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In this paper we study periodic elastic rod-structures which are locally anisotropic and
symmetric with respect to some plane. In order to find the effective behavior and approx-
imate local behavior (so-called corrector-results) of such structures, one has to solve a
finite number of boundary-value problems on one period of the rod-structure, the cell
problem. For the solution of the cell-problem, it is shown that the components of the
displacement satisfy either Neumann or Dirichlet conditions on the sides of the cell
of periodicity parallel with the symmetry-plane. This is very useful from a computa-
tional point of view since the derived boundary conditions can easily be incorporated
into standard numerical schemes. We also study resultant forces and moments and their
variations along the rod-structure in several types of cases, even when no symmetry is
required.
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1. Introduction

Effective stiffness parameters of a periodic rod-structure, such as effective rigidity
of extension, flexural stiffness or torsion rigidity, can be found by deforming the
structure (e.g. stretching, bending or twisting) in such a way that the stress tensor
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becomes periodic. The corresponding displacement-vector u then takes the form

u = v + w,

where w = w(x1, x2, x3) is periodic in the x3 variable (the longitudinal direction)
and v is a given function, hereafter referred to as a global function, which depends
on the particular effective parameter we want to compute. Then, by comparing the
resultant forces or moments with the average elongation, curvature or relative twist
angle, we find the corresponding effective stiffness parameters.

Here we give a simple algorithm of determining the effective characteristics of a
thin elastic perforated rod. It should be noted that we do not deal here with solu-
tions of any macroscopic boundary value problem. Instead, we determine the effec-
tive characteristics in terms of model solutions of the elasticity equations defined
in the unbounded rod. Some boundary value problems for thin rods and bars have
been studied in Refs. 10 and 11. However, the asymptotics of solutions have been
constructed in these works under certain symmetry assumptions. Namely, it was
assumed that the rod cross sections possess two symmetry axes. In the presence
of these symmetry axes the limit (homogenized) problem is getting decoupled and
consists of four independent ordinary differential equations describing respectively
the displacements in two transversal directions, tangential displacement and the rod
torsion. The corresponding effective elastic moduli coincide with the rod effective
moduli obtained (by essentially simpler method) in the present paper.

Our technique does not assume any symmetry of the cross sections. However,
in the lack of symmetry the questions on the asymptotic behavior of solutions
to boundary value problems remain open. There are arguments in favor of the
conjecture that in this case the limit system might consist of four coupled ODE.
The derivation of the limit problem in the most general non-symmetric case is still
an open problem.

In our model we assume that there are no body forces presented and that the
side surface is free from external stresses. Thus the displacement u is uniquely
determined (at least within a rigid displacement) by the standard equations of
elastic equilibrium defined on one single period, a so-called Y -cell. If the structure
is symmetric with respect to some plane, the deformed structure will in some sense
inherit this symmetry. In the case shown in Fig. 1, where we have two symmetry
planes (x3 = 0 and x2 = 0) and the structure is stretched longitudinally such that

v(x1, x2, x3) = (0, 0, τx3)

for some constant τ , this fact is physically obvious. As one might also guess from the
figure, one consequence of these symmetries is that the resultant torsion moment
and the resultant bending moment about the x1-axis vanish. Another important
implication of the symmetry with respect to the plane x3 = 0 is that the periodicity
boundary conditions on w = (w1, w2, w3) can be replaced by Neumann conditions
for the displacement-components w1 and w2 and Dirichlet conditions for w3 on the
two parallel surfaces of the Y -cell normal to the x3-axes. Thus, since v is known
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Fig. 1. Periodic rod-structure with isotropic material stretched longitudinally (i.e. along the z-
axes in the figure). The Young’s modulus is 1 while the Poisson’s ratio is 0.3. We observe that the
deformed structure inherits the symmetry of the undeformed structure. The figure is generated
from a computation performed by the FE-program ANSYS 9.1.

we easily obtain boundary conditions for u = v+w. Such boundary conditions are
often significantly easier to implement in many FE-codes than the original ones
which couples node values for u on these two parallel surfaces. Thus, in computa-
tional practice the derived boundary conditions permit us to easily incorporate the
periodic boundary value problems into standard numerical schemes.

The measured response of the stretching shown in Fig. 1 can e.g. be used to
determine the effective rigidity of extension of the rod-structure. In order to com-
pute other effective parameters of the rod-structure we have to subject the structure
to other types of deformations by using suitable adjustments on the global function
v. For example, for finding the effective torsion rigidity we may put

v(x1, x2, x3) = (−τx3x2, τx3x1, 0),

and for finding the effective flexural stiffness with respect to the x1-axis we
might put

v(x1, x2, x3) = (τx2
3, 0,−2τx3x1).

Even from a physical point of view it is not obvious what resultant forces which
vanish (if any) or if we can replace the periodicity condition on w with similar
Neumann and Dirichlet boundary conditions in all these cases. However, in this
paper we prove precise criteria for the vanishing of resultant forces and moments
and prove that a similar change of the boundary conditions, as that described
above, is possible for all types of deformations needed in order to calculate the
relevant effective parameters. Moreover, our results turn out to be valid even for a
large class of multi-component and locally anisotropic rod-structures which possess
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Fig. 2. Rod-structure of monocyclic material with local symmetry plane as indicated in the
figure.

a more general type of symmetry than that illustrated in Fig. 1 [see (6.1) and (6.2)
below].

This class of problems includes e.g. the rod-structure which is illustrated in
Fig. 2. Such structures appear naturally in computational problems related to
composites and structural engineering. The analysis of such rod-structures is also
important for another reason. It appears namely as an intermediate modelling-step
in a homogenization procedure for computing the effective behavior of multiscaled
rod-structures similar to that of ordinary multiscaled materials, a topic which has
been treated extensively in the literature (see e.g. Refs. 1, 2, 3–6 and the references
given therein).

Even if we focus on symmetric rod-structures, we also present results concerning
resultant forces and moments and their variations along the rod-structure also in
situations where no symmetry is assumed.

The paper is organized as follows. We have collected some preliminaries in Sec. 2.
In Sec. 3, we discuss weak formulations and associated classical formulations of the
relevant stress problems related to the computation of the effective properties for
periodic rod-structures. In Sec. 4, we prove some general results concerning resultant
forces and moments. For computational purposes, we describe relations between
effective properties and strain energies in Sec. 5. In Sec. 6, we show that the local
stress tensor and the corresponding resultant forces and moments belong to certain
symmetry classes depending on the symmetry of the rod-structure. These results
are used in Sec. 7 to find symmetry properties which ensure that certain resultant
forces and moments vanish. Finally we discuss equivalent boundary conditions for
rod-structures with longitudinal symmetry in Sec. 8.

2. Preliminaries

We let S be the space of symmetric 3 × 3 matrices and let a · b denote the scalar
product between two matrices a = {aij} and b = {bij} in S, which is defined by
a · b =

∑
ij aijbij . The norm |a| is correspondingly defined by |a|2 =

∑
ij a

2
ij (here

and in the rest of the paper
∑

ij denotes
∑3

i=1,j=1). If a and b are vectors, a · b will
denote the usual scalar product in R

3.
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Let Ω ⊂ R
3 be the region occupying the rod-structure. We assume that Ω is a

connected open set with Lipschitz continuous boundary which is bounded in the
x1 and x2 variables and periodic in the x3 variable with respect to some interval
I = (−x0

3/2, x0
3/2). The set Y = {x ∈ Ω : x3 ∈ I} corresponds to a period of the

rod-structure, and is referred to as the Y -cell. The boundary ∂Y of Y with outward
unit-normal n = (n1, n2, n3) consists of the two disjoint parts B = {x ∈ Y : x3 =
−x0

3/2 or x3 = x0
3/2} and C = ∂Y \B. We note that B = B(−x0

3/2) ∪ B(x0
3/2)

where B(t) denotes the vertical surface B(t) = {x = (x1, x2, x3) ∈ Y , x3 = t}.
Moreover, we let H1

per,3(Y ) denote the closure in the usual Sobolev space H1(Y ),
equipped with the norm

‖ϕ‖ = 〈|Dϕ|2 + |ϕ|2〉1/2,

of the set C∞
per,3(Y ) of all smooth vector-valued functions ϕ = (ϕ1, ϕ2, ϕ3) which is

I-periodic in the x3 variable, i.e.

ϕ(x+ e3x
0
3) = ϕ(x)

for all x ∈ R
3 (e1, e2, e3 is the canonical basis of R

3). Here, 〈·〉 denotes as usual the
average over the Y -cell, i.e.

〈f〉 =
1
|Y |

∫
Y

f(x)dx

and

|Dϕ|2 =
∑
ij

∣∣∣∣∂ϕi

∂xj

∣∣∣∣2 .
In accordance with the terminology of mathematical elasticity we let e(ϕ) =
{eij(ϕ)} denote the strain

eij(ϕ) =
1
2

(
∂ϕi

∂xj
+
∂ϕj

∂xi

)
and let σ = {σij} denote the corresponding stress. The Hooke’s law is generally
expressed by

σij(ϕ) =
∑
kr

aijkrekr(ϕ),

where the fourth order elasticity tensor A = {aijkr(x)}, x ∈ Ω satisfies the following
symmetry relations

aijkr = akrij , aijkr = ajikr = aijrk, (2.1)

together with the inequalities

ν1|ξ|2 ≤ ξ · Aξ ≤ ν2|ξ|2 (2.2)
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for all ξ ∈ S and some strictly positive constants ν1 and ν2 which are independent
of ξ and x. Here, Aξ denote the matrix with elements

(Aξ)ij =
∑
kr

aijkrξkr .

The above relations imply that the coefficients aijkr are bounded.

3. Weak and Classical Formulations of the Stress Problems

In this paper we will also assume that each component aijkr is Lebesgue-measurable
in Ω and I-periodic in the x3 variable. Moreover, we assume that the global dis-
placement v ∈ H1(Y ) is such that ξ = e(v) is I-periodic in the x3 variable, even
though all examples considered in this paper are devoted to situations where ξ is
independent of the x3 variable.

In order to calculate an effective parameter associated with v we have to solve
the following problem: Find w ∈ H1

per,3(Y ) such that∫
Y

e(ϕ) ·A(ξ + e(w))dx = 0 for all ϕ ∈ H1
per,3(Y ).

Noting that σ(u) = A(e(u)) = A(ξ + e(w)), we may rewrite this formulation as
follows: Find u = v + w, where w ∈ H1

per,3(Y ) such that∫
Y

e(ϕ) · σ(u)dx = 0 for all ϕ ∈ H1
per,3(Y ). (3.1)

This problem is equivalent to finding the corresponding strain energy Wξ = Fξ(w)
from the variational problem: Find w ∈ H1

per,3(Y ) such that

Fξ(w) ≤ Fξ(ϕ) for all ϕ ∈ H1
per,3(Y ), (3.2)

where

Fξ(ϕ) =
1
2

∫
Y

(ξ + e(ϕ)) · A(ξ + e(ϕ))dx.

Since e(u) = ξ + e(w), we observe that

Wξ = Fξ(w) =
1
2

∫
Y

e(u) ·A(e(u))dx. (3.3)

Concerning existence and uniqueness of these problems, see Lemma 8.1 below.
We note that (3.1) can be derived from the following classical formulation of the
elasticity problem: Find u = v + w, such that

div σ(u) = 0 in Y,

F (u) = 0 on C,

w ∈ H1
per,3(Y ),

(3.4)

where F (u) = (F1(u), F2(u), F3(u)) is the stress vector acting on a plane with
outward unit normal n = (n1, n2, n3), given by Fi(u) =

∑3
j=1 σij(u)nj . The first
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of the three conditions in (3.4) comes from the assumption that there are no body
forces present. The second condition merely tells that the side surface C is free from
external stresses. The derivation of (3.1) from (3.4) follows from Green’s formula∫

Y

ϕ · div σ(u)dx+
∫

Y

e(ϕ)σ(u)dx =
∫

∂Y

ϕ · F (u)ds. (3.5)

Indeed, Fi(u) = σi3(u) and Fi(u) = −σi3(u) on the left and right of B, respectively.
Moreover, due to the I-periodicity of σi3(w) and σi3(v), we see that σi3(u) =
σi3(w)+ σi3(v) is also I-periodic. Thus, since ϕ is I-periodic, it is clear that ϕ · F (u)
takes opposite values on opposite sides of B. Hence,

∫
B
ϕ ·F (u)ds = 0. In addition,

since F (u) = 0 on C,
∫

C
ϕ · F (u), ds = 0. Thus∫

∂Y

ϕ · F (u)ds =
∫

B

ϕ · F (u)ds+
∫

C

ϕ · F (u)ds = 0,

and since div σ(u) = 0, we obtain (3.1) from (3.5).
Note that the derivation of (3.1) from (3.4) is only possible if the stress field is

sufficiently smooth such that the Green’s formula is valid (and makes sense).

4. Resultant Forces and Moments

In connection with the definition of several effective parameters we will use the
concept of resultant forces Nij(x3) and resultant moment Mi(x3) about the xi-
axis of the stress vector (σ13(u), σ23(u), σ33(u)) applied to the surface B(x3). These
functions are defined by

Nij(x3) =
∫

B(x3)

σij(u)(x)dx1dx2,

and

M1(x3) =
∫

B(x3)

(x3σ23(u) − x2σ33(u))dx1dx2,

M2(x3) =
∫

B(x3)

(x3σ13(u) − x1σ33(u))dx1dx2,

M3(x3) =
∫

B(x3)

(−x2σ13(u) + x1σ23(u))dx1dx2.

Before discussing this any further, we prove a lemma which will be useful in our
study of these quantities. Consider two disjoint intervals I(p1, r1) and I(p2, r2) in I
of lengths 2r1 and 2r2 and with centers at some fixed points p1 and p2, respectively.
Moreover, let g = g(x3) be a continuous periodic function of x3 defined in I by

g′(x3) =


s1 x3 ∈ I(p1, r1),

s2 x3 ∈ I(p2, r2),

0 elsewhere,

(4.1)
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where s1 and s2 are constants satisfying the condition

r1s1 + r2s2 = 0 (4.2)

(by this condition g becomes I-periodic). We have the following result.

Lemma 4.1. Let f ∈ L1(Y ) and let k(x3) be defined almost everywhere by

k(x3) =
∫

B(x3)

f(x1, x2, x3)dx1dx2.

If the identity ∫
Y

f(x1, x2, x3)g′(x3)dx = 0 (4.3)

holds for all disjoint intervals I(p1, r1) and I(p2, r2) in I, then there exists a con-
stant k such that k(x3) = k for almost every x3.

Proof. From the definition of g we see that (4.3) implies that

s1

∫
I(p1,r1)

k(t)dt+ s2

∫
I(p2,r2)

k(t)dt = 0.

Using (4.2) we now find that

1
2r1

∫
I(p1,r1)

k(t)dt =
1

2r2

∫
I(p2,r2)

k(t)dt,

i.e.

1
|I(p1, r1)|

∫
I(p1,r1)

k(t)dt =
1

|I(p2, r2)|
∫

I(p2,r2)

k(t)dt.

Since the intervals were chosen arbitrarily, this shows that the average value of k(t)
taken over any interval is equal to a constant k. Hence

lim
r→0

1
|I(x3, r)|

∫
I(x3,r)

k(t)dt = k,

at all points x3 ∈ I. According to Lebesgue differentiation theorem, almost all
points in I are Lebesgue-points, i.e. points x3 for which the above limit equals
k(x3). Hence, k(x3) = k a.e.

We now turn back to our discussion on resultant forces and moments.

Theorem 4.1. For any global displacement v it holds that the average value Nij =
〈Nij(·)〉 = 0 unless i = j = 3. Moreover Ni3(x3) = Ni3 for almost every x3.
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Likewise, there exist constants Mi such that Mi(x3) = Mi for almost every x3. In
addition, the following simplifications are valid:

M1(x3) = −
∫

B(x3)

x2σ33(u)dx1dx2 and M2(x3) = −
∫

B(x3)

x1σ33(u)dx1dx2.

Proof. The fact that N11, N12, N22, N13 and N23 vanish follows by inserting
ϕ(x) = (x1, 0, 0), ϕ(x) = (x2, x1, 0), ϕ(x) = (0, x2, 0), ϕ = (0, 0, x1) and ϕ =
(0, 0, x2), respectively, into (3.1), since we directly obtain that

Nij =
1
x0

3

∫
Y

1σij(u)dx =
1
x0

3

∫
Y

e(ϕ) · σ(u)dx = 0,

by these choices of test functions.
In order to show that Ni3(x3) is constant we insert

ϕ = (δi1g(x3), δi2g(x3), δi3g(x3))

into (3.1), where g is defined in (4.1). Observing that e3i(ϕ) = ei3(ϕ) (which equals
g′(x3)/2 if i �= 3 and g′(x3) if i = 3) is the only nonvanishing component(s) of e(ϕ),
we obtain that ∫

Y

g′(x3)σi3(u)dx =
∫

Y

e(ϕ)σ(u)dx = 0.

Hence, by Lemma 4.1,

Ni3(x3) =
∫

B(x3)

σ13(u)dx1dx2 = k

for some constant k, which certainly coincide with the average value Ni3.

In order to show that M1(x3) is constant a.e. we first observe that

M1(x3) =
∫

B(x3)

(x3σ23(u) − x2σ33(u))dx1dx2

= x3N23(x3) −
∫

B(x3)

x2σ33(u)dx1dx2

= −
∫

B(x3)

x2σ33(u)dx1dx2, (4.4)

since N23(x3) = 0. Inserting ϕ = (0, g(x3),−x2g(x3)) into (3.1) and observing
that e32(ϕ) = e23(ϕ) = (g′(x3) − g(x3))/2 and e33(ϕ) = −x2g

′(x3) are the only
nonvanishing components of e(ϕ), we obtain that∫

Y

g′(x3) − g(x3)
2

σ23(u)dx−
∫

Y

x2σ33(u)g′(x3)dx =
∫

Y

e(ϕ)σ(u)dx = 0. (4.5)

The first term∫
Y

g′(x3) − g(x3)
2

σ23(u)dx =
∫ x0

3/2

−x0
3/2

g′(x3) − g(x3)
2

N23(x3)dx3
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vanishes since N23(x3) = 0. Thus (4.5) reduces to

−
∫

Y

x2σ33(u)g′(x3)dx = 0,

which by (4.4) implies that ∫
Y

M1(x3)g′(x3)dx = 0.

Hence, according to Lemma 4.1, M1(x3) = M1 a.e. for some constant M1.

The fact that M2(x3) = M2 a.e. where the constant

M2 = −
∫

B(x3)

x1σ33(u)dx1dx2,

follows by inserting ϕ = (g(x3), 0,−x1g(x3)) into (3.1). Similarly as above we
observe that e13(ϕ) = e31(ϕ) = (g′(x3) − g(x3))/2 and e33(ϕ) = −x1g

′(x3) are
the only nonvanishing components of e(ϕ) and obtain that∫

Y

(g′(x3) − g(x3))σ23(u)dx−
∫

Y

x2σ33(u)g′(x3)dx =
∫

Y

e(ϕ)σ(u)dx = 0.

The rest of the arguments are identical with those used for the moment M1(x3).
The fact that M3(x3) is constant a.e. is shown as follows. Inserting ϕ =

(−τx2, τx1, 0)g(x3) into (3.1), and observing that

e(ϕ) =
1
2

 0 0 −τx2

0 0 τx1

−τx2 τx1 0

 g′(x3),

we obtain that (4.3) holds f(x1, x2, x3) = −τx2σ13(u) + τx1σ23(u). Hence

M3(x3) = M3,

almost everywhere, for some constant M3.

5. Relations Between Effective Properties and Strain Energies

In the case when the global displacement v = v(x1, x2, x3) is of the form,

v = (0, 0, τx3) (extension in x3-direction), (5.1)

v = (−τx3x2, τx3x1, 0) (torsion in x1x2-plane), (5.2)

v = (τx2
3, 0,−2τx3x1) (pure bending about the x2-axis), (5.3)

v = (τx2
3, 0,−2τx3x2) (pure bending about the x1-axis), (5.4)

we observe that ξ = e(v) is given by

e(v) =

0 0 0
0 0 0
0 0 τ

 , e(v) =
1
2

 0 0 −τx2

0 0 τx1

−τx2 τx1 0

 (5.5)
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and

e(v) =

0 0 0
0 0 0
0 0 −2τx1

 , e(v) =

0 0 0
0 0 0
0 0 −2τx2

 , (5.6)

respectively.
By (3.1) we generally have that

Fξ(w) =
1
2

∫
Y

(ξ + e(w)) · A(ξ + e(w))dx

=
1
2

∫
Y

ξ ·A(ξ + e(w))dx

=
1
2

∫
Y

e(v) · σ(u)dx,

i.e.

Fξ(w) =
1
2

∫
Y

e(v) · σ(u)dx. (5.7)

This identity will be useful for finding the relations between various types of effective
properties and the corresponding strain energy Fξ(w).

5.1. Effective rigidity of extension

If v is of the form (5.1), i.e.

v(x1, x2, x3) = (0, 0, τx3),

the identity (5.7) reduces to

Fξ(w) =
1
2

∫
Y

e33(v)σ33(u)dx =
1
2
τ

∫
Y

σ33(u)dx. (5.8)

Since 〈σ33(u)〉 and 〈e33(u)〉 are the resultant extending force and the average exten-
sion in the x3-direction, respectively, it is natural to define the effective rigidity of
extension Dex as the relation

Dex =
〈σ33(u)〉
〈e33(u)〉 .

Due to the periodicity of w we have that 〈e33(w)〉 = 0, which gives that

〈e33(u)〉 = 〈e33(v)〉 + 〈e33(w)〉 = 〈e33(v)〉 = τ.

Thus by (5.8) we obtain that

Dex =
〈σ33(u)〉

τ
=

2Fξ(w)
|Y |τ2

.
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5.2. Effective torsion rigidity

When v takes the form (5.2), i.e.

v(x1, x2, x3) = (−τx3x2, τx3x1, 0)

the identity (5.7) reduces to

Fξ(w) =
1
2

∫
Y

e13(v)σ13(u) + e23(v)σ23(u) dx

=
1
2

∫
Y

(−τx2σ13(u) + τx1σ23(u))dx

=
1
2

∫ x0
3/2

−x0
3/2

(∫
B(t)

(−τx2σ13(u) + τx1σ23(u))dx1dx2

)
dt.

Hence, due to Theorem 4.1,

2Fξ(w) = τM3x
0
3. (5.9)

Due to linearity u = τu0, where u0 is the solution corresponding to the global
displacement v = (−x3x2, x3x1, 0). Thus

M3 = τD3, (5.10)

where

D3 =
∫

B(t)

(−x2σ13(u0) + x1σ23(u0))dx1dx2.

This shows that M3 is proportional to the relative twist τ (the rotation-angle per
unit-length in the x3 direction). In agreement with the terminology of torsion in
the two-dimensional case, we call D3 the effective torsional rigidity. By (5.9) and
(5.10),

D3 =
2Fξ(w)
x0

3τ
2
. (5.11)

If we assume sufficient regularity on the stress σ(u) and the domain Y, it is
possible to give a simpler proof of (5.11) (without involving Lemma 4.1) by using
Green’s formula,∫

Y

v · divσ(u)dx +
∫

Y

e(v)σ(u)dx =
∫

∂Y

v · F (u)ds,

which due to (3.4) reduces to∫
Y

e(v)σ(u)dx =
∫

B

v · F (u)ds. (5.12)

As observed earlier, Fi(u) = σi3(u) and Fi(u) = −σi3(u) on the left and right of
B, respectively, and these values are opposite. Moreover, for this particular case v
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takes also opposite values on opposite sides of B. Hence,∫
B

v · F (u)ds = 2
x0

3

2

∫
B(x0

3)

(−τx2σ13(u) + τx1σ23(u))dx1dx2 = x0
3τM3.

Thus, by (5.7), (5.10) and (5.12) we obtain (5.11). Note, however, that this proof is
less general than that above, which does not rely on the validity of Green’s formula
and the assumption that the concept of stress vector F (u) is meaningful in classical
sense on the entire boundary of Y.

It is natural to ask whether the value of D3 would be influenced by replacing the
x3-axis by another one, parallel to it. Fortunately, this does not happen. Indeed,
let (a, b, 0) be the intersection of the plane x3 = 0 and the new axis. Then we must
replace v by the function v′ given by

v′ = v′(x1, x2, x3) = (−τx3(x2 − b), τx3(x1 − a), 0).

We observe that one corresponding solution u′ = v′ + w′ is obtained by choosing
w′ = w + (0, 0, τx2a − τx1b), where w is the periodic part of the original solution
u = v + w. Indeed, we easily see that

u′ = v′ + w′ = v + w + ψ = u+ ψ,

where ψ = (τx3b,−τx3a, τx2a− τx1b), which is a rigid displacement, i.e. e(ψ) = 0.
Hence e(u) = e(u′), so u′ is clearly a solution of (3.1), and

Fξ(w) =
1
2

∫
Y

e(u) ·A(e(u))dx =
1
2

∫
Y

e(u′) · A(e(u′))dx = Fξ′(w′),

where ξ′ = e(v′). Similarly as (5.11) the effective torsional rigidityD′
3 corresponding

to the new x3-axis will be given by

D′
3 =

2Fξ′(w′)
x0

3τ
2

.

Thus, since Fξ(w) = Fξ′(w′), (5.11) gives that D′
3 = D3, i.e. the effective torsional

rigidity is unaffected by the choice of the new axis, as long as it is parallel with the
old one.

5.3. Effective flexural stiffness

In the case when

v(x1, x2, x3) = (τx2
3, 0,−2τx3x1),

i.e. of the form (5.3), the identity (5.7) reduces to

Fξ(w) =
1
2

∫
Y

e33(v) · σ33(u)dx = −
∫

Y

τx1σ33(u)dx.

Thus, according to Theorem 4.1,

Fξ(w) = τx0
3M2. (5.13)
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Again, due to linearity, u = τu0 where u0 is the solution corresponding to the global
displacement

v(x1, x2, x3) = (x2
3, 0,−2x3x1).

Thus

M2 = τD2, (5.14)

where D2 is the resultant moment corresponding to u0, i.e.

D2 = −
∫

B(x3)

x1σ33(u0)dx. (5.15)

The points on the x3-axis having before deformation the coordinates x = (0, 0, x3)
will move to points with coordinates

η(x) + w(x) = (η1(x3) + w1(x3), η2(x3) + w2(x3), η3(x3) + w3(x3)),

where η1(x3) = τx2
3, η2(x3) = 0, η3(x3) = x3 and wi(x3) are I-periodic functions.

Ignoring these periodic functions, which do not contribute to the global deformation
of the rod-structure, we observe that τ = d2η1/dx

2
3, i.e. τ is the curvature of the

global deformation of the x3-axis. In agreement with the two-dimensional theory
of bending we therefore call the relation D2 = M2/τ the effective flexural stiffness
with respect to bending about the x2-axis. According to (5.13) and (5.14) we have
that

D2 =
Fξ(w)
τ2x0

3

.

In the case of pure bending about the x1-axis (5.4), i.e. when

v(x1, x2, x3) = (τx2
3, 0,−2τx3x2),

we obtain similarly that the effective flexural stiffness with respect to bending about
the x1-axis is related to the corresponding strain energy Fξ(w) by the relation

D1 =
Fξ(w)
τ2x0

3

.

In contrast to the case of torsion, the values of effective flexural stiffness turn out
to be highly dependent of the intersection between the x3-axis and the x1x2-plane.
Indeed, according to (5.15),

D2 = −
∫

B(x3)

x1σ33(u0)dx,

where u = u0 is the solution corresponding to the global displacement
v(x1, x2, x3) = (x2

3, 0,−2x3x1). As before, let (a, b, 0) be the intersection of the
plane x3 = 0 and the new axis. The effective flexural stiffness D′

2 with respect to
bending about the new x1-axis, will then be given by

D′
2 = −

∫
B(x3)

(x1 − a)σ33(u′0)dx,
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where u = u′0 is the solution corresponding to the global displacement v′ given by

v′(x1, x2, x3) = (x2
3, 0,−2x3(x1 − a)).

This displacement can be written as the sum v′ = v + v′′, where v′′ = (0, 0, 2ax3),
i.e. v′ is the sum of a pure extension in the x3-direction and a pure bending about
the original x2-axis. Letting u = u′′0 be the solution corresponding to v′′, we obtain
by the linearity of the problem that u′0 = u0 + u′′0 . Thus

D′
2 = −

∫
B(x3)

(x1 − a)σ33(u0 + u′′0)dx

= −
∫

B(x3)

x1σ33(u0)dx+ a

∫
B(x3)

σ33(u0)dx−
∫

B(x3)

(x1 − a)σ33(u′′0)dx

= D2 + aN33(u0) +M2(u′′0),

whereN33(u0) is the resultant force in the x3-direction corresponding to the solution
u0 and M2(u′′0) is the bending moment about the new x2-axis of the forces in the
vertical plane corresponding to the solution u′′0 .

6. Symmetric Rod-Structures

We will now consider cases where

Ω is symmetric with respect to the plane xs = 0 (6.1)

for some fixed s ∈ {1, 2, 3} and the elasticity tensor A satisfies the following sym-
metry property with respect to that plane:

aijkr(x) = (−1)δis+δjs+δks+δrsaijkr(y), (6.2)

where δij is the Kronecker symbol,

δij =
{

1 if i = j,

0 if i �= j,

x = (x1, x2, x3) and y = (y1, y2, y3) is the mirrored coordinate with respect to the
plane xs = 0, i.e. y = (−x1, x2, x3), y = (x1,−x2, x3) and y = (x1, x2,−x3) if s = 1,
s = 2 and s = 3, respectively. An example of a rod-structure satisfying (6.1) and
(6.2) for s = 3 is illustrated in Fig. 2.

Note that (6.2) reduces to the simple symmetry condition

aijkr(x) = aijkr(y), (6.3)

in the case when A is monocyclic with respect to the symmetry plane xs = 0 at
each point x. For the proof of this fact we refer to Ref. 7. In particular, (6.3) holds
if the material is locally orthotropic with respect to the planes x1 = 0, x2 = 0 and
x3 = 0, which certainly includes the class of isotropic materials.
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Let S be the space of all functions f : Ω → S and consider the subspaces S|s
and S⊥s defined by:

S|s = {ξ ∈ S : ξij(x) = (−1)δis+δjsξij(y)}, (6.4)

S⊥s = {ξ ∈ S : −ξij(x) = (−1)δis+δjsξij(y)}. (6.5)

In the case when ξ is constant these spaces reduce to

Ss| = {ξ ∈ S : ξis = 0, i �= s},
Ss⊥ = {ξ ∈ S : ξss = 0, ξij = 0, i �= s, j �= s},

respectively.

Remark 6.1. We observe from (5.5) and (5.6) that the strain e(v) corresponding
to the global displacement v belongs to the following spaces:

• If v is a pure extension (5.1) then e(v) ∈ S|1, S|2, S|3,
• If v is a torsion (5.2) then e(v) ∈ S⊥1, S⊥2, S⊥3,
• If v is a pure bending about the x2-axis (5.3) then e(v) ∈ S⊥1, S|2, S|3,
• If v is a pure bending about the x1-axis (5.4) then e(v) ∈ S|1, S⊥2, S|3.

Theorem 6.1. Let A be a Y-periodic tensor which is I-periodic in the x3 variable
and satisfying (2.1), (2.2), (6.1) and (6.2) for some fixed s ∈ {1, 2, 3}. In addition,
let v ∈ H1(Y ) be such that ξ = e(v) is I-periodic in the x3 variable. Then, the stress
tensor σ(u) belongs to S|s if ξ ∈ S|s and S⊥s if ξ ∈ S⊥s. Moreover, if f : Y → R is
symmetric with respect to the plane xs = 0, i.e. f(x) = f(y), then the symmetric
matrix K = {Kij}, where

Kij =
∫

Y

f(x)σij(u)(x)dx,

belongs to Ss| if ξ ∈ S|s and Ss⊥if ξ ∈ S⊥s. Conversely, if f : Y → R is anti-
symmetric with respect to the plane xs = 0, i.e. f(x) = −f(y), then K = {Kij}
belongs to Ss⊥ if ξ ∈ S|s and Ss| if ξ ∈ S⊥s.

Proof. Let ϕ ∈ H1
per,3(Y ). If ξ ∈ Ss|, we define the function ϕ̃ as follows:

ϕ̃s(x) = −ϕs(y),

ϕ̃i(x) = ϕi(y) for all i �= s.
(6.6)

We obtain the relations

∂ϕ̃s(x)
∂xs

=
∂ϕs(y)
∂ys

,

∂ϕ̃s(x)
∂xi

= −∂ϕs(y)
∂yi

,
∂ϕ̃i(x)
∂xs

= −∂ϕi(y)
∂ys

for i �= s
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and
∂ϕ̃i(x)
∂xj

=
∂ϕi(y)
∂yj

for i �= s, j �= s.

Thus,

eij(ϕ̃)(x) = (−1)δis+δjseij(ϕ)(y). (6.7)

This identity holds in particularly for the solution w of (3.1), i.e.

ekr(w̃)(x) = (−1)δks+δrsekr(w)(y),

and by adding this to the identity (6.4) (with i and j replaced by k and r,
respectively),

ξkr(x) = (−1)δks+δrsξkr(y),

and multiplying with (6.2), we obtain

aijkr(ekr(w̃) + ξkr)(x) = (−1)δis+δjsaijkreij(ϕ)(ekr(w) + ξkr)(y). (6.8)

Thus, multiplying with (6.7) gives

eij(ϕ̃)aijkr(ekr(w̃) + ξkr)(x) = eij(ϕ)aijkr(ekr(w) + ξkr)(y),

which together with (3.1) implies∫
Y

e(ϕ̃) · A(e(w̃) + ξ)(x)dx =
∫

Y

e(ϕ) · A(e(w) + ξ)(y)dy = 0. (6.9)

Noting that every function ς ∈ H1
per,3(Y ) can be represented by ς = ϕ̃ where ϕ = ς̃ ,

we obtain that∫
Y

e(ς) ·A(e(w̃) + ξ)(x)dx = 0 for all ς ∈ H1
per,3(Y ),

i.e. w̃ is also a solution of (3.1). Hence, w̃ − w is a rigid displacement, i.e. e(w̃) =
e(w). By summation over k and r in (6.8) we therefore find that the stress compo-
nent σij(u) satisfies the condition

σij(u)(x) = (−1)δis+δjsσij(u)(y).

Thus, by (6.4) σ(u) ∈ S|s. Hence, if f : Y → R is symmetric with respect to the
plane xs = 0, i.e. f(x) = f(y), then∫

Y

f(x)σij(u)(x)dx = (−1)δis+δjs

∫
Y

f(y)σij(u)(y)dy,

and we obtain that

Kij = (−1)δis+δjsKij , (6.10)

which is equivalent with saying that K belongs to Ss|. Similarly, we obtain that
−Kij = (−1)δis+δjsKij if f is anti-symmetric with respect to the plane xs = 0,
which implies that K belongs to Ss⊥.
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In the case when ξ ∈ Ss⊥ we replace (6.6) by

ϕ̃s(x) = ϕs(y),

ϕ̃i(x) = −ϕi(y) for all i �= s.
(6.11)

Similarly as above we obtain that

−eij(ϕ̃)(x) = (−1)δis+δjseij(ϕ)(y).

This identity holds in particularly for the solution w of (3.1), i.e.

−ekr(w̃)(x) = (−1)δks+δrsekr(w)(y),

and adding this to the identity (6.5) (with i and j replaced by k and r, respectively),

−ξkr(x) = (−1)δks+δrsξkr(y),

and multiplying with (6.2) gives

−aijkr(ekr(w̃) + ξkr)(x) = (−1)δis+δjsaijkreij(ϕ)(ekr(w) + ξkr)(y).

Using similar arguments as above, the rest of the theorem follows directly.

We close this section with a corollary, which will be useful in the analysis of
resultant forces and resultant moments.

Corollary 6.1. If

Kij =
∫

Y

σij(u)(x)dx (6.12)

or

Kij =
∫

Y

xtσij(u)(x)dx, (6.13)

where t �= s, then K = {Kij} belongs to Ss| if ξ = e(v) ∈ S|s and Ss⊥ if ξ ∈ S⊥s.

Moreover, if

Kij =
∫

Y

xsσij(u)(x)dx, (6.14)

then K = {Kij} belongs to Ss⊥ if ξ ∈ S|s and Ss| if ξ ∈ S⊥s.

Proof. The result follows directly from Theorem 6.1 by letting f be the symmetric
functions f(x) = 1 and f(x) = xt, and next letting f be the anti-symmetric function
f(x) = xs.
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7. The Vanishing of Resultant Forces and Moments

From Theorem 4.1 we know that generally all the resultant forces Nij vanish except
for N33. Several of the remaining quantities N33, M1, M2 and M3 may also vanish.
For example in the special case of symmetric homogeneous isotropic bar, bounded
by cylindrical (prismatic) surface, only one of these four quantities are different from
zero for a given global displacement v. More precisely, when v is of the forms (5.1)–
(5.4) the only nonvanishing resultant forces and moments are 〈σ33(u)〉, M3, M2 and
M1, respectively. Even though the presentation of the theory of the periodic case
presented here is completely different from that presented for the classical theory
of deformation of bars, we still recommend that the reader be familiar with the
theory presented e.g. in Ref. 9.

This property of vanishing resultant forces and moments is not directly inher-
ited in our more general situation. However, by Theorem 6.1 we are able to find
symmetry properties which imply this property in each of the four principle cases.
Before we draw this conclusion, let us first use Corollary 6.1 to obtain the following
remarks for s = 1, 2, 3 separately:

The case s = 1

If ξ = e(v) ∈ S|1, then ∫
Y

x2σ13(u)(x)dx = 0,

i.e. one term of M3 vanishes, and∫
Y

x1σ33(u)(x)dx = 0,

i.e. M2 = 0. If ξ ∈ S⊥1, then ∫
Y

x2σ33(u)(x)dx = 0,

i.e. M1 = 0, and ∫
Y

σ33(u)(x)dx = 0,

i.e. N33 = 0.

The case s = 2

If ξ = e(v) ∈ S|2, then ∫
Y

x1σ23(u)(x)dx = 0,

i.e. one part of M3 vanishes, and∫
Y

x2σ33(u)(x)dx = 0,
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i.e. M1 = 0. If ξ ∈ S⊥2, then ∫
Y

x1σ33(u)(x)dx = 0,

hence M2 = 0, and ∫
Y

σ33(u)(x)dx = 0,

i.e. N33 = 0.

The case s = 3

If ξ = e(v) ∈ S|3, then∫
Y

x1σ13(u)(x)dx =
∫

Y

x2σ23(u)(x)dx = 0,

i.e. M3 = 0. If ξ ∈ S⊥3, then∫
Y

x1σ33(u)(x)dx =
∫

Y

x2σ33(u)(x)dx = 0,

i.e. M1 = M2 = 0 and ∫
Y

σ33(u)(x)dx = 0,

i.e. N33 = 0.

By Remark 6.1 we are now able to determine which of the resultant forces and
moment that vanish in the four principal cases. The conclusions are presented in
the following four tables.

Extension in x3-direction

Symmetry-planes

Generally x1 = 0 x2 = 0 x3 = 0 x1 = 0 and x2 = 0

N33 — — — — —
M1 — — 0 — 0
M2 — 0 — — 0
M3 — — — 0 0

Torsion in x1x2-plane

Symmetry-planes

Generally x1 = 0 x2 = 0 x3 = 0 x1 = 0 and x2 = 0

N33 — 0 0 0 0
M1 — 0 — 0 0
M2 — — 0 0 0
M3 — — — — —
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Pure bending about the x2-axis

Symmetry-planes

Generally x1 = 0 x2 = 0 x3 = 0 x1 = 0 and x2 = 0

N33 — 0 — — —
M1 — 0 0 — 0
M2 — — — — —
M3 — — — 0 —

Pure bending about the x1-axis

Symmetry-planes

Generally x1 = 0 x2 = 0 x3 = 0 x1 = 0 and x2 = 0

N33 — — 0 — —
M1 — — — — —
M2 — 0 0 — 0
M3 — — — 0 —

8. Equivalent Boundary Conditions

Let C∞
|′ (Y ) be the space of smooth vector valued functions u ∈ C∞(Y ) satisfying

u3

(
x1, x2,−x

0
3

2

)
= u3

(
x1, x2,

x0
3

2

)
on B, (8.1)

and let C∞
⊥′(Y ) denote the space of smooth vector-valued functions u satisfying

ui

(
x1, x2,−x

0
3

2

)
= ui

(
x1, x2,

x0
3

2

)
on B for i = 2 and i = 3. (8.2)

In addition, let C∞
| (Y ) denote the space of smooth vector-valued functions u

satisfying

u3 = 0 on B (8.3)

and let C∞
⊥ (Y ) denote the space of smooth vector-valued functions u satisfying

ui = 0 on B for i = 2 and i = 3. (8.4)

Moreover, let H|′(Y ), H⊥′(Y ), H|(Y ) and H⊥(Y ) denote the closures of these
spaces in H1(Y ), respectively.

Lemma 8.1. Let X be a closed subspace of H1(Y ). Then the problem∫
Y

e(ϕ) · A(ξ + e(w))dx = 0 for all ϕ ∈ X, (8.5)

has a solution w ∈ X which is unique up to a rigid body displacement. More
precisely, if w = w1 and w = w2 are solutions of (8.5), then r = w1 − w2 ∈ R,
where

R = {r ∈ X : e(r) = 0}.
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In the following cases r = (r1, r2, r3) takes the following form:

(1) X = H1
per,3(Y ):

r = (b1, b2, b3) +m12(x2,−x1, 0),

i.e. a translation in R
3 and a rotation in the x1x2-plane of angle m12 (if m12

is small).
(2) X = H|′(Y ):

r = (b1, b2, b3) +m12(x2,−x1, 0) +m13(x3, 0,−x1) +m23(0, x3,−x2),

(3) X = H⊥′(Y ):

r = (b1, b2, b3) +m12(x2,−x1, 0),

(4) X = H|(Y ):

r = (b1, b2, 0) +m12(x2,−x1, 0),

(5) X = H⊥(Y ):

r = (0, 0, b3).

Proof. Let R denote the set of all rigid displacements in X , i.e.

R = {r ∈ X : e(r) = 0}.
Denote X ′ = X/R the factor space which is well-defined since R is finite

dimensional and X is closed. The linear functional (e(ϕ), Aξ) and the bilinear form
(e(ϕ), Ae(w)) are well defined on X ′ by construction. By the Korn inequality this
form (e(ϕ), Ae(ϕ)) is coercive on X ′, and the desired statement on the existence
and the uniqueness of a solution follows.

It is possible to show that for all rigid displacements r ∈ H1(Y ) there exists
a constant matrix m with mij = −mji and a constant vector b such that r(x) =
mx+ b, i.e.

r = (b1, b2, b3) +m12(x2,−x1, 0) +m13(x3, 0,−x1) +m23(0, x3,−x2). (8.6)

For the proof of this fact we refer to Ref. 8. If u = (u1, u2, u3) ∈ R and ui is I-
periodic in the x3 variable, we obtain that mi3 = 0 in (8.6). Moreover, if u3 = 0
on B, then by (8.6) we find that m13 = m23 = b3 = 0, and if u1 = 0 or u2 = 0 we
obtain that m12 = b1 = b2 = 0. Items (1)–(5) follow directly by this.

Theorem 8.1. Let A be a Y-periodic tensor which is I-periodic in the x3-variable
and satisfying (2.1), (2.2), (6.1) and (6.2) for s = 3. Moreover, let v ∈ H1(Y ) such
that ξ = e(v) is I-periodic in the x3-variable. Then, if ξ ∈ S|3, any solution w of
(8.5) for X = H|(Y ) is also a solution of (3.1), (or equivalently (3.2)). Similarly, if
ξ ∈ S⊥3, any solution w of (8.5) for X = H⊥(Y ) is also a solution of (3.1).
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Using similar arguments as we used for deriving (3.1) from (3.4) via Green’s
formula (3.5), we obtain from Theorem 8.1 the following two pairs of weak versus.
classical formulations.

(1) The case e(v) ∈ S|3. The weak formulation takes the form: Find u = v + w,

such that w ∈ H|(Y ) and∫
Y

e(ϕ) ·A(e(u))dx = 0 for all ϕ ∈ H|(Y ). (8.7)

The classical formulation takes the form: Find u ∈ H1(Y ), such that
div σ(u) = 0 in Y,
Fi(u) = 0 on B, i = 1, 2,
F (u) = 0 on C,
u3 = v3 on B.

(8.8)

(2) The case e(v) ∈ S⊥3. The weak formulation takes the form: Find u = v + w,

such that w ∈ H⊥(Y ) and∫
Y

e(ϕ) ·A(e(u))dx = 0 for all ϕ ∈ H⊥(Y ). (8.9)

The classical formulation takes the form: Find u = v + w, such that
div σ(u) = 0 in Y,
F3(u) = 0 on B,
F (u) = 0 on C,
ui = vi on B, i = 1, 2.

(8.10)

Remark 8.1. Approximate solutions on both of the above types of problems can
easily be found in finite dimensional spaces of continuous functions by using com-
mercially available FE-programs. For example, in the program ANSYS these prob-
lems are solved by using “structural problem” with no body forces and specifying
the Dirichlet boundary conditions u3 = v3 (or u1 = v1 and u2 = v2) on the two
parallel surfaces constituting the set B. This is certainly the same as putting w3 = 0
(or w1 = 0 and w2 = 0) on B. The above Neumann boundary condition are auto-
matically imposed by leaving the corresponding displacements on these surfaces
unspecified. This gives us a numerical solution u which according to Lemma 8.1 is
unique only within a rigid displacement of the form r = (b1, b2, 0)+m12(x2,−x1, 0)
(or r = (0, 0, b3)). In order to obtain a unique solution we may specify this rigid
displacement as follows. By imposing a Dirichlet boundary condition wi = 0 (i.e.
ui = vi) at some point, xk = (xk

1 , x
k
2 , x

k
3) ∈ Y we obtain the condition bi = 0. Simi-

larly, the constant m12 is removed by defining e.g. w1 = 0 (i.e. u1 = v1) or w2 = 0
(i.e. u2 = v2) at some other point xl = (xl

1, x
l
2, x

l
3) ∈ Y, where (xl

1, x
l
2) �= (xk

1 , x
k
2).

Remark 8.2. From (5.5) and (5.6) we observe that ξ = e(v) ∈ S|3, S⊥3, S|3 and
S|3 for the cases (5.1)–(5.4), respectively. Hence from the above results it is clear
that the problems corresponding to these cases can be solved by using the following
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Dirichlet boundary conditions on the left (right) of B and the points (xk
1 , x

k
2 , x

k
3)

and (xl
1, x

l
2, x

l
3), where (xl

1, x
l
2) �= (xk

1 , x
k
2). Note that the corresponding effective

parameters are independent of the constant τ. This parameter may therefore be
chosen arbitrarily when the only purpose of the computation is to calculate effective
properties.

(1) Extension in x3-direction (5.1):

u3 =
−τx0

3

2

(
u3 =

τx0
3

2

)
on B

u1(xk
1 , x

k
2 , x

k
3) = u2(xk

1 , x
k
2 , x

k
3) = 0 and u1(xl

1, x
l
2, x

l
3) = 0.

(2) Torsion in x1x2-plane (5.2):

u1 =
τx0

3x2

2
, u2 = −τx

0
3x1

2

(
u1 = −τx

0
3x2

2
, u2 =

τx0
3x1

2

)
on B

u3(xk
1 , x

k
2 , x

k
3) = 0.

(3) Pure bending about the x2-axis (5.3):

u3 = τx1x
0
3 (u3 = −τx1x

0
3) on B

u1(xk
1 , x

k
2 , x

k
3) = τ(xk

3)2, u2(xk
1 , x

k
2 , x

k
3) = 0 and u2(xl

1, x
l
2, x

l
3) = 0.

(4) Pure bending about the x1-axis (5.4):

u3 = τx2x
0
3 (u3 = −τx2x

0
3) on B

u1(xk
1 , x

k
2 , x

k
3) = 0, u2(xk

1 , x
k
2 , x

k
3) = τ(xk

3)2 and u1(xl
1, x

l
2, x

l
3) = 0.

Proof of Theorem 8.1. Assume that ξ ∈ S|3. By repeating the proof of Theorem
6.1 with H1

per,3(Y ) replaced by the larger space H|′(Y ), we find that if w is a
solution, so is the function w̃ given by

w̃3(x) = −w3(y),
w̃i(x) = wi(y) for all i �= 3.

(8.11)

Hence, it is easy to see that the convex combination

ψ =
1
2
w +

1
2
w̃

is also a solution. By the I-periodicity in the x3-variable of wi for i = 3, we obtain
from (8.11) that

ψi

(
x1, x2,−x

0
3

2

)
=

1
2
wi

(
x1, x2,−x

0
3

2

)
+

1
2
w̃i

(
x1, x2,−x

0
3

2

)
=

1
2
wi

(
x1, x2,−x

0
3

2

)
− 1

2
wi

(
x1, x2,

x0
3

2

)
= 0,
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and similarly that ψi(x1, x2, x
0
3/2) = 0 for i = 3. This shows that ψ ∈ H|(Y ).

Moreover, for i �= 3 we obtain by using (8.11) twice that

ψi

(
x1, x2,−x

0
3

2

)
=

1
2
wi

(
x1, x2,−x

0
3

2

)
+

1
2
w̃i

(
x1, x2,−x

0
3

2

)
=

1
2
wi

(
x1, x2,−x

0
3

2

)
+

1
2
wi

(
x1, x2,

x0
3

2

)
=

1
2
w̃i

(
x1, x2,

x0
3

2

)
+

1
2
wi

(
x1, x2,

x0
3

2

)
= ψi

(
x1, x2,

x0
3

2

)
.

Hence, we also have that ψ ∈ H1
per,3(Y ). Thus, since ψ is solution of (8.5) for

X = H|′(Y ) and at the same time belongs to the smaller function spaces H|(Y )
and H1

per,3(Y ), it follows directly that ψ is a solution of (8.5) for X = H|(Y ) and
X = H1

per,3(Y ). If ξ ∈ S⊥3, we argue exactly as above by replacing H|′(Y ) and
H|(Y ) with H⊥′(Y ) and H⊥(Y ), respectively, and using

w̃3(x) = w3(y),
w̃i(x) = −wi(y) for all i �= 3,

(8.12)

instead of (8.11), and the rest of the theorem follows.
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