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periodic double porosity type problem stated in a porous medium containing a 2D or
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of the first type is characterized by the asymptotically vanishing volume fraction of
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version of the two-scale convergence method adapted to thin structures. The resulting
homogenized problems are dual-porosity type models that contain terms representing
memory effects.
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1. Introduction

Modeling of flow in fractured media is a subject of intensive research in many engi-
neering disciplines, such as petroleum engineering, water resources management,
civil engineering. A fissured medium is a structure consisting of a porous and per-
meable matrix which is interlaced on a fine scale by a system of highly permeable
fissures. The majority of fluid transport will occur along flow paths through the
fissure system, and the relative volume and storage capacity of the porous matrix
is much larger than that of the fissure system. When the system of fissures is so
well developed that the matrix is broken into individual blocks or cells that are
isolated from each other, there is consequently no flow directly from cell to cell, but
only an exchange of fluid between each cell and the surrounding fissure system. The
large-scale description will have to incorporate the two different flow mechanisms.
For some permeability ratios and some fissures width, the large-scale description is
achieved by introducing the so-called double porosity model. It was introduced first
for describing the global behavior of fractured porous media by Barenblatt et al.’
and it has been since used in a wide range of engineering specialties related to geo-
hydrology, petroleum reservoir engineering, civil engineering or soil science. More
recently, fractured rock domains corresponding to the so-called Excavation Dam-
aged Zone (EDZ) received an increasing attention in connection with the behavior
of geological isolation of radioactive waste after the drilling of the wells or shafts
(see, e.g., Ref. 12).

The usual double porosity model is to assume that the width of the fractures
containing highly permeable porous media is of the same order as the size of the
blocks. The related homogenization problem was studied in Ref. 4, and was then
revisited in the mathematical literature by many other authors (see, e.g., Refs. 8, 15,
18, 21 and Refs. 22, 7 and 17 and the references therein). The double porosity type
problems in the case when the volume of the fracture part is small with respect to
the volume of the original domain were studied either by the method involving only
one small parameter in Refs. 19, 20 or by the method with two small parameters in
Refs. 2, 3 and 10. The singular double porosity model was studied in Ref. 9. Notice
that in all these papers it was assumed that the porous reservoir was not very thin.

As was underlined above, the geometry of the nuclear waste depository leads
to models stated in a porous domain having a singular geometry (see for instance
Ref. 11). Mathematically this results in a double-porosity type problem defined in
a thin layer or plate. It is known in the geology that both the fissure part and the
matrix system are porous media crossed by many small fissures. The permeability of
the matrix is much less than that of the fissure part, thus if we set the permeability
of the fissure part to be of order 1, then the permeability of the matrix is very small.
In the model problem studied in this paper, the matrix part is made of cubic porous
blocks situated periodically along a hyperplane. The complement to the union of
blocks, i.e. the fissure part, is a connected set. There are two small parameters in
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our model. The first one, ¢, characterizes the typical size of inhomogeneity and the
thickness of the domain. Another parameter § is responsible for volume fraction of
the fissure part.

We consider a single phase flow of a slightly compressible fluid in thin periodic
fractured-porous media made of a set of porous blocks with permeability of order
(£6)?, where 0 < ¢ < § < 1; these porous blocks are surrounded by a system of
connected fissures. The model is described by a linear parabolic equation stated in
a thin domain depending on the parameter € such that the measure of the domain
vanishes as € — 0. Our homogenization process consists of two main steps. In the
first step we apply the Laplace transform to the studied initial-boundary problem
in order to reduce it to a stationary elliptic problem. For each fixed § > 0 we
then homogenize this elliptic problem, i.e. pass to the limit, as € tends to zero.
At this step we face some difficulties with using the two-scale convergence method
because the standard two-scale convergence technique applies to a bulk distributed
structure while in our case the structure is situated in a small neighborhood of a
hyperplane and has an asymptotically vanishing measure. In this connection we use
the two-scale convergence method in a tricky way. Namely, we make an anisotropy
scaling of the domain in such a way that its thickness is getting uniformly positive.
This leads, however, to high anisotropy of the coefficients of the studied operator
and, as a result, to highly anisotropic a priori estimates. The derivatives with
respect to slow and fast variables are then mixed up in the limit equations, and a
special analysis is required in order to separate the slow and fast variables in the
homogenized problem and to identify the limit. This is the subject of Theorem 3.1
and Corollary 3.1 in Sec. 3. The homogenized problem obtained at the first step, is
called the d-model. Its coefficients still depend on the parameter §.

In the second step we pass to the limit, as ¢ tends to zero, and obtain the final
stationary homogenized model with no dependence on ¢ or on §. It should be noted
that the method of two small parameters was widely used in the homogenization
theory for modeling various reticulated structures (see, e.g., Refs. 5 and 14 and the
references herein).

The homogenized nonstationary model is then obtained by means of the inverse
Laplace transform. The corresponding convergence results are given by Theorem 6.1
for the §-model and by Theorem 2.1 for the fully homogenized problem.

The structure of the paper is as follows. In Sec. 2 we state the 2D version of the
problem and formulate the convergence results for the nonstationary model.

In Sec. 3 we apply the Laplace transform to the original problem and then
study the obtained stationary problem which is posed in a thin layer (strip). For
each fixed 6 > 0 we pass to the limit as ¢ — 0 and derive the homogenized model
(the so-called §-model). The proof of the convergence result relies on the two-scale
convergence method appropriately adapted to thin domains.

In Sec. 4 we pass to the limit in the J-model, as § — 0, and obtain the stationary
limit problem.
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In Sec. 5 we prove the convergence result for the original nonstationary problem.
The resulting homogenized problem is a dual-porosity type model that contains a
nonlocal in temporal variable term representing memory effects. The nonstation-
ary effective d-model is obtained in Sec. 6, its derivation is based on the results
of Sec. 3.

Finally, in Sec. 7 we extend the results of the previous sections to the case of
3D porous medium occupying a thin layer (plate). The technique is essentially the
same as in the 2D case, the minor modifications required are listed in this section.

2. Statement of the Problem and Main Result
Let QF be a rectangle in R?,

O = (—%+§) x (0, L).

We introduce a periodic structure in Q¢ as follows. Denote by ) the reference cell

Y= <—%,+%> x (0,1)

and by F° the reference fracture part F0 = {y € Y, dist (y,0)) < %} The
reference matrix block is then defined by M® = Y\F?. Assuming that L is an
integer multiplier of e: L = Ne, N € N, we define

N-1 N-1
0 = |J e+ 0.9), 23 = |J =M +(0,5)).
=0 =0

The flow in the matrix-fracture medium ¢ is described by the equation:

W (z)uy® — div (k% (2)Vus®) = G=(z) in (0,T) x QF;

Micromodel : { Vu® -v =0 on (0,T) x 0Q°;
u(0,2) =0 in Q°
(2.1)
where
wr  in Q27 k in Q%9
we,é(x) _ ! f ke,é(m) _ ! f
Wy in Q59 km(£8)? in Q50;

cagy _ [lorm@) 9y
crns {h(ff) in Q0.
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Here wy,wp, ks, km are positive constants and g,h € C'(R?). It is convenient to
introduce the notation:

5 ps"s in Q;"S;
u®’ =
£,0 £,0
o in Q5

and to rewrite problem (2.1) separately in the fracture and matrix parts with the
appropriate interface conditions. Namely, in the fracture domain Eq. (2.1) reads

wrpr® = div (kfVp™?) = (g +h)(@) n (0,7) x Q5°;

kape"S U =k (£6)?Vo0 v on (0,7T) x 'Y;;(j‘; (2.2)

Vot v =0 on (0,T) x OQ; '
)0 — . €,0

p=°(0,2) =0 in Q%°,

where 'yfr;‘; denotes the matrix-fracture interface. The flow in the matrix domain is
controlled by

Wi — div (kpm (€6)2Vo=?) = h(z) in (0,T) x Q59;

058 = pob on (0,7) x 75} (2.3)

o=%(0,2) =0 in Q5.
It is well known that, for any €,5 > 0, there exists a unique solution u®?® =
(p=°,°%) of the boundary value problem (2.1) (or of the equivalent system (2.2)—
(2.3)) in the space C(0,T; H(Q)).

The goal of this work is to study the asymptotic behavior of u% as e,6 — 0.
We are going to show that for any fixed § problem (2.1) admits homogenization (as
¢ — 0) and that the homogenized solution converges, as ¢ — 0, to a solution of the
effective problem:

1 82 *
wipi = 3k g = GO +8(7) i (0,T) x (0, L)
Macromodel = { 9p” _Op* _ . (2.4)
85 (t,O) - aé- (tﬂL) - 0 on (O,T),
p*(0,6) =0 in (0,L)

with G(§) = (g + h)(0,€) and the additional source term

s(p*)=—2'f/”%w’”/o pz_f_’i)dT—k%(O,f) z—”; (2.5)

Here and in what follows we identify the variables x5 and &, as well as functions of
2 which do not depend on z1, with the corresponding functions of €.

According to Ref. 16 problem (2.4)-(2.5) is well-posed and, under our standing
assumptions, it has a unique solution p* € L?(0,7; H'(0, L)).
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Notice that although the term S(p*) does depend on the unknown function p*,
traditionally in the mechanics of porous media it is called “additional source term”.
In this paper we keep this convention.

Let us emphasize that the presence of the convolution term in the limit equation
(2.4) represents the memory effect in the limit dynamics.

The following result describes the limit behavior of ¢, as ¢ — 0. In the matrix
part of the domain the diffusion is asymptotically negligible so that for a time-
independent right-hand side h(z) the corresponding solution is getting linear in
time (see formula (2.6) below). Also, since the volume fraction of the fractured part
of the domain is vanishing, as § — 0, the first relation in (2.6) holds.

Theorem 2.1. Let u®? = (p>° 0%9) be the solution of (2.1). Then, for any t €

(0,7,
(I) the function 0=°, as well as the function u®°, converges to (th(x)), namely:
€,0 ot o £,0 us o 2 0N
(}%i{%m”w _tth(Q” = hf%g{%m”“ _th||L2(Qe) =0;
(2.6)
(IT) the function p=° satisfies the limit relation
lim lim || = 2
e P |Q€5 ||p -r ||L2(Qj;5) =0, (2.7)

where p* = p*(t,€) is a solution of (2.4)~(2.5).
(III) For any t € (0,T), and any function ¢ = ¢(x) continuous in the vicinity of
the segment {x € R? : x1 =0; 0 < a9 < L}, it holds

L
lim nmL' /Q K@) Tut o) do = ’%f /0 R*(t,6)6(0,€)dE  (2.8)

§—0e—0 |Q?5
B, ap*
R (1,6) = ( s f))

This paper also deals with the asymptotic behavior of the solution of problem
(2.1), as e — 0, for a fixed positive d. The corresponding homogenization result will
be formulated and proved in Sec. 6, Theorem 6.1.

with

Remark 2.1. It is clear from (2.6) and (2.7) that the limit values of u*° on the
matrix and fracture parts (th(0, x2) and p* (¢, x2), respectively) only depend on the
slow variables xo and ¢ and in general do not coincide. It contradicts our intuition

because in the original problem (2.1) the solution u®*°

is continuous at the matrix-
fracture interface. In order to explain this phenomenon we notice that for each fixed
§ > 0 the two-scale limit of u*? is continuous. However, as § — 0, the two-scale

limit function is getting closer to a constant everywhere in the matrix blocks except



Homogenization of Porous Medium in a Thin Layer 1323

for a small neighborhood of the interface where the boundary layer type correctors
arise. Since the result is given in terms of L2?-norms, we neglect these boundary
layer functions (as 6 — 0) and thus make the limit function discontinuous.

Remark 2.2. We assume in Theorem 2.1 that the right-hand side h(x) does not
depend on the temporal variable just for presentation simplicity. In general the
right-hand side of the form h(z,t) can be considered exactly in the same way. For
a time-dependent h(z,t) the relation (2.6) reads

1 2
i lim o =0.

¢
we"sue"s—/ h(-,s)ds
0

L2(Q9)

Theorem 2.1 will be proved in three steps. At the first step we apply the Laplace
transform to problem (2.1) in the time variable and then study the asymptotic
behavior of a solution of the corresponding stationary boundary value problem as
€ — 0, 0 > 0 being fixed. We then obtain a stationary homogenized problem stated
on the interval (0, L) with the coefficients depending on 4. At the second step we
pass to the limit as § — 0 and obtain a stationary limit problem, i.e. the problem
independent of €, §. Finally, at the third step we make the inverse Laplace transform
and prove the convergence for the original nonstationary problem.

3. Step 1. Homogenizing the Stationary Model
We begin by applying the Laplace transform to (2.1). This gives
Mo=0uS? — div (k0Vu®) = G° in QF;

3.1
Vui"S v=0 on 00°, (31

Stationary micromodel : {

where

G () = (gr +ha)(z) in Q5
A ha(z) in Q0

with A > 0, gx(x) = A" tg(z), ha(z) = A Lh(z).
As in the previous section, we can rewrite (3.1) separately in the fracture and
matrix parts. Namely,

Aoppl® = div (ke Vp3®) = (9 + ha)(z)  in Q7
kpVpy v =k (0)2Vo5’ v on 5% (3.2)
vl)iﬁ v=0 on 0N)°

and

ed &0 (33)

)\wmai"s —div (km(sé)QVUi"s) = hy(x) in Q5;
oy’ =p5 on vf,jb‘;.
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Next we transform e-dependent domain €2° into the fixed domain
1 1
II = (—§,+§> X (O,L)

by the change of variables 2q = £-, 25 = w3, and denote by He’é, 1159 the images,
under this transformation, of Q?‘S, Qf;f, respectively. The image of ’yf,;‘; is denoted

by Ffr’;}. In the new variables z1, 2o Eq. (3.1) reads
w9 (21, @)Wf"S —div (KE"S(Z)VW?&) = Gi’é(szl, z9) in II;

3.4)
8 6,6 8 6,6 (

—2 OWy W

kye 97, v =0 and ky 07

where Wf"s(z) = ui’é(szl, 23), and the matrix K& is given by

€2k (ez1, 2 0
K6’6(2)2< ( 1 2) .

vy =0 on OII,

0 ks’é(é‘zl,ZQ)

As usual, we want to rewrite (3.4) separately in the fracture and matrix parts.
To this end we denote

Rf\’a(z) = P§’6(€Zh Z2), Si’é(z) = 03’6(521, Z2).

Equation (3.2) now reads

2 HE,O 2 pE,d
)0 50 R,\ 9 R/\ _ . 5.
MwpRY® — ke =R = (g9r + ha)(ez1,22)  in T5°;
OR’ , 9550 e
]ff 821 vy = km(E(s) 8—2;1V1 on me,
OR’ , 055" e
k‘f D2 Vo = km(&S) 929 12} on me§
OR’ OR’
kf€*2 82'); vi =0 and ky 82); vy =0 on OII.
(3.5)
Similarly Eq. (3.3) reads
9255° 9255°
£,0 2 by 2 A : £,0.
)\meA - km5 8—2% - km(E(s) 8—25 = h)\(EZh 212) m Hmé, (36)
Si’é = Ri"s on I‘i’;}.
In what follows x? denotes a ys-periodic solution of the problem:
—Ayx‘s =0 in F¢;
A’ — ) O — y2)
Tz/l =0 and TVQ =0 on anf (3.7)
AX° — y2)

1
o 0 on 8yﬂ{y 2}
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The function U ;\s is a solution of
{Ameg — k2 AU =0 in MY,

3.8
Uﬁf =1 on anf. (3:8)

Finally, £(V; W) stands for the space of linear and continuous operators from V'
to W, where V and W are real Banach spaces.

Remark 3.1. The variable z; is somehow twofold because in the original problem
(2.1) it varies on the interval [—£/2,¢/2] and serves as a fast variable while in the
rescaled problem (3.4) it becomes a slow variable. In this connection we set y; = 21
and use both symbols z; and y; for the notation convenience. Notice also that
To = 29 =&.

We proceed with the main result of the section. We want to show that the
homogenized model can be described in terms of the following equation:

2 po
PO s B — kg KO TI0 = G(€) + S(RS) in (0,1);
ae2
d-model : iR’ iR? (3.9)
A A
= L) =
whose coefficients K%, 19, and G$ (&) are given by
s 5 ax° s 5
k=17 [ Sl 61O = 17 g + )0,
Fos OY2
(3.10)
16
S(RY) = BB+ 5 m 0,90 K=o [ Vi)
)\wm M

Later on we will show that this equation has a unique solution.

Remark 3.2. All the coefficients of the equations in (3.9) are vanishing as § — 0
and, in fact, are of order |F?|. To make the asymptotic behavior of these coefficients
more visible for small §, one has to divide Eq. (3.9) by |F?|. As will be shown later
on (see (4.14), (4.15)), after this normalization the coefficients of the resulting
equation have nontrivial limits as 6 — 0.

Theorem 3.1. A solution Wf’é of (3.4) strongly two-scale converges, as € — 0, to
a function W (z,y2) = (R} (22), S3(2,y2)), where RS is a solution of (3.9), and

Sz, 92) = R (22)U3 (21, 92) + Q (21, 92)ha (0, 22), (3.11)
here Ul(z1,y2) is a solution of (3.8), and (J(z1,y2) = )\jm (1 — U(21,92))-
Moreover, there is an extension operator P9 ¢ E(LQ(H?‘S);LQ(H)) N S(Hl(Hj;‘s);
HY(IT)) such that

PORS® — RS weakly in H'(IT), (3.12)
where RS® is the solution of (3.5).
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Due to the regularity of W)‘f , the strong two-scale convergence stated in Theo-
rem 3.1 implies the following result.

Corollary 3.1. For any § > 0 the convergence takes place

1

2
iy |07 @ =3 (22 2) | e =0

Notice that due to (3.7), one can represent K? in a slightly different form.
Namely, multiplying (3.7) by x°, integrating by parts, and using the boundary
conditions in (3.7), one has

1
°= |J’T§|a}-6 (Xé_yQaXS_y2)7 (313)

where azs is the bilinear form associated with the Laplace operator. The formula
(3.13) implies that K% > 0. It is also easy to see that Ij\s > 0. Therefore, problem
(3.9) is well-posed on (0, L).

3.1. Proof of Theorem 3.1

First we obtain a priori estimates. To this end we multiply (3.5) by Ri"s and (3.6) by
Si"s, and then integrate the resulting relation by parts. After simple computations
this gives the bounds

2 2

IR’ RS’
92 A A
)\WfHR ||L2(H€‘5 + ke 2, ) +ky 92 5
L2(1%°) L2(11%°)
05 ||” 52|
2 A 2 A
+ )\meS ||L2(H5 5y + kmo 8—21 + Ep (€0) B2 <,
L2(I5) L2(I15:°)
(3.14)
where C' is a constant independent of ¢, . Therefore,
£,0 £,0
5 _1||ORY ORY
| RS ||L2(n?5) +e 7, + B2 <C, (3.15)
L2(13?) L2(15°%)
953" 953" C
£,0 .
153 N 2 gy < Cs ‘ 521 i s <5 (316)
L2(T15,%) L2(I15,%)

Now considering the properties of the extension operator P#® (see Lemma 2.9
from Chap. 1, Sec. 2 in Ref. 14) we obtain (3.12). Indeed, by this lemma there exists
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an extension operator P9 in ) such that

IP°eliL2y < Cs lielia@sy,  IVP @l 2wy < Cs IVollp2(rsy2-

We associate with the operator P the extension operator P in II, defined by
scaling ) in the zs-direction. Hence,

£,0 PE,O £,0
‘ PR, Hmn) < Goll B3 ey
pe.d €,0 €,0 (317)
ai‘RA S C(S aRA s (7, = 17 2)
0z; @ €8
L2(1m) L2(115?)
From (3.15), we get
OP=° RS’ OP=° R}’
‘ Ps,éRivé‘ N | e e S < Cs, (3.18)
L2(11) 821 822
L2(11) L2(11)

and thus (up to a subsequence) PE"SRi"S — RS weakly in HY(II) as ¢ — 0, and
)
%I:f = 0. This yields R (2) = RS (22).
It remains to show that R3 satisfies (3.9). For this aim we use the two-scale
convergence approach (see, e.g., Ref. 1). For the reader’s convenience we recall the

definition of two-scale convergence.

Definition 3.1. A sequence of functions v® € L?(Q) two-scale converges to
v(z,y) € L*(QxY), if [|v°]| 12(q) < C and for any function ¢(z,y) € D(Q; CF(Y)),
it holds

lim [ v*(x)e (x, f) dx = / v(x,y)e(z,y) dedy.
Q € Qxy

e—0

This convergence is denoted by v°(x) 2 v(x,y).
First we obtain a two-scale compactness result for the solution of (3.4).

Lemma 3.1. Let Wf’é = <R§’6,5§’6> be a solution of problem (3.4). Then
there exist RS € H'(0,L), vff € L*(0,L; H(—1/2,1/2) x H4(0,1)) and S €
L2(0,L; HY(—1/2,1/2) x H;,é(O7 1)) such that up to a subsequence

£, e,0 28
15° RS 215 (y) R (=2), (3.19)
8R€,5 9 81)6
189 |21 A 28498 f 9
f lg 02 () —8y1 (22,91, Y2), (3.20)
ORS® 5 ORS s
1675 A 2% 496 A f 3.21
_f 822 f(y) 822 (ZQ) + ay2 (ZQ) y17 yQ) ) ( )




1328 B. Amaziane, L. Pankratov € A. Piatnitski

150.59° 2010 (y) S5z, 1, v2), (3.22)
9850 o, BER
1 o S 1) o (o), (3.23)
9857 o a8?9
150 lﬁa—él = 1;571(3/)6—32(227%,2/2), (3.24)

where 16 0= 1% 5( ) and 159 = 159(2) denote the characteristic functions of the
sets H % and HE % respectively; 1‘} = 1‘}( ) and 15, = 19 (y) denote the character-

m

istic functzons of the sets F° and M°.

Proof of Lemma 3.1. The proof of the lemma is based on the a priori estimates
(3.15)—(3.16) and two-scale convergence arguments similar to those in Ref. 1. How-
ever, we should take into account the fact that the partial derivatives of the functions
Ri"s, Si"s appear in Egs. (3.5)—(3.6) with different scale factors.

We first prove (3.19)-(3.21). It is clear that (3.19) follows immediately from
Definition 3.1. For the partial derivatives of Rf\’é we have:

OR°| ol
159 |12 | 2290,y 7L 2
_f [&‘ 821 f(y) 8y1 (227 y)) (3 5)
ORS° 8R‘5 81)‘5
1515 A it 15 —Z . 2

To prove (3.20), (3.21), we have to show that there is vfc € L*0,L; HY(—1/2,1/2) x
H,(0,1)) such that
5 ol 5o
on _ %% 9vp_ v (3.27)
dy1 Oy’ Oya  Oya
To this end we consider the integral

ORSS 0d 2z
£ __ —1 A
I _/Haég 021 ()822 (22’Zl’s)dz

with an admissible test function ® of the form ® (22,21, 2) = e¢o(22)d1 (21, 2).
After simple rearrangements we get

I = /H?é g*l%(z) [ 8i(22)¢1 (zl, - )} dz
2 oo

RE‘S a
+ /nw e ¢1 (zlé)} dz. (3.28)
f

£



Homogenization of Porous Medium in a Thin Layer 1329
The first term on the right-hand side here vanishes as € — 0. Therefore, by (3.25)

81)1

IE
- Fs Oy

— (29, )qSO(ZQ)gi( )dzody ase — 0. (3.29)

On the other hand, assuming that the support of ¢1(y) is a compact set in F° and
integrating I¢ by parts, we have

P [ [t (1 2)] 6

RS’ a
- /nw 7 (,z)<z;0(,zQ)ai;1 (zlﬁ) dz. (3.30)

It follows from (3.26) that

3R5 15 0
o [a—ga—? D] e S dzady ase—0. an

Since ¢q is an arbitrary smooth function of variable z5, then

ovl
Fo O

k!
0ya

o
Fo 0y2

991

(22,9)5— 8—y1

(y)dy = (22,y) 75— (y) dy. (3.32)

The existence of the function vfc satisfying (3.27) is now a consequence of the
following statement (generalization of the classical de Rham theorem (see, e.g.,
Ref. 13).

Lemma 3.2. Let Q be a Lipschitz domain, and let g = (g1, 92, .-, 9n) € (L?(2))"
satisfy the relation

(8 )2 = Z/Qgi(x)ui(m) dr =0
i=1

for any u € H}(div,Q) = {u € HY(Q) : divu = 0}. Then there exists p € H(Q)
such that g = Vp.

This proves (3.20)—(3.21). The assertions (3.22)—(3.24) can be proved in a similar
way. It should be emphasized here that there is not “fast” variable in the zi-
direction.

Lemma 3.1 is proved. O

Choosing in the weak formulation of problem (3.4) a test function ®(21, 22, 22)
of the form ® = (¢, o) with ¢5,dm € C1(0, L; CH(=1/2,1/2) x C4(0,1)) such
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that ¢ = o, on I'*°

mf> We arrive at the following integral identity:

IRy s e

€,0 -2 gor

Wf)\/nw R (2)¢5(2) dz + e kg /H” 92 97, dz
s s

Rs ,0 8¢f .

8S5° O,

£,0
053" 0bm
Hf,;‘s 621 821

82k
+ Hf;f 322 322

dz + (£6) 2k

— /M(gx+h>\)(sz1,zz)¢f(z)dz+/mj ha(ez1,22)¢m(2)dz.  (3.33)

m

In order to pass to the limit in (3.33) we introduce a smooth function ¥ = J(s)
such that 0 < ¥(s) <1 and

9(s) = {1 for s < 0; (3.34)

0 fors>1.

For v € (0,1) we set

2 4150 2+ 52
ﬁ@ﬂ:ﬁ(—qu>ﬁ<——;3L :
&d gd
R T AN TG )
U5(2) = 0 <ﬁ> v (T)

for zo € [0,e]. We extend 95 e-periodically to the whole R and define the test
functions ¢y, ¢, by

(3.35)

¢ = wf(22)+-6<'(22,zl,§?), (3.36)

b = 1)U (21, 2) + 205 (2)05(z2)C (2220, 2 ) (3.37)

where ¢f € C*(0,L), ¢ € C'(0,L; C*(~1/2,1/2) x C(0,1)) and U = Ul(y) is
defined in (3.8). Denote:

ORS¢ IRy’ 09
€0 _ €,8 —2 A YPF ver
Jf = /H;"S {wf)\RA (2)pf(2) +¢ kf—azl 971 +ky 82’2 D2 dz; (3.38)

9550 96 9550 96
£,0 — £,0 2 A YPm 2 A m
Ln—3/a{w"5 (2Vbm(2) 0% "2 T (20 i 52 T

(3.39)

The asymptotic behavior of the integrals J 6’6, Jfr;‘s is studied in the following lemma.
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Lemma 3.3. Let JE"s be given by (3.38). Then

(%f

¢
a0 )6_3/1(Z2’y) dy dz

hme —wf)\|.7-"‘5|/ R} (2 <pf(22)dz'2+kf/ /

L 5ps N’
+/€f|f‘5| %&Df (22) d22+kf/ / f ({;(pf (22) dy dzs
0 Fs

822 0z zZ92 8y2 7
8R>\ 8’[);50 ac
S D : A
+kf/ /]-'6 822 )+ Oy (22,9) I (22,y) dydzo (3.40)

Proof of Lemma 3.3. After simple rearrangements J;"s can be represented as
follows

7o = wf/\/na,s RS (2) {gpf(zg) +eC (ZQ,zl, %)} dz
f

OR® Z
—2Z7°N 7 z2
+ky /1'1?55 92 01 {Sﬁf(zz) +e¢ (227Z17 . )} dz

AR 9 o
+ka;*5 822 82’ {wf(ZQ)‘FEC(ZQ,Zl, 5)}d _Il +I2 +I3 )

(3.41)

By Lemma 3.1 we have:

L
Ila"S — wf)\|.7-"‘5|/0 RS (22)pf(22)dzy ase— 0 (3.42)
and
8R8,6 aC L 8’[}6 84—

IE"S:k/ PR d k/ —L(y)— dy dzs.

2 f H?ag 821 821 ( 22,21, — ) Z = Rf o Jrs ayl (y) 8y1 (’227y) Y azz
(3.43)

Consider the third term on the right-hand side of (3.41). Clearly,

RS Oy R 9 2
16,6 —k A f d k / dz.
3 f~/HE‘6 822 822 (22) Z+ f _— 822 822 {54- (22;217 c )} z
f f

(3.44)

By Lemma 3.1 we get

N
kf/neé 029 822( %) dz

OR3 O ovd a
—>/€f|.7:6|/ 2 Spf 22 dZQ-i-kf/ / ayf ({;jf 22) ddeQ
5 2 2

(3.45)
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For the second integral on the right-hand side of (3.44) we have

b [, e e (s 2)

ORS¢
—kf/nm6 EER 82 (22,21,92)
f

OR’ 9¢
d k d
. Z+ f/H” D25 Oy (22721, ) Z.

Ya=-—_2-

(3.46)

Clearly, the first term on the right-hand side goes to zero as ¢ — 0, and by
Lemma 3.1 we obtain

b [ g fee (e 2)

)
[ [ 2
Fo

5]
)+ (2 273/)1 8_<(22’y) dydzs. (3.47)
Y2
Finally, (3.44)—(3.47) yield

822 8y2
FS

Now the desired statement follows from (3.42), (3.43) and (3.48). This completes
the proof of Lemma 3.3. |

8R5 8v;i a¢ ey
822 a_:y?(ZQ, Y) (a—y?(zQ,y) + 8—22(2'2)>dyd22 as e — 0.

(3.48)

Lemma 3.4. Let J5° be given by (3.38). Then

L
lim J&° — 19 / o7 (22) RS (22) dzs, (3.49)
0

e—0

where I3 is defined in (3.10).

Proof of Lemma 3.4. By the definition of ¢, we have J5° = =Jg s JE"S, where

<5 _
Ry

€
m

055° 99 055" 9O } .

€,0 0 e,S 2 2
{wm/\S/\ O + 0%k, A+ (e0) k2

(3.50)
with

R (22, 21, %) = e0](21)95(22)C (ZQ, 21, %) (3.51)
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and 97,95 defined in (3.35),

U5 053"
< £,0 €,6
5= [ {WmAUx (s (22)837(2) + 0%hn=5 = (2)or () 0
T L N L i e LT L W
Moz P g, A D20 2 Dz .

(3.52)
Taking into account (3.51), the choice of the cutoff functions 5 and 9§, the fact
that 0 < v < 1 and the a priori estimates one can show that the integral Jg‘s

vanishes as ¢ — 0:

. £,0
lim J§° = 0. (3.53)

Consider now the functional J; 9, By Lemma 3.1, we have

L
wnd [ U @er()Si @) dz = wd [ Ulwes)S8a ) duds
115 0
as e — 0,
(3.54)

and

oUs? 085 L oU? R
2 A A 2 m A —d d
52 /H e Ghesle) e 0% / S Were G dudz

ase — 0.
(3.55)

For the other two terms on the right-hand side of (3.52), by Lemma 3.1 we get

ouLe 955° UL’ 955°
2 A A _ 2p, A Ay
/H;f,f(g&) km s (2)pf(22) D25 dz /Hif €6k 1 (2)@f(22) 025 z
L B
— 52km/ » %ZQ (y )c,of(ZQ)gi dydzy ase—0 (3.56)
0

and

£,0
/HM(eé)kaUi’é(z)<,0f(22)aaz’\2 dz—0 ase—0. (3.57)
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The formulas (3.53)—(3.57) imply that

hr%JE‘S J‘Szwmx\// U (y)ps(22)S3 (22, y) dydzs
MJ

ou? 288
+ 6%k, / /Ms )‘ Y)er(z2) ayi‘ dydzo

8yl
borooug 053
+ 52km/0 » 8—y;‘(y)gpf(22)a—y;\ dydzs. (3.58)

Intergrating an by parts we obtain
L
J,‘; = / / {wm)\Uﬁ\S — kmészUg} ()Of(ZQ)Sg(ZQ, y) dydzs
ME

L
—|—km52/0 /F5 (VyUf'u) Si(zg,y) dsypr(22) dzo
mf

L
= Iﬁ/ of(22) R (22) daa, (3.59)
0

where I? is defined in (3.10). Lemma 3.4 is proved. m|
We now pass to the limit on the right-hand side of (3.33). It is clear that

lim J 03+ ) (e ) (05(2) +2¢ (2221, 2) ) a2

L
= |79 / (92 + 1) (0. )0y (2) dzs, (3.60)

. 2z
ehi% e ha(ez1, 22)Om (zz,zl, ?2) dz = )\wm/ hx(0, z2)ps(22) dze.  (3.61)

Finally, from (3.40), (3.49), (3.60), (3.61) we deduce the following limit relation:

faC

dy dz
o Oy gy

L
Wf)\|.7:5|/ R/\prdZQ-f—kf/
0

ORS O 0
+kf|~7:6|/ —2 gpfdz-i-kf/ f schl dzo

i 8y2 322
+/€f/ /
Fo

L 5 L
I
— |.7-'6|/0 (gx + ha)(0, 22)5 (22) dzg + —)\WA /0 hx(0, z2) 5 (22) dza.
(3.62)

8R6 o) ovy
822 8y2

o¢

L
5 dydze + I / @RS dzs
Y2
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Now we proceed in a standard way. Letting ¢y = 0, we obtain that

ORS

vj(z2,y) = —g(@)x‘s(y), (3.63)

where x? is the solution of (3.7). Then we set ¢ = 0 and obtain the weak formulation
of the macroscopic equation (3.9) or §-model.

The strong two-scale convergence of Ri"s is a consequence of the weak compact-
ness, for each fixed § > 0, of {P=ORS°} in H'(IT).

To complete the proof of Theorem 3.1 it remains to describe the two-scale limit
of 56’6 To this end we substitute in the integral identity (3.33) an arbitrary test
functlon Sm = ¢dm(22,21,22) with a compact support in 159 and ¢y = 0. Then
passing to the two-scale limit in (3.33) and making the same rearrangements as in
the proof of Lemma 3.4, we obtain the relation

t s R R 283
A / G220 9) S (22, ) dyddzz + 8% / (22, 4) 222 dydz,
0o Jme o Jme O 0z1
O 855
+6%km / / ™ 22X dyd
M5 3312 8y2 yaz
L
=[] 02206 (z2,0) dydza (3.64)
0 M

The fact that S§ = R on M? can be justified in the standard way. Together with
(3.64) this yields (3.11).

To show the strong two-scale convergence of Si"s, we use the solution Wy ’6(2) =
<Rf\’6(z), Si"s(z» as a test function in (3.33). This yields

2
ORS®
wf)\/ (Ri"s(z))2 dz + €*2kf/ 3 Al dz
H?a H?a 21
oR:’|”
—|—kf/ ) aA dz—i—wm)\/ 6(S§75(2))2 dz
g 2 I,
2 2
856,5 856,5
2k A_| g 8) %k, / A_| g
" /Hf;f 921 “+e0) s’ | 0% :

_ / (or+ ez )R () dz + [ ha(ezr, )85 (2) d=.
g s

(3.65)

For brevity, denote the left-hand side by X%°. Each term of X%9 is lower semi-
continuous with respect to the two-scale convergence (see Ref. 1). Therefore, by
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Lemma 3.1,

L
lim X9 > wa/ / (R3)? dydz,
0 Fo

6*}0
L 512 5
OR Ox Ix
oo LT3 150 o
! 0 a 822 8y1 8y2 yaz2
L L 856 2
+ WA / (82)% dydzy + 6%k, / / —2A dydzy
0 JMs o Jms | O
L 512
+ 0%k, / / 95 dydzs. (3.66)
o Jame | Oy2
By (3.13) we have
1 | ‘( 3><5> ’ 5
— | |1 - === dy = K°.
7] fs{’ayl o )| [V

On the other hand, passing to the limit on the right-hand side of (3.65), one gets

lim </€ (gr + ha)(ez1, 22) Ry (2 )dz—f—/n

e—0

. ha(ez, zg)Sf\’é(z) dz>

€
m

/ /6 (gx + ha)(0, ZQ)R)\dyd22+/ / hA(0, ZQ)S)\ddeQ
F

According to (3.9), (3.62) and (3.64), the right-hand side here is equal to the right-
hand side of (3.66). Thus, (3.66) happens to be an equality. This implies, in partic-
ular, that the limit of each term on the left-hand side of (3.65) exists and equals to
the corresponding term on the right-hand side of (3.66). This completes the proof
of the strong two-scale convergence and Theorem 3.1.

4. Step 2. Passage to the Limit as § — 0 in (3.9)

Here we pass to the limit, as 6 — 0, in (3.9) and obtain the stationary limit
(homogenized) problem as e, — 0. This homogenized problem takes the form

k 82 * )
Mogpl = = a;; = GA(6) +S(p3) n (0,L);
Stationary macromodel : D0 . (4.1)
P P
= L =
0 =) =0

with

GA(E) = 50+ MO0 S(0) = —2v/ Ko + 1= TEH0.9). (42)

The precise statement of the convergence result is as follows.
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Proposition 4.1. Let uf\"s be a solution of problem (3.1). Then

(I) the function ui’é converges to \™2h(x), namely

lim lim L ||w€ S0 — 2h||L2

i o =0; (4.3)

(@)

(I1) the function pi’ converges to a function py in the following sense:

2
lim *—

lim =0. 4.4

L2(Q57°)

(II1) For any function ¢ = (b(a:) continuous in the vicinity of the segment {z € R? :
r1=0; 0<zy <L},

£,0 €,0 kf B D *
[ r@vitotm e = [ Ri@e0.0ds (19)
Qe 0

lim lim 3
§—0e—0 |Q‘;7 |

where

4.1. Proof of Proposition 4.1

The proof of Proposition 4.1 will be given in Secs 4.1.1-4.1.3. In Sec. 4.1.1 we estab-
lish the uniform estimates for the function uy % and the convergence result (4.3).
Then in Sec. 4.1.2 we obtain the homogenized equation (4.1) and prove the conver-
gence result (4.4). Finally, in Sec. 4.1.3 we prove the convergence of the fluxes.

4.1.1. Proof of assertion (I)

Consider problem (3.1). The solution ui"s = <p§6, oy %) of this problem minimizes

the functional:

Je [’U,E’(S} _ Me,é/ {ke,ﬁ(x) ’vu§75’2 i /\WE’(S(Z‘)

ui‘S’ —2G§’6(a:)ui’6}dx

__ g0 kY £,0 2 A 5,62 92 h £,0 d

N S LA AN B A N (gx + ha)(z)py” p dx
f

65
o\

_ 2h>\(x)af\’6} dr,
(4.6)

—|—/f’5/6j {km(66)2 ’VJi"S’ + Awm,

where p° =1/ |Q?6|. To simplify this functional we set

1 1
0= (BT ATR) L o0 = (S0 ATR) L = (), (@)
! m



1338 B. Amaziane, L. Pankratov € A. Piatnitski

and after straightforward rearrangements rewrite the right-hand side of (4.6) in

terms of the functions ri‘s, s, as follows:

Je [us’] = (Z:;Sg /Q?é {kf ’V (r§’6 + )\‘Qh) ’2 + Awy ‘ri’ér - 29Awfr§’6} dx

£,0

—%@%;ﬁl/aé{km@ﬁf‘V7G§5+—A_%0‘-+Awm

=J¢ [u™0] + Q°, (4.8)

sf\‘s‘ } da + Q°

where the functional Q=% does not depend on ri"s and si’é. Since ui’é minimizes the
functional J¢ and

Fmgww&meMga
then
J ] < (4.9)

Together with the definition (4.7) this gives

2 2

2
v’ Josei® =72 Jomos® =A% c [o5’]
H Px LZ(Q?‘S) + [|wrpy LZ(Q?(S + wma Lz(ﬂfﬁé) <
(4.10)
and
2 C
£,0 ~
7 = oy
where the constant C' does not depend on ¢, §. This yields
ue| ps"SHQ (4.12)
A Hl(Q?‘S) — .

The assertion (I) is proved.

4.1.2. Proof of assertion (II)

Inspired by Remark 3.2 we will show that the renormalized coefficients of Eq. (3.9)
converge, as 6 — 0, to the corresponding coefficients in (4.1) and prove the following
statement.

Lemma 4.1. Let RS be the solution of problem (3.9). Then
RS — pi  weakly in H*(0, L), (4.13)

where p} solves problem (4.1).
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Proof of Lemma 4.1. It is clear that the dependence on § comes from the coef-
ficients If\s and K°. First we study the asymptotic behavior of If\s as 6 — 0. In the
same way as in the proof of Lemma 7.2 in Ref. 19, we get

1
im WI;S\ = 2v/ Awmkm. (4.14)

It is also known from Chap. 5 of Ref. 14 that

1
li Kd== 4.15
520 |]-'5| 2’ (4.15)
Using (4.14) and (4.15) one can derive Eq. (4.1) from (3.9) by passing to the limit
as  — 0. The desired convergence (4.13) is now a consequence of the continuous
dependence of solutions of (4.1) on the data. Lemma 4.1 is proved. |

We proceed with the convergence (4.4). It relies on (3.12) and (4.13). We have

€,0 *2

PN~ P

lim Timy —— |
6—0¢e—0 |Q€ |

L2(Q57°)

< lim 1i L‘
6%51—{%2[/5

£,6 PE,O 1)
PORS — Y|

2

6 % 2
L2(1) + ||R)\ pAHLz(H?‘S)> ) (416)
where P is the extension operator defined in Theorem 3.1. By (3.12)

PO RS — RS
L2

1
— hm

57 lim = 0. (4.17)

Consider the second term on the right-hand side of (4.16). Since R = R3(z2),
py = pi(22), then taking into account the compactness of embedding C[0, L] into
H(0,L) one can deduce from (4.13) that

lim |5 — =0.

Therefore,

1R85 = Pl ey < C 1175 - 0. (4.18)

2L5 p§\||C[O,L] 30

Thus by (4.13)

)
Y Tim, 575 2L5 178~

= 0. (4.19)

The convergence (4.4) follows from (4.16), (4.17) and (4.19). The assertion (II) is
proved.
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4.1.3. Proof of assertion (III)

For an arbitrary function ¢ = ¢(x) continuous in the vicinity of the segment {z €
R%2: 21 =0; 0<ay < L}, consider the integral

L
I%"S = |Q€’5| A ke’é(x)Vui’(S(bdx
f =5
L £,0 £,0
RPN kiVpy m(e6)?Voi pdr.  (4.20)
257 Jag? |

For the second term on the right-hand side due to (4.11) we have:

Q0| < cevs.

< C(26) Hva;é

= / m(€0)2Vo () da

L2(05°)
Hence

£,0 o
EHO QM'/ m(£6)2Va’p(x) dr = 0. (4.21)

For the first term on the right—hand side of (4.20) we have

kg —13R§6
dr = lim lim = d
o meﬂ/ by ot e = o i S i
(4.22)
and
ky OR’
= P dz. (4.2
Y ling |Qeé|/ faxg () dz = lim lim, - ¢ e 02 (621, 22) dz. (4.23)

Due to Lemma 3.1 and (3.63) we have

kg _LORY? / / aR“
lim —L = 0 dyd
Im o5 Hj~‘5€ B2 (€21, 22) dz - 822 8y1( Y)$(0, 22) dydzo
(4.24)
and
£,0
li ks R, (ez1, 22) dz

8R5 8R5 3]
/ /f [ S a2) — A () 822() (0, 2) dydzs.  (4.25)

The integral in (4.24) vanishes because
o

dy =0
o O (y) dy
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and we get
9 ;‘5
dx = 0. 4.2
5_,0 QE (5| / f 833,1 ) T 0 ( 6)
Consider the integral on the right-hand side of (4.25). By the definition of K° we
have
8R5 ORS , . Ox
0 dyd
L 5B e - S8 e 2 ] 0,z
K% (Y ORS
= kf % o 8—2'2(22)¢(07 ZQ) dZQ.
It remains to pass to the limit in 6 and use (4.13) and (4.15) to obtain the relation
8R5 RS ox°
li _ A
61—I>I(1) 20 / /]:5 |: 822 322 (22) 8y2 (y)] ¢(O7 ZQ) dde2
_ ks [T 003
=3 ) 2 (22)¢(0, 22) dz2
and, finally,
ke [ 0p3
lim lim = —= . 4.2
i e [, b oo = [ R @e0. 00

Now the desired flux convergence (4.5) follows from (4.21), (4.26) and (4.27).
Proposition 4.1 is proved. 7

5. Step 3. Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the results obtained in the previous sections for
the stationary case. It will be given in Secs. 5.1-5.3.

5.1. Proof of assertion (I)

In order to obtain the a priori estimates for Eq. (2.1) we rewrite it as follows:
[wf 5y’ — h(m)} — div (k°Vp=%) = ¢=%(z) in O, (5.1)

where ¢ (x) = g(z) in Q?é and ¢%(z) = 0 in Q5°, and Q5 = (0,7) x Q. Then

m

we multiply (5.1) by [wnu®® — th(z)] and integrate the resulting relation over
(0,t) x Q¢. Considering the regularity properties of the functions g, h and applying
the Cauchy inequality and Gronwall’s lemma we arrive at the estimate

¢ t
o 0) = e + [ [ V[ dedr (02 [ [ |90t dudr
0 Joss 0 Jai?
<crljoy’| (52

with constant C7 independent of ¢, §.
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In a similar way, multiplying (5.1) by [wmuf"s—

QF we get

h(x)] and integrating over (0, t) x

0 2 _ 2 6
stvéui (t)_hH%Q(fo)—’— ||vp676(t)||L2(Q;5) + (56)2 ||VU6/6(t)||L2(Q%5) S CT |Q‘j“ |
(5.3)
The estimates (5.2) and (5.3) imply the following uniform bounds
1

5
1Q5°

16 Ol 715, < O o2 () = thl|agqey < Crd, (54)

1
€29

and (T) is proved.

5.2. Proof of assertion (II)

By the change of variables z; = %L, 23 = x5 from (5.4) we obtain that

OR*°

OR°
L2(115°) H 9z

82’1

1R @) sy +2 || 55 0) <Cr v, (55)
L2(H§'5)

(t)

where RE°(t) = Re9(t,2) = p°°(t,e21, 29). It is not difficult to show that the
extension operator P can be constructed in such a way that the constant Cj in
(3.17), (3.18) is equal to C'/d. Under such a choice of P*° we derive from (5.5) that

8PE,BRE,6 aps,éRe,é
ped Red (¢ 4t t Hi t <Cr. (5.6
I Ol oGl U e PGl IR SCY
Also, the estimate (5.3) implies the bound
8 e
ot L2((0,T) x 1) ot L2((0,T) x 1)

By the embedding theorem for each § > 0 there is a function V% = V?(t, z) such
that

2

: £,0 pe,o § _
lim [P=OR™ —V ||L°°((0,T);L2(H)) =0 (5.7)
and
IV oz + | 25V <cr
L2013 H 1) ot L2(0,T;L2(ID) —

The estimate (5.6) also yields that V? does not depend on 2, i.e. V°(t,z) =
VO(t, 29). Thus, there is a function V = V (¢, z3) such that, along a subsequence,

. 2
(}12% Hvé - V||L°°(0,T;L2(O,L)) =0. (5-8)
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Using the interpolation inequality we obtain

V@) = VOl im0y < CIVO = VOl 10,0,
< Vo) —v<t>||2/f<o,L> Vo) = VO o
Together with (5.6) and (5.8) this gives
hm ||V V||L°°((O T)x(0,L)) = LM SUp HV6 t)HLac(O,L) =0.

0—00<t<T

By the same arguments as in (4.18) and (4.19), we obtain

lim lim —— ||V‘S

6—0e—0 2L5 =0

VHLOO(O,T;L2(H’;"§))

Now, returning to the variables x1, z2 and considering (5.7), we obtain

2
}E% ELO |Qa o H/’ ||Lao(o,T;L2(Q§n5))

—0. (5.9)
The convergence result (2.7) will immediately follow from (5.9) if we show that
V =V (t€) is a solution of problem (2.4). To this end, for any ¢ € (0,7) and any
p € C5°(0, L), we consider the integral

lim lim |/ S(t, x) () dm—/ V(t,&)p(€) dE. (5.10)

5—0e—0 QE 0

Let uf\"s = (pi’é, ai"s) be the solution of problem (2.1) with an arbitrary complex
A such that arg A # 7. Then pf\"s is an analytic function in the complex A-plane
C \{argA =7} and

| £,0
1o IILQ(QM) < Co—r—rm |/\|4 , largA —7[ > 99 >0, (5.11)

where Cj is a constant independent of €, 5. Moreover, p=° may be represented by
the inverse Laplace transform which reads

1 04-ioco
p=(t, x) = —/ exp ()\t)pi’é(x) d\, 6>0. (5.12)
2m 0—ioco
Now let p3 be the solution of problem (4.1)—(4.2) with an arbitrary complex A
such that arg A # 7. The solution p3 of this problem is an analytic function of A in
the complex A-plane C \{arg A = 7} and

. Cs
103172 0,1y < G (5.13)
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for Jarg\ — w| > ¥y > 0. Moreover, the solution of problem (2.4)—(2.5) can be
represented as follows

1 O+ico
pr(t,&) = / exp (A)px (&) dr, 6> 0. (5.14)
27” 0—ioco
From (5.11)—(5.14) it follows that
L 5 1 9+i00 L s
P (t, 2)p(x2) do = — — Py (x)o(x2) do pd)
|Q?5| Q?‘S ( ) ( 2) 27i 0—ico {|Q§.’6| Qj‘y‘s A ( ) ( 2)
(5.15)
and
L 1 6-+ico L
[ reov@a—os [ 3 [ o (5.16)
0 T Jo—ico 0
From Proposition 4.1, for any A > 0, we have
. . L £,0 L *
lim lim ——— Py (@)p(z2) dv = PA(E)p (&) dE. (5.17)
5—0e—0 |Qf’ | Q;,S 0

Here pf\"s is an analytic function in A variable such that p&° ‘ ’ Loy S C(N).
HL(QY
s

Therefore, (5.17) is valid for any complex A and the convergence is uniform on

compact sets in the domain |arg A — 7| > J9 > 0. Now from (5.15) to (5.17) we
obtain that

L
milim 2 [ o9t ) p(en)da = / P (1, €)o(€) de (5.18)

lim lim —
d—0e— |Qf | Qj‘,’é

for any t € (0,T). Comparing (5.10) and (5.18) we conclude that V (¢,£) = p*(¢, ).
Thus the assertion (II) of Theorem 2.1 is proved.

5.3. Proof of assertion (III)
Let us show now that, for any ¢t € (0,7") and any function ¢ = ¢(x) continuous in

the vicinity of the segment {x € R?: 21 =0; 0 < x5 < L},

lim lim
§—0 6~>0 QE ‘S|

/k55 (2)Vusd () kf/ R*(t,£)(0,€) d¢, (5.19)

where

(9 = (0.%0.6)).

To this end we fix # > 0 and consider the integral

1 L 5 £
I = —5 | k°@)Vui’é(z)d, (5.20)
|Qf | Jae
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where A € Ty = {s € C: Res > 0/2}. This function is analytic in Ty, moreover,
using (5.11) one can show that

I5°] <oA%, (5.21)

where C' is a constant independent of €, and A. Since the function p3 is analytic,
the convergence (4.5) occurs for all A € Ty. Then we make use of the inverse Laplace
transform and, finally, get:

lim lim 3
§—0e—0 |Q€ |

/5 kS (x)Vu® (t, 2)p(x) da

1 04100
lim lim — / AMIZ° dX
0

§—0e—0 27 —ioco
0+1i00
:% N (’“f/ R;(6)9(0,¢) d£>
kr [f 5.
=4 [ Roo0.a (5.22)

Thus the assertion (III) of Theorem 2.1 is proved. This completes the proof of
Theorem 2.1.

6. Nonstationary Effective §-Model

Here we formulate and justify the homogenization result for problem (2.1) in the
case when the thickness of the fractures is of the same order as the structure period,
i.e. d is a fixed positive constant.

Consider the following auxiliary problem

W€ — kmd2A,C° =0 in (0,T) x M9,

COt,y) =0 on (0,T) x OM?, (6.1)
¢0,y) =1 in M9,
and denote
S\ s
0 =wn [ Clt)dy (62)
ME
The limit nonstationary §-model reads
51 6 ;PR 5 sy
wi|FO| Ry — kK 9ez |7°[(g + h)(&) + S(R?) in (0,T) x (0, L),
OR’ OR? (6.3)
- = (t,L) = T
a¢ (t,0) 7€ (t,L)=0 on (0,7T),

R°(0,£) =0 in (0, L),



1346 B. Amaziane, L. Pankratov € A. Piatnitski

where

oY’ OR° 1 s
o * W(t) + EY (t)h(0,&)

and * stands for the convolution operator.

S(R°) =

Theorem 6.1. The solution u®° = (p=° %%) of (2.1) converges, as € — 0, to a
function WO (t,&,y) = (R°(t,€),S%(t, &, y)) in the following sense

i), )
11m ——
=0 (9] Jo Ja:

where R? is a solution of (6.3) and

(W (t, ) — W° (t, 22, g) ]2 dzdt = 0, (6.4)

OR®
S (4.6, y) = R(5€) + C(oy) + (h0.6) = () 1), (6.5)
The proof of this theorem relies on the statement of Theorem 3.1 and can be
derived from this statement by means of the inverse Laplace transform in exactly
the same way as in the proof of Theorem 2.1.

7. A Homogenization Result of Flow in a 3D Porous Medium
with a Thin Layer

The convergence results of Theorem 2.1 remains valid (after natural modifications)
for 3D thin domains. In this section we study a model problem of a single phase
flow in a porous medium with a thin plate.

Denote by Q¢ a rectangle parallelepiped in R? defined by Q° = (—¢/2,¢/2) x P
with P = (0, Ly) x (0, L3). Letting Y = (0,1)® we introduce the reference fracture
part 70 = {y € Y, dist (y,0)) < g} and the reference matrix block M°% = y\ﬁ.
Assuming that L; and Lo are integer multipliers of ¢, i.e. Lo = Nae, L = Nse, we
define

Np—1 N3—1 -
o= U U s(/wS n (0,62,63)), Q3% = 07\ Q.
£o=0 £3=0

The flow in the matrix-fracture medium F is described by the following
equation:

WO (z)up’ — div (k7 (2)Vus?) = G=°(x) in (0,T) x Q%

3D Micromodel : { Vu®% - v =0 on (0,7) x 90,
us%(0,2) =0 in Q°,
(7.1)
where

. 0 . £,0
. wy in Q7% . ks in Q%°;
W (z) = T k) = s ol
Wy, In Q5% Em(£0)*  in Q5°;

ed(g) = (9+h)(x) in Q?‘S;
crns {h(ff) in Q0.
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Here wy,wm, ks, kn, are positive constants and g, h € C'(R?). As in the previous
sections we introduce the notation:

5 ps"s in Q;"S;
ut’ =
g,0 £,0
o in Q2

and rewrite problem (7.1) separately in the fracture and matrix parts (see problems
(2.2) and (2.3)).

The goal of this section is to extend the results on the asymptotic behavior of u2%
obtained in the previous sections, to the 3D model under consideration. Following
the lines of Theorems 2.1 and 6.1, we show that for any fixed ¢ problem (7.1) admits
homogenization (as € — 0) and that the homogenized solution converges, as § — 0,
to a solution of the effective problem:

2
wrpy — gkap* =G(»)+S(p*) in (0,T)x P;

3D Macromodel : Vot v =0 on (0,T) x P; (7.2)
p*(0,%) =0 in P

with G(») = (g + h)(0, ») and the additional source term S(p*) defined in (2.5),
here s stands for (xg, x3). More precisely, the following result holds.

Theorem 7.1. Let u®® = (p=° 0%9) be the solution of (7.1). Then, for any
€(0,7),

(I) the function u®° converges to t h(x), namely:

£,0 u® § .
jirg limy m o0 = th| 7 g, = 0 (7.3)
1) the function p=° satisfies the limit relation
p
* 2 _
;LOEI—@ |QE 0 HP —-p ||L2(Q§,’5) =0, (74)

where p* = p(t, %) is a solution of (7.2),(2.5).
(IIT) For any t € (0,T), and any function ¢ = () continuous in the vicinity of
the rectangle {v € R®: 11 =0; 0 < z9 < La; 0 < 23 < L3}, it holds

2
lim lim 'PL k50 (2) Vs ¢(z) do = 2y / R*(t, 5)p(0, %) dsc  (7.5)
§—0e—0 |Q‘S | Qc

with
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For a fixed § > 0 the result similar to that of Theorem 6.1 holds true. In order
to formulate this result, define ¢° and Y as in (6.1) and (6.2). In the 3D case the
limit nonstationary d-model reads

wi|FO\RY — ky K AL R (t,3) = |F°|(g + h)(0,5) + S(R°) in (0,T) x P;

V,.R v=0 on (0,7) x OP;
R3(0,) =0 in P,
(7.6)
where
aY°® 9IRS
S(R’) = ——— (t) + —Y‘S( t)h(0, x)

ot ot ot Wi

and

1 1
K’ = ik (X3 = y2. X3 — 42) = ik (X3 — y3: X3 — u3):

here the vector-function x? is one-periodic in the variables 3, and ys, and satisfies
the equation

_Ang,3 =0 in F°;

Vy(x33 —y23) - v=0 on 25

0

1
o (X35 —¥23) =0 ondyn {y1 — i—}

2
Theorem 7.2. The solution u®® = (p=° 0%°) of (7.1) converges, as ¢ — 0, to a

function WO(t, 3, y) = (R%(t, ), SO(t, 5¢,y)) in the following sense

1 T
1im—/ / ues
=0 [Q#] J e

where R? is a solution of (7.6) and S° is defined by

2
—w (t, 9, T3, g) ‘ dzdt = 0, (7.7)

5
§9t2.0) = B )+ ) x (10,59 — 209 1),
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