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Introduction

We study homogenization problem for a random non stationary parabolic
second order equation of the form

%ue(w,t) = div (a(g, E%)Vuz(x,t)) + %g(g, (@) + f@ ), ()
with a small positive parameter €. This model equation describes various
processes in a medium with spatial microstructure whose characteristics are
rapidly changing functions of time.

Throughout this article we assume that the spatial microstructure is peri-
odic and that the characteristics of this microstructure are random stationary
rapidly oscillating processes.

The presence in the equation of a large zero order term, linear or nonlinear,
leads to rather unusual asymptotic behaviour of a solution of (1), as € tends
to zero. We will show that almost sure (a.s.) homogenization result in general
fails to hold and that a weaker averaging result takes place. Namely, under
certain mixing conditions, a solution of (1) converges in law in a suitable
functional space to a solution of a homogenized stochastic partial differential
equation (SPDE).

Our aim is to justify this convergence and to investigate the properties of
the limit SPDE.

The presence of a large factor in the lower order terms of the equation
is natural when studying long term behaviour of solutions. We illustrate this
with the following example. Many applications deal with parabolic operator
of the form

o o(y,s) = div (a(y, 5)Ve(y,5)) + gy, oy, )
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with a small potential g(y, s), here € characterizes the range of oscillation
of the potential. In order to study the behaviour of solutions at large time
s ~ €2, one can make the diffusive change of variables z = ey, t = ¢%s. In
the new coordinates the equation reads

‘

0 . r t -1 Tt
Ev_dlv <a(5,g§)vv>+5 g(gag_g)va

it is similar to the equation (1).

First rigorous homogenization results for random elliptic and parabolic op-
erators in divergence form were obtained in the works [5], [10]. After that this
topic has been studied by many mathematicians, now it is well presented in
the existing literature. However, some important problems in the field remain
open.

It is known that, in contrast with periodic case, the presence of lower
order terms in the equation with random coefficients might change crucially
the effective behaviour of solutions.

In this work we consider an intermediate case of equations with lower
order terms whose coefficients are periodic in spatial variables and random in
time. Averaging problems for these equations with diffusive driving process
were studied in [2] in linear case, and in [12] in nonlinear case. The convection
diffusion problem of this type with a generic stationary driving process having
good mixing properties, have been considered in [6].

1. The setup

This section is devoted to homogenization of equations of the form

%ug(x,t) = div (a(g, ;—2)Vu€(m,t)) + %g(g, 6%)ue(ac,t) + f(z,t), (2)

with generic random stationary in time and periodic in spatial variables coef-
ficients. For this equation we consider a Cauchy problem in R™ x (0,7") with
the initial condition

u®(x,0) = up(z). (3)
Here and later on we assume that ug € L?(R™) and f € L*((0,7) x R™).

Remark 1. The Cauchy problem has been chosen for the sake of definiteness.
Initial boundary problems with Dirichlet or Neumann conditions can be stud-
ied in a similar way.

Problem (2)—(3) will be investigated under the following assumptions on
the coefficients.

H1.The coefficients a;;(y, s) and g(y, s) are [0, 1]™ periodic in y.
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H2. The functions a;;(y,s) and g(y,s) are stationary random functions of
s defined on a probability space (§2,F,P), with values in the space
of periodic functions of y. We assume that a;;(y,s) = a;(y,s,w) and
g(y,s) = g(y, s,w) are measurable with respect to the o-algebra B(T") x
B(—o00,+00) x F, where the symbol B stands for the Borel o-algebra.
For simplicity we assume that {2 is equipped with a random dynamical
system T} and that

aij(yasaw) s dij(y,TSW), g(y,s,w) = g(vasw)* (4)

where a;;(y,w) and g(y,w) are given random function with values in
LPS(T™),
Let us recall that T} is a group of measurable transformations T : 2 —
{2 such that
- TslTsz = Lsi1+s2 Ty = Id;
- T, preserves measure P for any s € R, i.e. P(T(G)) = P(G) for any
GeF;
- Ty (w) is a measurable map from (2 xR, F x B) to ({2, F), where B stands
for a Borel o-algebra.

H3.Uniform ellipticity:

aij(y, T)C:C > AC)?, A>0,

lag;(y, Tl < AT lg(y,8)| < AT
for all y, 7 and ¢ € R™.
H4.Centering condition. The average of g(2, s) is equal to zero that is

E / g9(z,8)dz=0 (5)
[0,1]

for all s € R.

In order to formulate one more assumption we first recall the definition of
mixing coeflicients.

Let &, be a stationary random process defined on a probability space
(2,.F,P), and denote Fgy = olls; & £4} and Fop = oft,, ¢ 21k

The function () defined by

k() = sup |P(E1)P(E2) — P(E1 N Ey),
Er1€F<t, B2€F > (t4+)

is called strong mixing coefficient of the process £.. Notice that since . is

stationary, k() does not depend on t.
The function () defined by

P(E, N Ey)

p(y) = sup P(E,) - :
FE; € ]:St, FEs € ]:Z(t+’y) P(Ez)

P(Ez) #0
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is called the uniform mizing coefficient of ..
The function p(y) defined by

o(7) = sup | B —Em)(n2 — Ena))

n1, M2 VvV E’I]% E'I]% ¥

m € L*(2, F<t, P), 12 € L2(£2, F> (14, P).

is called the mazimum correlation coefficient of &..

We now consider o-algebras F<; and F>;, generated by the coefficients
a(y,t),g(y,t) of operator (2), and impose the following condition on the cor-
responding mixing coefficients

H5. At least one of the following conditions holds true.

Zmdv < o0, Zw(v)dv < 00, Zﬂ(v)d'y < 00

Remark 2. Condition H4 can be assumed without loss of generality. Indeed,
the relation (5) can be achieved by means of the following factorization of
unknown function in (2)

W (z,t) = exp(< g > /e)u(a,1),

with
<g>=E / 9(z,8)dz.
[0,1]"
If < g ># 0, then the homogenization takes place on the background of
exponential growth or decay of the solution.

Under conditions H1-H3 problem (2)-(3) is well posed for each £ > 0.

Lemma 1. Let H1-H3 be fulfilled. Then for each € > 0 problem (2)-(3) has
a unique solution u® € L*(0,T; H*(R"))NC(0,T; L*(R™)) for allw € 2. This
solution defines a measurable mapping

u® : (2, F) — (L*(0,T; H'(R™)) N C(0, T; L*(R™)), B).
The estimate holds

lulleo,1y;z2@ny) + I1usll L2 o,y m (7))

S CE)Ifll2 0,551 () + ol L2Rn)).

(6)

Proof. The existence and the uniqueness of a solution as well as a priori
estimate (6) are standard. The measurability is the consequence of the fact
that u® depends continuously on the data of the problem. O
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2. Factorization of the equation

It is convenient to represent g(y, s) as a sum

def

9(y,t) =< g> () +3u,t), <g>(t) / 9(2,t)dz,

[0,1)"

and to introduce a new unknown function v® = v°(z,t) as follows

uf(x,t) = v°(z,t) exp (% /Ot <g> (é)ds) ’ (7

It is straightforward to check that v® satisfies the equation

0 . L z it = 1.z &, .
g0 = div (al, 9@ + 232, Sy )

+f(z,t) exp <—§/Ot<g> (é)ds), (8)

v (z,0) = up(x).

This problem will be studied in the following sections. In the remaining part
of this section we deal with the exponential factor in (7).

Lemma 2. Suppose that at least one of the conditions H5 holds. Then the

process
t
1 S
Ctazg/<g>(€—2)d8 (9)
0

satisfies functional Central Limit Theorem (invariance principle) with zero
mean and the diffusion given by

02:2/E<g>(0)<g>(s)ds. (10)
0

That is the process {(f} converges in law in the space C[0,0) to the process
{oW,}, where Wy is a standard Brownian motion.

The proof of this statement can be found for instance in [9], Chapter 9.
As a consequence of the lemma we obtain the convergence

exp (é /Ot <g> (E%)ds) i>exp(UWt) (11)

in the space C0, 00).
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3. A priori estimates for the factorized equation

In this section we derive a priori estimates for a solution of problem (8) and
of more general Cauchy problem of the form

0 . = x t R 1_jzx &
pr (z,t) = div (a(g,6—2)Vz (x,t)) +Eg(g’s_2)z (x,t) + h(z,t), (12)

2°(x,0) = zo(x),

which involves a nontrivial right hand side.

Proposition 1. A solution z° of problem (12) admits an estimate

||Z€||L°o(0.T;L2(Rn)) T ||ZEHL2(O,T;H1(R")) < C(”ZOHL2(R“) + ||h||L2(O,T;H—1(R"))
(13)
with a constant C' which does not depend on €.

Proof. By construction the function §(y, s) has zero average in variable y for
all s and w. Therefore, the equation AQ = g is solvable in the space of periodic
functions. Denote § = V,,Q. Since ||§||r~ < oo, we have |§(y, s)| < C.

Clearly, q(y, s) satisfies the relation divyG(y,s) = §(y, s). In coordinates
x = ey, t = e%s it reads

Edivxqf(mat) == ge(x7t); (14)

Here and afterwards for a generic function F'(y, s) we use the notation

T t 0 1o} t

Fe(xet) = F(Ev 8_2)7 @Fs(xvt) = a—yzF(yv 6_2) y:&’ (15)
0 0 _ x
%Fs(l‘,t) = &F(g,s) s=t

=

Multiplying the equation (12) by 2° and integrating the resulting relation over
the set R™ x (0,T) gives

(2%(z,t))%dx — /”(ZQ(.T))2CZ1'

Rn

t
= —/ / aije(x, T)V2E (2, 7) - V2 (x, 7)drdr +
0 n

+5_1/0t/ngs(x,T)(zE(x,T))dedT—l—/Ot/n 2 (z, 7)h(z, T)dzdr.

Considering (14), after multiple integration by parts we get
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t
(2°(z,t))%dz + / / aije(x, T)V2E(x,7T) - V25 (2, 7)dzdr
R'n

= (zo( dm+/ /n 2°(x, 7) e (z, 7) - V£ (2, 7)dxdT +

/ /n (z,7)h(z, T)dxdr. (16)

Denote the right hand side here by R®(t). For each v > 0 we have
t
|R°(t)] < / (zo(x))?dx +’y‘1/ / |28 (x, 7)de (z, 7) |*dadr
n 0 n
—}-’7/ / |VZ€(l' T | dxdr +/ ||Z ||H1(Rn)'|h( T “H 1(]Rn)d7'

(zo( )2dz + Cy~ // xT)|2d:ch+’y// |V28(z,7)|?dxdr

IN

#07 [ It +1 [ [ (G + 9o

It remains to combine this bound with (16). The desired estimate (13) now
follows from Gronwall lemma. O

4. Auxiliary problems

Passage to the limit in problem (8) requires introducing a number of auxil-
iary functions usually called correctors. These correctors will be defined as
solutions of auxiliary parabolic equations. This section is devoted to those
auxiliary problems and their properties.

Denote A = 8 -a:(Y, 8) 5 9 and consider in a cylinder T™ x (—o00, +00) the
following two equatlons

S 09 = 0 5) = 5 -a5(0:9) a7)
2 G(y, ) ~ AC(y, ) = 5(3.9) (18)

Proposition 2. Fquations (17) and (18) have stationary solutions in the
space L (—o00, 4+00; C(T™))NLE (—o0,+00; HY(T™)). Each of these solutions
is unique up to a (random) additive constant. The estimates

Ixll2 (v, N+ 1,81 (1Y) < C, IGllL2(v, N 4181 (Tmy) < C, (19)

hold uniformly in N € R. Moreover, the constant C' is deterministic and only
" depends on A\ in H3.
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Proof. Let us show that (17) has a stationary solution. To this end we consider
the following Cauchy problem

0 ; 0
gxiv(y,S) - Axy(y,8) = @aij(y,s)l[w,wﬂ)(sx (y,8) € T" x (N, +00)

i

Xh(y. N) = 0.

. (20)
For s < N we set x\(y,s) = 0. By the Nash estimates (see [8]), the function
Xy is continuous and satisfies the upper bound

”X?\IHLO"((—OO,N—H]XT") < e1(7y)-

Since the right hand side in (20) is equal to zero for all s > N + 1, by the
maximum principle the last estimate is valid for all s:

XN | Loo ((=00,4+00) xTm) < €1(7).
We want to show that ng (y,s) decays exponentially as (s — N) — oo.

Lemma 3. There are nonrandom independent of N constants co(\) > 0 and
¢3(A) > 0 such that

X% (s 8)] < c2exp(—ca(s — N)) (21)

Proof of the lemma. Notice that

[ Aetwopy =0 (22)

for each s € R. Indeed, integrating the equation (17) on the cylinder (sq, s2) %
T", one has [, X (¥, 51)dy = [ X (¥, s2)dy. Then (22) follows from the

equality ng(y, N) =0.
By the Poincaré inequality, considering (22) and H3, we get for each s

0 0
/ 03, 5) X (1 5) oK (0, )y > (23)

> /\_1/1r IVyxk (y, s)2dy > c4>‘71/ XN (v, 9)dy.

T

Now we multiply (17) by va(y, s) and integrate the resulting relation on
the cylinder (T™ x (s1, s2). This gives

S2
xR (o s2)lZ2rmy = XK 8012y < —C4A’1/ X (5 )72 pmyds (24)

S1

for all s; and sz such that N 4+ 1 < s; < s5. This implies the bound
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XX (-5 )1 Z2(pmy < c2exp(—ca(s — (N +1))

It is also clear that the function [|x¥ (-, s)[|72(pny is monotone on the interval
(N 4+ 1,00). To complete the proof of the lemma it remains to apply once
again the Nash inequality. O

We define a vector function x(y,s) by

+oo

s = > Xk (25)

N=—00

By construction and in view of the last Lemma, x7?(y, s) solves the equation
(17) and satisfies the estimate (19). We want to show that x7(y, s) is station-
ary. The fact that any finite dimensional distribution of this random function
is invariant with respect to all integer shifts easily follows from the stationarity
of ai;(-,s).

Taking in the above procedure an arbitrary rational step size ¢ instead of 1,
we construct a solution of equation (17) whose finite dimensional distributions
are invariant with respect to any shift of the form kq with integer k. It is easy
to check that this new solution coincides with x’(y, s). Thus, by arbitrariness
of ¢, the finite dimensional distributions of x’(y, s) are invariant with respect
to any rational shift. Now the stationarity of x’(y,s) follows by continuity
arguments.

The uniqueness of a stationary solution up to a (random) additive constant
follows from Lemma 3. Indeed, if we assume the existence of two distinct
stationary solutions with zero average, then their difference vanishes as s —
oo. This contradicts the stationarity. O

We impose the following normalization conditions for x*(y, s) and G(y, s):

/ i (, 5)dy = O, / Gy, s)dy =0 (26)
TTI,

’]I‘n

This makes the choice of the corresponding additive constants unique.
We set

)Zk(yaw) = Xk(y707w)7 é(va) = G(ya va)'

Since x*(y,s) and G(y,s) are continuous in s, the functions ¥* and G are
well defined. By definition a;;(y, s + 7,w) = a;;(y, s, Trw). Therefore, consid-
ering the uniqueness of solution of problem (17), we have x*(y,s + 7,w) =
x*(y, s, Tyw). In particular,

X" (y, s,w) = x*(,0, Tow) = % (y, Tow).
Similarly,

G(y, s,w) = G(y,0,Tsw) = G(y,Tsw). O
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5. Homogenization of the factorized equation

We begin by considering the equation (2) in the particular case f = 0. Our aim
is to show that in this case factorized problem (8) admits a.s. homogenization.

Theorem 1. Let f = 0. Then under our standing assumptions a solution v¢
of problem (8) converges a.s., ase — 0, in the space L°° (0, T; L?*(R™)) towards
a solution of the following Cauchy problem

%UO(:B, t) = div (aV¥(z,t)) + b-VoO(z,t) + Gu(x, t),
v%(z,0) = up(x). (27)

The homogenized equation has constant coefficients defined by

15 = B [ aan(y:5) (s + 50 (0:5)) (28)
'I[‘n

b= B [ (a0 9% 009) + 04 30-Giw ), (29)
’I[‘n

G = E/fz(y,S)G(y,S)dy- (30)
T"l

Proof. Assume for a while that ug € C§°. Then a solution v° of problem (27)
is a C*° function which vanishes at infinity, as well as its partial derivatives,
faster than any negative power of (1 + |z|). We then substitute the following
ansatz s ;

. _,0 e 0 w 0

0% (z,t) = v°(x,t) + 6)((2, 5_2) - Vo' + EG(g, E—z)v
in the equation (8). Considering (17) and (18), after straightforward rearrange-
ments we get

- e ; LRI Ve e
a(v (z,t) — v¥(z,t)) — div (a(g, -&_—Z—)V(v (z,t) —wv (:c,t)))

l .8 t.. e

_Eg(g75_2)(v (‘Tvt) v (.’I),t))
0 4,10 px t, 0 o 10 x t, g g .0 0
T +g85X (5’52)6a:kv +£8SG(5’52)U Tex (5’62)8t6xkv

z t 0 T t o2 10 z t. 0 1_x ¢t

"0 ) gt 2 s (5 ) 020,
e’ €2’ 0x;0x; € 0y, € €2’ Oz, ee’e
1o wt, 9 gy tyd o @t 0 gt &,
eayia”(e’ez aij (5’62)630ku a”(s’62)8yi (5’62)5mk8xjv

o
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{741 T 2 X x 3
55 (‘M— Iy i>) O 0 —eay(Z, k& L)L o

Oy; \ Ve e X\ 2 8xk8x] g’ g2 e’ 2’ 0xy,0;0z;
G G F)5 1 )5
co (2, RIGE St - 0E SIOE S0

= 52~ gy~ D D
o (a0 ) gt - 9 S )
92, 56E D+ et S D2 Tl + 6L )0
~saij(§,§)xk(§,€%)&;§—hﬁ%vo—eaij(g,é) (ggiz %{;jvo

Substituting the right hand side of the equation (27) in place of %vo gives

%(@f(x,t) — (e, 8)) — div <a(§, ;—Z)V(ﬁg(:c,t) . ﬂ;:;,t)))
235, S @0~ o7 (5,0)
o - 0 ) - S D ) (a2 E )|
Xaxi(;xj 0+{Bl_g(§’si2)xj(§’si2) aji(f’avtz)a?/ia(g;)
- 5 (w5 0 ) et + {6 -0 o D} w0
—eou(E o D - e Byt

Denote the right hand side of the last formula by R5. Since the expressions in
the figure brackets are periodic in spatial variables and have zero average for

any t, they can be represented as in (14):
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. 9
a'ij - aij(ya S) - aik(ya 5) 8yk X (ya S)
0 i :
= o (X 0:9) | = vy 9
Yk
b

- ; 1o}
{ i — 9(y,8)xX (y, ) — aji(y, 8)@6’(% s)
- 3 (@50:5)G(0:5) | = divymai(1,9)
{6 -3y, 9)G(y, )} = divyns(y,5)

where the functions k1,4j(y, s), k2,i(y,s) and k3(y, s) are periodic in y and
satisfy the estimates

51,35l L2(s,541)x1) < €, NlR2,illL2((s,541)xT) < Oy [|K3llL2((s,541)xTm) < C,
uniformly in s € R. Then R§ takes the form
0? Z £, B 5

RS = ediv,ky ”(x t)t?x,(?xjv +€divzn2,i(g,€—2)axiv +edivgrg(=, —)v°
T t. 0 0 0 z t.0 ,
L 1
G Dawen TCC DwY 34
r t, px t o3 o x t m £, &F
_Eau(g»?)x (2’5_2)8%0%51]‘” Ea”( é 2) (E’E )813181]'1} '

Due to the properties of v° this implies the estimate

“R; || L2((0,T);H-1(R")) < Ce.
Therefore, by Proposition 1

19° = vl L2,y )y < Cy 107 — 0% ||Loo 0,1y L2(Rm)) < Ce. (32)

Combining the latter estimate with an evident bound

|95 — v°|| oo Rr x0,7y) < Ce

we obtain the desired statement for all smooth ug with compact support.

In order to prove this result for general ug € L?(R™) we introduce a family
of functions u} € C§°(R™) such that |luf — Uol|L2(rn) < 0. If we denote v>¢ a
solution of problem (8) with initial condition u$, then according to Proposition
1 the estimate

”'U(s’s — /UE“Los (0,T;L2(R™)) S cé

holds. Evidently, we have ||'U6’0_/U0||Lm(O’T;L2(Rn)> < C4. As was proved above,
v>€ converges, as € — 0, to v>° in L>°(0,T; L2(R™)). Therefore,

lim S(l)lp “UE - U0||L°°(O,T;L2(R")) < Cs.
E—

Since ¢ is an arbitrary positive number, the result follows. O
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Remark 8. In the proof of Theorem 1 we did not use the mixing conditions
H5, but only the ergodicity of the dynamical system 7. The statement of this
theorem remains valid for any ergodic dynamical system 7 without mixing
assumptions:

In particular, we obtain the following result.

Corollary 1. Let the coefficients of problem (2)-(3) be periodic in spatial vari-
ables and stationary ergodic in time, and suppose the uniform ellipticity con-

ditions H3. Assume, furthermore, that [ g(y,s)dy = 0 for all s € R a.s.
T‘Yl-
Then problem (2)-(3) admits a.s. homogenization and the limit operator is a

non random parabolic operator with constant coefficients given by (28)-(30).

It should be noted that the methods developed in the proof of Theorem 1
apply to the equation (12) with a right hand side h(z,t) € L*((0,T) x R™).
The following result holds true.

Theorem 2. Let h(z,t) € L?>((0,T) x R™) and 20 € L*(R™). Then a solu-
tion of problem (12) converges a.s., as € — 0, in the space L*(0,T; H'(R"))
towards a solution of problem

%zo(az, t) = div (aV2°(x, 1)) + b-V20(z,t) + G2z, t) + h(z,t),

ZO(.’L‘,O) = zO(z)7 (33)
with constant non random coefficients given by (28)—(30).

We proceed by studying problem (8) with non trivial right hand side. We

denote :
1 S
;== <g> (—)d !
Ct € /0 g 52 S

and introduce V¢(z,t) to be a solution to the following Cauchy problem in
R™ x (0,T)

%Vs(a:,t) = div (aVV*®(x,t)) + b-VVE(x,t) + GVE(x,t) + f(z,t) exp(—(F),

VE($,O) = uo(r), (34)

with coefficients defined in (28)—(30). It is convenient to represent a solution
v¢ of problem (8) as a sum v¢ = V¢ + (v — V). We will show that (v* — V¢)
tends to zero in probability, as € — 0, in the norm of L2((0,T) x R™), while
Ve converges in law in L?((0,7) x R™) to a solution of Cauchy problem

g—tvo(m, t) = div (aV%(z,t)) + b- Vo (z,t) + GuO(x,t) + f(z,t) exp(—oWy),

v2(z,0) = ug(x), (35)

with o given by (10). Notice that this equation has a random right hand side.
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Proposition 3. The L*((0,T) x R™) norm of the difference (v — V*) tends
to zero in probability as e — 0.

Proof. By Lemma 2 the process (§ converges in law in C(0,7), as ¢ — 0,
towards oW;. Therefore, a random function f(z,t)(f converges in law in
L*((0,T) x R™) to o f(z,t)W;. By the Prokhorov theorem this implies that
for any 6 > 0 there is a compact set K° C L?((0,T) x R") such that
P{f(z,t)¢(; ¢ K°} < 4. Consider a finite d-net in K°, for which we use the
notation {h;}, j =1,2,..., N(d), and denote #5(z,t) and z?(x, t) respectively
solutions of problem (12) and (33) with right hand side h;(z,t) and initial
condition wug(x).
By Theorem 1 for any § > 0 there exists €q(d) > 0 such that

. 5
max P{||25 — Z;-)HLz >0} < NG

Let £; be the following events
& ={2: |If(2, )¢ — hj(@, )]l < 8}

By construction P(§2 '\ U;V:(f) &j) < 4. Considering the estimate (13) and

similar estimate for the homogenized problem, we conclude that for all w € &
the inequality holds
IVE = vfllg2 < IVE = 2]llz= + |2 = 2522 + (125 — vl
<2C6 + ||z§) - z§||L2,

with a constant C' that depends neither on € nor on w. Thus

P{||VE — v%||12 > (2C + 1)6}

N(5) N(5)
<P(2\ |J &)+ S P& N (IVE —®lle > (2C +1)8)}

j=1 j=1

N(3) N(6)

)
E 9 25|z < E —— =24
0+ 2 P{|lzj — 25|12 > 0} <o+ 2 N 25

This implies the required convergence in probability. 0O

Proposition 4. The function V= converges in law, as € — 0, in L?((0,T) x
R™) towards a solution v° of problem (35).

Proof. Notice that a solution of problem (33) as a functional of the right hand
side defines a continuous mapping from L%((0, T)xR™) to L2((0, T); H*(R"))N
L>°(0,T; L*(R™)). Then the convergence in law of the right hand side in (33)
implies the convergence in law, in the corresponding functional space, of V¢,
and the desired statement follows. O
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We summarize the above assertions in the following theorem.

Theorem 3. Under conditions H1-HS5 the solution of factorized problem (8)
converges jn law, as € — 0, in the strong topology of the space L*((0,T) x
L?(R™)) towards a solution of problem (35) whose coefficients are given by

(28)-(30).

Proof. This statement is a consequence of Propositions 3 and 4. O

6. Homogenization of the original equation

We now turn to the homogenization of the original problem (2)-(3).
Notice first that the random process

(exp(¢7), exp(=(7))
converges in law in (C[0,T7])? to the process
(exp(cWt), exp(—o W),

where (f and o are defined in (9) and(10) respectively.
The asymptotic behaviour of a solution to problem (2)—(3) is described by
the following

Theorem 4. Let conditions H1-H5 be fulfilled. Then, ase — 0, a solution u®
of problem (2)-(3) converges in law in the strong topology of L*(R™ x (0,T))
to a solution of the following stochastic partial differential equation

A N )
di = (aijm thig + gu)dt +oadW; + f(z,1), (36)

i(x,0) = uo(x),
with § = G + 10% and a,j, by and G given by (28)-(30); o is defined in (10).

According to [3] problem (36) is well posed and has a unique solution.
Hence, the limit law is well defined.

Remark 4. If [, g(z,s)dz = 0 for almost all s then o is equal to zero and the
limit problem (36)is deterministic. As was already mentioned, in this case u®
converges a.s.

Proof (Theorem 4). The solution u® of problem (2)—(3) can be written as a
sum

ut(z,t) = (v (2, t) = V(z,1)) exp(¢7) + V*(x, t) exp (),

where v® and V¢ satisfies (8) and (34) respectively, and ¢; is defined in (9).
By Proposition 3, the factor (v®(x,t) — VE(x,t)) in the first term on the right
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hand side converges in probability to zero in L#(R™ x (0,T)) norm. Since by
Lemma 2 the function (f converges in law in the space C[0,T], the product
(v¥(w,t) — V¥(x,t))e(¢f) tends to zero in probability in L2(R™ x (0,T)).

The function V¢ as an element of L2(R"™ x (0, T)), depends continuously on
the trajectories of the process (¢ in the topology of C(0,T), so does the prod-
uct Ve(z,t) exp(¢;). Therefore, convergence in law of the process ¢ towards
oW. implies convergence in law of the expression V¢ exp(¢?) to the function
v¥ exp(oW.), where v is a solution to problem (35).

It remain to show that v° exp(cW. solves the homogenized equation (36).
To this end we denote @ = v¥ exp(cW.) and

. 52 Y T
A=dym o b+ G,
a]&zi@xj +0 ox; G

and consider for arbitrary ¢(z) € C§°(R"™) the inner product (a(t), ) taken
in L?(R"). This expression defines a diffusion process in R. Applying Ito’s
formula to this process gives

d(a, @) = exp(aW;)d(v°(t), ) + o (v°(t), ) exp(a W) dW,

+%a2(v°(t), ) exp(aWy)dt = exp(aWy)(Av°(t), p)dt

(F(a,1), ) exp(aWe) exp(—oWo)dt + o(a(t). )dWs + 30%(a(0), o)t

= (Ai(t), 9)dt + o™ (it), p)dt + (f(z,1), @)dt + (Al )W

Considering also an evident relation 4(0) = ug we conclude that 4 is a solution
of problem (36). According to [3] this problem has a unique solution, thus the
limit law is uniquely defined. 0O

In the end of this section we formulate similar results for initial boundary
problems. Given a Lipschitz domain @ C R"™, consider in the cylinder Q x
(0,T) a Dirichlet initial boundary problem of the form

gt (1) = dlv( (g,é)VuE(m,t)) + %g(g,g%)ue(:v,t) + f(z,t), (37)

u(x,t) =0 on 8Q x (0,T), u(z,0) = ug(x),

where ug € L?(Q) and f € L?(Q x (0,T)). Under assumption H3 for each
€ > 0 the existence and the uniqueness of a solution of this problem in the
space L2((0,T); H3(Q)) N C((0,T); L*(Q)) are well known, see, for instance,
8]

The statement below can be justified in the same way as that for the case
of Cauchy problem. We omit its proof.
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Theorem 5. Let conditions H1-H5 be fulfilled. Then, as € — 0, a solution
u® of problem (87) converges in law in the strong topology of L?(Q x (0,T))
to a solution of the limit (homogenized) stochastic partial differential equation
which has the form

0%u ~ 01U

aijm "|‘b;8—x1 +gu)dt+auth+f(:1:,t), (38)

i(z,t) =0 on 0Q x (0,T), u(z,0) = up(z).

All the coefficients of this equation are the same as in Theorem 4.

di = (

Similar results hold true for Neumann and Fourier initial boundary prob-
lems.

7. Equations with diffusion driving process

In this section we consider an important particular case of a diffusion finite
dimensional driving process in (1). Then problem (2)—(3) reads

%ue(a:,t) — div (a(g,fé)Vue(x,t)) s ég(g,fﬁ)ue(x,t) ¥ f(z,b), (39)

u®(z,0) = uo(x);

here and afterwards &, is a stationary diffusion process with values in R%. We
denote the generator of this process by L:

82

L = qem(y)

The advantages of operators with diffusion driving processes are
- the coefficients of homogenized problem can be found in terms of solutions
of non random elliptic auxiliary problems;
- sufficient conditions for mixing properties required in H5 can be formulated
explicitly in terms of the coefficients of generator L.

We suppose the following conditions to hold

A1l. The coefficients a(z,y), g(z,y) and g(y) are uniformly bounded as well
as their derivatives: there exists C' > 0 such that for all (z,y) € T™ x R4

laij (2, 9)| + [V2ai5(2,9)| + [Vyaii(2,9)| < C,
l9(z, )| + |V29(2,9)| + |Vyg(2,9)| < C,
gkm (V)| + [Vyaem ()| < C,
for all (z,y) € T* x R? and for all 1 < 4,5 < n, 1 < k,I < d; the symbols V,

and V, stand for the gradients with respect to z and y respectively.
The vector function B and its derivatives satisfy polynomial growth condition:
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[B(y)| + [VB(y)| < C(1+ [y])*

for some > 0 and C > 0.

A2. Matrices a;; and g, are uniformly positive definite: there is A > 0 such
that

M2'1? < aij(z,9)zi2), V2 € R™,
AMY'1? < @em (2, Y)Y > Vy' € RE.
A3. There exist constants a > —1, R > 0 and C > 0 such that

by) -y

Iyl < =0 yl™ forally € {y : |y| > R}.

Ad4. Centering condition: Ef,ﬂ? 9(z,&5)dz = 0.

As was proved in [11], under conditions A1-A3 the process &, has a unique
invariant measure in R? whose density solves the problem

L*p =0, / p(y)dy = 1;

R4

the notation £* is used for the adjoint operator. Moreover, for any N > 0
there is Cy > 0 such that

p(y) < On(1+[yl)~".

It was also shown in the same work that the strong mixing coefficient of a
stationary version of the diffusion process &s possesses the property H4.
Denote L2(T™ x R?) the weighted L? space with the norm

17 (20|12 = / / £2(2, 9)o(y)dydz,
Tn Rd

and
H,(T" x R?) = {f € L3(T" x R?) : |V.f|+|Vyf] € LZ(T" x R%)}.

Also we will use the notation A = div,a(z,y)V,. The proof of following two
technical statements can be found in [2].

Lemma 4. Let f € Lf,(']I‘" x R%), and suppose that
[f(z,9)] S CQA+[y)? V(z,y) e T" xR?

for some C > 0 and p € R and that [ [ f(z,y)p(y)dydz = 0..Then the
'I[‘n Rd
equation
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(’A+ ‘C) U(Z,y) = f(zay)

has a solution in the space of functions of polynomial growth in y:
lu(z,y)] < C(1L+[y)P*" V(z,y) € T x R

This solution is unique up to an additive constant.
If, in addition, there is N > 0 such that for all nq1, ng € N with n1 +ng < N
we have

|00 02 f(z,)] < C A+ yl)P V(z,9) € T" xR,

then
0 0 u(z,y)] < O (1+ WP ¥(z,y) € T x R

Proposition 5. For any t >0, >0, v > 0 and 3 > 0 the relation holds
lim E(supaﬁﬁfs/swl“) =0.
e—0 s<t

We proceed with averaging procedure. As above we represent 9(z,&s) as
the sum g(z,&s) =< g > (&) + §(2,&) with < g > (&) = [p. 9(2,&5)dz. In
order to construct the limit operator we need two correctors which are defined
as solutions of the following auxiliary equations

0
(.A+£)X](Z,y) = _Eaij(zvyx (40)
(A+L)G(z,y) = —4(2,9)- (41)
By Lemma 4 these equations have solutions in H ; (T™ x R?) of polynomial

growth in y.
The main result of this section is

Theorem 6. Under assumptions A1-A4 the solution u® of problem (39) con-
verges in law, as € — 0, in the space L*((0,T) x R™) to a solution u® of the
following stochastic PDE

du®(z,t) = <div(qu0(ac, t)) — bVul (z, t)§u’ (z, t))dt + ou®(z, t)dWy,

u®(x,0) = uo,

where

a= //a(z,y)(ld+ V.x(2,y))p(y)dzdy,
T7 Rd

b= //(g(z,y)x(z,y) +a(z,y)V:G(z,y))p(y)dzdy,
Tn Rd
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g= //g(z,y)G(z,y)p(y)dzder %02, (42)
Tr Rd
7 = [2)( [ 96G) - ([ V,6G0)dE)
Rd Tn Tn

and Wy is a standard 1D Wiener process.

Proof. Since all the conditions of Theorem 4 are fulfilled, we need not prove
the convergence of solutions of problem (39) to a solution of a limit stochastic
PDE but only the fact that the effective coefficients given by (42) coincide
with those defined in Theorem 4.

First we show that the corresponding diffusion coefficients o are identical.
The validity of the Central Limit Theorem for stationary processes of the
form F (&), F € LY(RY), with diffusion &, satisfying condition A3, have been
justified in [11]. In particular, it has been proved that for the process < g(&,) >
the corresponding variance o is given by the formula

7 = [ 20@)VEW - VW),
R4
where G is a solution to the equation £LG(y) =< g > (y). Since operator £
applied to a function F'(z,y) commutes with taking the average of F' in z, we
obtain V < g > (y) = V [, G(2,y)dz, and the desired coincidence follows.

We proceed with the other coefficients. For any ¢ € C°°(0,T;C§°(R™))
consider the auxiliary process

HE(t) = (p,v°) + e(X* - Vip,v) + €(G%, );

here and afterwards for a generic function F = F(z,y) we use the notation
Fe(x,t) = F(£,&/e2); (-, ) stands for the inner product in L?(R™). Applying
Ito’s formula to He(t) gives

dH*® = {(aj;0z,0z,p,v°) + 6_1(62iafj8zi<p,ve)}dt
+e (G, v%)dt + (VG + Vx50, 0,v°) - VgFdBy
+{€'1(£XEV% V%) + (9°X° Vi, v%) + (Bpp, v°)
+e 7 (AXEVp, vF) + e(x°B: Vi, v°)
+(8:, (a5 Xk )0z, O, 0 + 05502, X505, 0y, 0, V%)
+e(a*x*VVVp,v°) + e 1 (LG o, v°) + (GEg°p, v°)
+e 7 (AG 9, ) + (8., (a5;G%) a0, v°) + (65,0, GOu, 0, v°)

+e(a®*G*VVp, ve)}dt.

Taking into account the equations (40), (41) we get
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dH® = {{(af-j@zq Oz; 0, 0°) + (02, (a5;Xk)* Oz, O, p + 0502, X3 O ; Oy 9, °)
+(9°X* Ve, v%) + (G°g°p,v°) + (Brp, v°)
(0, (05,G) 0,0, 0%) + (05,0, GO, p, 0°) it (43)
(VyGp + Vyx;0z,0,v%) - Vg°dB, + edR°(t),

where B; is a standard n-dimensional Brownian motion, and R° satisfies the
estimate

Esup |R(t)| < C.
t<T

This estimate follows from Proposition 1.
For the stochastic term on the right hand side of (43) we have
Lemma 5. The bound holds
t

[ (w65 spet9

lim E sup
e=0  4<T

+Vyxi5(-,S)B,Ji(p(-,s),vs(-,s)) -V q%(s)dBs| = 0.

Proof. Since [, Vyx(z,y)dz =0 and [, V,G(z,y)dz = 0, we have

Esup| [ (VyG5(,8)0(8) + VuxiC,9)00,9),0°(,9)) - VI,

t<T

= eEsup
t<T

[ (725,900, 0t50%C.9)
0

I3 (+8), 00, (Ba,0(, 8)0°(9)) ) - Va (5)dB,s
where J!(z,y) and J?(z,y) are periodic in z functions such that
div,JY(z,y) = V,G(z,y), div.J%(2,y) = Vyx(z,y)-

The statement of the lemma now follows from (1) and the Burkholder-Davis-
Gundy inequality. O

To complete the proof of the theorem we notice that by virtue of (1) and
the Birkhoff theorem

t

lim Esup|(¢( 1), v°(-,)) = (1o(-, 0), uo) - /(as‘p("s)’vs("s))ds
e—0 <7 )

- / ({1592.00,0(5) + B9, 5) + Gipl-,5) } v (1)) ds| =0,
0



230

Andrey Piatnitski

where the coefficients a, b have been defined in Theorem 6 and

G’=//g(zvy)G(z,y)p(y)dzdy- O
Tn Re
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