃ε

2(x, t)
def=

{
Sε

2 in Ωε
2 × (0, T );

C(Sε
1) in Ωε

1 × (0, T ).

(4.4)

In order to obtain the regularity properties of the functions S̃ε
1 , S̃

ε
2 , we introduce

the following functions:

α̂(s) = min{α1(s), α2(C(s))}, β̂(s) =
∫ s

0

α̂(τ)dτ, 0 ≤ s ≤ 1. (4.5)

Now we are in a position to formulate the regularity properties of the extended
saturations. We have.

Lemma 4.1. Under our standing conditions, the following bound holds true:

‖∇β̂(S̃ε
� )‖L2(ΩT ) ≤ C. (4.6)
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Proof of Lemma 4.1. Consider, for example, the function S̃ε
1 . We have:

|∇β̂(S̃ε
1)| = |∇β̂(Sε

1)1ε
1(x)| + |∇β̂(C−1(Sε

2))1ε
2(x)|

= |α̂(Sε
1)||∇Sε

1 |1ε
1(x) + |α̂(C−1(Sε

2))|
∣∣∣∣ ddsC−1(Sε

2)
∣∣∣∣ |∇Sε

2 |1ε
2(x)

≤ |α1(Sε
1)||∇Sε

1 |1ε
1(x) + C|α2(Sε

2)||∇Sε
2 |1ε

2(x), (4.7)

with C = ‖ d
dsC−1(Sε

2)‖L∞ . Due to (3.9), this yields

‖∇β̂(S̃ε
1)‖L2(Ωε

T ) ≤ C. (4.8)

This completes the proof.

In order to define the extension of the functions Θε
� , we introduce the function:

P ε
g

def=

{
P̃ε

1 + G1,g(S̃ε
1) in Ωε

1 × (0, T );

P̃ε
2 + G1,g(S̃ε

2) in Ωε
2 × (0, T ).

(4.9)

Recall that

Θε
� = �g(Pε

� + G�,g(Sε
� ))(1 − Sε

� ).

Then we define the extension of the functions Θε
� to the whole ΩT by

Θ̃ε
�

def= �g(P ε
g )(1 − S̃ε

� ). (4.10)

4.2. Compactness results for the sequences {S̃ε
�}ε>0, {Θ̃ε

�}ε>0

We start this section by obtaining the following compactness result for the family
{S̃ε

�}ε>0. It is assured by the following statement.

Proposition 4.1. Under our standing assumptions the family {S̃ε
�}ε>0 is a com-

pact set in the space L2(ΩT ).

Proof of Proposition 4.1. Consider, for example, the family {S̃ε
2}, the proof of

the compactness result for the family {S̃ε
1} can be done in a similar way. Without

loss of generality, we assume that Ω � B, where B = (0, 2π)d.
Let us introduce the function:

S
ε def=

{
Φ2S

ε
2 in Ωε

2;

Φ1C
−1(S̃ε

2) in Ωε
1,

(4.11)

where the constants Φ1,Φ2 are defined in condition (A.1), and S̃ε
2 is introduced in

(4.4). It is important to notice that it follows from Lemma 3.4 that

∂Sε

∂t
is uniformly bounded in L2(0, T ;H−1(Ω)). (4.12)
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It also follows from Lemma 4.1 that

β̂(S̃ε
2) is uniformly bounded in L2(0, T ;H1(Ω)). (4.13)

Then in the same way as in the proof of Lemma 4.2 in Ref. 3, it can be shown
that, for any δ > 0, there is N = N(δ) such that S̃ε

2 can be represented as follows:

S̃ε
2(x, t) =

∑
|j|≤N(δ)

ηε
j (t)ψj(x) + rε

N (x, t), (4.14)

where {ψj} is an orthonormal basis in H1
per(B) and the function rε

N is such that

‖rε
N‖2

L2(ΩT ) < δ. (4.15)

We also assume that the functions {ψj}1≤j≤N are orthogonal in L2(B).
Now let us introduce the following mapping from L2(Ω) to L2(Ω):

Uε(u) =

{
Φ2u in Ωε

2;

Φ1C
−1(u) in Ωε

1.
(4.16)

Notice that the mapping Uε is continuous in L2(Ω) and that the continuity is
uniform with respect to ε > 0. In fact, taking into account the regularity properties
of the capillary pressure functions, we have:∫

Ω

|Uε(u+ v) − Uε(u)|2dx

= Φ2

∫
Ωε

2

|v|2dx+ Φ1

∫
Ωε

1

|C−1(u + v) − C−1(u)|2dx

≤ Φ2

∫
Ωε

2

|v|2dx+ C max
s∈[0,1]

(C−1(s))′
∫

Ωε
1

|v|2dx ≤ C

∫
Ω

|v|2dx. (4.17)

Consider now the function Uε(S̃ε
2). It can be represented as follows:

S
ε = Uε(S̃ε

2) =
∑

|j|≤N(δ)

ξε
j (t)ψj(x) +Dε

N (x, t) def= Bε(x, t) +Dε
N (x, t), (4.18)

where for each t, Dε
N (x, t) is orthogonal to span(ψj=1,...,N ). Notice that the norm

of Dε
N (x, t) need not be small. Clearly, ξε

j (t) = (Uε(S̃ε
2(t)), ψj)L2(Ω). From (4.12) it

now follows in the standard way (see Ref. 3) that

|ξε
j (t+ r) − ξε

j (t)| ≤ C
√
r, 0 ≤ t, t+ r ≤ T, (4.19)

where the constant C depends on the upper bounds in (4.12) and on N . Indeed,∥∥∥∥∂ξε
j

∂t

∥∥∥∥
L2(0,T )

=
∥∥∥∥(∂Sε

∂t
, ψj

)∥∥∥∥
L2(0,T )

≤ C

∥∥∥∥∂Sε

∂t

∥∥∥∥
L2(0,T ;H−1(Ω))

‖ψj‖H1(Ω) ≤ C(N).

By the Schwartz inequality this implies (4.19).
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Let us define a map F ε : RN �→ RN by

{ηj}1≤j≤N → u =
∑

ηjψj → {(Uε(u), ψk)L2}1≤k≤N .

It is easy to check that this map is smooth uniformly in ε. Moreover, due to posi-
tiveness of C, we have

(F ε(η′) − F ε(η′′)) · (η′ − η′′) = (Uε(u′) − Uε(u′′), u′ − u′′)L2(B)

≥ C‖u′ − u′′‖2
L2(B) ≥ C|η′ − η′′|2,

with a constant C that does not depend on ε; the second inequality here readily
follows from the definition of U and the fact that C is a positive and increasing
function.

Thus, the maps F ε are uniformly in ε smooth and monotone. This implies that
the inverse maps (F ε)−1 are also uniformly in ε smooth. Therefore, from (4.19) we
deduce the estimate

|ηε
j (t+ r) − ηε

j (t)| ≤ C
√
r, 0 ≤ t, t+ r ≤ T, (4.20)

with a constant C that does not depend on ε. This yields the desired compactness
in L2(ΩT ) (see Ref. 3).

As a consequence of Proposition 4.1 and the uniform L∞-bound for S̃ε
� we have

the following:

Corollary 4.1. The family {S̃ε
�}ε>0 is a compact set in the space Lq(ΩT ) for all

q ∈ [1,∞).

Finally, we formulate the compactness result for the sequence {Θ̃ε
�}ε>0, where

the function Θ̃ε
� is defined in (4.10). We have:

Proposition 4.2. Under our standing assumptions the family {Θ̃ε
�}ε>0 is a com-

pact set in the space Lq(ΩT ) for all q ∈ [1,∞).

The proof of Proposition 4.2 is done by the arguments similar to those used in
the proof of Proposition 4.1.

5. Formulation of the Main Result

We study the asymptotic behavior of the solution to problem (2.12)–(2.16) (or
equivalent problem (2.27)–(2.39)) as ε→ 0.

In order to introduce the effective problem, for any s1, s2 ∈ [0, 1], we first define
the following auxiliary functions

λw(y, s1, s2)
def=

{
λ1,w(s1) if y ∈ Y1;

λ2,w(s2) if y ∈ Y2;
λg(y, s1, s2)

def=

{
λ1,g(s1) if y ∈ Y1;

λ2,g(s2) if y ∈ Y2
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and consider auxiliary cell problems:

divy{K(y)λw(y, s1, s2)(I + ∇yχw(y))} = 0, χw ∈ H1
per(Y ); (5.1)

divy{K(y)λg(y, s1, s2)(I + ∇yχg(y))} = 0, χg ∈ H1
per(Y ). (5.2)

Here I stands for the unit matrix. For any s1, s2 ∈ (0, 1), problems (5.1)–(5.2) are
solvable and have a unique up to an additive constant solution. We set

Λw(s1, s2) =
∫

Y

K(y)λw(y, s1, s2){I + ∇yχw(s1, s2, y)}dy,

Λg(s1, s2) =
∫

Y

K(y)λg(y, s1, s2){I + ∇yχg(s1, s2, y)}dy.

We are going to show that the effective problem reads:

〈Φ〉∂S
�

∂t
− divx{Λw(S1, S2)(∇Pw − g)} = 0 in ΩT ; (5.3)

〈Φ〉∂Θ�

∂t
− divx{Λg(S1, S2)�g(Pg)(∇Pg − �g(Pg)g)} = 0 in ΩT , (5.4)

where

Pw(x, t) def= P1(x, t) + G1,w(S1(x, t))
def= P2(x, t) + G2,w(S2(x, t)); (5.5)

Pg(x, t)
def= P1(x, t) + G1,g(S1(x, t))

def= P2(x, t) + G2,g(S2(x, t)) (5.6)

and

S2 = C(S1) a.e. in ΩT , where C(s) def= P−1
2,c (P1,c(s)). (5.7)

Here the following notation has been used:

• 〈Φ〉 denotes the mean value of the function Φ over the cell Y .
• The functions S� = S�(S1, S2) and Θ� = Θ�(S1, S2; P1,P2) are defined by:

S� def=
2∑

�=1

|Y�|
〈Φ〉Φ�S� and Θ� def= (1 − S�)�g(Pg), (5.8)

where |Y�| is the measure of the set Y�, � = 1, 2,

Φ�
def=

1
|Y�|

∫
Y�

Φ(y)dy. (5.9)

Equations (5.3)–(5.4) are equipped with the following boundary and initial condi-
tions:

Pw(x, t) = Pg(x, t) = 0 on Γinj × (0, T ); (5.10)

qw · ν = qg · ν = 0 on Γimp × (0, T ), (5.11)



March 28, 2014 9:19 WSPC/103-M3AS 1450005

1442 B. Amaziane, L. Pankratov & A. Piatnitski

where the vectors qw,qg are given by:

qg
def= −Λg(S1, S2)�g(Pg)(∇Pg − �g(Pg)g); (5.12)

qw
def= −Λw(S1, S2)(∇Pw − g). (5.13)

Finally, the initial conditions read:

Pw(x, 0) = p0
w(x) and Pg(x, 0) = p0

g(x) in Ω, (5.14)

where the functions p0
w, p

0
g are defined in (2.16).

The homogenized model described above could be obtained formally by the
technique of two-scale asymptotic expansions. Here the homogenization process for
the problem is rigorously obtained by using the two-scale approach, see, e.g., Ref. 2.
For the reader’s convenience, let us recall the definition of the two-scale convergence.

Definition 5.1. A function, ϕ ∈ L2(ΩT ;C2
per(Y )), which is Y-periodic in y and

which satisfies

lim
ε→0

∫
ΩT

∣∣∣ϕ(x, x
ε
, t
)∣∣∣2 dxdt =

∫
ΩT ×Y

|ϕ(x, y, t)|2dydxdt

is called an admissible test function.

Here L2(ΩT ;C2
per(Y )) is the space of functions φ = φ(x, y, t) periodic and two

times continuously differentiable in y for a.e. (x, t) ∈ ΩT with the norm

‖φ‖2
L2(ΩT ;C2

per(Y )) =
∫

ΩT

‖φ(x, ·, t)‖2
C2(Y )dxdt.

Definition 5.2. A sequence of functions vε ∈ L2(ΩT ) two-scale converges to v ∈
L2(ΩT × Y ) if for any admissible test function ϕ(x, y, t),

lim
ε→0

∫
ΩT

vε(x, t)ϕ
(
x,
x

ε
, t
)
dxdt =

∫
ΩT ×Y

v(x, y, t)ϕ(x, y, t)dydxdt.

This convergence is denoted by vε(x, t) 2s−⇀ v(x, y, t). In what follows for the
sake of brevity we use the notation

��
g

def= �g(Pg). (5.15)

We are also reminded of the following notation (see (2.17), (2.19)):

pε
w(x, t) def= 1ε

1(x)(P
ε
1 + G1,w(Sε

1)) + 1ε
2(x)(P

ε
2 + G2,w(Sε

2)), (5.16)

pε
g(x, t)

def= 1ε
1(x)(P

ε
1 + G1,g(Sε

1)) + 1ε
2(x)(P

ε
2 + G2,g(Sε

2)). (5.17)

The main result of the paper is the following theorem.

Theorem 5.1. Let assumptions (A.1)–(A.9) be fulfilled. Then the pair of functions
〈pε

w, p
ε
g〉 solution of problem (2.12)–(2.16) converges in the two-scale sense to the

pair of functions 〈Pw , Pg〉 solution to (5.3)–(5.14).
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6. Proof of Theorem 5.1

The proof of Theorem 5.1 consists of the following steps. In Sec. 6.1, we obtain a
number of convergence results that rely on our energy estimates and compactness
lemmata. Section 6.2 deals with the passage to the limit in Eqs. (2.50) and (2.51).
Finally, we establish the relations between the limit functions S1, S2 and P1,P2.

6.1. Convergence results

The following statement holds.

Lemma 6.1. There exist functions S� ∈ L∞(ΩT ), 0 ≤ S� ≤ 1, P� ∈ L2(0, T ;
H1(Ω)), w�,p ∈ L2(ΩT ;H1

per(Y )) such that up to a subsequence:

P̃ε
�(x, t) ⇀ P�(x, t) weakly in L2(0, T ;H1(Ω)); (6.1)

1ε
�(x)P

ε
�(x, t)

2s−⇀ 1�(y)P�(x, t); (6.2)

S̃ε
� (x, t) → S�(x, t) strongly in Lq(ΩT )∀ q ∈ [1,+∞); (6.3)

1ε
�(x)S

ε
� (x, t) 2s−→ 1�(y)S�(x, t); (6.4)

β̃ε
� → β�(S�) strongly in Lq(ΩT ) for all q ∈ [1,+∞); (6.5)

Θ̃ε
�(x, t) → Θ�

def= (1 − S�(x, t))�g(Pg) strongly in Lq(ΩT )∀ q ∈ [1,+∞). (6.6)

Proof of Lemma 6.1. Relations (6.1)–(6.5) follow from the estimates of Sec. 3
in the standard way. Relation (6.6) can be justified by the arguments used in the
proof of Lemma 4.8 from Ref. 3.

6.2. Passage to the limit in system (2.12)

It is easy to justify the passage to the two-scale limit in the temporal terms, see for
instance Ref. 3.

We begin the section by obtaining an auxiliary convergence result. First, we
recall that we extend the functions Sε

� as follows:

S̃ε
1(x, t) def=

{
Sε

1 in Ωε
1,T ;

C−1(Sε
2) in Ωε

2,T

and S̃ε
2(x, t) def=

{
Sε

2 in Ωε
2,T ;

C(Sε
1) in Ωε

1,T .
(6.7)

Now, for any δ > 0, we introduce the functions

S̃ε,δ
� = min(1 − δ,max(δ, S̃ε

� )).

These functions satisfy the estimates

‖S̃ε,δ
� ‖L2(0,T ;H1(Ω)) ≤ C(δ), � = 1, 2.
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Therefore, Sδ
� = min(1 − δ,max(δ, S�)) ∈ L2(0, T ;H1(Ω)) for any δ > 0. Thus, for

a subsequence,

∇(11(x)(Pε
1 + G1,w(Sε,δ

1 )) + 12(x)(Pε
2 + G2,w(Sε,C(δ)

2 )))

2s−→∇x(P1 + G1,w(Sδ
1)) + ∇yVδ

w

with Vδ
w ∈ L2(ΩT ;H1(Y )).

We set:

ϕε
w(x, t) def= εϕ(x, t)R(S̃ε

1)ζ
(x
ε

)
, (6.8)

with R(s) being a smooth function equal to zero for s �∈ (δ, 1 − δ); ζ(y) is smooth
periodic, and ϕ is a smooth function with a compact support in ΩT . Using ϕε

w as
a test function in the first equation in (2.12) yields∫

ΩT

Kε(x)λw

(x
ε
, Sε

1 , S
ε
2

)
(∇pε

w − g)∇ζ
(x
ε

)
ϕR(S̃ε

1)dxdt = O(ε).

Passing here to the two-scale limit, we obtain∫
ΩT

∫
Y

(K(y)λw(y, S1, S2)(∇P1 + ∇G1,w(S1)

+∇yV
δ
w(t, x, y) − g)∇ζ(y)R(S1)ϕ)dydxdt = 0.

Therefore,

Vδ
w = χw(y)(∇xP1 + ∇xG1,w(S1) − g), (6.9)

for all (x, t) ∈ ΩT such that S1 ∈ (δ, 1 − δ), where χw has been defined in (5.1).
Since δ is an arbitrary positive number, representation (6.9) is valid for all (x, t)
such that S1 ∈ (0, 1). In particular, Vδ

w does not depend on δ: Vδ
w = Vw. Notice

that χw also depends on S1 and S2.
With the help of our a priori estimates we deduce in the standard way that

Kελw

(x
ε
, Sε

1 , S
ε
2

)
(∇pε

w − �g)

2s−⇀K(y)λw(y, S1, S2)(I + ∇yχw(y))(∇xP1 + ∇xG1,w(S1) − g).

Choosing now a smooth test function ϕ = ϕ(x, t) in the first equation in (2.12) we
arrive at (5.3).

We proceed with the second equation in (2.12). In view of (6.6), the passage to
the two-scale limit in the temporal term is standard.

In order to pass to the limit in the spatial term we follow the same strategy as
above. We have, for a subsequence,

∇(11(x)(Pε
1 + G1,g(S

ε,δ
1 )) + 12(x)(Pε

2 + G2,g(S
ε,C(δ)
2 )))

2s−→∇x(P1 + G1,g(Sδ
1)) + ∇yVδ

g,
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with Vδ
g ∈ L2(ΩT ;H1(Y )). Letting

ϕε
g(x, t)

def= εϕ(x, t)R(S̃ε
1)ζ
(x
ε

)
, (6.10)

with the same R(s) as above, we get∫
ΩT

Kε(x)λg

(x
ε
, Sε

1 , S
ε
2

)
�g(pε

g)(∇pε
g − g)∇ζ

(x
ε

)
ϕR(S̃ε

1)dxdt = O(ε). (6.11)

It is shown below in Lemma 6.2 that P1+G1,g(S1) = P2+G2,g(S2). Since, according
to (6.6), �g(pε

g)(1 − S̃ε
1) converge to �g(P1 + G1,w(S1))(1 − S1) a.e., then

R(S̃ε
1)�g(pε

g) → R(S1)�g(P1 + G1,g(S1)) in L2(ΩT ).

Passing now to the two-scale limit in (6.10) yields∫
ΩT

∫
Y

K(y)�g(Pg)λg(y, S1, S2)(∇P1 + ∇G1,g(S1)

+∇yVδ
g(t, x, y) − �g(Pg)g)∇ζ(y)R(S1)ϕdydxdt = 0.

From this relation, Eq. (5.4) can be derived by means of the same arguments as
were used above.

It remains to justify (5.5)–(5.7). The following lemma holds.

Lemma 6.2. Let S1, S2 and P1,P2 be the functions defined in (6.1) and (6.3). Then

S2 = C(S1) a.e. in ΩT , where C(s) def= P−1
2,c (P1,c(s)) (6.12)

and

P1 + G1,w(S1)= P2 + G2,w(S2) and P1 + G1,g(S1) = P2 + G2,g(S2) a.e. in ΩT ,

(6.13)

where the functions G�,w,G�,g are defined in (2.20) and (2.21).

Proof of Lemma 6.2. Let us prove relation (6.12). Since C is a smooth bounded
function, it follows from (6.3) that C(S̃ε

1(x, t)) → C(S1(x, t)) in L2(ΩT ). Therefore,
passing to the limit in the relation (S̃ε

2(x, t)) = C(S̃ε
1(x, t)) in ΩT we obtain the

desired formula (6.12).
Justification of (6.13) requires more delicate arguments because the functions

G�,g(S̃ε
� ) and G�,w(S̃ε

� ) are not bounded in L2(0, T ;H1(Ω)). In order to prove (6.13),
we are going to exploit the fact that G�,w(S̃ε

� ) admits a better estimate on the set
{(x, t) : S̃ε

� ≥ δ > 0}, and G�,g(S̃ε
� ) admits a better estimates on the set {(x, t) : S̃ε

� ≤
1 − δ}. To this end we introduce a function χ ∈ C∞([0, 1]) such that 0 ≤ χ ≤ 1,
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χ(s) = 1 if s ≤ 1/3 and χ(s) = 0 if s ≥ 2/3, and notice that the functions
χ(S̃ε

1)G1,g(S̃ε
1) and χ(S̃ε

1)G2,g(S̃ε
2) satisfy the estimate

‖χ(S̃ε
1)G�,g(S̃ε

� )‖L2(0,T ;H1(Ω)) ≤ C.

Indeed,

|∇(χ(S̃ε
1)G�,g(S̃ε

� )| ≤
∣∣∣∣ ddsχ(S̃ε

1)
∣∣∣∣ |∇S̃ε

� ||G�,g(S̃ε
� )|

+χ(S̃ε
1)

∣∣∣∣∣λ�,w(S̃ε
� )

λ�(S̃ε
� )

∣∣∣∣∣ |P ′
�,c(S̃

ε
� )||∇S̃ε

� |. (6.14)

Since the support of d
dsχ(s) belongs to the interval [1/3, 2/3], the first term on

the right-hand side here satisfies the estimate∥∥∥∥ ddsχ(S̃ε
1)∇S̃ε

� G�,g(S̃ε
� )
∥∥∥∥

L2(ΩT )

≤ C. (6.15)

For the second one we have

χ(S̃ε
1)

∣∣∣∣∣λ�,w(S̃ε
� )

λ�(S̃ε
� )

∣∣∣∣∣ |P ′
�,c(S̃

ε
� )||∇S̃ε

� |

≤ Cχ(S̃ε
1)

∣∣∣∣∣λ�,w(S̃ε
� )λ�,g(S̃ε

� )

λ�(S̃ε
� )

∣∣∣∣∣ |P ′
�,c(S̃

ε
� )||∇S̃ε

� | = Cχ(S̃ε
1)|∇β�(S̃ε

� )|; (6.16)

here we have used the fact that χ(s) = 0 on [2/3, 1]. Combining (6.14)–(6.16) we
conclude that

‖∇χ(S̃ε
1)G�,g(S̃ε

� )‖L2(ΩT ) ≤ C

and thus

‖χ(S̃ε
1)(P

ε
� + G�,g(S̃ε

� ))‖L2(0,T ;H1(Ω)) ≤ C.

Since Pε
1 +G1,g(S̃ε

1) = Pε
2 +G2,g(S̃ε

2) on Γε
1,2,T , we deduce from the last estimate,

by means of the Poincaré–Friedrich inequality, that

χ(S̃ε
1)(Pε

1 + G1,g(S̃ε
1)) = χ(S̃ε

1)(P
ε
2 + G2,g(S̃ε

2)) +Rε, in ΩT , (6.17)

with ‖Rε‖L2(ΩT ) ≤ Cε. Passing to the limit ε→ 0 in (6.17) yields

χ(S1)(P1 + G1,g(S1)) = χ(S1)(P2 + G2,g(S2)), in ΩT . (6.18)

In the same way one can show that

(1 − χ(S1))(P1 + G1,w(S1)) = (1 − χ(S1))(P2 + G2,w(S2)), in ΩT . (6.19)

Summing up (6.18) and (6.19), and considering (2.21), we finally obtain

P1 + G1,w(S1) = P2 + G2,w(S2),

as desired. The second relation in (6.13) can be obtained in a similar way.
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Relation (6.13) allows us to derive the expression for the function Θ� given by
the second relation in (5.8). This concludes the proof of Theorem 5.1. �

Remark 6.1. We conclude this section with the following remark about the homo-
genized model obtained. It could be written in a form which is more suitable for
numerical simulations. We have shown that the homogenized system has the fol-
lowing form:

〈Φ〉∂S
�

∂t
− divx{Λw(S1, S2)[∇Pw − g]} = 0 in ΩT ;

〈Φ〉∂Θ�

∂t
− divx{Λg(S1, S2)�g(Pg)[∇Pg − �g(Pg)g]} = 0 in ΩT ;

Pc(y, S1, S2) = Pg − Pw in ΩT × Y ;

(6.20)

subject to appropriate boundary and initial conditions.
In Eq. (6.20) the microscopic variable y appears, at least formally, in the cap-

illary pressure law. In order to write the system (6.20) exclusively in macroscopic
variables, we will eliminate

S
def= S1(x, t)11(y) + S2(x, t)12(y) (6.21)

and replace it by the macro-scale saturation S�. To do this it is sufficient to con-
struct an effective capillary pressure function P �

c such that

P �
c (S�) def= Pg − Pw in ΩT . (6.22)

Then, for any given S� the capillary pressure is known, and therefore S is also
known. We can then express all homogenized tensors as functions of the macro-
scale saturation S�.

It follows from condition (A.4) that

min
s∈[0,1]

P�,c(s) = P�,c(1) = 0, max
s∈[0,1]

P1,c(s) = max
s∈[0,1]

P2,c(s) = P�,c(0), (6.23)

where � = 1, 2. We denote P�,c(0) = σ. Then, for any u ∈ [0, σ] we can find S given
by (6.21) by solving the equations:

u = P1,c(S1) = P2,c(S2). (6.24)

After the values S1 and S2 are obtained, we can compute S� by the formula
(5.8), that is

S� def=
2∑

�=1

|Y�|
〈Φ〉Φ�S� and Θ� def= (1 − S�)�g(Pg).

So we have defined a function f : [0, σ] → [0, 1] such that S� = f(u). It is easy to see
that, due to strict monotonicity of both capillary pressure functions, the function
u �→ S� is strictly decreasing, and thus have strictly decreasing inverse function:
u = f−1(S�), f−1 : [0, 1] → [0, σ]. This function defines the effective capillary
pressure function and it will be denoted P �

c .
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When the effective capillary pressure function is computed, we can calculate
for any value of macro-scale saturation S� ∈ [0, 1] the corresponding micro-scale
repartition of the saturation S = S111(y)+S212(y), where the values S1 and S2 are
solutions to the equations P1,c(S1) = P1,c(S2) = P �

c (S�). For the repartition S we
solve the cell problems (5.1), (5.1), and calculate effective phase mobility tensors:

Λw(S�) def= Λw(S1, S2) and Λg(S�) def= Λg(S1, S2). (6.25)

These tensors depend only on the macroscopic saturation S�. Finally we have the
macroscopic conservation laws in the form:

0 ≤ S� ≤ 1 in ΩT ;

〈Φ〉∂S
�

∂t
− divx{Λw(S�)[∇Pw − g]} = 0 in ΩT ;

〈Φ〉∂((1 − S�)�g(Pg))
∂t

− divx{Λg(S�)�g(Pg)[∇Pg − �g(Pg)g]} = 0 in ΩT ;

P �
c (S�) = Pg − Pw in ΩT ,

subject to appropriate boundary and initial conditions.
Notice that the structure of the macroscopic two-phase flow equations is the

same as the structure of micro-scale equations. The only difference is in the effec-
tive phase mobilities Λw(S�) and Λg(S�), which are now generally full symmetric
tensors, calculated by the resolution of the local cell problems, and are not natu-
rally factorized into absolute (intrinsic) permeability and relative (phase) mobilities.
Let us also mention that this homogenization result has been used successfully in
Ref. 4 to simulate numerically a benchmark test proposed in the framework of the
European Project FORGE: Fate Of Repository Gases Ref. 21.

7. Disperse Media

In this section we relax the geometric assumptions and consider disperse porous
media. More precisely, we assume that the medium Ωε

1 is connected while the
medium Ωε

2 consists of disjoint periodically situated inclusions. The rigorous defi-
nition is as follows.

We recall that Y stands for a unit cell (0, 1)n, n = 2 or 3 and that Y1 and Y2

are two subdomains of Y. From now on we assume that Y2 is a smooth connected
set such that Y2 is a compact subset of Y, and Y1 is a connected set.

As above, we introduce the characteristic functions of Y1 and Y2 and denote
their periodic extensions by 11(y) and 12(y), respectively. Then, we set

Ωε
2 ⊂

{
x ∈ Ω : 12

(x
ε

)
= 1
}

and Ωε
1 = Ω\Ωε

2. (7.1)

We then consider system (2.4)–(2.11). The uniform estimates of Sec. 3 remain
unchanged.

The extensions S̃ε
1 and S̃ε

1 of functions Sε
1 and Sε

2 are given by formula (4.4).
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Under our new assumptions on the geometry, the function Pε
1 can be extended

to the whole domain Ω so that

‖P̃ε
1‖L2(0,T ;H1(Ω)) ≤ C‖Pε

1‖L2(0,T ;H1(Ωε
1)).

We then set

P̃ε
2 = Pε

1 + G1,w(Sε
1) − G2,w(S̃ε

2) in Ωε
1,T .

From the properties of functions Pε
1, S̃

ε
1 and S̃ε

2 it easily follows that

lim
δ→0

sup
|y|≤δ

∫
ΩT

|Pε
2(x+ y, t) − Pε

2(x, t)|2dxdt = 0

and, consequently,

lim
δ→0

sup
|y|≤δ

∫
ΩT

|Θ̃ε
2(x+ y, t) − Θ̃ε

2(x, t)|2dxdt = 0.

With these definitions the compactness results for S̃ε
� and Θ̃ε

� can be proved exactly
in the same way as in Sec. 4.

Finally, the convergence result stated in Theorem 5.1 also remains valid.

8. Concluding Remarks

We have presented a homogenization result for a degenerate system modeling
immiscible compressible two-phase flow through a porous medium made of sev-
eral types of rocks. We have assumed that the porosity, the absolute permeability,
the capillary and relative permeabilities curves are different in each type of porous
media. This leads to nonlinear transmission conditions representing the continuity
of some physical characteristics such as water and gas pressures, at the interfaces
that separate different media. Then the saturation and some other characteristics
are getting discontinuous at the interfaces.

In this work we assumed that the capillary pressure is bounded, and �min > 0.
However, these conditions are violated in several important applications. Rigorous
mathematical study of the case when these conditions do not hold is an interest-
ing issue. It is also interesting to consider a similar model in asymptotically high
contrast media.
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