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CENTRAL LIMIT THEOREM AND SPECTRAL
ASYMPTOTICS FOR NONLINEAR STOCHASTIC
PARTIAL DIFFERENTIAL EQUATION WITH WEAK
NONLINEARITY

A.L. PIATNITSKI
P.N. Lebedev Physical Institute, Leninski prospect, 53, Moscow, 117924,
Russia

We prove the central limit theorem for one nonlinear stochastic partial
differential equation with weak nonlinearity and study the spectral asymp-
totics of the infinitesimal generator of the corresponding Markov process.

1 Introduction

In 1994 S.M. Kozlov in the preprint [1] posed two interrelated problems:
the one about the limiting behavior of normalized integrals of solutions
to one nonlinear stochastic partial differential equation (SPDE) with
weak nonlinearity (see equation (2.1) below), and the other one about
the spectral asymptotics for the corresponding infinitesimal generator.
He formulated the conjecture that the central limit theorem (CLT)
holds for the solution of SPDE mentioned above, obtained the condi-
tional result, found the covariance operator of the limit distribution and
proposed a nonrigorous method of calculating the spectral asymptotics.
He hypothized, in particular, the exponential growth of the counting
function. It turns out, however, that this method does not yield the
correct asymptotics.

In the present paper we propose another approach to the spectral
asymptotics problem and, also, justify some results which has not been
proved in [1]. In particular, we prove the relative compactness of the
operator that corresponds to the nonlinear term.

Recent years are marked by the growing interest of mathematicians
and physicists in SPDEs and in stochastic equations on Hilbert and Ba-
nach spaces. Many modern investigations in hydrodynamics, material
sciences, and other applied fields, rely on the equations of this type.
Also, many asymptotic methods used in random media description re-
sult in infinite dimensional stochastic problems.

Earliest mathematical works on the subject were mainly focused
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on the existence and uniqueness results for the simplest SPDEs and
on the existence of an invariant measure. Further investigations were
devoted to more complex equations and such qualitative properties as
Markovity, irreducibility, ergodicity, the Feller property, and many oth-
ers.

We mention here the books [2], [3], [4], [5], [6] that comprise main
aspects of the theory and where further bibliography can be found.

One of the natural and important questions is the long-term behav-
ior of solutions, in particular, the limits of applicability of the CLT.
As shown in [1], the CLT holds for SPDEs with weak nonlinearity. On
the other hand, there is a conjecture that, in contrast to the finite-
dimensional case, the CLT fails to hold for SPDEs with strong nonlin-
earity.

2 Setting of the problem

Consider the SPDE

2
—u(z,t) = @u(x, t) + asinu(z,t) +w, z € (0,7); i

u(0,t) = u(m,t) =0, Ult=0 = up(z);

here wy is functional Brownian motion in L*(0, 7). It is well known (see,
for example, [7], [8]) that a weak solution of (2.1) does exist for all ¢ > 0,
is unique, and belongs to the functional space V = L2(0,T; H*(0, 7)) N
C(0,T; L% (0, 7)), where the symbol w indicates that the corresponding
space is endowed with the weak topology.

Consider, also, the linear equation

2
—u(z,t)+w, z€(0,m)
Oz? (2.2)

u(0,t) = u(m,t) =0, Uli=0 = up();

au(az, AES

which, in fact, is an infinite-dimensional version of Ornstein—Ulenbeck
equation. The invariant measure o of the latter equation is unique (see
[7]) and can be found explicitly: it is the Gaussian measure in L2(0, )

d® \-1
with a zero mean value and with a correlation operator A = (F) 5
T
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2
which is diagonal in the basis {\/; sin kz}|Z°=1 with eigenvalues k=2

[o 0]

(Au,u) = Yk %ug;

k=1

here u;, are the corresponding Fourier coefficients of u(z). Define the
functional space L£2(L?(0,7), uo) of square-integrable functions over
L%(0, ) with respect to the measure o with the norm

HF(.)HEzz / F?(u) po(du).
L2(0,m)

The solution of (2.2) defines a Markov process in L?(0,7), and the
corresponding infinitesimal generator has the form

(AF (), G / Vo F () - VoG(u)uo(du),
L2(0 )
6F .
where we denote V, F'(u) = —(u). Inthe coordinates u, uy, ..., ug,...,

the operator Ag can be formally rewritten as follows:

_1Q 32F d?
Z u) + VF(u) - —u.

= | 8uk dz?

Now, let us define a new measure p(du) absolutely continuous with
respect to ug, by the following relation

dup u
=expy—a | cosu(z d:z:}.
o) =exp{~a [ cosu(x)
Taking into account the fact that the function a sinu(z) is a variational

™
derivative of —a [ cosu(z)dz, one can verify that u(du) is an invariant
0

measure of equation (2.1), and that the solution u(z,t) of (2.1) is a
Markov process (see [7] for more detail) which infinitesimal generator
is defined as follows

(AF(-),G(-)),L=% / VuF () - VoG (u)u(duw).

L2(0,m)

The purpose of this paper is to investigate the main properties of
the operator \A.
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3 Spectral asymptotics for Ay

2
In the proper basis {e;} = { = sinjz} the operator Ay can be decom-

posed into direct sum of one-dimensional operators

oo
AO = Z Aka
k=1
1 d? 2, d . 2 2,2
here Ay = == +k Uk acts in the space L*(R, exp(—k?u})dz).
The spectrum of Ay, is well known: \¥ =nk?, n=0,1,2,..; ok (ug) =

H,(kui) where h,(z) are Chebysheff-Hermite polynomials.
Now we can form the eigenbasis of Ag in £2(L%(0, ), o) as follows
(see [9], Ch.VIII)
Vi () = o (i, )0 (uy) - - 953 (u,);

here s > 0, n; and k; are arbitrary natural numbers, k; # k; for j # i.

Ns

S
The corresponding eigenvalue Ay = AZ: """ k. is equal to 3} k;‘-’nj. For
4

s =0 we set vp(u) = 1.

The above considerations show that the counting function N4,(A)
coincides with the number of integer nonnegative solutions (nj, no,...)
of the following inequality

Z nkk2 S A.
k=1

Theorem 3.1 The following limiting relation holds:

tim In NAo (A)

= C

co being the mazimum in the variational problem

co = max / [(p(z) + 1) n(p(z) + 1) — p(z) Inp(z))dz,

- (3.1)
R GRIEE
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Proof. First of all let us note that ©(p) = ((p+ 1)In(p+ 1) — plnp)
is a monotone convex function, ©(0) = 0, and ©(p) ~ Inp as p — .
Thus, by the standard arguments, the problem (3.1) is well-posed and,
using of the Lagrange multipliers method, we obtain

[o.e]

) = 1 / z2dz 1
B exp(Az?) — 1’ / exp(Az?) —1
and

Cop =
o exp(\z?) I exp(\z?) B 1 I 1
o \exp(Az?) =1 exp(Az?) —1 exp(Az?) -1 exp(Az?)—1 ’

In order to estimate N4,(A) from below we fix an interval (6,6~!) and
divide this interval into L = ((6”1 —8)/ E) equal parts. In what follows

we assume the relation € < § < 1 holds. Denote (nq, no,...) by n. We
say that supp(n) € (j1,72) if n; = 0 for all ¢ & (j1, j2). Clearly, for any
-1

continuous p(z) such that [ z%p(z)dz < 1 we have
5

#{ﬁ’ iniiQ t A} > ﬁ #{ﬁ’supp(ﬁ) e AL
- > ni? < Il{:(;l’élln xzp(:v)},
€Ik

where the notation Iy = (ke + 6, (k + 1)e + 6) has been used and the
symbol # stands for the number of elements in the set. Let us estimate
each factor in the right hand side of (3.2)

#{'r‘z | supp(7) € AY3IL, Zn# < sAqk} >

(3.2)

eAgr }
((k+1)e + 6)*

_ [ a1/3 EQk 1 1/3 Eqk 1/3.).
_<A ((k+1)£+6)2+A/38)!/<A ((k+1)5+6)2)!(A/6)!’

here we have also used the standard combinatorial formula. By the
Stirling formula

In { (Al/a(m + zi))!/(Al/3 (RIH—?CTé)Q)!(EAI/s)!} =

> {7 |supp() € ATy, Yomi <
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€q,

- 1 €q A1/3( k+1)e+6 +E)
= b[(AA (b))

1/3 EQk _Am( k:m ) 1/3y—eAl/? -
W (arerar) e e o) =
a1 9k o SR _

— A/3E[(———((k+1)8+6)2+1)1 (((k+1)6+5)2+1)

9k qk
R e )

as A — oco. It remains to put g = n}in z2p(z) and substitute the last
k

relation into (3.2):

Ly . Ak
n{pl 3y <Ay 2 ek | (eran + )

Ak 9k 9k

o <((k +1)e +6)° 2 1) C ((k+1)e+86)? = ((k+1)e + 5)2] =
§-1

> 82( [ (p(a) + 1) In(o(@) + 1) ~ pla) lnp(@))dz = 51(e)) >
6

o0

> 8( [(p(z) + 1) In(p(z) + 1) - pla) Inp(z))dz — (e, ),
0
where §; — 0 as € — 0 and 6 — 0 as € and 6 — 0. Thus,

o0
In#{7| 3 mi? < A}
R i=1
i NE
To establish the upper bound let us consider an arbitrary sequence

i
{gx} such that Y egr < 1, and estimate #{supp(n) € I | ¥ ns? <
k=1 1

> Co. (33)

eqx/A}. In the same way as above one can prove that

In #{supp(n) € I | X:nii2 <eqA} <

1

< eAV/? [((k_g(i-k—é)i + 1) In <(ksq+6)2 o 1)_ (3.4)
- (lcs({ilj 5)2 o (kg({ﬁ 5)2] (1+0(1))
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as A — oo. Similarly,

~ 5A1/3 5A1/3 .
In #{supp(n) € (W’ T) | zi:n,-z2 <A}<

21 [(22j+2A1/3 3 (51\1'/3)!/(22j+2A1/3)!/((5A1/3)!] .

62 27 62 21 =
22j+2 5 22j+2 Fy 22j+2 22j+2 ) 5
1/3 1/3 1/3 o
22j+2 3 5 23j+2
— AL/3 2. 1/3 2
= AP ln (14 o) AP (L e ) <

i A1/3%((3j +2)In2 —31nd)

and summing the leftmost and the rightmost parts of the latter inequal-
ity over j, we find

In #{supp(n) € (1,6A3)| ©n;i® < A} <
§ (3.5)

-1

S AY3_L1((3j+2)In2 — 31n6) < AY3(461n2 — 361n6)
j=1

Similar estimates can be obtained for the interval
supp(7) € (AY3/8, AY/2):

In #{supp(n) € (AY3/6,AY?)| Y ni? <A} <

S [« ) ) )]

< AY3(86%In2 — 126%1n 6)

(3.6)

IN

In view of (3.4)-(3.6) the number of solutions to the problem
o0 A3 (6+e(k+1))
{ﬁ| Zizni <A, Z i’n; < eAqk}
i=1 i=A1/3(6+¢k)

does not exceed

exp [A1/3{(45 In2 — 361n6) + (86%In2 — 1262 In 6)+
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2::(6+k +1)In ((6—(1"-—)+1)

q q
Frear nEr et "(1))]

as A — oo. Denoting (—cSqT) by pr and recalling the definition of
p(x) we derive
oo AY3(5+e(k+1))
n#{a| Y iPn <A, Y mi<eAg) <
i=1 i=A1/3(6+ek) (3.7)

AV3( / ((p(z) + 1) In(p(z) + 1) - p(z) Inp(z))dz) (1 + 6,(5, €))

where 6,(6,6) — 0 as € and § — 0 and A — oo. It remains to estimate

L
the number of integer vectors {eAgx}, 0 < k < L, such that 3 eqx < 1:
k=1

#{{eAa} | éeqk =l}= (5; + A)!/(‘-S-;—l)!/A! <

- -1 £ 1
5exp{(%+A)ln(§T+A)—6—lnéT —AlnA} g

InA 1 1
< —_— —r.
_exp{ e +A(6E) +6s}

Finally, (3.7) and the last inequality together imply

#{n| Zn,z <A}<Z#{n|2n,z < A,
{ax}

A3 (6+(k+1)e)
> nig® <Aege} <

F=A/3(5+ke)

<exp [AV2( [ ((#(0) + D1np(z) + 1) = (o) Inp(z))ds + 61(6,)+

0\8

4 InA 4 1 )]
A38e ~ X4/3(8¢e)?
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Passing to the limit in A and choosing § and ¢ sufficiently small, we
have e
limsup A™AIn#{n| 3" nii%} < co.
A—oo i=1

The theorem is proved.

4 Compactness results

In this section we prove that the operator A is a relatively compact
perturbation of operator the .4y. This allows us to study the spectral
properties of A.

We start with proving the following simple statement.
Proposition 1 There ezists a constant ¢ > 0 such that

c(AoF (), F(:))po < (AF(), F(-))p < €7 (AF (), () o-

Proof.

This assertion is a direct consequence of the following evident rela-
tion dy

c< d_/_l,()(u) < Cq:

By the Courant minimax principle, we derive from the last propo-

sition that
NAO(CA) < NA(A) < NAO(C—IA).

In particular, the resolvent of A is a compact operator. In fact, the
operator (A — Ap) is relatively compact with respect to Ay.
Lemma 4.1 The operator (A — Ao)(Ao + I)7! is compact in
E2(L2(0, 7!')7 [1,0)
Proof.

Let H be a dense subspace of £2(L%(0, ), uo) endowed with the
inner product

(F,G)n = (F,G)r + [(VuF, VuG)toldu) = (Ao + I)F, G)za.
L2

H is embedded compactly in £2. Denote by H~! the adjoint space of
H. Then (Ao + I) is a bounded operator from H to H~!. For any
F € H by the Schwartz inequality

|Isinw - V,F(u)||2: = /(sinu Vo F (1) po(du) <

L2
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< [ sinulla ol VuF () 32(0mo(dw) < | FIE,
L2

Thus, (A—Ao) is a bounded operator from H to £2. Clearly, (Ag+1)"
is a compact operator from £? to H. Consequently, (A—.Ag)(Ag+1)"
is compact in £2. The lemma is proved.
Combining the last lemma with ([10], Theorem 8.2), we derive
Corollary 4.1 The following limiting relation takes place
In Ng(A)

lim ———~ = ¢y.
bsne. DG 0

5 Central Limit Theorem

The main result of the section is the following.

Theorem 5.1 Let the initial distribution ug(-) be absolutely continuous

with respect to p(du) (or po(du)) and let its density Up(u) belong to

the space L*(L*(0,), u(dw)). Then the family of normalized integrals
t

1
%/u(s,m)ds converges in distribution in the space L*(0,7) as t —
0

oo to a Gaussian measure with a zero mean value and the covariance
operator

(Bop)=C [ [Vuny(w)Pu(du) = C(Ang, my) aqzay =
L2(0,m)

= C(A_l(uv (p)Lz(O,w)7 (’U,, QO)LZ(O’W))CZ(LZ,M);

here ny, is a solution of An, = (u, ) and C = / Uo(u) u(du).
L2(0,m)

Proof.

First of all let us note that [ (u,¢)rzu(du) =0 for any ¢ € L.
L2(0,m)
Hence, a solution n,(u) indeed exists. We fix a solution by the following

condition [ mn,(u)p(du) = 0. Using Ito’s formula one can verify the
2(0,m)

identity

t

[ s, 2 0()ds +ng(ult, ) = mpluo()) = [ Vunglus, d,

0
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which implies, in particular, that the process in the left hand side is a
martingale. Obviously, the limiting distribution of

(% [ / (u(s, 3), (@))ds + ny(ult, ) - nw(uf’('”])

t
in V coincides with the limiting distribution of \L/Z [ / (u(s, z), cp(x))ds] :
0

Indeed, due to the properties of A, the function [ n2(u(t,-))u(dw)
L2(0,m)
decreases monotonically in ¢. The limiting behavior of

% / Vaune(u(s, -))dws

can, in turn, be studied by the methods developed in [11], [12], and the
theorem follows.
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