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PREFACE

In the Summer of 2006, an International Conference, satellite of the
International Congress of Mathematicians (ICM2006, Madrid), took place
in Lisbon and was organized by the Group of Mathematical Physics of the
University of Lisbon (GFMUL).

We decided to entitle “Stochastic Analysis in Mathematical Physics”
the elaboration of the ideas presented there by some of the participants.

The last ten years were witness to a remarkable penetration of the
methods of Stochastic Analysis in all fields of Mathematical Physics. What
was regarded by many, not so long ago, as a set of esoteric tools, turned into
a fundamental component of our understanding of natural phenomena. The
works collected here illustrate the versatility of those stochastic methods
and we warmly thank the authors.
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We thank also the Foundation Calouste Gulbenkian and the FLAD
(Luso-American Foundation) for their support.
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This article considers the large-time behaviour of solutions of a nonlinear
parabolic equation modelling heat transfer in a medium with a highly oscil-
lating absorption coefficient (e.g., one that is generated by a “random chess-
board” or periodic). The minimal size of a cube where absorption is substantial
irrespective of its position is the small parameter of the problem.

If the absorption coefficient is separated from zero on a disperse fine-grained
set, the behaviour of a solution is shown to imitate extinction in finite time —
even when the lack of absorption on a massive set makes bona fide extinction
impossible. Namely, as long as the instantaneous value of thermal energy ex-
ceeds a small threshold value, it admits a decreasing majorant that vanishes
after a finite time. For energies below this threshold, this majorant becomes
unapplicable; it can be replaced by one which decays fast, but remains strictly
positive.

It is also shown that the Dirichlet problem for a quasi-linear heat equation
with nonlinear absorption term can be homogenized.

Keywords: Absorption-diffusion equation, medium with microstructure, ran-
dom chessboard, finite time extinction, homogenization

1. Introduction

This paper is dedicated to the large-time behaviour of solutions of a model
boundary problem describing heat transfer (or diffusion) in a bounded do-
main G € R? with regular boundary: for t >0 and z € G

1A ([uEP—z us) = div (a |V [P~2 Vue) — 5% |ue)" 2 u, (1.1)
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where the matrix a (z,t,u) is symmetric, bounded and strictly positive
definite:

0< A J€” S ac(z,t,u)€-€ < ATIE. (1.2)
The initial and boundary conditions are
Uel,_g = w0 € LT*(G), k €Ry, uclye =0. (1.3)
The exponents of nonlinearities are constant and satisfy the condition
l<o<y<p<d (1.4)

The absorption coefficient S.(z) > 0 does not depend on time ¢ and is a
highly oscillating function of the spatial variable (e.g., e-periodic or ran-
dom). The existence of a solution is assumed as a prerequisite (some perti-
nent existence and uniqueness theorems are briefly discussed in §2.1).

Equation (1.1) is obviously a modification of the classical heat equation.
In the context of thermal transport, the nonlinearities model the depen-
dence of properties of the heat carrier on its temperature. For instance,
the choice of v = p = 2 and o < 2 in Eq. (1.4) corresponds to a material
which combines constant thermal conductivity with heat absorption that
increases as it cools down. Other admissible choices of exponents maintain
a similar property of the underlying physical process.

The influence of nonlinear absorption can produce a qualitative differ-
ence in the behaviour of solution. Without external forcing, the linear heat
equation describes the process of cooling which never ends completely. By
contrast, Eq. (1.1) with exponents of Eq. (1.4) defines a solution which
vanishes completely after a finite time if the absorption coeflicient S; is
separated from zero on all domain (see, e.g., Ref. 1 (Ch.2 §2.3), the survey
Ref. 2 and Refs. 3,4).

However, the above qualitative difference in behaviour of solutions is
sensitive to seemingly slight alterations of the problem. Extinction of the
solution in finite time does not occur if the non-absorbing set F, = {S. = 0}
has positive measure.

For instance, a solution of the simplest quasi-linear heat equation (y =
p = 2, a = Id) cannot vanish on all domain in finite time if its initial value
is positive on an arbitrarily small ball contained in F.. This follows, e.g.,
from the Feynman-Kac representation for the solution of the heat equation
because a Brownian trajectory can protract its stay in the ball indefinitely
(albeit with a very low probability of late exit).

Theorem 2.1 of Sec. 2, which is the main result of this paper, shows that
the behaviour of a solution to Eq. (1.1} can, nevertheless, imitate extinction
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in finite time even when the set F. has positive measure. This can occur
under the following condition.

Condition 1.1 (Dispersiveness). There ezists a function K () € N such
that lim. o eK(e) = 0 and

Vz € G(S, K) lCE,K(s),zl_llcs,K(e),z N {Se > B} l >2T> 07 /3 > Oa (15)
where G(e, K) = {2z € Z¢ : |C¢ k. NG| > 0} and
Cek.={x:r—-eKz€)0,eK]%}, K € N,K > K(e). (1.6)

The sets C; k. are later called e K-blocks. Condition 1.1 is satisfied with
K =1 if S is e-periodic and not identically zero. When restrictions of S,
to individual cells Y; . = C; 1 , are independent, Eq. (1.5) holds with very
high probability for blocks of size ¢ In(1/¢) or greater (see Appendix A.3).

The proof of Theorem 2.1 combines the energy method! with techniques
used to establish deterministic large-volume asymptotic behaviour of the
principal eigenvalue (PE) for elliptic operators with random non-negative
potential.>® Its approach is related to that of Refs. 3,4 which detects finite-
time extinction of solutions of nonlinear parabolic equations through the
study of PE’s of pertinent Schrédinger operators.

It seems appropriate to show the tools used to prove Theorem 2.1 in a
heuristic argument. For the linear problem 0;v = Av — SZv, v|455 = 0, the
solution’s norm ||v(t)||l2 decays exponentially, and its half-life is inversely
proportional to the Dirichlet PE A = infy ||¢[l3 (| V|2 + (|52 #?||1). Decay
is fast if S¢ satisfies some form of Cond. 1.1 and ¢ is small. (For example,
calculations®® done for G = [0,1]¢ and absorption restricted to e-balls
surrounding points of a Poisson cloud with intensity pe~? show that A, <
e 2(In1)"%/4 a5 > 0.)

For a solution of the non-linear equation d;u = Au — |u|°~25%u under
the same boundary and initial conditions, the instantaneous rate of decay is
proportional to A.(t) = infs ||l 2(| Vo3 + I[|u|" =252 ¢?||1), so the decay
of norm |ju||2 should accelerate as it nears zero. If the non-absorbing set
{S. = 0} is empty, this results in finite time extinction.}>* Otherwise, the
decay slows down when the solution becomes negligible outside {S. = 0}.

Theorem 2.1 provides some majorants for an appropriate functional
U(t) of the solution (see §2.2). It shows that the evolution of U(¢) includes
a phase of “attempted extinction” if eK(e) of Eq. (1.5) is small. Namely,
there exists a time interval where the solution’s norm admits a majorant
that vanishes after a finite time.
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When U(t) drops below a small e-dependent threshold value, the ma-
jorant suggestive of extinction in finite time has to be substituted by one
that never vanishes. However, the decay of the solution’s norm remains
fast (exponential if ¥ = p or as a negative power of time otherwise). The
times necessary to halve its value are of order O (8)‘), A > 0, so the dif-
ference between true and simulated extinction may not be easy to detect
numerically.

One more result of this article is Theorem 3.1 which shows that Eq. (1.1)
admits homogenization in the simple case when v = p = 2 and the absorp-
tion term is its only nonlinearity. The homogenized problem, which can be
written down explicitly, is one with finite extinction time.

2. Near Extinction of Solution
2.1. Weak solutions

Notation. For vectors = (z(¥) € R?, the scalar product is = -y =
>4, 2@y and |z| = (z - £)'/2. The Lebesgue measure of A C R? is | A|.
The gradient of a scalar function is V¢ = (9¢/0z'?)), and 8,¢ is its
time derivative.
Notation for monomials similar to nonlinear terms of Eq. (1.1) is

uOP *2* lu"'u, ueR. (2.1)

Obviously, u®2u®* = |u|*™* and u®e |[u|* = w®@+*). For a smooth func-
tion 8, |ul® = ku®*18,u and V|ul¥ = ku®*1Vu if Kk —1 > 0 or u #0.
When misunderstanding is unlikely, notation is abbreviated: ¢ (t) may
refer to a function ¢ (z,t) considered as a function-valued mapping ¢ —
¢ (z,t), [ ¢ can substitute [, ¢(z)dx if the nature of the argument and
the domain of integration are clear from the context. The LP-norm of a
function is always ||#||,. Notation of Sobolev spaces is standard.”®

Definition of weak solution. A measurable function u = u.(z,t) on
Q7+ = Gx]0,Ty[ is a weak solution of Eq. (1.1) with initial and boundary
conditions of Eq. (1.3) if for each test function ¢ € C* ([0, T4]; C§°(@G))

Jou® OV (@, T )¢ (2, Ty )da — [ud ™Y (2) ¢(2, 0)de
= / (u<><7-1)at< — |VulP~2a.Vu - V¢ - sgu<><<’—1>c) dxdt. (2.2)
Q1Y)

The weak solutions u, considered below are, up to notation of exponents,
those of Ref. 1 (see [Ch.2, §2.1, Def. 2.1 ). Namely, the function u®(1+k/P)
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belongs to the space V (QT+) for a given value of parameter k > 0, i.e.,
wOUHk) € 17 (0,7 WoP (G))
u€ L®(0,Ty; L"*(G)), we L’ (Qr,). (2.3)

The possibility to choose the parameter k£ > 0 depending on the exponents
v, p, and o proves important in the arguments below.

Some existence and uniqueness theorems. For the case of v = 2,
the methods of demonstration of existence and uniqueness theorems are
classic.” 1% For the linear equation with v = p = ¢ = 2 and a not depending
on the solution, the construction of the solution by the Galerkin method
and proof of its uniqueness can be found in Ch.7 of Ref. 8.

For v = 2 and p > 2, the existence and uniqueness of solution for
Eq. (1.1) follow from known theorems®!? on parabolic equations containing
monotone operators; the existence of a unique solution for Eq. (1.1) under
the assumptions of Sec. 1 is established in Ch. 2 of Ref. 9 (Theorem 1.1 for
p > 2, Theorem 1.4 and Examples 1.7.1-2 for p > 1).

For v < 2 and p > 1, Eq. (1.1) is a special case of the doubly nonlinear
parabolic equation 9;b{u) = V - A(u, Vu) + f, where b : R — R is nonde-
creasing and continuous (see survey Ref. 2). For b(u) = u®(r~%) 1 < v < 2,
the existence of solution follows from the results of Refs. 11,12.

If for v € R, ¢ € R? both |A(v,)] < c(|¢[P~1 +|u/Y/"" ! +1) and
(A(v,€) — A(v,m)) - (€ —n) > c|€ — n|P, then there exists a solution with
finite energy fOT lu(®)lI5dt + sup,eiory 1ult)||2. Tt is unique'?'3 provided
that |A(b(u1, ) — A(b(uz, €)| < cluy —uz' =P (JE[P71 + |ur| + |ug| +1).

The energy inequality. The calculations of this article are based on the
so-called energy inequality for weak solutions satisfying conditions Eq. (2.3)
(see Lemma 2.1 in Ch.2 of Ref. 1 and Lemma 3.1 of Ref. 14):

lu(SHITER — ()12 (2.4)

> 0T (ANVuOUHD G2 + | Su® 7 (1) 2t)

The following proposition is a special case of Lemma 3.1 in Ref. 14,
adapted to integrals of |u|"** with k > 0 (its proof is included in Appendix
A.1 to facilitate reading).

Lemma 2.1. Consider a weak solution u € V(Ty) that corresponds to
the initial value uo € L% (G). If limsup; o4 ||u (t)||7 < oo and u(t)
converges to ug in measure as t \, 0, then u®+k/P) ¢ v (QT+), inequality
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(2.4) holds true for 0 < S < T < Ty, and ||u(S)|| Lv+xc) < lluollLr+x(q) for
S €0, Ty .

A bound on Rayleigh quotient for absorbing cubes. The following
estimate of the LPt*-norm of a function over a cube partly covered by the
absorbing set in terms of similarly restricted “instantaneous” diffusion and
absorption terms of Eq. (2.4) is used below.

Given a time t > 0, an integer L = L(t) is used to partition the space
into “large” cubes H, = {z : (LeK) 'z — z €]0,1]¢} of size Le K. Each of
these cubes is the union of L(t)? blocks (1.6). If condition (1.5) is satisfied
and S¢(z) = (3 outside G, then |H, N{S. > 8}| > 7|H,| for L > 1.

Lemma 2.2. If condition (1.5) is satisfied and |GN{|¢| > ®} <
11 (LeK)? for some ® > 0, then

k
/ (lV(¢<>1+k/p)|p +18 ¢<>1+k/0|a> > 02”‘15“5119 (2.5)
a € ~ max {(LeK)’,B-o%r-o}’

where the constant cy is determined by p, k, T, and d.

Remark 2.1. When S; is separated from zero on G, the size of cubes
can be selected arbitrarily. For ® < 1 and Le K < ®179/? inequality (2.5)
becomes || +/PV) |2 + [|ScgO1HH/7||7 > Co~@=)||g|P T

The proof of Lemma 2.2 makes use of Lemma A.2.

Proof of Lemma 2.2. By the assumption, the sets @, = H, and G, =
H,N{S: > B} n{|¢| < ®} satisfy the inequality |Q.|/|Qo .| > 2/7 > 1 for
each single cube. Thus, Lemma A.2 yields the estimate

e / 6Pk < (LK) / [VgOIH/PpP 4 / Pt
H, H,

0,z
SU
< (LeK)”/ }v¢<>1+k/p|p+/ _Z(I)p—o'|¢|k+a’
H. Qo, = p

which is equivalent to (2.5) with G replaced by any single cube H, (being
trivial if it has no common points with G). Summing these inequalities for
z € Z4 yields (2.5). O

2.2. The main result

Initial phase of decay. Embedding theorems for the Sobolev spaces
WyP(G) (see, e.g., §11.2 of Ref. 7) and well-known inequalities for LP-
norms imply that

k
Vo115 > cllop @)l = cllu®)lpTx = cllullf
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so Eq. (2.4) results in the well-known “differential inequality”
L
t) + \Il/ Yo (s)ds < C (2.6)
0

for ¥(t) = Hu(t)||7+k with C = ¢(0) and x = %_,’z > 1. This ensures
convergence of ¥(t) to zero as t — 00. (The possible forms of the majorant

for v (t) are reproduced in Lemma A.1).

Attempted extinction. Below, some functions on G are identified with
their trivial extension to all space for the sake of convenience: uc(z,t) = 0,
Se(z) = B, ¢(z) =0, etc., for z ¢ G.

Theorem 2.1. Assume that Cond. 1.1 is satisfied. Let v = u.(z,t) be a
weak solution of boundary problem (1.1)-(1.3) with u®(+k/P) € V(Qr, ),

and consider the function® U(t) = |ju(t )Ilziz

(a) If k and the exponents of Eq. (1.4) satisfy the inequality
(p—o)d

~-{p-7), 2.7
—op? 20
then for small values of eK there exists a time interval A = [to,t1]
on which the solution u = u, of problem (1.1)-(1.3) decays at a rate
characteristic of extinction in finite time: fort € A

y+ k>

U(t) <Uto) (1~ (1= r) ¥ (¢~ t)/O 7, (28)
where K = a*Eiﬁ +(1- a*):j:z < 1, the number ¥ does not depend

OnE, Oy = (1+d e a) , and
to =sup{t>0:U(t) <1}, (2.9)
t; = sup {t > to: U(t) > §T(5K)d/a'}. (2.10)

The length of interval A satisfies the inequality T = t; —ty < U(1 — k).
(b) If p > v, then for t > t;

Ult: +1t) ( ¢\ HED

L <1+ F-1DUR D@ )
vy S \UTE-D ) &y ’

where the time scale characterizing decay is small for small eK :

UFE-1 (tl)
(eK)P

0((eK)~P), P = 1—_”7* (Z—:—g —a,.> >0, (2.11)

2t plays the part of a clock in the calculations to follow.
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If p = ~, then K = 1 and the above majorant changes to
exp{—ct/(¢K)P}.

2.3. Proof of Theorem 2.1

(a) The existence of a time o such that U(t) < 1 for t > 2o follows from
Lemma 2.1.

We apply the Chebyshev inequality to evaluate the measure of the set
where the solution is large: for each t > to,

H{lu(z, 1)) > fulld35H < follul@, O)l/Iluli53) *de = U(t) < 1. (2.12)
The value of the free parameter « €]0, 1{ will be specified later on.
It follows from condition (1.5) and (2.12) that
|H.| 7' H, 0 {Se > B} N {lu(t)] < lull33} > 37
if t > tg and
|H, Y4 = L(t)eK > (3/7)4U/4(2). (2.13)
As long as condition (2.13) is satisfied, Lemma 2.2 yields a minorant for
the integral on the left-hand side of (2 4). Namely, this lemma is applicable

to ¢ = u with & = BB/ P~ |y} ~ik» Where B is one more parameter to

be selected later.
Under the additional condition (LeK)P < BP9 ||u(t )”71+ka) P=) je.,

L(t)eK < Bl—a/pU(t)(l—a)(l~o/p)/(7+k)7 (2.14)
inequality (2.5) holds true with
max {(L(t)eK)?, 787~} = BP~7 |[ul| 00 (2.15)
Since ||ullp+k > c||ully+&, it follows in this case that

”V’U,<>1+k/p“;+ ”S€u<>1+k/a”o >02”u”£¢’;3 (p—o) ”u” (1 a)(p—o)

> aB)UR(t), k(o) =B + (1 - )2 = 2 +alg (2.16)

When U < 1, the quantity U*(® is a non-increasing function of a, so the
right-hand side is largest for the smallest possible value of a.

For small values of U(t), conditions (2.13) and (2.14) are compatible
only if a/d > (1 — a)(1 — o/p)(y + k) !, so the best minorant corresponds
to the value of o that satisfies this condition as equality:

-1
p 7+k p—0O
p—t 1 —_. — y * =
<+d p—a> pa v+ k

). (2.17)
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In the differential inequality (2.6) for ¢(t) = U(t) that follows from
(2.16), the rate of decay corresponds to extinction of t(t):
ko) <lea<(y—-0)/(p-o). (2.18)

The exponent () is typical of finite time of extinction for o, of Eq.
(2.17) if the exponent -y + k in the initial condition satisfies inequality (2.7)
— in this case a. < (y —0)/(p — o) and

2 —
Y—-o p—ga P p—-oC
0<1l—-k(aw) = - — =
(o) Y+k <7+k) <d+7+k)
An “optimal-order” minorant for the right-hand side of (2.16) results
from the choice of the natural-valued function L(t) as

L(t) = [€K) 0O =[BT u@l{50 ] (219)

where [-] is the integer part of a number.

As long as Eq. (2.16) is applicable with & = a. of (2.17), inequality
(2.4) results in the differential inequality (2.6) with 4 (t) = U(to + t), the
exponent x(a.) of (2.8), C' = U(tg) = 1, and the coefficient ¥ = &B).

However, estimate (2.16) applies only as long as L(t) > 1 in Egs. (2.13)
and (2.19). The phase of accelerating decay ends at time ¢;(a,) defined in
Eq. (2.10), when

Ults) = llu(t) 1755 = (k). (2.20)

After that majorant (2.8) is no longer applicable.

To estimate the duration of the phase of “attempted extinction,” note
that it starts with U(tg) = 1. Consequently, it cannot last longer than the
time when the majorant vanishes (see Lemma A.1):

T (o) <@ (1-r)7".
(b) After time ¢,, estimate (2.15) changes to
max {(EK)”,,B_"@”_”} = (eK)?,
and (2.16) is replaced by the inequality
[Vu®THH2P 4 ||Scu® /7|17 > 3 (eK) 7P lull2Ey

p+k
> C(eK)PUR, R= Bk >

If v < p, then kK > 1, so the corresponding differential inequality (2.6)
produces the slow majorant of Eq. (2.11). By Eq. (2.20) the coefficient
that accompanies t on the right-hand side of Eq. (2.11) is proportional to
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(eK)~P, and the use of formulae (2.17) and (2.18) shows that P is a positive
number:

P=p—(R—1)dfa. = —— (”“’—a*) >0,

l—a. \p—0o

so the typical times for halving the majorant are small even at this phase
of slower decay.
The majorant of Lemma A.1 decays exponentially if p=~, k=1. O

Remark 2.2. When the absorption coefficient S, is separated from zero,
there is no need to restrict the use of the embedding inequality of Lemma
2.2 to cubes of size eK or greater. Hence (see Remark 2.1) the phase of
accelerating decay continues until the solution really dies out in finite time.

3. A theorem on homogenization

In the simple case considered here, boundary problem (1.1)-(1.3) admits
homogenization, which may be useful, e.g., for finding more accurate bounds
on duration of the initial phases of the solution’s decay.

Below v = p=2 and 1 < ¢ < 2, while a = A(z) does not depend on
the solution or time and satisfies condition (1.2), so Eq. (1.1) reduces to
the quasi-linear equation

Bue = div (AVu,) — STul? ™! (3.1)

with the only nonlinearity in the absorption term (notation is that of
Eq. (2.1)). The initial and boundary conditions are those of Eq. (1.3) with
k = 0. As before, the existence of the solutions from L2(0,T; W}(G)) N
L>=(0,T; L%(G)) is assumed as a prerequisite.

For a function ¢(x), notation (¢). k() refers to the piecewise-constant
function that equals |Cerko|™' [ . #(€)dE on the block Cek,. of
Eq. (1.6). o

Theorem 3.1. Assume that the absorption coefficient Sc(x) is bounded,
and there erists a a constant S° such that for some ¢ > d

I(S2 k) = 87 |Ize(a) < v- (3.2)
If the function W : G x [0, T) satisfies the homogenized equation

AW = div(AVW) — §7|W|° 2w (3.3)
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and the initial and boundary conditions of Eq. (1.2), then for small eK the
difference of solutions to Eq. (3.1) and Eq. (3.3) admits the estimate

1V (e = W)ll2oxio.my < € (IWIEZ iz + KIS ooV 155710
+HeK/O)IWg™ + 87 Vw5~ )
where § €]0,1{ is a free parameter.

Condition (3.2) holds true for blocks of size K(¢) = O(In(1/¢)) when
Se is generated by a “random chessboard” structure with independent cells
(see Lemma A.3). Convergence of u. to W follows from the inequality of
the theorem if it is possible to choose K = K (¢), § = §(¢), and v = v(g)
so that K — oo, v(e) - 0,eK/§ - 0,and 6 = 0 as € — 0.

Proof of Theorem 3.1. Below notation is abbreviated to u = u,, S = S,
and (¢) = (¢)¢,x. The calculations deal with the case of d > 2.

The difference V = u — W vanishes at ¢ = 0 and satisfies the equation
(in notation of Eq. (2.1))

3
BV —V-AVV 4+ 87 (u®°~1 - woo-1) = Zk:l Hy, (3.4)

where
= (87 = (S7)(W oot — (woe)),
Hy = (57— (S)(WO°™), Ha = ((87) = 37)Woo-r,
Using a sequence of smooth test functions convergent to u — W in the
integral identity, we arrive at the inequality

Jdt [,V (u—W)- AV (u — W) dz
+ [T dtf,5° (u<>°—1 — WO 1) (u— W)de < [ I(t)dt, (3.5)
where I(t) = Y5 _, Jo(u(z,t) — W (z,t))Hi(z, t)dz. Both terms on the left-
hand 51de are non—negatlve
The integral containing Hs of Eq. (3.4) is estimated using the Hélder
inequality (recall that ||@|l24/(a—2) < ¢l|Vl2):
|Jo(u = W)Hsdz| < flu = Wl2l(S) = 5 llal W5y aesy  (36)

Since for each block [,  (57(z,t)—(5)) ({(u = W)(W® 1)) dz =0
it follows from the well- known embedding theorems that
|| fo Ha(u — W)dz| = | [o(S7 = (ST))(u — W — (u — W))W~ 1)dz|
< K |[[V(u = W)[2l1S7 — (SO allW I35/ a2y 3.7
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Finally, we evaluate the integral containing H; of Eq. (3.4)
fG(u —W)Hdx = fG(u —W)(87 - (S7) (W1 — (WOo—1))dx,

To this end, we exploit smoothness of W and the following elementary
inequality withg=0—-1< 1:

Va,b€R [a%? - % <2]a b7, 0<qg< 1. (3.8)

The function W®°~! may not have appropriately summable gradient.
It is convenient to approximate this factor in the integrand on the right
hand side of (3.5) by its convolution with a smooth kernel h € C§° (R?):

Ws (1‘) = Ws ("L'a t) = fRd w (.’L‘ + 5y) h (y) dy,
Wf"’1 (z) = Wf"‘l (z,t) = Jpa W1 (z 4 6y) h (y) dy,

where § > 0, h(y) >0, [pah(y)dy =1, and h(y) =0 if |y| > 7.
Inequality (3.8) furnishes the estimate

(WOt (2 + 8y) = WO (2)] S 2|W (2 +by) - W (2)7,

so an application of the Holder inequality to integral in y shows that t-a.e.
on [0,T) for @ =2/(c—1)

(WRe= —wOr 8 < fda (fIW (c+6y) - W (@) h(w)dy)
<cfh(y)dy|W (z + 6y) - W ()] da.
It is well known (see, e.g., [15, §4.6]) that
Jra W (@ + 8y) = W () dz < 82 ly[* |VW |5,
so [WRot = WorL8 < c82| VW3 [ lyl® h (y) dy = C* |[ VW |3 and
WPt - WO g < Co" L | VW 5" (3.9)

The function WO" is smooth. Its gradient admits representation
VW‘,O” Yoy=1 fWO" 1 (z + 8y) Vh (y) dy, and consequently

(o-1)/2
IVWeeY|o = (fdx]é U foa WOOL (2 + 5y) Vh (y) dy| )

(o—-1)/2 o
<o ([dz fdy W @+ syl VR @)I°) " < W

It follows that
[WPe™r — (WP g < c(eK/6) W] ~",
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and Eq. (3.9) and the triangle inequality lead to the estimate
WOt — (WO ) g < C ((K/OIWIZ™ + 8 [YWs ™).
The inequality ||¢||2q/(a—2) < ¢l| V|2 leads to the conclusion that
| Jo(u = W)Hdz| = | [ (u = W)(S7 — (S7)) (WO ™! — (WO~))da|
< clV(u = W)llz (1687 = S llalWl5/tas)
+eK |87 ool WII55 14—z
HeK/OIWIET 457 VW) . (3.10)

Equations (3.6), (3.7), and (3.10) yield the estimate of the theorem. a
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Appendix A.
A.1. Proof of Lemma 2.1.

(a) First, we consider the case T, > T > S > 0. We apply integral identity
(2.2) to a sequence of admissible test functions for which all its integrals
converge to their counterparts for the function

Z(z,t) =Ke x Ligry (1) K}y % uSk (a,1), (A1)

where u;, = sign(u)|u| A L, the parameters ¢, > 0 are small and L > 0
large. As usual, * denotes convolution in ¢. The mollifiers K. (¢) = 1K(1¢)
and IC:‘S = K¢ * %1[_5,0] (t) are smooth, and for the sake of convenience it
is assumed that K(t) = K(—t).

For small £,8 > 0, function (A.1) vanishes for t = 0 and ¢t = T4, so
identity (2.2) results in the equality

Tos = Jgoat7 107 = Acs + Bus, (a.2)

where Ac 5 = [, g VZ - alucP~! and S5 = [5,5 S7u®7 1 Z.
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The symmetry of K implies that [ g (s) Kexh (s)ds = [(Kcxg (t) h (t) dt
and [pg(s) KL *h(s)ds = — [gh (t) KL x g (t)dt, so in (A.2)

Tos = —fgrsm (Kb #u®77) (zc;j<s *uf*+) dadt,

Ag s = fo[S,T]’C::6 * (|u|k 1{|u[<L}Vu) - Ke * (|Vu|’o—2 aVu) dzdt,
Bes = foismKis * (ugk“) K. * (Su®"1) dadt.
It is easily seen that

lim lim Acs = A= oo [ual* Ly (V- 190 aVu), - (A9)

limy lim B, 5 = B = Joxism el 82 77" (A.4)

ENOEN
Integration by parts reduces the term of Eq. (A.2) containing time
derivative to

T.s = 23 + T:(S,T), (A.5)

where T3 (1) = [, (Ke # u07~") (ICEs + u9*1) and T3 (8,T) = [ 5.7
u""lath: *ugk+1

For an integrable function lim.\ o IC: s*0(t)=0s() =5 tt+5 ¢ (s)ds
and limg\ o ¢s5 (t) = ¢ (t) a.e. in t. Consequently, the limit of the first term
in Eq. (A.5) is

lim lim T3 (8)[;Z7 = Jou" ™ (@, ) ui* (2,t) do =7 - (A6)

It is easily seen that O,K} dsxo= F(Kexp(t+68)—Kex (1)), so
7 (S,7) = fasm™ (ugkﬂ (t +8) — ulk+! (t)) dzdt. (A7)

By analogy with the function j (u) of Ref. 14, define for kK > 0 and v €
] — 00, 0o[ the nonnegative convex function

Jk f“vO'y 1d( 0k+1) k+1 l I'v+k (A.8)
which satisfies the inequality (cf. Eq.(3.14) of Ref. 13)
Dy (t,6) = Jx (ur (¢ + 8)) — Ji (ur (¢)) (A.9)

— 9 (u(®) (uP (+8) —u* @) 2 0.
Indeed, by the definition

Dy (t,8) = [ (0O —u®771 () (k + 1) |o]*dv.
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If ur, (t+h) > ur(t), then necessarily u(t+h) > u(t) and u(t) <
ur, (t+h), so the integrand is non-negative. The integral is zero if
up (t+h) = up(t). If ug (t+h) < ur(t), then u(t+h) < u(t) and
ur (t+h) < u(t), so the integrand is non-positive, and the integral non-
negative.

It follows from Eq. (A.9) that in A.7

lim 7 2 L1 T (T (ur (8 +8)) — Ji (u(2)) dt) dz

- dem(%— T T (ur (8) dt — 2 [5T0Tk (uz (t))dt).
By the Lebesgue-Vitali theorem lims\polimen0Z2 = Ji(ur(T)) —

Ji (ur (S)) a.e. in S, T, so by (A.6)

limsup lim 7 < [, (u<>7_1 (z,t) ul* T (z,t) — Jx (ug (z, t))) dx |Z; .
N0 eN0

Combined with Eqgs. (A.3) and (A.4), this latter estimate shows that for
T > S >0 and Ji of Eq. (A.8)

Jo (w7 05 (2,8) — Ji (ue (2,) ) d 1125 (A.10)
— k a g—
> fo[S,T} (Iul"c L{|uj<L} (Vu- |VulP 2 aVu) + |lur] +1 S |ul 1) .

(b) On the left-hand side of Eq. (A.10) the integrands have the form
W(u(z,s), L) and W(u(z,T), where for v € R
e fon P < W, ) = (" — B n ) Jor < o P

We compare now ug(x) = W(uo(z), L) with U (z,5) = W(u(z,S), L)
for small S > 0.

By the assumption, U (z,S) — ug (z) in measure as S \, 0. Moreover,
|U (x, 8) — ug (x)| < W, where for a fixed L > 0 and an arbitrary p >0

W =ci (L,v, k) ([u (z, S)|7—1 + |uo (.Z‘)I’Y_l + 1) Lyu(s)y-vs|>u}
+c2 (L, 7, k) (;ﬂ‘l +pfu (2, S+ pfuo (w)IW_l) Lju(z,8)~uo(=)1<n}-
By the Holder inequality for each x> 0 and U = lim supg o [[u(S)ly

limsup W < ¢ limsup (mes {|U (S) — uo| > ) (ﬁ"’—l + ||u0||:_1)
S\0 SN0

to (0t n (0 4wl ™))
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which proves that for all L
Jouo (x)dz = SIH&L JoU (z,8)dz > [,U (z,S)dz.

Ifug € L% (G), then ug (z, L) — |ug (2)|"**, and |ug (z)|"** is a majorant
for this family of functions. Hence

Lh—.n;o quO (z)dz = (1 - Ilz%ly) fGIu*,L (:1;)]7+k) de.

By the above, for each S € |0, T [

Jolur (z,8)"* dz < (1 - %)—1 U (@, S)dz < [z |uu r, ()" da.

By the theorem on monotonic convergence ||u (S)]|,,, < 00, and the exis-
tence of an integrable majorant justifies the passages to the limit as L — oo
in all integrals of Eq. (A.10). This proves the lemma. O

We also cite here the well-known differential inequality that plays an
important part in detection of finite time extinction by the energy method
(see Ref. 1, §2.1).

Lemma A.l. If a non-increasing right-continuous function ¢ (t) > 0 sat-
isfies inequality (2.6) with x > 0 on an interval [0, T, then on this interval

Y (t) < F(t,9,C k),
where

Wt 1/(1-k)
C(l—(l—ﬁ)m) , I‘E<1,

+
Cexp {-¥t}, k=1,

C(l+(k—1)C" w) VD s

F(t,0,C, k) = {

A.2. An embedding inequality

The following embedding inequality is an adaptation to p # 2 of one well
known in many forms for p = 2 (the proof below follows that of Ref. 6).

Lemma A.2. Consider a bounded convex set Q C R%, d > 2, containing
a subset Qo of positive Lebesgue measure such that A? = |Q|/|Qo] > 1.
The following inequality holds true with ¢ = (2¢ — 2)/(d — 1) for each real
function u € WHP(Q), p > 1:

IUIZP(Q) < cA*? (diamp (@) lvulz;,p(Q) + fQO |u|p) .
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Proof. It is easily seen that

u(z) = |Qo|” fQo y)dy +1Qol ™" fQ fo

for a smooth function u, an arbitrary pair of points a,y € @, and & =
& (z,y) =tz + (1 — t) y. Thus by Holder’s inequality

iy <27 (1 [ P+ g / at / i [ J9uied Pay).

where D = diam (Q). For a fixed value of ¢, the argument & is in Q by
convexity, so starting with integration in variable £ = §; (x,y) (with fixed
y € Qo) or n =& (with fixed z € Q) leads to the inequality

QoI fg dz fo, IV (€I dy < U () [|Vulf 4 g

where U(t) = min {t=¢, (1 — t)7¢|Q|/|Qol|}. Integration in ¢ yields the esti-

mate of the lemmaP. O

- Vu (&) dtdy

A.3. Inequalities for random chessboard

Below, we consider the simplest random model of the absorbing medium.
The following lemma combines the well-known exponential inequality of S.
N. Bernstein (see Ref. 16, §3.4) with the estimate #(G) < ¢1|G|/(eK)¢ for
the number of pertinent blocks.

Lemma A.3. (a) If there exist numbers 3,A > 0 and a family of i.i.d.
binary random variables x, : @ — {0,1} such that P {x, =1} = ¢ > 0 and
{Se =2 B} NY: .| > Ax, for all cells having common points with G, then
there exist constants ¢; dependent on the shape of G and ca = ca(q, A) such
that for 7 = %q)\

|Cngn{S </3} ’T} < CIIG‘ exp{—CQKd}'

P< min
{ZEG(E,K) |CE K, zl N (5K)d

(b) If Se(z,w) € [0,S4] is a bounded measurable random field and the
random variables S, = =|Yc.|™! er . Se are ii.d., then in condition (3.2)

P {0 - Ball= 2 v} < 24k exp {-a2Kc}

bWith ¢ (d) = maxa>1 A;:i:-

. ((A +1)4 - Ad - 1) , which is the constant of the lemma.
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