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1. Introduction

Modeling of flow in fractured media is a subject of intensive research in many engi-
neering disciplines, such as petroleum engineering, water resources management,
civil engineering. A fissured medium is a structure consisting of a porous and per-
meable matrix which is interlaced on a fine scale by a system of highly permeable
fissures. The majority of fluid transport will occur along flow paths through the
fissure system, and the relative volume and storage capacity of the porous matrix
is much larger than that of the fissure system. When the system of fissures is so
well developed that the matrix is broken into individual blocks or cells that are
isolated from each other, there is consequently no flow directly from cell to cell, but
only an exchange of fluid between each cell and the surrounding fissure system. The
large-scale description will have to incorporate the two different flow mechanisms.
For some permeability ratios and some fissures width, the large-scale description is
achieved by introducing the so-called double porosity model. It was introduced first
for describing the global behavior of fractured porous media by Barenblatt et al.6

and it has been since used in a wide range of engineering specialties related to geo-
hydrology, petroleum reservoir engineering, civil engineering or soil science. More
recently, fractured rock domains corresponding to the so-called Excavation Dam-
aged Zone (EDZ) received an increasing attention in connection with the behavior
of geological isolation of radioactive waste after the drilling of the wells or shafts
(see, e.g., Ref. 12).

The usual double porosity model is to assume that the width of the fractures
containing highly permeable porous media is of the same order as the size of the
blocks. The related homogenization problem was studied in Ref. 4, and was then
revisited in the mathematical literature by many other authors (see, e.g., Refs. 8, 15,
18, 21 and Refs. 22, 7 and 17 and the references therein). The double porosity type
problems in the case when the volume of the fracture part is small with respect to
the volume of the original domain were studied either by the method involving only
one small parameter in Refs. 19, 20 or by the method with two small parameters in
Refs. 2, 3 and 10. The singular double porosity model was studied in Ref. 9. Notice
that in all these papers it was assumed that the porous reservoir was not very thin.

As was underlined above, the geometry of the nuclear waste depository leads
to models stated in a porous domain having a singular geometry (see for instance
Ref. 11). Mathematically this results in a double-porosity type problem defined in
a thin layer or plate. It is known in the geology that both the fissure part and the
matrix system are porous media crossed by many small fissures. The permeability of
the matrix is much less than that of the fissure part, thus if we set the permeability
of the fissure part to be of order 1, then the permeability of the matrix is very small.
In the model problem studied in this paper, the matrix part is made of cubic porous
blocks situated periodically along a hyperplane. The complement to the union of
blocks, i.e. the fissure part, is a connected set. There are two small parameters in
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our model. The first one, ε, characterizes the typical size of inhomogeneity and the
thickness of the domain. Another parameter δ is responsible for volume fraction of
the fissure part.

We consider a single phase flow of a slightly compressible fluid in thin periodic
fractured-porous media made of a set of porous blocks with permeability of order
(εδ)2, where 0 < ε � δ � 1; these porous blocks are surrounded by a system of
connected fissures. The model is described by a linear parabolic equation stated in
a thin domain depending on the parameter ε such that the measure of the domain
vanishes as ε → 0. Our homogenization process consists of two main steps. In the
first step we apply the Laplace transform to the studied initial–boundary problem
in order to reduce it to a stationary elliptic problem. For each fixed δ > 0 we
then homogenize this elliptic problem, i.e. pass to the limit, as ε tends to zero.
At this step we face some difficulties with using the two-scale convergence method
because the standard two-scale convergence technique applies to a bulk distributed
structure while in our case the structure is situated in a small neighborhood of a
hyperplane and has an asymptotically vanishing measure. In this connection we use
the two-scale convergence method in a tricky way. Namely, we make an anisotropy
scaling of the domain in such a way that its thickness is getting uniformly positive.
This leads, however, to high anisotropy of the coefficients of the studied operator
and, as a result, to highly anisotropic a priori estimates. The derivatives with
respect to slow and fast variables are then mixed up in the limit equations, and a
special analysis is required in order to separate the slow and fast variables in the
homogenized problem and to identify the limit. This is the subject of Theorem 3.1
and Corollary 3.1 in Sec. 3. The homogenized problem obtained at the first step, is
called the δ-model. Its coefficients still depend on the parameter δ.

In the second step we pass to the limit, as δ tends to zero, and obtain the final
stationary homogenized model with no dependence on ε or on δ. It should be noted
that the method of two small parameters was widely used in the homogenization
theory for modeling various reticulated structures (see, e.g., Refs. 5 and 14 and the
references herein).

The homogenized nonstationary model is then obtained by means of the inverse
Laplace transform. The corresponding convergence results are given by Theorem 6.1
for the δ-model and by Theorem 2.1 for the fully homogenized problem.

The structure of the paper is as follows. In Sec. 2 we state the 2D version of the
problem and formulate the convergence results for the nonstationary model.

In Sec. 3 we apply the Laplace transform to the original problem and then
study the obtained stationary problem which is posed in a thin layer (strip). For
each fixed δ > 0 we pass to the limit as ε → 0 and derive the homogenized model
(the so-called δ-model). The proof of the convergence result relies on the two-scale
convergence method appropriately adapted to thin domains.

In Sec. 4 we pass to the limit in the δ-model, as δ → 0, and obtain the stationary
limit problem.
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In Sec. 5 we prove the convergence result for the original nonstationary problem.
The resulting homogenized problem is a dual-porosity type model that contains a
nonlocal in temporal variable term representing memory effects. The nonstation-
ary effective δ-model is obtained in Sec. 6, its derivation is based on the results
of Sec. 3.

Finally, in Sec. 7 we extend the results of the previous sections to the case of
3D porous medium occupying a thin layer (plate). The technique is essentially the
same as in the 2D case, the minor modifications required are listed in this section.

2. Statement of the Problem and Main Result

Let Ωε be a rectangle in R2,

Ωε =
(
−ε

2
, +

ε

2

)
× (0, L).

We introduce a periodic structure in Ωε as follows. Denote by Y the reference cell

Y =
(
−1

2
, +

1
2

)
× (0, 1)

and by Fδ the reference fracture part Fδ = {y ∈ Y, dist (y, ∂Y) < δ
2}. The

reference matrix block is then defined by Mδ = Y\Fδ. Assuming that L is an
integer multiplier of ε: L = Nε, N ∈ N, we define

Ωε,δ
f =

N−1⋃
j=0

ε(Fδ + (0, j)), Ωε,δ
m =

N−1⋃
j=0

ε(Mδ + (0, j)).

The flow in the matrix-fracture medium Ωε is described by the equation:

Micromodel :




ωε,δ(x)uε,δ
t − div (kε,δ(x)∇uε,δ) = Gε,δ(x) in (0, T )× Ωε;

∇uε,δ · ν = 0 on (0, T ) × ∂Ωε;

uε,δ(0, x) = 0 in Ωε

(2.1)

where

ωε,δ(x) =

{
ωf in Ωε,δ

f ;

ωm in Ωε,δ
m ;

kε,δ(x) =

{
kf in Ωε,δ

f ;

km(εδ)2 in Ωε,δ
m ;

Gε,δ(x) =

{
(g + h)(x) in Ωε,δ

f ;

h(x) in Ωε,δ
m .
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Here ωf , ωm, kf , km are positive constants and g, h ∈ C1(R2). It is convenient to
introduce the notation:

uε,δ =

{
ρε,δ in Ωε,δ

f ;

σε,δ in Ωε,δ
m

and to rewrite problem (2.1) separately in the fracture and matrix parts with the
appropriate interface conditions. Namely, in the fracture domain Eq. (2.1) reads



ωfρε,δ
t − div (kf∇ρε,δ) = (g + h)(x) in (0, T ) × Ωε,δ

f ;

kf∇ρε,δ · ν = km(εδ)2∇σε,δ · ν on (0, T )× γε,δ
mf ;

∇ρε,δ · ν = 0 on (0, T )× ∂Ωε;

ρε,δ(0, x) = 0 in Ωε,δ
f ,

(2.2)

where γε,δ
mf denotes the matrix-fracture interface. The flow in the matrix domain is

controlled by


ωmσε,δ
t − div (km(εδ)2∇σε,δ) = h(x) in (0, T )× Ωε,δ

m ;

σε,δ = ρε,δ on (0, T )× γε,δ
mf ;

σε,δ(0, x) = 0 in Ωε,δ
m .

(2.3)

It is well known that, for any ε, δ > 0, there exists a unique solution uε,δ =
〈ρε,δ, σε,δ〉 of the boundary value problem (2.1) (or of the equivalent system (2.2)–
(2.3)) in the space C(0, T ; H1(Ωε)).

The goal of this work is to study the asymptotic behavior of uε,δ as ε, δ → 0.
We are going to show that for any fixed δ problem (2.1) admits homogenization (as
ε → 0) and that the homogenized solution converges, as δ → 0, to a solution of the
effective problem:

Macromodel :




ωfρ∗t − 1
2
kf

∂2ρ∗

∂ξ2
= G(ξ) + S(ρ∗) in (0, T ) × (0, L);

∂ρ∗

∂ξ
(t, 0) =

∂ρ∗

∂ξ
(t, L) = 0 on (0, T );

ρ∗(0, ξ) = 0 in (0, L)

(2.4)

with G(ξ) = (g + h)(0, ξ) and the additional source term

S(ρ∗) = −2
√

kmωm√
π

∫ t

0

ρ∗t (τ, ξ)√
t − τ

dτ + 2h(0, ξ)
√

t km

πωm
. (2.5)

Here and in what follows we identify the variables x2 and ξ, as well as functions of
x which do not depend on x1, with the corresponding functions of ξ.

According to Ref. 16 problem (2.4)–(2.5) is well-posed and, under our standing
assumptions, it has a unique solution ρ∗ ∈ L2(0, T ; H1(0, L)).
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Notice that although the term S(ρ∗) does depend on the unknown function ρ∗,
traditionally in the mechanics of porous media it is called “additional source term”.
In this paper we keep this convention.

Let us emphasize that the presence of the convolution term in the limit equation
(2.4) represents the memory effect in the limit dynamics.

The following result describes the limit behavior of uε, as ε → 0. In the matrix
part of the domain the diffusion is asymptotically negligible so that for a time-
independent right-hand side h(x) the corresponding solution is getting linear in
time (see formula (2.6) below). Also, since the volume fraction of the fractured part
of the domain is vanishing, as δ → 0, the first relation in (2.6) holds.

Theorem 2.1. Let uε,δ = 〈ρε,δ, σε,δ〉 be the solution of (2.1). Then, for any t ∈
(0, T ),

(I) the function σε,δ, as well as the function uε,δ, converges to (th(x)), namely:

lim
δ→0

lim
ε→0

1
|Ωε|

∥∥ωε,δσε,δ−th
∥∥2

L2(Ωε,δ
m )

= lim
δ→0

lim
ε→0

1
|Ωε|

∥∥ωε,δuε,δ−th
∥∥2

L2(Ωε)
= 0;

(2.6)

(II) the function ρε,δ satisfies the limit relation

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥ρε,δ − ρ∗
∥∥2

L2(Ωε,δ
f )

= 0, (2.7)

where ρ∗ = ρ∗(t, ξ) is a solution of (2.4)–(2.5).
(III) For any t ∈ (0, T ), and any function φ = φ(x) continuous in the vicinity of

the segment {x ∈ R2 : x1 = 0; 0 ≤ x2 ≤ L}, it holds

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δφ(x) dx =
kf

2

∫ L

0

�R∗(t, ξ)φ(0, ξ) dξ (2.8)

with

�R∗(t, ξ) =
(

0,
∂ρ∗

∂ξ
(t, ξ)

)
.

This paper also deals with the asymptotic behavior of the solution of problem
(2.1), as ε → 0, for a fixed positive δ. The corresponding homogenization result will
be formulated and proved in Sec. 6, Theorem 6.1.

Remark 2.1. It is clear from (2.6) and (2.7) that the limit values of uε,δ on the
matrix and fracture parts (th(0, x2) and ρ∗(t, x2), respectively) only depend on the
slow variables x2 and t and in general do not coincide. It contradicts our intuition
because in the original problem (2.1) the solution uε,δ is continuous at the matrix-
fracture interface. In order to explain this phenomenon we notice that for each fixed
δ > 0 the two-scale limit of uε,δ is continuous. However, as δ → 0, the two-scale
limit function is getting closer to a constant everywhere in the matrix blocks except
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for a small neighborhood of the interface where the boundary layer type correctors
arise. Since the result is given in terms of L2-norms, we neglect these boundary
layer functions (as δ → 0) and thus make the limit function discontinuous.

Remark 2.2. We assume in Theorem 2.1 that the right-hand side h(x) does not
depend on the temporal variable just for presentation simplicity. In general the
right-hand side of the form h(x, t) can be considered exactly in the same way. For
a time-dependent h(x, t) the relation (2.6) reads

lim
δ→0

lim
ε→0

1
|Ωε|

∥∥∥∥ωε,δuε,δ −
∫ t

0

h(·, s)ds

∥∥∥∥
2

L2(Ωε)

= 0.

Theorem 2.1 will be proved in three steps. At the first step we apply the Laplace
transform to problem (2.1) in the time variable and then study the asymptotic
behavior of a solution of the corresponding stationary boundary value problem as
ε → 0, δ > 0 being fixed. We then obtain a stationary homogenized problem stated
on the interval (0, L) with the coefficients depending on δ. At the second step we
pass to the limit as δ → 0 and obtain a stationary limit problem, i.e. the problem
independent of ε, δ. Finally, at the third step we make the inverse Laplace transform
and prove the convergence for the original nonstationary problem.

3. Step 1. Homogenizing the Stationary Model

We begin by applying the Laplace transform to (2.1). This gives

Stationary micromodel :

{
λωε,δuε,δ

λ − div (kε,δ∇uε,δ
λ ) = Gε,δ

λ in Ωε;

∇uε,δ
λ · ν = 0 on ∂Ωε,

(3.1)

where

Gε,δ
λ (x) =

{
(gλ + hλ)(x) in Ωε,δ

f ;

hλ(x) in Ωε,δ
m

with λ > 0, gλ(x) = λ−1g(x), hλ(x) = λ−1h(x).
As in the previous section, we can rewrite (3.1) separately in the fracture and

matrix parts. Namely,


λωfρε,δ
λ − div (kf∇ρε,δ

λ ) = (gλ + hλ)(x) in Ωε,δ
f ;

kf∇ρε,δ
λ · ν = km(εδ)2∇σε,δ

λ · ν on γε,δ
mf ;

∇ρε,δ
λ · ν = 0 on ∂Ωε

(3.2)

and {
λωmσε,δ

λ − div (km(εδ)2∇σε,δ
λ ) = hλ(x) in Ωε,δ

m ;

σε,δ
λ = ρε,δ

λ on γε,δ
mf .

(3.3)
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Next we transform ε-dependent domain Ωε into the fixed domain

Π =
(
−1

2
, +

1
2

)
× (0, L)

by the change of variables z1 = x1
ε , z2 = x2, and denote by Πε,δ

f , Πε,δ
m the images,

under this transformation, of Ωε,δ
f , Ωε,δ

m , respectively. The image of γε,δ
mf is denoted

by Γε,δ
mf . In the new variables z1, z2 Eq. (3.1) reads


λωε,δ(εz1, z2)W
ε,δ
λ − div (Kε,δ(z)∇W ε,δ

λ ) = Gε,δ
λ (εz1, z2) in Π;

kfε−2 ∂W ε,δ
λ

∂z1
ν1 = 0 and kf

∂W ε,δ
λ

∂z2
ν2 = 0 on ∂Π,

(3.4)

where W ε,δ
λ (z) = uε,δ

λ (εz1, z2), and the matrix Kε,δ is given by

Kε,δ(z) =

(
ε−2kε,δ(εz1, z2) 0

0 kε,δ(εz1, z2)

)
.

As usual, we want to rewrite (3.4) separately in the fracture and matrix parts.
To this end we denote

Rε,δ
λ (z) = ρε,δ

λ (εz1, z2), Sε,δ
λ (z) = σε,δ

λ (εz1, z2).

Equation (3.2) now reads


λωfRε,δ
λ − kf ε−2 ∂2Rε,δ

λ

∂z2
1

− kf
∂2Rε,δ

λ

∂z2
2

= (gλ + hλ)(εz1, z2) in Πε,δ
f ;

kf
∂Rε,δ

λ

∂z1
ν1 = km(εδ)2

∂Sε,δ
λ

∂z1
ν1 on Γε,δ

mf ;

kf
∂Rε,δ

λ

∂z2
ν2 = km(εδ)2

∂Sε,δ
λ

∂z2
ν2 on Γε,δ

mf ;

kfε−2 ∂Rε,δ
λ

∂z1
ν1 = 0 and kf

∂Rε,δ
λ

∂z2
ν2 = 0 on ∂Π.

(3.5)

Similarly Eq. (3.3) reads


λωmSε,δ
λ − kmδ2 ∂2Sε,δ

λ

∂z2
1

− km(εδ)2
∂2Sε,δ

λ

∂z2
2

= hλ(εz1, z2) in Πε,δ
m ;

Sε,δ
λ = Rε,δ

λ on Γε,δ
mf .

(3.6)

In what follows χδ denotes a y2-periodic solution of the problem:


−∆yχ
δ = 0 in Fδ;

∂(χδ − y2)
∂y1

ν1 = 0 and
∂(χδ − y2)

∂y2
ν2 = 0 on Γδ

mf

∂(χδ − y2)
∂y1

= 0 on ∂Y ∩
{

y = ±1
2

}
.

(3.7)
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The function U δ
λ is a solution of{

λωmU δ
λ − kmδ2 ∆yU δ

λ = 0 in Mδ;

U δ
λ = 1 on Γδ

mf .
(3.8)

Finally, L(V ; W ) stands for the space of linear and continuous operators from V

to W , where V and W are real Banach spaces.

Remark 3.1. The variable z1 is somehow twofold because in the original problem
(2.1) it varies on the interval [−ε/2, ε/2] and serves as a fast variable while in the
rescaled problem (3.4) it becomes a slow variable. In this connection we set y1 ≡ z1

and use both symbols z1 and y1 for the notation convenience. Notice also that
x2 ≡ z2 ≡ ξ.

We proceed with the main result of the section. We want to show that the
homogenized model can be described in terms of the following equation:

δ-model :



|Fδ|λωfRδ

λ − kfKδ d2Rδ
λ

dξ2
= Gδ

λ(ξ) + S(Rδ
λ) in (0, L);

dRδ
λ

dξ
(0) =

dRδ
λ

dξ
(L) = 0

(3.9)

whose coefficients Kδ, Iδ
λ, and Gδ

λ(ξ) are given by

Kδ = |Fδ| −
∫
Fδ

∂χδ

∂y2
dy; Gδ

λ(ξ) = |Fδ|(gλ + hλ)(0, ξ);

S(Rδ
λ) = −Iδ

λRδ
λ +

Iδ
λ

λωm
hλ(0, ξ); Iδ

λ = λωm

∫
Mδ

U δ
λ(y) dy.

(3.10)

Later on we will show that this equation has a unique solution.

Remark 3.2. All the coefficients of the equations in (3.9) are vanishing as δ → 0
and, in fact, are of order |Fδ| . To make the asymptotic behavior of these coefficients
more visible for small δ, one has to divide Eq. (3.9) by |Fδ| . As will be shown later
on (see (4.14), (4.15)), after this normalization the coefficients of the resulting
equation have nontrivial limits as δ → 0.

Theorem 3.1. A solution W ε,δ
λ of (3.4) strongly two-scale converges, as ε → 0, to

a function W δ
λ(z, y2) = 〈Rδ

λ(z2), Sδ
λ(z, y2)〉, where Rδ

λ is a solution of (3.9), and

Sδ
λ(z, y2) = Rδ

λ(z2)U δ
λ(z1, y2) + ζδ

λ(z1, y2)hλ(0, z2), (3.11)

here U δ
λ(z1, y2) is a solution of (3.8), and ζδ

λ(z1, y2) = 1
λωm

(1 − U δ
λ(z1, y2)).

Moreover, there is an extension operator Pε,δ ∈ L(L2(Πε,δ
f ); L2(Π)) ∩ L(H1(Πε,δ

f );
H1(Π)) such that

Pε,δRε,δ
λ → Rδ

λ weakly in H1(Π), (3.12)

where Rε,δ
λ is the solution of (3.5).
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Due to the regularity of W δ
λ , the strong two-scale convergence stated in Theo-

rem 3.1 implies the following result.

Corollary 3.1. For any δ > 0 the convergence takes place

lim
ε→0

1
|Ωε|

∫
Ωε

∣∣∣(uε,δ
λ (x) − W δ

λ

(
x2,

x

ε

)∣∣∣2 dx = 0.

Notice that due to (3.7), one can represent Kδ in a slightly different form.
Namely, multiplying (3.7) by χδ, integrating by parts, and using the boundary
conditions in (3.7), one has

Kδ =
1

|Fδ|αFδ

(
χδ − y2, χ

δ − y2

)
, (3.13)

where αFδ is the bilinear form associated with the Laplace operator. The formula
(3.13) implies that Kδ > 0. It is also easy to see that Iδ

λ > 0. Therefore, problem
(3.9) is well-posed on (0, L).

3.1. Proof of Theorem 3.1

First we obtain a priori estimates. To this end we multiply (3.5) by Rε,δ
λ and (3.6) by

Sε,δ
λ , and then integrate the resulting relation by parts. After simple computations

this gives the bounds

λωf‖Rε,δ
λ ‖2

L2(Πε,δ
f )

+ kf ε−2

∥∥∥∥∥∂Rε,δ
λ

∂z1

∥∥∥∥∥
2

L2(Πε,δ
f )

+ kf

∥∥∥∥∥∂Rε,δ
λ

∂z2

∥∥∥∥∥
2

L2(Πε,δ
f )

+ λωm‖Sε,δ
λ ‖2

L2(Πε,δ
m )

+ kmδ2

∥∥∥∥∥∂Sε,δ
λ

∂z1

∥∥∥∥∥
2

L2(Πε,δ
m )

+ km(εδ)2
∥∥∥∥∥∂Sε,δ

λ

∂z2

∥∥∥∥∥
2

L2(Πε,δ
m )

≤ C,

(3.14)

where C is a constant independent of ε, δ. Therefore,

‖Rε,δ
λ ‖L2(Πε,δ

f ) + ε−1

∥∥∥∥∥∂Rε,δ
λ

∂z1

∥∥∥∥∥
L2(Πε,δ

f )

+

∥∥∥∥∥∂Rε,δ
λ

∂z2

∥∥∥∥∥
L2(Πε,δ

f )

≤ C, (3.15)

‖Sε,δ
λ ‖L2(Πε,δ

m ) ≤ C;

∥∥∥∥∥∂Sε,δ
λ

∂z1

∥∥∥∥∥
L2(Πε,δ

m )

+ ε

∥∥∥∥∥∂Sε,δ
λ

∂z2

∥∥∥∥∥
L2(Πε,δ

m )

≤ C

δ
. (3.16)

Now considering the properties of the extension operator Pε,δ (see Lemma 2.9
from Chap. 1, Sec. 2 in Ref. 14) we obtain (3.12). Indeed, by this lemma there exists
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an extension operator Pδ in Y such that

‖Pδϕ‖L2(Y) ≤ Cδ ‖ϕ‖L2(Fδ), ‖∇Pδϕ‖(L2(Y))2 ≤ Cδ ‖∇ϕ‖[L2(Fδ)]2 .

We associate with the operator Pδ the extension operator Pε,δ in Π, defined by
scaling Y in the z2-direction. Hence,∥∥∥Pε,δRε,δ

λ

∥∥∥
L2(Π)

≤ Cδ‖Rε,δ
λ ‖L2(Πε,δ

f ),∥∥∥∥∥∂Pε,δRε,δ
λ

∂zi

∥∥∥∥∥
L2(Π)

≤ Cδ

∥∥∥∥∥∂Rε,δ
λ

∂zi

∥∥∥∥∥
L2(Πε,δ

f )

, (i = 1, 2).
(3.17)

From (3.15), we get

∥∥∥Pε,δRε,δ
λ

∥∥∥
L2(Π)

+ ε−1

∥∥∥∥∥∂Pε,δRε,δ
λ

∂z1

∥∥∥∥∥
L2(Π)

+

∥∥∥∥∥∂Pε,δRε,δ
λ

∂z2

∥∥∥∥∥
L2(Π)

≤ Cδ, (3.18)

and thus (up to a subsequence) Pε,δRε,δ
λ ⇀ Rδ

λ weakly in H1(Π) as ε → 0, and
∂Rδ

λ

∂z1
= 0. This yields Rδ

λ(z) = Rδ
λ(z2).

It remains to show that Rδ
λ satisfies (3.9). For this aim we use the two-scale

convergence approach (see, e.g., Ref. 1). For the reader’s convenience we recall the
definition of two-scale convergence.

Definition 3.1. A sequence of functions vε ∈ L2(Ω) two-scale converges to
v(x, y) ∈ L2(Ω×Y ), if ‖vε‖L2(Ω) ≤ C and for any function ϕ(x, y) ∈ D(Ω; C∞

# (Y )),
it holds

lim
ε→0

∫
Ω

vε(x)ϕ
(
x,

x

ε

)
dx =

∫
Ω×Y

v(x, y)ϕ(x, y) dxdy.

This convergence is denoted by vε(x) 2s
⇀ v(x, y).

First we obtain a two-scale compactness result for the solution of (3.4).

Lemma 3.1. Let W ε,δ
λ = 〈Rε,δ

λ , Sε,δ
λ 〉 be a solution of problem (3.4). Then

there exist Rδ
λ ∈ H1(0, L), vδ

f ∈ L2(0, L; H1(−1/2, 1/2) × H1
#(0, 1)) and Sδ

λ ∈
L2(0, L; H1(−1/2, 1/2)× H1

#(0, 1)) such that up to a subsequence

1ε,δ
f Rε,δ

λ
2s
⇀ 1δ

f(y)Rδ
λ(z2), (3.19)

1ε,δ
f

[
ε−1 ∂Rε,δ

λ

∂z1

]
2s
⇀ 1δ

f(y)
∂vδ

f

∂y1
(z2, y1, y2), (3.20)

1ε,δ
f

∂Rε,δ
λ

∂z2

2s
⇀ 1δ

f(y)

[
∂Rδ

λ

∂z2
(z2) +

∂vδ
f

∂y2
(z2, y1, y2)

]
, (3.21)
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1ε,δ
m Sε,δ

λ
2s
⇀ 1δ

m(y)Sδ
λ(z2, y1, y2), (3.22)

1ε,δ
m

∂Sε,δ
λ

∂z1

2s
⇀ 1δ

m(y)
∂Sδ

λ

∂y1
(z2, y1, y2), (3.23)

1ε,δ
m

[
ε
∂Sε,δ

λ

∂z2

]
2s
⇀ 1δ

m(y)
∂Sδ

λ

∂y2
(z2, y1, y2), (3.24)

where 1ε,δ
f = 1ε,δ

f (z) and 1ε,δ
m = 1ε,δ

m (z) denote the characteristic functions of the
sets Πε,δ

f and Πε,δ
m , respectively; 1δ

f = 1δ
f (y) and 1δ

m = 1δ
m(y) denote the character-

istic functions of the sets Fδ and Mδ.

Proof of Lemma 3.1. The proof of the lemma is based on the a priori estimates
(3.15)–(3.16) and two-scale convergence arguments similar to those in Ref. 1. How-
ever, we should take into account the fact that the partial derivatives of the functions
Rε,δ

λ , Sε,δ
λ appear in Eqs. (3.5)–(3.6) with different scale factors.

We first prove (3.19)–(3.21). It is clear that (3.19) follows immediately from
Definition 3.1. For the partial derivatives of Rε,δ

λ we have:

1ε,δ
f

[
ε−1 ∂Rε,δ

λ

∂z1

]
2s
⇀ 1δ

f (y)
∂vδ

1

∂y1
(z2, y), (3.25)

1ε,δ
f

∂Rε,δ
λ

∂z2

2s
⇀ 1δ

f(y)
[
∂Rδ

λ

∂z2
(z2) +

∂vδ
2

∂y2
(z2, y)

]
. (3.26)

To prove (3.20), (3.21), we have to show that there is vδ
f ∈ L2(0, L; H1(−1/2, 1/2)×

H1
#(0, 1)) such that

∂vδ
1

∂y1
=

∂vδ
f

∂y1
,

∂vδ
2

∂y2
=

∂vδ
f

∂y2
. (3.27)

To this end we consider the integral

Iε =
∫

Πε,δ
f

ε−1 ∂Rε,δ
λ

∂z1
(z)

∂Φ
∂z2

(
z2, z1,

z2

ε

)
dz

with an admissible test function Φ of the form Φ
(
z2, z1,

z2
ε

)
= εφ0(z2)φ1(z1,

z2
ε ).

After simple rearrangements we get

Iε =
∫

Πε,δ
f

ε−1 ∂Rε,δ
λ

∂z1
(z)

[
ε
∂φ0

∂z2
(z2)φ1

(
z1,

z2

ε

)]
dz

+
∫

Πε,δ
f

ε−1 ∂Rε,δ
λ

∂z1
(z)

[
φ0(z2)

∂φ1

∂y2

(
z1,

z2

ε

)]
dz. (3.28)
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The first term on the right-hand side here vanishes as ε → 0. Therefore, by (3.25)

Iε →
∫
Fδ

∂vδ
1

∂y1
(z2, y)φ0(z2)

∂φ1

∂y2
(y) dz2dy as ε → 0. (3.29)

On the other hand, assuming that the support of φ1(y) is a compact set in Fδ and
integrating Iε by parts, we have

Iε = −
∫

Πε,δ
f

Rε,δ
λ (z)

∂2

∂z1∂z2

[
φ0(z2)φ1

(
z1,

z2

ε

)]
dz

=
∫

Πε,δ
f

∂Rε,δ
λ

∂z2
(z)φ0(z2)

∂φ1

∂z1

(
z1,

z2

ε

)
dz. (3.30)

It follows from (3.26) that

Iε →
∫
Fδ

[
∂Rδ

λ

∂z2
+

∂vδ
2

∂y2
(z2, y)

]
φ0(z2)

∂φ1

∂y1
(y) dz2dy as ε → 0. (3.31)

Since φ0 is an arbitrary smooth function of variable z2, then

∫
Fδ

∂vδ
1

∂y1
(z2, y)

∂φ1

∂y2
(y) dy =

∫
Fδ

∂vδ
2

∂y2
(z2, y)

∂φ1

∂y1
(y) dy. (3.32)

The existence of the function vδ
f satisfying (3.27) is now a consequence of the

following statement (generalization of the classical de Rham theorem (see, e.g.,
Ref. 13).

Lemma 3.2. Let Ω be a Lipschitz domain, and let g = (g1, g2, . . . , gn) ∈ (L2(Ω))n

satisfy the relation

〈g,u〉(L2(Ω))n =
n∑

i=1

∫
Ω

gi(x)ui(x) dx = 0

for any u ∈ H1
0 (div, Ω) = {u ∈ H1

0 (Ω) : div u = 0}. Then there exists p ∈ H1(Ω)
such that g = ∇p.

This proves (3.20)–(3.21). The assertions (3.22)–(3.24) can be proved in a similar
way. It should be emphasized here that there is not “fast” variable in the z1-
direction.

Lemma 3.1 is proved.

Choosing in the weak formulation of problem (3.4) a test function Φ(z1, z2,
z2
ε )

of the form Φ = 〈φf , φm〉 with φf , φm ∈ C1(0, L; C1(−1/2, 1/2) × C1
#(0, 1)) such
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that φf = φm on Γε,δ
mf , we arrive at the following integral identity:

ωfλ

∫
Πε,δ

f

Rε,δ
λ (z)φf (z) dz + ε−2kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z1

∂φf

∂z1
dz

+ kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂φf

∂z2
dz + ωmλ

∫
Πε,δ

m

Sε,δ
λ (z)φm(z) dz

+ δ2km

∫
Πε,δ

m

∂Sε,δ
λ

∂z1

∂φm

∂z1
dz + (εδ)2km

∫
Πε,δ

m

∂Sε,δ
λ

∂z2

∂φm

∂z2
dz

=
∫

Πε,δ
f

(gλ + hλ)(εz1, z2)φf (z) dz +
∫

Πε,δ
m

hλ(εz1, z2)φm(z) dz. (3.33)

In order to pass to the limit in (3.33) we introduce a smooth function ϑ = ϑ(s)
such that 0 ≤ ϑ(s) ≤ 1 and

ϑ(s) =

{
1 for s ≤ 0;

0 for s ≥ 1.
(3.34)

For γ ∈ (0, 1) we set

ϑε
1(z1) = ϑ

(
z1 + 1−δ

2

ε1−γ

)
ϑ

(
−z1 + 1−δ

2

ε1−γ

)
,

ϑε
2(z2) = ϑ

(
z2 − εδ

2

ε2−γ

)
ϑ

(
−z2 +

(
ε − εδ

2

)
ε2−γ

) (3.35)

for z2 ∈ [0, ε]. We extend ϑε
2 ε-periodically to the whole R and define the test

functions φf , φm by

φf = ϕf (z2) + εζ
(
z2, z1,

z2

ε

)
, (3.36)

φm = ϕf (z2)U δ
λ

(
z1,

z2

ε

)
+ εϑε

1(z1)ϑε
2(z2)ζ

(
z2, z1,

z2

ε

)
, (3.37)

where ϕf ∈ C1(0, L), ζ ∈ C1(0, L; C1(−1/2, 1/2) × C1
#(0, 1)) and U δ

λ = U δ
λ(y) is

defined in (3.8). Denote:

Jε,δ
f ≡

∫
Πε,δ

f

{
ωfλRε,δ

λ (z)φf (z) + ε−2kf
∂Rε,δ

λ

∂z1

∂φf

∂z1
+ kf

∂Rε,δ
λ

∂z2

∂φf

∂z2

}
dz; (3.38)

Jε,δ
m ≡

∫
Πε,δ

m

{
ωmλSε,δ

λ (z)φm(z) + δ2km
∂Sε,δ

λ

∂z1

∂φm

∂z1
+ (εδ)2km

∂Sε,δ
λ

∂z2

∂φm

∂z2

}
dz.

(3.39)

The asymptotic behavior of the integrals Jε,δ
f , Jε,δ

m is studied in the following lemma.
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Lemma 3.3. Let Jε,δ
f be given by (3.38). Then

lim
ε→0

Jε,δ
f = ωfλ|Fδ|

∫ L

0

Rδ
λ(z2)ϕf (z2) dz2 + kf

∫ L

0

∫
Fδ

∂vδ
f

∂y1
(y)

∂ζ

∂y1
(z2, y) dy dz2

+ kf |Fδ|
∫ L

0

∂Rδ
λ

∂z2

∂ϕf

∂z2
(z2) dz2 + kf

∫ L

0

∫
Fδ

∂vδ
f

∂y2
(y)

∂ϕf

∂z2
(z2) dy dz2

+ kf

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) +

∂vδ
f

∂y2
(z2, y)

]
∂ζ

∂y2
(z2, y) dydz2. (3.40)

Proof of Lemma 3.3. After simple rearrangements Jε,δ
f can be represented as

follows

Jε,δ
f = ωfλ

∫
Πε,δ

f

Rε,δ
λ (z)

{
ϕf (z2) + εζ

(
z2, z1,

z2

ε

)}
dz

+ kf

∫
Πε,δ

f

ε−2 ∂Rε,δ
λ

∂z1

∂

∂z1

{
ϕf (z2) + εζ

(
z2, z1,

z2

ε

)}
dz

+ kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂

∂z2

{
ϕf (z2) + εζ

(
z2, z1,

z2

ε

)}
dz ≡ Iε,δ

1 + Iε,δ
2 + Iε,δ

3 .

(3.41)

By Lemma 3.1 we have:

Iε,δ
1 → ωfλ|Fδ|

∫ L

0

Rδ
λ(z2)ϕf (z2) dz2 as ε → 0 (3.42)

and

Iε,δ
2 = kf

∫
Πε,δ

f

ε−1 ∂Rε,δ
λ

∂z1

∂ζ

∂z1

(
z2, z1,

z2

ε

)
dz → kf

∫ L

0

∫
Fδ

∂vδ
f

∂y1
(y)

∂ζ

∂y1
(z2, y) dy dz2.

(3.43)

Consider the third term on the right-hand side of (3.41). Clearly,

Iε,δ
3 = kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂ϕf

∂z2
(z2) dz + kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂

∂z2

{
εζ
(
z2, z1,

z2

ε

)}
dz.

(3.44)

By Lemma 3.1 we get

kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂ϕf

∂z2
(z2) dz

→ kf |Fδ|
∫ L

0

∂Rδ
λ

∂z2

∂ϕf

∂z2
(z2) dz2 + kf

∫ L

0

∫
Fδ

∂vδ
f

∂y2
(y)

∂ϕf

∂z2
(z2) dy dz2.

(3.45)
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For the second integral on the right-hand side of (3.44) we have

kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂

∂z2

{
εζ
(
z2, z1,

z2

ε

)}
dz

= kf

∫
Πε,δ

f

ε
∂Rε,δ

λ

∂z2

∂ζ

∂z2
(z2, z1, y2)

∣∣∣∣∣
y2=

z2
ε

dz + kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂ζ

∂y2

(
z2, z1,

z2

ε

)
dz.

(3.46)

Clearly, the first term on the right-hand side goes to zero as ε → 0, and by
Lemma 3.1 we obtain

kf

∫
Πε,δ

f

∂Rε,δ
λ

∂z2

∂

∂z2

{
εζ
(
z2, z1,

z2

ε

)}
dz

→ kf

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) +

∂vδ
f

∂y2
(z2, y)

]
∂ζ

∂y2
(z2, y) dydz2. (3.47)

Finally, (3.44)–(3.47) yield

Iε,δ
3 →kf

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) +

∂vδ
f

∂y2
(z2, y)

](
∂ζ

∂y2
(z2, y) +

∂ϕf

∂z2
(z2)

)
dydz2 as ε → 0.

(3.48)

Now the desired statement follows from (3.42), (3.43) and (3.48). This completes
the proof of Lemma 3.3.

Lemma 3.4. Let Jε,δ
m be given by (3.38). Then

lim
ε→0

Jε,δ
m = Iδ

λ

∫ L

0

ϕf (z2)Rδ
λ(z2) dz2, (3.49)

where Iδ
λ is defined in (3.10).

Proof of Lemma 3.4. By the definition of φm we have Jε,δ
m = Jε,δ

Θ + Jε,δ
0 , where

Jε,δ
Θ =

∫
Πε,δ

m

{
ωmλSε,δ

λ Θε,δ + δ2km
∂Sε,δ

λ

∂z1

∂Θε,δ

∂z1
+ (εδ)2km

∂Sε,δ
λ

∂z2

∂Θε,δ

∂z2

}
dz

(3.50)

with

Θε,δ
(
z2, z1,

z2

ε

)
= εϑε

1(z1)ϑε
2(z2)ζ

(
z2, z1,

z2

ε

)
(3.51)
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and ϑε
1, ϑ

ε
2 defined in (3.35),

Jε,δ
0 =

∫
Πε,δ

m

{
ωmλUε,δ

λ (z)ϕf (z2)S
ε,δ
λ (z) + δ2km

∂Uε,δ
λ

∂z1
(z)ϕf (z2)

∂Sε,δ
λ

∂z1

+ (εδ)2km
∂Uε,δ

λ

∂z2
(z)ϕf (z2)

∂Sε,δ
λ

∂z2
+ (εδ)2kmUε,δ

λ (z)
∂ϕ

∂z2
(z2)

∂Sε,δ
λ

∂z2

}
dz.

(3.52)

Taking into account (3.51), the choice of the cutoff functions ϑε
1 and ϑε

2, the fact
that 0 < γ < 1 and the a priori estimates one can show that the integral Jε,δ

Θ

vanishes as ε → 0:

lim
ε→0

Jε,δ
Θ = 0. (3.53)

Consider now the functional Jε,δ
0 . By Lemma 3.1, we have

ωmλ

∫
Πε,δ

m

Uε,δ
λ (z)ϕf (z2)S

ε,δ
λ (z) dz → ωmλ

∫ L

0

∫
Mδ

U δ
λ(y)ϕf (z2)Sδ

λ(z2, y) dydz2

as ε → 0,

(3.54)

and

δ2km

∫
Πε,δ

m

∂Uε,δ
λ

∂z1
(z)ϕf (z2)

∂Sε,δ
λ

∂z1
dz → δ2km

∫ L

0

∫
Mδ

∂U δ
λ

∂y1
(y)ϕf (z2)

∂Sδ
λ

∂y1
dydz2

as ε → 0.

(3.55)

For the other two terms on the right-hand side of (3.52), by Lemma 3.1 we get

∫
Πε,δ

m

(εδ)2km
∂Uε,δ

λ

∂z2
(z)ϕf (z2)

∂Sε,δ
λ

∂z2
dz =

∫
Πε,δ

m

εδ2km
∂Uε,δ

λ

∂y2
(z)ϕf (z2)

∂Sε,δ
λ

∂z2
dz

→ δ2km

∫ L

0

∫
Mδ

∂U δ
λ

∂y2
(y)ϕf (z2)

∂Sδ
λ

∂y2
dydz2 as ε → 0 (3.56)

and

∫
Πε,δ

m

(εδ)2kmUε,δ
λ (z)ϕf (z2)

∂Sε,δ
λ

∂z2
dz → 0 as ε → 0. (3.57)
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The formulas (3.53)–(3.57) imply that

lim
ε→0

Jε,δ
m = Jδ

m ≡ ωmλ

∫ L

0

∫
Mδ

U δ
λ(y)ϕf (z2)Sδ

λ(z2, y) dydz2

+ δ2km

∫ L

0

∫
Mδ

∂U δ
λ

∂y1
(y)ϕf (z2)

∂Sδ
λ

∂y1
dydz2

+ δ2km

∫ L

0

∫
Mδ

∂U δ
λ

∂y2
(y)ϕf (z2)

∂Sδ
λ

∂y2
dydz2. (3.58)

Intergrating Jδ
m by parts we obtain

Jδ
m =

∫ L

0

∫
Mδ

{
ωmλU δ

λ − kmδ2∆yU δ
λ

}
ϕf (z2)Sδ

λ(z2, y) dydz2

+ kmδ2

∫ L

0

∫
Γδ

mf

(∇yU δ
λ · ν)Sδ

λ(z2, y) dsyϕf (z2) dz2

= Iδ
λ

∫ L

0

ϕf (z2)Rδ
λ(z2) dz2, (3.59)

where Iδ
λ is defined in (3.10). Lemma 3.4 is proved.

We now pass to the limit on the right-hand side of (3.33). It is clear that

lim
ε→0

∫
Πε,δ

f

(gλ + hλ)(εz1, z2)
(
ϕf (z2) + εζ

(
z2, z1,

z2

ε

))
dz

= |Fδ|
∫ L

0

(gλ + hλ)(0, z2)ϕf (z2) dz2, (3.60)

lim
ε→0

∫
Πε,δ

m

hλ(εz1, z2)φm

(
z2, z1,

z2

ε

)
dz =

Iδ
λ

λωm

∫ L

0

hλ(0, z2)ϕf (z2) dz2. (3.61)

Finally, from (3.40), (3.49), (3.60), (3.61) we deduce the following limit relation:

ωfλ|Fδ|
∫ L

0

Rδ
λϕf dz2 + kf

∫ L

0

∫
Fδ

∂vδ
f

∂y1

∂ζ

∂y1
dy dz2

+ kf |Fδ|
∫ L

0

∂Rδ
λ

∂z2

∂ϕf

∂z2
dz2 + kf

∫ L

0

∫
Fδ

∂vδ
f

∂y2

∂ϕf

∂z2
dy dz2

+ kf

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
+

∂vδ
f

∂y2

]
∂ζ

∂y2
dydz2 + Iδ

λ

∫ L

0

ϕfRδ
λ dz2

= |Fδ|
∫ L

0

(gλ + hλ)(0, z2)ϕf (z2) dz2 +
Iδ
λ

λωm

∫ L

0

hλ(0, z2)ϕf (z2) dz2.

(3.62)
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Now we proceed in a standard way. Letting ϕf = 0, we obtain that

vδ
f (z2, y) = −∂Rδ

λ

∂z2
(z2)χδ(y), (3.63)

where χδ is the solution of (3.7). Then we set ζ = 0 and obtain the weak formulation
of the macroscopic equation (3.9) or δ-model.

The strong two-scale convergence of Rε,δ
λ is a consequence of the weak compact-

ness, for each fixed δ > 0, of {Pε,δRε,δ
λ } in H1(Π).

To complete the proof of Theorem 3.1 it remains to describe the two-scale limit
of Sε,δ

λ . To this end we substitute in the integral identity (3.33) an arbitrary test
function φm = φm(z2, z1,

z2
ε ) with a compact support in Πε,δ

m and φf = 0. Then
passing to the two-scale limit in (3.33) and making the same rearrangements as in
the proof of Lemma 3.4, we obtain the relation

ωmλ

∫ L

0

∫
Mδ

φm(z2, y)Sδ
λ(z2, y) dydz2 + δ2km

∫ L

0

∫
Mδ

∂φm

∂y1
(z2, y)

∂Sδ
λ

∂z1
dydz2

+ δ2km

∫ L

0

∫
Mδ

∂φm

∂y2
(z2, y)

∂Sδ
λ

∂y2
dydz2

=
∫ L

0

∫
Mδ

h(0, z2)φm(z2, y) dydz2. (3.64)

The fact that Sδ
λ = Rδ

λ on ∂Mδ can be justified in the standard way. Together with
(3.64) this yields (3.11).

To show the strong two-scale convergence of Sε,δ
λ , we use the solution W ε,δ

λ (z) =
〈Rε,δ

λ (z), Sε,δ
λ (z)〉 as a test function in (3.33). This yields

ωfλ

∫
Πε,δ

f

(Rε,δ
λ (z))2 dz + ε−2kf

∫
Πε,δ

f

∣∣∣∣∣∂Rε,δ
λ

∂z1

∣∣∣∣∣
2

dz

+ kf

∫
Πε,δ

f

∣∣∣∣∣∂Rε,δ
λ

∂z2

∣∣∣∣∣
2

dz + ωmλ

∫
Πε,δ

m

(Sε,δ
λ (z))2 dz

+δ2km

∫
Πε,δ

m

∣∣∣∣∣∂Sε,δ
λ

∂z1

∣∣∣∣∣
2

dz + (εδ)2km

∫
Πε,δ

m

∣∣∣∣∣∂Sε,δ
λ

∂z2

∣∣∣∣∣
2

dz

=
∫

Πε,δ
f

(gλ + hλ)(εz1, z2)R
ε,δ
λ (z) dz +

∫
Πε,δ

m

hλ(εz1, z2)S
ε,δ
λ (z) dz.

(3.65)

For brevity, denote the left-hand side by Xε,δ. Each term of Xε,δ is lower semi-
continuous with respect to the two-scale convergence (see Ref. 1). Therefore, by
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Lemma 3.1,

lim
ε→0

Xε,δ ≥ ωfλ

∫ L

0

∫
Fδ

(Rδ
λ)2 dydz2

+ kf

∫ L

0

∫
Fδ

∣∣∣∣∂Rδ
λ

∂z2

∣∣∣∣
2
{∣∣∣∣∂χδ

∂y1

∣∣∣∣
2

+
∣∣∣∣
(

1 − ∂χδ

∂y2

)∣∣∣∣
2
}

dydz2

+ ωmλ

∫ L

0

∫
Mδ

(Sδ
λ)2 dydz2 + δ2km

∫ L

0

∫
Mδ

∣∣∣∣∂Sδ
λ

∂y1

∣∣∣∣
2

dydz2

+ δ2km

∫ L

0

∫
Mδ

∣∣∣∣∂Sδ
λ

∂y2

∣∣∣∣
2

dydz2. (3.66)

By (3.13) we have

1
|Fδ|

∫
Fδ

{∣∣∣∣∂χδ

∂y1

∣∣∣∣
2

+
∣∣∣∣
(

1 − ∂χδ

∂y2

)∣∣∣∣
2
}

dy = Kδ.

On the other hand, passing to the limit on the right-hand side of (3.65), one gets

lim
ε→0

(∫
Πε,δ

f

(gλ + hλ)(εz1, z2)R
ε,δ
λ (z) dz +

∫
Πε,δ

m

hλ(εz1, z2)S
ε,δ
λ (z) dz

)

=
∫ L

0

∫
Fδ

(gλ + hλ)(0, z2)Rδ
λ dydz2 +

∫ L

0

∫
Mδ

hλ(0, z2)Sδ
λ dydz2.

According to (3.9), (3.62) and (3.64), the right-hand side here is equal to the right-
hand side of (3.66). Thus, (3.66) happens to be an equality. This implies, in partic-
ular, that the limit of each term on the left-hand side of (3.65) exists and equals to
the corresponding term on the right-hand side of (3.66). This completes the proof
of the strong two-scale convergence and Theorem 3.1.

4. Step 2. Passage to the Limit as δ → 0 in (3.9)

Here we pass to the limit, as δ → 0, in (3.9) and obtain the stationary limit
(homogenized) problem as ε, δ → 0. This homogenized problem takes the form

Stationary macromodel :




λωfρ∗λ − kf

2
∂2ρ∗λ
∂ξ2

= Gλ(ξ) + S(ρ∗λ) in (0, L);

∂ρ∗λ
∂ξ

(0) =
∂ρ∗λ
∂ξ

(L) = 0,

(4.1)

with

Gλ(ξ) =
1
λ

(g + h)(0, ξ); S(ρ∗λ) = −2
√

λωmkmρ∗λ +
2

λ
√

λ

√
km

ωm
h(0, ξ). (4.2)

The precise statement of the convergence result is as follows.
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Proposition 4.1. Let uε,δ
λ be a solution of problem (3.1). Then

(I) the function uε,δ
λ converges to λ−2h(x), namely

lim
δ→0

lim
ε→0

1
|Ωε|

∥∥ωε,δuε,δ − λ−2h
∥∥2

L2(Ωε)
= 0; (4.3)

(II) the function ρε,δ
λ converges to a function ρ∗λ in the following sense:

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥∥ρε,δ
λ − ρ∗λ

∥∥∥2

L2(Ωε,δ
f )

= 0. (4.4)

(III) For any function φ = φ(x) continuous in the vicinity of the segment {x ∈ R2 :
x1 = 0; 0 ≤ x2 ≤ L},

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δ
λ φ(x) dx =

kf

2

∫ L

0

�R∗
λ(ξ)φ(0, ξ) dξ, (4.5)

where

�R∗
λ(ξ) =

(
0,

dρ∗λ
dξ

(ξ)
)

.

4.1. Proof of Proposition 4.1

The proof of Proposition 4.1 will be given in Secs. 4.1.1–4.1.3. In Sec. 4.1.1 we estab-
lish the uniform estimates for the function uε,δ

λ and the convergence result (4.3).
Then in Sec. 4.1.2 we obtain the homogenized equation (4.1) and prove the conver-
gence result (4.4). Finally, in Sec. 4.1.3 we prove the convergence of the fluxes.

4.1.1. Proof of assertion (I)

Consider problem (3.1). The solution uε,δ
λ = 〈ρε,δ

λ , σε,δ
λ 〉 of this problem minimizes

the functional:

Jε
[
uε,δ

]
= µε,δ

∫
Ωε

{
kε,δ(x)

∣∣∣∇uε,δ
λ

∣∣∣2 + λωε,δ(x)
∣∣∣uε,δ

λ

∣∣∣2 − 2Gε,δ
λ (x)uε,δ

λ

}
dx

= µε,δ

∫
Ωε,δ

f

{
kf

∣∣∣∇ρε,δ
λ

∣∣∣2 + λωf

∣∣∣ρε,δ
λ

∣∣∣2 − 2(gλ + hλ)(x)ρε,δ
λ

}
dx

+ µε,δ

∫
Ωε,δ

m

{
km(εδ)2

∣∣∣∇σε,δ
λ

∣∣∣2 + λωm

∣∣∣σε,δ
λ

∣∣∣2 − 2hλ(x)σε,δ
λ

}
dx,

(4.6)

where µε,δ = 1/|Ωε,δ
f |. To simplify this functional we set

ρε,δ
λ =

1
ωf

(
rε,δ
λ + λ−2h

)
, σε,δ

λ =
1

ωm

(
sε,δ
λ + λ−2h

)
, uε,δ

λ = 〈rε,δ
λ , sε,δ

λ 〉, (4.7)
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and after straightforward rearrangements, rewrite the right-hand side of (4.6) in
terms of the functions rε,δ

λ , sε,δ
λ as follows:

Jε
[
uε,δ

]
=

µε,δ

(ωf )2

∫
Ωε,δ

f

{
kf

∣∣∣∇(
rε,δ
λ + λ−2h

)∣∣∣2 + λωf

∣∣∣rε,δ
λ

∣∣∣2 − 2gλωf rε,δ
λ

}
dx

+
µε,δ

(ωm)2

∫
Ωε,δ

m

{
km(εδ)2

∣∣∣∇(
sε,δ
λ + λ−2h

)∣∣∣2 + λωm

∣∣∣sε,δ
λ

∣∣∣2} dx + Qε,δ

≡ Jε
[
uε,δ

]
+ Qε,δ, (4.8)

where the functional Qε,δ does not depend on rε,δ
λ and sε,δ

λ . Since uε,δ
λ minimizes the

functional Jε and

Jε [0] ≤ cµε,δ
(
εδ + |Ωε,δ

f |
)
≤ C,

then

Jε
[
uε,δ

] ≤ C. (4.9)

Together with the definition (4.7) this gives∥∥∥∇ρε,δ
λ

∥∥∥2

L2(Ωε,δ
f )

+
∥∥∥ωfρε,δ

λ − λ−2h
∥∥∥2

L2(Ωε,δ
f )

+
∥∥∥ωmσε,δ

λ − λ−2h
∥∥∥2

L2(Ωε,δ
m )

≤ C
∣∣∣Ωε,δ

f

∣∣∣
(4.10)

and ∥∥∥∇σε,δ
λ

∥∥∥2

L2(Ωε,δ
m )

≤ C

εδ
, (4.11)

where the constant C does not depend on ε, δ. This yields

µε,δ
∥∥∥ρε,δ

λ

∥∥∥2

H1(Ωε,δ
f )

≤ C. (4.12)

The assertion (I) is proved.

4.1.2. Proof of assertion (II)

Inspired by Remark 3.2 we will show that the renormalized coefficients of Eq. (3.9)
converge, as δ → 0, to the corresponding coefficients in (4.1) and prove the following
statement.

Lemma 4.1. Let Rδ
λ be the solution of problem (3.9). Then

Rδ
λ ⇀ ρ∗λ weakly in H1(0, L), (4.13)

where ρ∗λ solves problem (4.1).
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Proof of Lemma 4.1. It is clear that the dependence on δ comes from the coef-
ficients Iδ

λ and Kδ. First we study the asymptotic behavior of Iδ
λ as δ → 0. In the

same way as in the proof of Lemma 7.2 in Ref. 19, we get

lim
δ→0

1
|Fδ|I

δ
λ = 2

√
λωmkm. (4.14)

It is also known from Chap. 5 of Ref. 14 that

lim
δ→0

1
|Fδ|K

δ =
1
2
. (4.15)

Using (4.14) and (4.15) one can derive Eq. (4.1) from (3.9) by passing to the limit
as δ → 0. The desired convergence (4.13) is now a consequence of the continuous
dependence of solutions of (4.1) on the data. Lemma 4.1 is proved.

We proceed with the convergence (4.4). It relies on (3.12) and (4.13). We have

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥∥ρε,δ
λ − ρ∗λ

∥∥∥2

L2(Ωε,δ
f )

≤ lim
δ→0

lim
ε→0

1
2Lδ

(∥∥∥Pε,δRε,δ
λ − Rδ

λ

∥∥∥2

L2(Π)
+
∥∥Rδ

λ − ρ∗λ
∥∥2

L2(Πε,δ
f )

)
, (4.16)

where Pε,δ is the extension operator defined in Theorem 3.1. By (3.12)

1
2Lδ

lim
ε→0

∥∥∥Pε,δRε,δ
λ − Rδ

λ

∥∥∥2

L2(Π)
= 0. (4.17)

Consider the second term on the right-hand side of (4.16). Since Rδ
λ = Rδ

λ(z2),
ρ∗λ = ρ∗λ(z2), then taking into account the compactness of embedding C[0, L] into
H1(0, L) one can deduce from (4.13) that

lim
δ→0

∥∥Rδ
λ − ρ∗λ

∥∥
C[0,L]

= 0.

Therefore,

1
2Lδ

∥∥Rδ
λ − ρ∗λ

∥∥2

L2(Πε,δ
f )

≤ C
∥∥Rδ

λ − ρ∗λ
∥∥2

C[0,L]
−→
δ→0

0. (4.18)

Thus by (4.13)

lim
δ→0

lim
ε→0

1
2Lδ

∥∥Rδ
λ − ρ∗λ

∥∥2

L2(Πε,δ
f )

≤ C lim
δ→0

∥∥Rδ
λ − ρ∗λ

∥∥2

C(0,L)
= 0. (4.19)

The convergence (4.4) follows from (4.16), (4.17) and (4.19). The assertion (II) is
proved.
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4.1.3. Proof of assertion (III)

For an arbitrary function φ = φ(x) continuous in the vicinity of the segment {x ∈
R2 : x1 = 0; 0 ≤ x2 ≤ L}, consider the integral

Iε,δ
∇ ≡ L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δ
λ φdx

=
L

|Ωε,δ
f |

∫
Ωε,δ

f

kf∇ρε,δ
λ φdx +

L

|Ωε,δ
f |

∫
Ωε,δ

m

km(εδ)2∇σε,δ
λ φdx. (4.20)

For the second term on the right-hand side due to (4.11) we have:∣∣∣∣∣ L

|Ωε,δ
f |

∫
Ωε,δ

m

km(εδ)2∇σε,δ
λ φ(x) dx

∣∣∣∣∣ ≤ C (εδ)
∥∥∥∇σε,δ

λ

∥∥∥
L2(Ωε,δ

m )

∣∣Ωε,δ
m

∣∣1/2 ≤ C ε
√

δ.

Hence

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

m

km(εδ)2∇σε,δ
λ φ(x) dx = 0. (4.21)

For the first term on the right-hand side of (4.20) we have

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

kf
∂ρε,δ

λ

∂x1
φ(x) dx = lim

δ→0
lim
ε→0

kf

2δ

∫
Πε,δ

f

ε−1 ∂Rε,δ
λ

∂z1
φ(εz1, z2) dz

(4.22)

and

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

kf
∂ρε,δ

λ

∂x2
φ(x) dx = lim

δ→0
lim
ε→0

kf

2δ

∫
Πε,δ

f

∂Rε,δ
λ

∂z2
φ(εz1, z2) dz. (4.23)

Due to Lemma 3.1 and (3.63) we have

lim
ε→0

kf

2δ

∫
Πε,δ

f

ε−1 ∂Rε,δ
λ

∂z1
φ(εz1, z2) dz = −kf

2δ

∫ L

0

∫
Fδ

∂Rδ
λ

∂z2
(z2)

∂χδ

∂y1
(y)φ(0, z2) dydz2

(4.24)

and

lim
ε→0

kf

2δ

∫
Πε,δ

f

∂Rε,δ
λ

∂z2
φ(εz1, z2) dz

=
kf

2δ

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) − ∂Rδ

λ

∂z2
(z2)

∂χδ

∂y2
(y)

]
φ(0, z2) dydz2. (4.25)

The integral in (4.24) vanishes because∫
Fδ

∂χδ

∂y1
(y) dy = 0
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and we get

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

kf
∂ρε,δ

λ

∂x1
φ(x) dx = 0. (4.26)

Consider the integral on the right-hand side of (4.25). By the definition of Kδ we
have

kf

2δ

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) − ∂Rδ

λ

∂z2
(z2)

∂χδ

∂y2
(y)

]
φ(0, z2) dydz2

= kf
Kδ

2δ

∫ L

0

∂Rδ
λ

∂z2
(z2)φ(0, z2) dz2.

It remains to pass to the limit in δ and use (4.13) and (4.15) to obtain the relation

lim
δ→0

kf

2δ

∫ L

0

∫
Fδ

[
∂Rδ

λ

∂z2
(z2) − ∂Rδ

λ

∂z2
(z2)

∂χδ

∂y2
(y)

]
φ(0, z2) dydz2

=
kf

2

∫ L

0

∂ρ∗λ
∂z2

(z2)φ(0, z2) dz2

and, finally,

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

kf
∂ρε,δ

λ

∂x2
φ(x) dx =

kf

2

∫ L

0

∂ρ∗λ
∂ξ

(ξ)φ(0, ξ) dξ. (4.27)

Now the desired flux convergence (4.5) follows from (4.21), (4.26) and (4.27).
Proposition 4.1 is proved.

5. Step 3. Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the results obtained in the previous sections for
the stationary case. It will be given in Secs. 5.1–5.3.

5.1. Proof of assertion (I)

In order to obtain the a priori estimates for Eq. (2.1) we rewrite it as follows:[
ωε,δ(x)uε,δ

t − h(x)
]
− div (kε,δ∇ρε,δ) = gε,δ(x) in Ωε

T , (5.1)

where gε,δ(x) = g(x) in Ωε,δ
f and gε,δ(x) = 0 in Ωε,δ

m , and Ωε
T = (0, T ) × Ωε. Then

we multiply (5.1) by
[
ωmuε,δ − th(x)

]
and integrate the resulting relation over

(0, t)×Ωε. Considering the regularity properties of the functions g, h and applying
the Cauchy inequality and Gronwall’s lemma we arrive at the estimate

‖ωε,δuε,δ(t) − th‖2
L2(Ωε) +

∫ t

0

∫
Ωε,δ

f

∣∣∇ρε,δ
∣∣2 dxdτ + (εδ)2

∫ t

0

∫
Ωε,δ

m

∣∣∇σε,δ
∣∣2 dxdτ

≤ CT |Ωε,δ
f | (5.2)

with constant CT independent of ε, δ.
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In a similar way, multiplying (5.1) by [ωmuε,δ
t −h(x)] and integrating over (0, t)×

Ωε, we get

‖ωε,δuε,δ
t (t)−h‖2

L2(Ωε
T )+

∥∥∇ρε,δ(t)
∥∥2

L2(Ωε,δ
f )

+ (εδ)2
∥∥∇σε,δ(t)

∥∥2

L2(Ωε,δ
m )

≤CT |Ωε,δ
f |.
(5.3)

The estimates (5.2) and (5.3) imply the following uniform bounds

1

|Ωε,δ
f |

∥∥ρε,δ(t)
∥∥2

H1(Ωε,δ
f )

≤ CT ,
1

|Ωε|
∥∥ωε,δuε,δ(t) − th

∥∥2

L2(Ωε)
≤ CT δ, (5.4)

and (I) is proved.

5.2. Proof of assertion (II)

By the change of variables z1 = x1
ε , z2 = x2 from (5.4) we obtain that

‖Rε,δ(t)‖L2(Πε,δ
f ) + ε−1

∥∥∥∥∂Rε,δ

∂z1
(t)
∥∥∥∥

L2(Πε,δ
f )

+
∥∥∥∥∂Rε,δ

∂z2
(t)
∥∥∥∥

L2(Πε,δ
f )

≤ CT

√
δ, (5.5)

where Rε,δ(t) = Rε,δ(t, z) = ρε,δ(t, εz1, z2). It is not difficult to show that the
extension operator Pε,δ can be constructed in such a way that the constant Cδ in
(3.17), (3.18) is equal to C/δ. Under such a choice of Pε,δ we derive from (5.5) that

∥∥Pε,δRε,δ(t)
∥∥

L2(Π)
+ ε−1

∥∥∥∥∂Pε,δRε,δ

∂z1
(t)
∥∥∥∥

L2(Π)

+
∥∥∥∥∂Pε,δRε,δ

∂z2
(t)
∥∥∥∥

L2(Π)

≤ CT . (5.6)

Also, the estimate (5.3) implies the bound∥∥∥∥ ∂

∂t

(
Pε,δRε,δ

)∥∥∥∥
L2((0,T )×Π)

=
∥∥∥∥
(

Pε,δ ∂

∂t
Rε,δ

)∥∥∥∥
L2((0,T )×Π)

≤ CT .

By the embedding theorem for each δ > 0 there is a function V δ = V δ(t, z) such
that

lim
ε→0

∥∥Pε,δRε,δ − V δ
∥∥2

L∞((0,T );L2(Π))
= 0 (5.7)

and

‖V δ‖L2(0,T ;H1(Π)) +
∥∥∥ ∂

∂t
V δ

∥∥∥
L2(0,T ;L2(Π))

≤ CT .

The estimate (5.6) also yields that V δ does not depend on z1, i.e. V δ(t, z) =
V δ(t, z2). Thus, there is a function V = V (t, z2) such that, along a subsequence,

lim
δ→0

∥∥V δ − V
∥∥2

L∞(0,T ;L2(0,L))
= 0. (5.8)
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Using the interpolation inequality we obtain∥∥V δ(t) − V (t)
∥∥2

L∞(0,L)
≤ C

∥∥V δ(t) − V (t)
∥∥2

H3/4(0,L)

≤ ∥∥V δ(t) − V (t)
∥∥1/2

L2(0,L)

∥∥V δ(t) − V (t)
∥∥3/2

H1(0,L)
.

Together with (5.6) and (5.8) this gives

lim
δ→0

∥∥V δ − V
∥∥

L∞((0,T )×(0,L))
= lim

δ→0
sup

0≤t≤T

∥∥V δ(t) − V (t)
∥∥

L∞(0,L)
= 0.

By the same arguments as in (4.18) and (4.19), we obtain

lim
δ→0

lim
ε→0

1
2Lδ

∥∥V δ − V
∥∥

L∞(0,T ;L2(Πε,δ
f

))
= 0.

Now, returning to the variables x1, x2 and considering (5.7), we obtain

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥ρε,δ − V
∥∥2

L∞(0,T ;L2(Ωε,δ
f ))

= 0. (5.9)

The convergence result (2.7) will immediately follow from (5.9) if we show that
V = V (t, ξ) is a solution of problem (2.4). To this end, for any t ∈ (0, T ) and any
ϕ ∈ C∞

0 (0, L), we consider the integral

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

ρε,δ(t, x)ϕ(x2) dx =
∫ L

0

V (t, ξ)ϕ(ξ) dξ. (5.10)

Let uε,δ
λ = 〈ρε,δ

λ , σε,δ
λ 〉 be the solution of problem (2.1) with an arbitrary complex

λ such that argλ 
= π. Then ρε,δ
λ is an analytic function in the complex λ-plane

C \{argλ = π} and

‖ρε,δ
λ ‖2

L2(Ωε,δ
f )

≤ C2

|Ωε,δ
f |

|λ|4 , | arg λ − π| ≥ ϑ0 > 0, (5.11)

where C2 is a constant independent of ε, δ. Moreover, ρε,δ may be represented by
the inverse Laplace transform which reads

ρε,δ(t, x) =
1

2πi

∫ θ+i∞

θ−i∞
exp (λt)ρε,δ

λ (x) dλ, θ > 0. (5.12)

Now let ρ∗λ be the solution of problem (4.1)–(4.2) with an arbitrary complex λ

such that argλ 
= π. The solution ρ∗λ of this problem is an analytic function of λ in
the complex λ-plane C \{argλ = π} and

‖ρ∗λ‖2
L2(0,L) ≤

C3

|λ|4 (5.13)
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for |argλ − π| ≥ ϑ0 > 0. Moreover, the solution of problem (2.4)–(2.5) can be
represented as follows

ρ∗(t, ξ) =
1

2πi

∫ θ+i∞

θ−i∞
exp (λt)ρ∗λ(ξ) dλ, θ > 0. (5.14)

From (5.11)–(5.14) it follows that

L

|Ωε,δ
f |

∫
Ωε,δ

f

ρε,δ(t, x)ϕ(x2) dx =
1

2πi

∫ θ+i∞

θ−i∞

{
L

|Ωε,δ
f |

∫
Ωε,δ

f

ρε,δ
λ (x)ϕ(x2) dx

}
dλ

(5.15)

and ∫ L

0

ρ∗(t, ξ)ϕ(ξ) dξ =
1

2πi

∫ θ+i∞

θ−i∞

{∫ L

0

ρ∗λ(ξ)ϕ(ξ) dξ

}
dλ. (5.16)

From Proposition 4.1, for any λ > 0, we have

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

ρε,δ
λ (x)ϕ(x2) dx =

∫ L

0

ρ∗λ(ξ)ϕ(ξ) dξ. (5.17)

Here ρε,δ
λ is an analytic function in λ variable such that µε,δ

∥∥∥ρε,δ
λ

∥∥∥2

H1(Ωε,δ
f )

≤ C(λ).

Therefore, (5.17) is valid for any complex λ and the convergence is uniform on
compact sets in the domain | argλ − π| ≥ ϑ0 > 0. Now from (5.15) to (5.17) we
obtain that

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε,δ

f

ρε,δ(t, x)ϕ(x2)dx =
∫ L

0

ρ∗(t, ξ)ϕ(ξ) dξ, (5.18)

for any t ∈ (0, T ). Comparing (5.10) and (5.18) we conclude that V (t, ξ) = ρ∗(t, ξ).
Thus the assertion (II) of Theorem 2.1 is proved.

5.3. Proof of assertion (III)

Let us show now that, for any t ∈ (0, T ) and any function φ = φ(x) continuous in
the vicinity of the segment {x ∈ R2 : x1 = 0; 0 ≤ x2 ≤ L},

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δφ(x) dx =
kf

2

∫ L

0

�R∗(t, ξ)φ(0, ξ) dξ, (5.19)

where

�R∗(t, ξ) =
(

0,
∂ρ∗

∂ξ
(t, ξ)

)
.

To this end we fix θ > 0 and consider the integral

Iε,δ
∇ =

L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δ
λ φ(x) dx, (5.20)
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where λ ∈ Υθ = {s ∈ C : Re s > θ/2}. This function is analytic in Υθ, moreover,
using (5.11) one can show that∣∣∣Iε,δ

∇
∣∣∣ ≤ C λ−3/2, (5.21)

where C is a constant independent of ε, δ and λ. Since the function ρ∗λ is analytic,
the convergence (4.5) occurs for all λ ∈ Υθ. Then we make use of the inverse Laplace
transform and, finally, get:

lim
δ→0

lim
ε→0

L

|Ωε,δ
f |

∫
Ωε

kε,δ(x)∇uε,δ(t, x)φ(x) dx

= lim
δ→0

lim
ε→0

1
2π

∫ θ+i∞

θ−i∞
eλtIε,δ

∇ dλ

=
1
2π

∫ θ+i∞

θ−i∞
eλt

(
kf

2

∫ L

0

�R∗
λ(ξ)φ(0, ξ) dξ

)
dλ

=
kf

2

∫ L

0

�R∗(t, ξ)φ(0, ξ) dξ. (5.22)

Thus the assertion (III) of Theorem 2.1 is proved. This completes the proof of
Theorem 2.1.

6. Nonstationary Effective δ-Model

Here we formulate and justify the homogenization result for problem (2.1) in the
case when the thickness of the fractures is of the same order as the structure period,
i.e. δ is a fixed positive constant.

Consider the following auxiliary problem


ωmζδ
t − kmδ2∆yζδ = 0 in (0, T )×Mδ,

ζδ(t, y) = 0 on (0, T ) × ∂Mδ,

ζδ(0, y) = 1 in Mδ,

(6.1)

and denote

Y δ(t) = ωm

∫
Mδ

ζδ(t, y) dy. (6.2)

The limit nonstationary δ-model reads


ωf |Fδ|Rδ
t − kfKδ ∂2Rδ

∂ξ2
= |Fδ|(g + h)(ξ) + S(Rδ) in (0, T ) × (0, L),

∂Rδ

∂ξ
(t, 0) =

∂Rδ

∂ξ
(t, L) = 0 on (0, T ),

Rδ(0, ξ) = 0 in (0, L),

(6.3)
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where

S(Rδ) = −∂Y δ

∂t
�

∂Rδ

∂t
(t) +

1
ωm

Y δ(t)h(0, ξ)

and � stands for the convolution operator.

Theorem 6.1. The solution uε,δ = 〈ρε,δ, σε,δ〉 of (2.1) converges, as ε → 0, to a
function W δ(t, ξ, y) = 〈Rδ(t, ξ), Sδ(t, ξ, y)〉 in the following sense

lim
ε→0

1
|Ωε|

∫ T

0

∫
Ωε

∣∣∣(uε,δ(t, x) − W δ
(
t, x2,

x

ε

) ∣∣∣2 dxdt = 0, (6.4)

where Rδ is a solution of (6.3) and

Sδ(t, ξ, y) = Rδ(t, ξ) + ζδ(·, y) �
(
h(0, ξ) − ∂Rδ

∂t
(·, ξ)

)
(t). (6.5)

The proof of this theorem relies on the statement of Theorem 3.1 and can be
derived from this statement by means of the inverse Laplace transform in exactly
the same way as in the proof of Theorem 2.1.

7. A Homogenization Result of Flow in a 3D Porous Medium
with a Thin Layer

The convergence results of Theorem 2.1 remains valid (after natural modifications)
for 3D thin domains. In this section we study a model problem of a single phase
flow in a porous medium with a thin plate.

Denote by Ωε a rectangle parallelepiped in R3 defined by Ωε = (−ε/2, ε/2)×P
with P = (0, L2) × (0, L3). Letting Y = (0, 1)3 we introduce the reference fracture
part Fδ = {y ∈ Y, dist (y, ∂Y) < δ

2} and the reference matrix block Mδ = Y \ Fδ.
Assuming that L1 and L2 are integer multipliers of ε, i.e. L2 = N2ε, L3 = N3ε, we
define

Ωε,δ
m =

N2−1⋃
�2=0

N3−1⋃
�3=0

ε
(
Mδ + (0, �2, �3)

)
, Ωε,δ

f = Ωε \ Ωε,δ
m .

The flow in the matrix-fracture medium Ωε is described by the following
equation:

3D Micromodel :




ωε,δ(x)uε,δ
t − div (kε,δ(x)∇uε,δ) = Gε,δ(x) in (0, T )× Ωε;

∇uε,δ · ν = 0 on (0, T ) × ∂Ωε;

uε,δ(0, x) = 0 in Ωε,

(7.1)

where

ωε,δ(x) =

{
ωf in Ωε,δ

f ;

ωm in Ωε,δ
m ;

kε,δ(x) =

{
kf in Ωε,δ

f ;

km(εδ)2 in Ωε,δ
m ;

Gε,δ(x) =

{
(g + h)(x) in Ωε,δ

f ;

h(x) in Ωε,δ
m .
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Here ωf , ωm, kf , km are positive constants and g, h ∈ C1(R3). As in the previous
sections we introduce the notation:

uε,δ =

{
ρε,δ in Ωε,δ

f ;

σε,δ in Ωε,δ
m

and rewrite problem (7.1) separately in the fracture and matrix parts (see problems
(2.2) and (2.3)).

The goal of this section is to extend the results on the asymptotic behavior of uε,δ

obtained in the previous sections, to the 3D model under consideration. Following
the lines of Theorems 2.1 and 6.1, we show that for any fixed δ problem (7.1) admits
homogenization (as ε → 0) and that the homogenized solution converges, as δ → 0,
to a solution of the effective problem:

3D Macromodel :




ωfρ∗t − 2
3
kf∆ρ∗ = G(κ) + S(ρ∗) in (0, T )× P ;

∇ρ∗ · ν = 0 on (0, T ) × ∂P ;

ρ∗(0, κ) = 0 in P
(7.2)

with G(κ) = (g + h)(0, κ) and the additional source term S(ρ∗) defined in (2.5),
here κ stands for (x2, x3). More precisely, the following result holds.

Theorem 7.1. Let uε,δ = 〈ρε,δ, σε,δ〉 be the solution of (7.1). Then, for any
t ∈ (0, T ),

(I) the function uε,δ converges to t h(x), namely:

lim
δ→0

lim
ε→0

1
|Ωε|

∥∥ωε,δuε,δ − th
∥∥2

L2(Ωε)
= 0; (7.3)

(II) the function ρε,δ satisfies the limit relation

lim
δ→0

lim
ε→0

1

|Ωε,δ
f |

∥∥ρε,δ − ρ∗
∥∥2

L2(Ωε,δ
f )

= 0, (7.4)

where ρ∗ = ρ(t, κ) is a solution of (7.2), (2.5).
(III) For any t ∈ (0, T ), and any function φ = φ(x) continuous in the vicinity of

the rectangle {x ∈ R3 : x1 = 0; 0 ≤ x2 ≤ L2; 0 ≤ x3 ≤ L3}, it holds

lim
δ→0

lim
ε→0

|P|
|Ωε,δ

f |

∫
Ωε

kε,δ(x)∇uε,δφ(x) dx =
2kf

3

∫
P

�R∗(t, κ)φ(0, κ) dκ (7.5)

with

�R∗(t, κ) =
(

0,
∂ρ∗

∂κ2
(t, κ),

∂ρ∗

∂κ3
(t, κ)

)
.



August 14, 2007 15:33 WSPC/103-M3AS 00233

1348 B. Amaziane, L. Pankratov & A. Piatnitski

For a fixed δ > 0 the result similar to that of Theorem 6.1 holds true. In order
to formulate this result, define ζδ and Y δ as in (6.1) and (6.2). In the 3D case the
limit nonstationary δ-model reads


ωf |Fδ|Rδ
t − kfKδ∆κRδ(t, κ) = |Fδ|(g + h)(0, κ) + S(Rδ) in (0, T )× P ;

∇κRδ · ν = 0 on (0, T ) × ∂P ;

Rδ(0, κ) = 0 in P ,

(7.6)

where

S(Rδ) = −∂Y δ

∂t
�

∂Rδ

∂t
(t) +

1
ωm

Y δ(t)h(0, κ)

and

Kδ =
1

|Fδ|αFδ

(
χδ

2 − y2, χ
δ
2 − y2

)
=

1
|Fδ|αFδ

(
χδ

3 − y3, χ
δ
3 − y3

)
;

here the vector-function χδ is one-periodic in the variables y2 and y3, and satisfies
the equation 



−∆yχδ
2,3 = 0 in Fδ;

∇y(χδ
2,3 − y2,3) · ν = 0 on Γδ

mf ;

∂

∂y1
(χδ

2,3 − y2,3) = 0 on ∂Y ∩
{

y1 = ±1
2

}

Theorem 7.2. The solution uε,δ = 〈ρε,δ, σε,δ〉 of (7.1) converges, as ε → 0, to a
function W δ(t, κ, y) = 〈Rδ(t, κ), Sδ(t, κ, y)〉 in the following sense

lim
ε→0

1
|Ωε|

∫ T

0

∫
Ωε

∣∣∣uε,δ(t, x) − W δ
(
t, x2, x3,

x

ε

) ∣∣∣2 dxdt = 0, (7.7)

where Rδ is a solution of (7.6) and Sδ is defined by

Sδ(t, κ, y) = Rδ(t, κ) + ζδ(·, y) �
(
h(0, κ) − ∂Rδ

∂t
(·, κ)

)
(t).
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