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We study the asymptotic behavior of the spectrum of the Dirichlet problem for a for-
mally selfadjoint elliptic system of differential equations with rapidly oscillating coeffi-
ctents and changing sign density p. Since the factor p at the spectral parameter changes
sign, the problem possesses two — positive and negative — infinitely large sequences of
etgenvalues. Their asymptotic structure essentially depends on whether the mean p over
the periodicity cell vanishes. In particular, in the case p = 0, the homogenized problem
becomes a quadratic pencil. Bibliography: 20 titles.

1. Statements of the Problem and Description of the Results

1. Spectral problem. Let 2 be a domain in the Euclidean space R™ with the smooth bound-
ary 9 of class C%*9, § € (0,1) and compact closure 2 = QU 0. We consider spectral Dirichlet
problem for the following formally selfadjoint system of second order differential equations (al-
thoug we deal with a family of boundary value problems with parameter € € (0,e0] but we often
mention it as a single problem under the assumption that € is small and fixed)

L(e e, Vo)ub (z) = Np(e ta)us(z), z€Q, (1.1)
u*(z) =0, x€ 09, (1.2)

* To whom the correspondence should be addressed.
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where A° is the spectral parameter, V, is the gradient, u® = (uf,... ,ui)—r is a vector-valued

function (a column, i.e., the symbol T means transposition) and £ > 0 is a small parameter.
The real-valued density p and complex-valued coefficients of the matrix differential operator .Z
are periodic!) functions of “fast” variables

Y=y, .. yn) = o= ("t ez, (1.3)
Let us describe the structure of the (k x k)-matrix .Z(y, V, ) of the differential operator in detail.
Let (V) be the (K x k)-matrix of homogeneous first order differential operators with constant
complex-valued coefficients, and let o/ be a Hermitian positive definite (K x K)-matrix-valued

function for all x € Q. Suppose that the matrix Z(&) is algebraically complete [1], i.e., there

exists a natural number oy such that for any row P(§) = (P1(€),..., Pr(§)) of homogeneous
polynomials of degree o > 04 in the variables £ = (&1,...,&,)" there is a row of polynomials
Q&) = (Q1(8),...,QK(&)) such that the following identity holds:
P) =Q()2(§), eR™ (1.4)
In this case, the formally selfadjoint differential matrix operator
—T
L(y,Vy) = 2(=Vy) Fy)D(Vy) (1.5)

is called [1] formally positive and is elliptic (cf. [1]-[3]). Furthermore, it possesses the polynomial
property (2, 3]

a(u,i;2) =0, ue C'EF & we |, (1.6)
where = is an arbitrary domain in R", & is a finite-dimensional lineal of vector polynomials

and a is the sesquilinear form
a(u,v; 2) = (A D(Vz)u, 2(Vz)v)=, (1.7)

where (, )= denotes the inner product in the Lebesgue space? Lo(Z)X. Based on (1.4), it is
easy to check that

P2 ={p=r...p)": 2(Volply) =0 C,y e R"], (18)

and the degrees of scalar polynomials p; do not exceed oy — 1 (cf. [3] for details).
We set
() = o (x]e), Lx, V) = L(e e, V)
and

a(u,v; 2) = (P (Vg)u, 2(Vg)v)=. (1.9)

The variational setting of the problem (1.1), (1.2) is to find a nontrivial vector-valued func-

tion u® in the Sobolev space i L(Q)* (the symbol ° indicates that the Dirichlet condition (1.2)
is used) and numbers A\° € C for which the following integral identity holds (cf. [4]):

a®(u®,v;Q) = A (p°u,v)q, vE ﬁl(Q)k, (1.10)

D Throughout the paper, without loss of generality we assume that the period in each of the variables yj;,
j=1,2,...,n,is equal to 1.

2 The superscript K indicates the number of components of a vector-valued function, but we omit it in the
notation of inner products and norms.
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where p° denotes the function x — p(¢~'x). An eigenvalue A\° and the corresponding vector-

valued eigenfunction u® form an eigenpair {u®, A°} — a solution to the spectral problem (1.1),
(1.2) (or (1.10)).

In the general statement (1.10), it suffices to assume that the entries of the matrix 7 and the
density p are bounded measurable functions. However, to justify the homogenization procedure,
we need the higher smoothness of coefficients:

o € Cl,a(g)KXK’

per
where S = (0,1)" is the cubic periodicity cell and Cp2(S), a € (0,1), is the Holder class of

periodic functions on S, equipped with the norm

[v; Cot (S)| = sup (Jo(y)| + [Vyo()]) + sup (ly —nl~*[Vyv(y) — Vau(n)]) -
yeSs y,nES

The density p is assumed to be bounded and measurable, i.e.,

pELo(), | Loo(S)| =esssup{|p(y)|: y € S}.

We also need the space WL __ (S) of periodic functions v equipped with the norm

00,per

[0 Wee per ()| = 1103 Loo (S) | + I V205 Loo (S)].

00,per

The main goal of this paper is to derive and justify asymptotic formulas for spectral pairs
of the problem under consideration.

2. Some special problems in mathematical physics. We consider several examples of
systems of differential equations that possess the above-listed properties.

Example 1.1. Let k =1, K = n and 2(V,) = V,. Then Z(y,V,) = -V, (y)V, is a
scalar divergence operator, 04 = 1, and & = C. g

Example 1.2. In the matrix form (not tensor form; cf., for example, [5, 6]), the operator
% of the three-dimensional (n = 3) system of linearized equations of elasticity governing strains
of an anisotropic inhomogeneous body (composite) is formed by the rapidly oscillating matrix
(e~ 1x) of elastic moduli and the (6 x 3)-matrix Z:

& 0 0 0 2125 21/2¢,
20)"=1 0 & 0 272 0o 271% |. (1.11)
0 0 & 27Y2 271/%¢ 0

It is easy to verify the algebraic completeness (1.1) of the matrix; in particular, k = 3, K = 6
and 04 = 2. The polynomial property (1.6) contains the lineal

P = {p(fﬁ) = d(a:)a a= (a1>a2>a37a47a57a6)T € Rﬁ}v
100 0 271255 212,

dz)=10 1 0 —27Y2z, 0 212,
0 0 1 2°Y25, —271/2g 0
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The vectors d(x)a are rigid displacements, translations (a4 = a5 = ag = 0) and rotations
(a1 = a2 = a3 = 0). Owing to the factors 2-1/2_ the strain column

PV)u = (201 (u),en(u), 2sa(u), 2 %ens (), 2225 (), 2 2enw)) (112)

(cf. [6, Chapter 2]) has the same natural norm as the strain tensor (sjk(u))? x—1 With Cartesian
components
1 8uj aUk
gjk(u) = B (8—9% + 8—90]> :

The column &7 Z(V,)u of structure similar to (1.12) contains the components of stress tensor.
The matrix &/ connecting the stress and strain columns is called the rigidity matrix or the Hooke
matrix. According to the nature of an elastic medium, this matrix is symmetric and positive

definite. O

Example 1.3. Suppose that n =3, k=4, K =9,
& 0 0 0 2712, 27Y2%, 0 0 0

0 0 2712 0 272 0 0 0
26" = © “ o : (1.13)
0 0 & 27Y2%, 272 0 0 0 0

0 0 O 0 0 0 &1 & &

and the matrix &7 has the form

N1 o
A1) —H22)

moreover, &1y and &3 ) are positive definite matrix-valued functions of size 6 x 6 and 3 x 3
and () 9) = %;1) is a (6 x 3)-matrix. The differential operator (1.5) is used for describing a
piezoelectric medium with rapidly oscillating properties: the first three elements of u are elastic
displacements, and the fourth one is the electric potential taken with the opposite sign (cf., for
example, [7, 8]). The matrix (1.13) is obtained by adding the row (0,0,0,0,0,0,&1,&2,&3) to
the (3 x 6)-matrix (1.11) and, consequently, possesses the property (1.6). At the same time,
the matrix (1.14) does not possess this property because of the “wrong” sign at the right lower
block. In particular, the operator (1.5) is not formally positive. At the same time, the statement
of the problem about harmonic oscillations of a piezoelectric medium involves the system (1.1)
with the right-hand side
NR(e '2)uf (x),

where R(y) = diag{p(v), p(y), p(y),0} is a diagonal matrix. In other words, the fourth row of
the system does not contain the spectral parameter. It is shown in [3, Example 1.13] and [9],
how the spectral problem is reduced to the form admitting an analysis by methods used in this
paper. O

3. Operator statement of the problem. By the Gording inequality (cf. Lemma 2.1
below) and the positive definiteness of the matrix 7, the Hermitian sesquilinear form (1.9) can

be taken for the inner product in the Hilbert space .77 = ﬁl(Q)k:
(u,v) = (F*D(Vy)u, 2(Vy)v)q. (1.15)
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In this space, we introduce a linear compact symmetric (consequently, selfadjoint) operator % ¢
by the formula

(A u,v) = (pfu,v)q, u,veH. (1.16)

Replacing the spectral parameter
i = ()" (1.17)

we pass from the problem (1.10) to the abstract spectral equation

HEuE = ptut e A

If p is a nontrivial nonnegative real function, then the operator J£¢ is positive and, by [10,
Theorem 9.2.1], its spectrum is concentrated on the segment [0, k%] of the real axis; moreover,
the point = 0 belongs to the essential spectrum, whereas the half-interval (0, k%] contains the
discrete spectrum; here, k° denotes the norm of the operator JZ¢.

In this paper, we study the problem (1.10) with changing sign density, i.e.,

ess sup p(y) >0, ess inf p(y) <O. (1.18)
ye(0,1)n ye(0,1)”

Proposition 1.4. Under the assumption (1.18), the spectrum of the operator J¢ is con-
tained in [—k®, k°]; moreover, the point p = 0 belongs to its essential spectrum and [—k®,0) U
(0, k%] contains the discrete spectrum consisting of the following two infinitely small sequences
of eigenvalues, positive and negative:

ML Z RG> 22— O, (1.19)

<= =0, (1.20)

where the eigenvalues are enumerated with their multiplicity taken into account.

Proof. Since J£¢ is a compact operator, its essential spectrum coincides with the point 4 = 0
[10, Theorem 9.2.1]. We show that positive and negative eigenvalues form infinite sequences
which necessarily converge to zero. For this purpose, we apply the minimum principle. In
particular, we have

:uil = min (psu>u)v (121)
(u,u)=1

where the minimum is taken over all vector-valued functions u € H L(Q)* normalized by the
equality (u,u) = 1. By (1.18), we have

peq <0.

Indeed, it suffices to substitute into the right-hand side of (1.21) a smoothed characteristic
function of the set {x € Q : p*(z) < 0}, normalized and multiplied by the number column
a € C* |a| = 1. Certainly, the support of the kernel of the smoothnig operator should be taken
small (recall that if the diameter of support decreases, then the smoothed functions converge to
the original function in the class Lg). As is known, p© is a point of the discrete spectrum of

the operator .#¢ and there is a vector-valued function uffl) cH L(©)* such that
AUy = By
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and the minimum in (1.21) is attained at this function. Now, using again the minimum principle,

19 = min pou,u),
(u,u)——l, <’U,,U/E: 1)>_—0 ( )

where the minimum is taken over all vector-valued functions u € H L(Q)* such that (u,u) =1
and (u, uf_1)> = 0. It is easy to check that for any collection of functions uy), ..., u(y,) € HY(Q)*

the linear set .
{u e HY(Q)F - (u,upy) =0, k=1,...,m; (p°u,u) < 0}

is nonempty. Therefore,
/Jig < 0.
Continuing the procedure, we find a sequence of eigenvalues
&€
/.L_j < 0
and the corresponding vector-valued eigenfunctions
T10\k :
uf_j) eH () j=1,2,....

By construction,

and
ps; <0 for all j.
By the compactness of the operator J£¢,

lim pZ ;=0
j—oo
for every € > 0.

The existence of an infinite sequence of positive eigenvalues is established in a similar way.
For example, the operator JZ¢ is replaced with the operator —.2 €. g

Proposition 1.4 and the relation (1.17) between the spectral parameters yield the following
assertion.

Proposition 1.5. In the case (1.18), the problem (1.1), (1.2) (more exactly, its variational
setting (1.10)) has a discrete spectrum splitting into two infinitely large sequences

0< A <A <o <AS, < e o0, (1.22)
0>A; 22, 2. .27, > = —oc. (1.23)
The corresponding vector-valued eigenfunctions
uf; € H'()F
can be subject to the orthogonality and normalization condition

(i uqy) = 00, HLEN={1,2,...}, (1.24)

where (, ) is the inner product (1.15) and d;; is the Kronecker symbol.

4. Structure of the paper and description of the results. In Section 2, we present
several auxiliary results. Formal asymptotic expansions of spectral pairs for the problem (1.1),
(1.2) are constructed in Section 3 and are justified in Section 4.
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To imagine the asymptotic behavior of eigenvalues A ; as € — 40, it suffices to consider the
first two eigenvalues A% ; of the sequences (1.22), (1.23) since they are the endpoints of the main
interval T¢ where the problem is uniquely solvable, and this interval is free from the spectrum
and a priori contains the point A = 0 because the operator (1.5) is formally positive. It turns
out that the size and location of T¢ depend on the mean of the density p over the periodicity
cell S = (0,1)"

ﬁz/p(y) dy. (1.25)

S

Thus, if p = 0, the length of the unique solvability interval is of order O(¢~!), and this interval
is symmetric with respect to the point A\ = 0, which corresponds to the following asymptotic
formulas for eigenvalues:

L1 =e(Bar +o(1)), (1.26)
where +611 > 0 (cf. Subsection 3.2 and Theorem 4.1). In the case p > 0, the length of T¢ is
of order O(¢72) and the interval is considerably displaced towards —oo, which is determined by
the following relations for eigenvalues:

3_1 = )\(_)’_1 + 0(1), )\(_)’_1 > O, )\8_1 < _65_2 (127)

(cf. Subsection 3.1 and Theorems 4.4 and 4.6). Certainly, for p < 0 the roles of the eigenvalues
A% and A% in (1.27) are exchanged and the interval Y¢ is displaced towards +oo.

Formulas (1.27) and (1.26) are determined by the asymptotic ansétze for eigenpairs of the
problem (1.1), (1.2). In the case p > 0, procedures for constructing and justifying asymptotic
expansions for the eigenvalues A7 ; is similar to known procedures of the homogenization theory
(cf., for example, [11]-[13] for scalar problems and [14, 15] for elasticity systems of equations).
Thus, the second term of the ansatz for vector-valued eigenfunctions is the standard asymptotic
corrector EN(E_lx)@(Vx)u(ij(l‘) (N is a periodic solution to the system (3.7)) and, by the
estimate (4.36), the eigenvalues A9 ; converge to the eigenvalues )\g ; of the homogenized problem
with density (1.25) and differential operator

L(V,) = 2(-V,) A2(V,), (1.28)

where A is the constant Hermitian positive definite (K x K)-matrix defined by formula (3.10)
below for &/ and N.

Turning to the case p = 0 we should revise even the main asymptotic ansatze; namely,
formula (1.26) will involve a large factor e ! and the asymptotic corrector

e (N(e'2)2(Va)ul () + B NO (e a)ul ()

will obtain an additional term that contains the spectral parameter of the homogenized problem
and the periodic solution N to the system of differential equations (3.17) with the right-hand
side pIl on the periodicity cell. The homogenized problem will be also modified: the following
quadratic pencil appears:

B s L(Vy) — BsP(—V.) + 89(Vs) s — f2m,

where L(V,) is the differential operator (1.28), s is a (k x K )-matrix, and m is a (k x k)-matrix
(cf. formulas (3.20) and (3.19)). The Dirichlet problem for this pencil is studied in Subsection
3.2 (cf. Theorem 3.4). In particular, we show that this problem has a real discrete spectrum
with two condensation points +0o. We emphasize that the justification of asymptotics in the
case p = 0 also requires new ideas (cf. Subsections 4.1-4.3).
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In the case p > 0, the question on the asymptotic structure of the negative part (positive for
P < 0) of the spectrum is still open. Theorem 4.6 yields an upper estimate for the eigenvalues A\* y
(cf. the second relation in (1.26)); we attempt to construct asymptotics of these eigenvalues in
Subsection 3.3. However, this attempt turns out to be unsuccessful because of the impossibility
of studying the spectrum of a formally homogenized problem.

2. Auxiliaries

1. The Korn inequality and the Gording inequality. To study the spectral problem
(1.10), we will use the following known assertions. Their proof is simple, and we reproduce it
for the sake of convenience.

Lemma 2.1. For any vector-valued function v € fofl(Q)k the Gording inequality holds:

o HY Q)| < ol Z(V.a)v; La(@)], (2.1)
where the constant cy depends only on the matriz 2.

Proof. We extend v by zero from €2 to the entire space R”. Using the Fourier transform
v(z) — v(§) and the Parseval equality, we find

120 L@ =€ [ 1256 de (2.2)
J

Let us check that
|2(&)al® > col€*|al?, acCF, ¢€R™, ¢y >0. (2.3)

Then we obtain (2.1) by using the Friedrichs inequality with formulas (2.2), (2.3) and applying
the inverse Fourier transform.

Assume that the inequality (2.3) fails and there exist nonzero a” € C* and £° € R™ such
that

2(6%a" = 0.
We set P(€) = (a®)T|¢]??2 in (1.4) and multiply from the right by the column a°. For ¢ = ¢°
we have
@’ P€P77 = Q%) 2(£%)a’ = 0,
i.e., either a® = 0 or £ = 0. The obtained contradiction proves the inequality (2.3). g

We consider the problem on a periodicity cell®) in the cube S = (0,1)":
a(U> Vi S) = F(V)v Ve Héer(s)kv (24)

where H!,  (S) is the subspace of H!(S) obtained as the closure of the lineal of y-periodic func-

per

tions and F' is a linear functional on the subspace Héer(S )% of periodic vector-valued functions.

To study the problem (2.4), we need the following assertion [1, Theorem 3.7.6].

3 Using a suitable affine transformation of coordinates, it is possible to transform an arbitrary cell to a cubic
cell. We assume that the necessary replacement were already made for (1.2), (1.3).
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Lemma 2.2. For any vector-valued functions v € H'(S)F the following generalized Korn
tnequality holds:
IVyV; Lo (S)|| < c(12(Vy)V; L2 (S)]| + IV L2(5) D), (2.5)

where the constant ¢ depends only on the matriz 9.

Proposition 2.3. 1) Let F € (H] (S)k)* be a linear functional on the space H}..(S)* that

per per
degenerates on constant vector-valued functions, i.e.,

F(V)=0, Veck (2.6)

Then the problem (2.4) has a solution U € H}

e (S)F, determined up to a constant summand in

CF. Since the solution U satisfies the orthogonality condition

/ Uly)dy =0 e CF, (2.7)
S

it is unique and satisfies the estimate

*

|05 H(S)|| < e | Fs (Hper(9)F)

2) If the functional F is given by the equality
F(V) = (F,V)s
and the vector-valued function F € Ly(S)* has zero mean over S, then the solution U mentioned
in item 1) belongs to the space H>.,(S)* and satisfies the estimate

per

U5 H2(S)|| < cl[F; La(S)]]. (2.9)

3) If F € Loo(S)¥ and the assumptions of item 2) are satisfied, then
U € Wag per(S)*

and

105 W e (S)] < €[ s Lo (S)]] (2.10)

Proof. 1) We consider the auxiliary problem

a(U,V;8)+ (U, V)s=F(V), Ve H,.(9)F, (2.11)

under the assumption that 7 > 0. By the inequality (2.5), the left-hand side of (2.11) with 7 > 0
is the inner product in the space Héer(S )k. Therefore, by the Riesz theorem on representation
of linear functionals in a Hilbert space, the problem (2.11) is uniquely solvable for 7 > 0. Since
the embedding H,..(S) C L(S) is compact, the Fredholm alternative holds for the problem
(2.11)—(2.4) with 7 = 0. Any solution U to the homogeneous (F = 0) problem (2.4) annuls
the form (1.7), i.e., it belongs to the lineal of polynomials (1.8) in view of (1.6) and becomes
a constant column in view of periodicity. The solvability condition (2.6) is the condition of
orthogonality of the right-hand side and solutions to the homogeneous problem, whereas the
condition (2.7) allows us to avoid the arbitrariness in the choice of a solution.

2) Let h € R™. The function
ApU(y) = h™ Uy +h) = U(y))
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satisfies the integral identity
(A DV NAU, DV )V)s + (A DTN+ h), 2(V,)V)s = (A, V)s = (F, A V)s.
Since
|And (y)] < [l7: CH9)|
and
ALV La(S)|| < [[Va V5 La(S)],
the estimate (2.8) shows that

1ALV HY(S)]| < e (|2(Vy)U; La(S)]| + [F; La(S)]),

where c is independent of h. It remains to pass to the limit of h = he;, where eq,..., e, is the
standard basis for R", as h — 0.

3) We first assume that

o € (SN N
and
F € C.(9)".
Consequently,
U e Ce.(S)F

because the operator .Z is elliptic. We fix a point y" € S and denote by x° € C° (R") a cut-off
function such that x” = 1 on the cube QY s with center y° and edge 46 and x° = 0 outside the
cube QY. For U? = x°U we write out the following system of equations:

T

LUV y) = 2(=Vy) ) 2(V,)U°(y)

— W) + (=V,) () — () 2(V,)U°(y)
+[ZL(y, Vy), x(¥)] U(y)

= FO(y) = F'(y) + F*(y) + F>(y), y€eS. (2.12)

We note that vector-valued functions U° and F° can be smoothly extended by zero to the entire
space R™.
Let ® be the fundamental matrix for the operator £ in R”. As is known (cf., for example,
[16]), it has the form
Q—n@/ —1 , n > 37
o) = | Iyl y) (2.13)
Clnlyl+®'(jy|"'y), n=2,

where C' € C*** and ®' are smooth (k x k)-matrix-valued functions on the sphere S*~!. Using
the fundamental matrix, we can compute the solution U° and its derivatives at the point 3°:

U'3°) = / o(y° — y)FO(y) dy,
- (2.14)

—— W) == —W —y)F(y)dy.
9= | 5,0~V
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Denote by If and If the integrals on the right-hand sides of (2.14) after the representation of
FY via FP by formula (2.12). By (2.13), the following estimates hold:

Vn
(o] + 1] + ] < el F; Loo(S) / (F2 7" T T dr < | F Loo(S)]). (2.15)
0
The support of the component F3 lies in the set (QTE)M\Q(Q) 5. where r = |y —y"| > 0. Consequently,

15| + |I7] < cl|Us H?(S)])- (2.16)

Integrating by parts and taking the commutator with a cut-off function, we find

T

2= [(269) 560 = 0) XA, )00 dy
4
:
+ [ (290500 - ) ) [9(-9,) X W) V) dy.
Rn

We can estimate the last integral by using the same arguments as in the proof of the inequality
(2.16). Thus, from the inequality

o (y) — o (y°)| < cly — y°|*

Q\NXN

which is a consequence of the inclusion &7 € Cp(S) , we find

46
2 L1l a0, n—1 o Ll
\Ij| < c||U; W (9)]] /T‘ " dr < ||\ U; W (9)]) (2.17)
0

Combining the relations (2.15), (2.16), and (2.17), we arrive at the inequality
U]+ VU ") < e(I[F; Lo ()| + U5 HA(S) || + 8% Us W (S)])-

Choosing ¢ > 0 small enough, taking into account (2.9), and computing the supremum with
respect to y¥ € S, we obtain the required estimate (2.10). It remains to get rid of the requirement
of superfluous smoothness. O

We also need the following consequence of the Korn inequality.
Lemma 2.4. For any vector-valued function U € HY(S)¥ the following inequality holds:
U5 HY(S)|? < e (|12(V2)Us La(S)IP + |27 (U) ), (2.18)
where X is the column of functionals on the space H*(S)* such that
ZtU)=tZ(U), t>0,
U™ — U weakly in HY(S)* asm — 00 = 2 U™) = 2 (U), (2.19)
Z((p)=0forpe” = p=0.
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The constant ¢ in (2.18) depends on 9 and X, but is independent of U.

Proof. By (2.5), it suffices to check the inequality
1U; La(S)I” < e (|2(V2)Us Lo (S)|IP + [27(U)[?),

Assume that it fails and there is a sequence {U™} in H'(S)* such that

U™ La(S)|| = 1,
[2(V2)U™; La(S)]| = 0 as m — oo. (2.20)

|2 (U)| —0 asm — oo,

By the estimate (2.5), the norms ||V, U™; La(S)|| are uniformly bounded, i.e., there is a sub-
sequence {U™a} that converges weakly in H'(S)*¥ and strongly in Ly(S)* to a vector-valued
function U® € H'(S)¥. Since 2U™ — 0 strongly in Ly(S)¥, we have 2U> = 0 and, con-
sequently, the polynomial property guarantees the inclusion U € &. At the same time,
2 (U™) = 0= 2(U®), ie., U*® = 0 because of (2.19). This conclusion contradicts the first
formula in (2.20), and, consequently, the inequality (2.18) is valid. O

2. Estimates for homogenization error. To treat residuals caused by the formal asymp-
totic construction, we need some auxiliary inequalities. Although these inequalities are known,
we prove them below for the sake of convenience.

The following simple inequalities are direct consequences of the one-dimensional Hardy in-
equality and can be easily checked (cf., for example, [6, Lemma 1.2.4]).

Lemma 2.5. For Y ¢ 11071(9) and Y € HY(Q) the following estimates hold:
e Y La(Oane)|| < ™Y La(Q)]| < Y HY Q)]s (2.21)
Y5 La(One)l| < /2|y HHQ), (2:22)
where the constant c is independent of € € (0,1], r is the distance to the boundary 02, and Oy,
is the intersection of Q0 and an (he)-neighborhood of its boundary 02, h > 0 is fized.

The construction of leading terms of asymptotic expansions of eigenfunctions leads to the
violation of the boundary condition. Therefore, these terms will be multiplied by cut-off func-
tions. We denote by X a cut-off function that vanishes in the (he)-neighborhood of 92 and is
equal to 1 outside the (2he)-neighborhood. It is clear that we can satisfy the conditions

0< Xo(n) <1, |VoXo(z)| et (2.23)

We assume that h > \/n, i.e., any periodicity cell
S ={z:zj—ca; € (0,6),j=1,...,n}, (2.24)
where X, =1, lies in the domain ; here, @ = (o, ..., a,) and a; € Z is an integer.

Proposition 2.6. Let Z be the mean of a function Z over the periodicity cell S = (0,1)",
and let either the inclusions

Y € HY(Q), Z <€ Ly(9) (2.25)
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or the inclusions

Y e WL(Q), ZeLi(9) (2.26)

‘/X 0z (2) de -2 /Y ) da

where P is the product of the norms of functions (2.25) or (2.26), and the constant ¢ depends
neither these functions nor the parameter € € (0, 1].

hold. Then
< ceP, (2.27)

Proof. We begin with the case (2.25). Denote by ¥¢(€Q) the union of cells intersecting 2
and by X5 the union of those cells in ¥°(£2) where X, = 1. It is clear that the numbers o°(Q2)
and of_ of cells forming ¥°(Q2) and (2¢(Q) \ £%) do not exceed ce™ and ™! respectively.
Therefore, by (2.22), we have

/X ( )d:c—/z(g) Y (2) d

X%

< Vs La(ZT @\ Z50N(E" 123 La(S2) )2 < ceP. (2.28)

It remains to consider the integral over the set X5 ; the symbol > will mean the sum over its
cells S¢. We have

/ Y(@)Z () de =" <S[ Z(2) 7" de +S/ Z(2) (@) -Y") d:c>

[
£

- Z <7/Y(x) dz +7/(?a —Y(z))dx +/Z (g) (Y (z) _?a)dx),
S Se

@
€

where Y denotes the mean of Y over the cell S¢. Using the Poincaré inequality on the small
set S

/ V() -V do < ce? / IV, (V) = V)| do = ce? /\va(x)\Q dz, (2.29)
S¢ S¢ S

we find

/Y da:— /Y ) dx

| / v)(2(%) - )

< el VY (@) La(S50) 17 (2 ) La (S50 < =P,

Arguing in the same way as in the proof of (2.28), we see that the integrals over the set X5 on
the left-hand side becomes integrals over the entire domain (2.

The case (2.26) is simpler since it is not necessary to use the Cauchy-Bunyakovskii inequality.
An additional small factor appears because of the relation

V(%) =Y <ce sup VoY (o)l Scel|ViWa(S)], xe€ Sz
reS2C
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but not the Poincaré inequality (2.29). O

3. Approximate solutions of the abstract spectral equation. The following assertion
is known as a “lemma about almost eigenvalues and eigenvectors.” The proof of this assertion
can be found in [17] (cf. also [10]).

Lemma 2.7. Suppose that a nonzero real number .4 and a vector-valued function % €
are such that

\%; )| =1, 6:=|HU— HU; | <|AH|. (2.30)
Then there erists an eigenvalue pj of the operator < such that
i — A < 6.

Furthermore, for any 61 € (6, |- #|) there are a5 such that

U — asus; <2£
> 5,

77

where the sum is taken over all the eigenvalues (1.19), (1.20) of the operator ¢ lying in
[ A — 1, 4 +01] and u; € A are the corresponding eigenvectors satisfying the condition (1.24);
moreover, the coefficients a; are normalized by the condition

> las)? =1

The proof of the following simple algebraic assertion can be found, for example, in [6, Lemma
7.1.7].
Lemma 2.8. If a (» X »)-matriz a is “almost unitary” i.e.,
|la*a —1,,;C* — C*|| =6 € (0,1),
then there exists a unitary matrix b such that
|ab — T,; C* — C*|| < 6.

Here, 1,, is the identity (» X »)-matriz.

3. Formal Asymptotic Analysis

1. Homogenized problem in the case p > 0. As usual, to provide a formal asymptotic
analysis, we assume that all the data of the problem under consideration are sufficiently smooth.

We consider the following asymptotic ansétze, used in the homogenization theory:

uf(z) = u'(x) + eN(e12) D (V) (z) + 2w(e 1z) + ... (3.1)
A =20 (32)

where N is the asymptotic corrector, i.e., in our case, it is a function of size k x K, periodic in
the fast variables (1.3), whereas a number \” and vector-functions u°, w should be found. We
substitute the ansétze (3.1) and (3.2) into the system (1.1) and apply the chain rule:

o (3.3)

(Vo w(e z,x) = (e DV, )w(y,z) + D(V.)w(y, 7)) ‘

y=e
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Collecting coefficients at the same powers of €, we obtain the following systems of differential
equations on the periodicity cell S = (0,1)" 3 y with parameter x € Q:

Ly, V) N)2(Va)uil (z) = D(Vy) ()P (Vo)ui (@), y € S; (3.4)

Ly, Vy)w(y, ) = D(Va) & (y)2(Ve)ul(z) + Ap(y)u’(z)

+9(Vy) Y2 (V)N@)2(Ve)u'(z), yeS.

These systems are completed with the periodicity condition with respect to y, which is not given
explicitly. In other words, solutions to the problem on the cell S = (0,1)™ are always looked for
in the class H! (S)*. We emphasize that in formulas (3.4) and (3.5), the variables = and y are

per
assumed to be independent.

Since the matrix o7 is periodic, the following equality holds:

/ (V) () dy = 0 € CHE. (3.6)
S

From (3.4) we obtain the problem for asymptotic corrector

L(y,Vy)N(y) = (V) #(y), yeS. (3.7)

By Proposition 2.3, this problem has a unique periodic solution N € ngr(S VeX K satisfying
the orthogonality condition (2.7).

As in the case (3.6), the mean of the last term in (3.5) over the cell vanishes. The solvability
condition (2.6) for the problem (3.5) takes the form

V) / (o (4) + (1) 2(V,)N(y)) dy D(Va)u(z) = \° / ply) dy°(z)
S S

or

L(V,)u’(z) = N5’ (z), 2€Q, (3.8)

where 7 is the mean (1.25) of the density p and L is the differential operator (1.28) with matrix
A= [(@W) + )29, W) dy. 3.9
S

Lemma 3.1. The (K x K )-matriz (3.9) is Hermitian and positive definite.

Proof. Taking into account the problem (3.7) for the corrector N and integrating by parts,
we find
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>
I

/(%(y) + A (W)2(V)N W) + (V)N (y) + N(y) 2(9,) (y)) dy
S

( (v) + & W) 2(V)N () + (DN () + Nw) ZL(y.V,)N(y)) dy

-

(@ () + (V) 2(Vy)N () +(Z2(V) )N )" () +(D(V,)N() " (y)2(Vy)N(y))dy

(Z2(Vy)N(y) + 1) "o (y)(2(Vy)N(y) + 1) dy, (3.10)

w— A

where I is the identity (K x K)-matrix. Now, it is obvious that the matrix A is Hermitian.
The matrix (3.10) is nonnegative definite because the periodic matrix 7 is positive definite. We

assume that ZTA§ = 0 for some column & € CX. Then

0= / (2(V)NWE+E)" A GNP (V)NY)E+E) dy > cor | D(Vy)NE+& La(S)|P, ca> 0.
S

Hence
@(Vy)N(y)f +£=0.

Integrating over the cell S and using a formula similar to (3.6), from the last relation we find

& = 0, which is required for confirming the positive definiteness of the matrix A. O
We complete the system (3.8) with the Dirichlet condition

uw(z) =0, x€oQ (3.11)

coming from the initial problem (1.1), (1.2). Since L is a formally positive operator and p > 0

by assumption, the following assertion is obvious.

Proposition 3.2. The problem (3.8), (3.11) in the variational form

a’(u’,v;Q) == (AZ(V )u", 2(Vi)v)a = N5’ v)q, v € ﬁl(Q)k, (3.12)

has an infinitely large sequence of eigenvalues

0< AT <A< <A < 5 4o (3.13)

and the corresponding vector-valued eigenfunctions u(()jg € ﬁl(Q)k satisfy the orthogonality and
normalization conditions

— (. 0+ 0+) _ S
D (u(j),u(l) )Q =01, Jl=1,2,... (3.14)

0+
)
belong to the Holder space C%%(Q)F for any 6, € (0,0) and are infinitely smooth inside the
domain Q. In particular, they belong to the class C%(Q)*, i.e., they are twice continuously

differentiable up to the boundary. O

Remark 3.3. Since the boundary 99 is of class C*9, the vector-valued eigenfunctions u
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2. Homogenized problem in the case p = 0. We change the asymptotic ansétze (3.1)
and (3.2) and represent the eigenpair {\°, u®} of the problem (1.1), (1.2) in the form

uf(z) = ul(z) 4+ ¢ (N(s_lx)@(v$)u0(x) + BNO(E_IZC)UO(:C)) +2w(e e, x)+ ..., (3.15)

MN=c"184+. .. (3.16)

Here, u°, N, and w have the same sense as above, and 3 is a new spectral parameter that appears
explicitly in the ansatz (3.15) for vector-valued eigenfunctions. Furthermore, the additional
asymptotic corrector N? is a periodic (k x k)-matrix-valued function with zero mean over the
cell S that satisfies the system of differential equations

Ly, Vy)N(y) = p(y)Ix, y €S, (3.17)

By Proposition 2.3, the problem (3.17) is solvable because of the requirement 5 = 0 which is
satisfied in this subsection. We write the variational statement of the problem (3.17):

(A D(VYN®, D(Vy)V)s = (p,V)s, V € Hpeu(S)".

per

We substitute the asymptotic anséitze (3.15) and (3.16) into the system (1.1). The total
coefficient at e~! vanishes by the definition of asymptotic correctors. Indeed, by (3.7) and
(3.17), we have

IVy) o (1) 2(V)u (z) + Bply)u’(z)

+ (V) & )2V, (NP (Vo) (@) + BN () (2)) = 0.
The problem for the third term w of the ansatz (3.15) has the form
L. Vyuly.z) = 7(Vs) (1) (Va)u(x)
+ Bp(y) (N (9)2(V)u’ () + BN (y)u’(z))

— T

+9(Va) A (y)2(Vy) (N (@) 2(Va)u’(z) + BN (y)u’ (x))

+ () o D(V) (NW2(Vo (@) + BN ()u(2)), yeS. (3.18)

The last term on the right-hand side has zero mean over the cell S. Furthermore,

E— T
m::/ﬂ(y)No(y) dy = _/ (2(Vy) “(y)2(V,)N°(y)) N°(y)dy
S

S
- / @7, NW) o (1) 2(V,)N(y) dy. (3.19)
S

It is clear that m is a Hermitian positive definite (k x k)-matrix.
We continue calculations:
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/ A (Y D(V,)N(y) dy = — / @07, () N(y) dy (3.20)
S

S
_ / GVIND) o (W) 2(V,)N(y) dy = —5"
S

Thus, according to the definitions (1.28) and (3.9), the solvability condition (2.6) for the
problem (3.18) takes the form of a quadratic pencil

L(V.)u’(z) — BsD(Va)ul(z) + FD(V,) §'u0(z) — fPmul(z) =0, z € Q. (3.21)

The system of differential equations (3.21) is equipped with the Dirichlet boundary condition
(3.11). The variational statement of the problem (3.21), (3.11) is to find a nontrivial vector-

valued function u® € H L(Q)* and a number 3 € C satisfying the integral identity [4]
a(u®,v;Q) — Bb(u’, v; Q) — 2(mu’,v)q =0, ve HYQ), (3.22)

where a is the form on the right-hand side of (3.12) and b is a Hermitian sesquilinear form

b(u’,v;:Q) = (s2(V,)u’,v)q + (u°,s2(V,)v)q. (3.23)

By the Riesz theorem on representation of linear functionals in a Hilbert space, with the problem
[¢]

(3.22) we can associate an operator 2(3) in the space H'(Q)* that is a quadratic function of

the spectral parameter 3 € C.

Theorem 3.4. The pencil B — A(B) has a discrete spectrum. The eigenvalues are alge-
braically simple (there are no adjoint vectors) and form two — positive and negative — infinitely
large sequences

0<pB41<Pr2<... By <=+ 00, (3.24)
0>,8_1>ﬁ_2>...ﬁ_j>"'—>—00. (325)

The corresponding vector-valued eigenfunctions u(ij € ﬁl(Q)k can be subject to the orthogonality
and normalization conditions

a(u?j),u?l); Q) + ﬁjﬁl(mugj), U?l))g =01, Jl==%1,%2,... (3.26)
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Proof. Since (') — A(B?) with any 3!, 3% € C is a compact operator in ﬁl(Q)k (the
obstruction form a, vanishes), the spectrum is discrete in accordance with [18, Theorem 1.5.1].

Let B € C,u’ € ﬁl(Q)k \ {0} be an eigenpair of the problem (3.22). Taking u" for a test
function and separating the real part from the imaginary part, we find
a(u’,u%; Q) — Repb(u’,u’; Q) — (Ref)? — (Im B)?)(mu’, u’)q = 0,
—Im Bb(u’, u%; Q) — 2Im fReB(mu, u’)g = 0.
In the case Im 8 # 0, this implies
0 = a(u’,u’; Q) + 2(RepB)?(mu’, u®)q + (Im )% — (ReB)?)(mu’, u’)q
= a(u’, u’; Q) + |8 (mu’, u®)q > 0. (3.27)

We took into account that both forms on the right-hand side are positive definite. The obtained
contradiction means that Im 5 = 0 and the eigenvalues are real and are different from zero.

Now, we check that there are no adjoint vectors, which are found from the problem

a(ut,v;Q) — fb(u',v;Q) — f(mu',v)q = b’ v;Q) +26(mu’,v)g, ve HY Q. (3.28)

Explanation. The right-hand side of (3.28) contains the S-derivative of the quadratic poly-
nomial from the left-hand side of (3.22) which is computed on the eigenpair {3,u’} and is taken

with the opposite sign. Assume that a solution u! € i L(Q)* to the problem (3.28) exists. We
set v = u® in both integral identities (3.22) and (3.28). The left-hand side of (3.28) vanishes in
view of formula (3.22) with v = u!. Multiplying (3.28) by 8 and subtracting the equality (3.22),
we find

0= ﬁb(uo,uo; Q) + 252(mu0,u0)9 + (a(uo,uo; Q) — ﬁb(uo,uo; Q) — BQ(muO,uO)Q)
=a(u’, 1% Q) + g2 (mu, u’)q > 0. (3.29)

We arrive at a contradiction, which means that there are no adjoint vectors.

Since the same Hermitian positive definite forms appear in (3.27) and (3.29), it becomes
possible to satisfy the normalization condition (3.26). The same relations appear for the orthog-
onality conditions as follows: in the integral identity for the eigenpair {Bj,u(()j)} (and the pair
{5l,u?l)}), we set v = ﬁj_lu((]l) (and v = ﬁl_lu?j)). After the complex conjugation, we subtract
the second equality from the equality and find that

(85" = By Daluly), uy: Q) — (8; — Bi) (mu;), ugy)e = 0. (3.30)

In the case f8; # (3, formula (3.30) implies the required relation (3.26).

It remains to show that there exist exactly two infinitely large sequences (3.24) and (3.25)
of eigenvalues4). Let m'/2 be the positive square root of the matrix m. We write the system of
differential equations (3.21) as follows:

4 In the case s = 0, this fact is obvious since B4 = iB;/Q, where 0 < B; < B2 < ... < Bj <— +o00 is the

sequence of eigenvalues of the problem a(w,v; Q) = B(mw,v)q, v € I?II(Q)’“ (cf. the system (3.21) with removed
two terms in the middle of the left-hand side).
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L(V,)u’(z) + iB(vx)mle(vx)uo(x) + %B(Vx)m’l/QUO(x) = Am'2U%(z),

) (3.31)
§m*1/2B(vx)u°(x) +U%z) = fm20(z), ze€Q.
Here, the second row serves as the definition of the new unknown U? = (U?,...,UP)" and

B(V,) is a formally selfadjoint differential (k x k)—matrix-valued operator of the first order that
appears on the left-hand side of (3.21); namely,

B(V,) = —s2(V,) + (V) s (3.32)

The first row in (3.31) appears because of the new notation in (3.21). It is easy to check that
the system (3.31) for {u®, U°, 8} yields the system (3.21) for {u, 8}.

The variational statement of the problem (3.31), (3.11) for the extended vector-valued func-
tion u = (u%, U°) can be written as follows:

41, 0:Q) = (AZ(V. )i, (V. )10)0 + i(m_lB(ch)uO, B(V,)")q

1 1
+ §(U0,ml/2B(V$z)UO)Q + §(m1/2B(V$)u0, VOa + (U, Vg
= Bt(u,0;Q) := B((m"2U°, %) + (u®, m'/2V%)q), (3.33)
b=V € §:= H(QF x Ly(Q)*.

Since
1 2
a(u,1.2) = (AZ(Va)u’, 2(Va)u)o + |U° + Sm! 2BV, )u’; La(9)|

the Hermitian sesquilinear form q is positive definite in the Hilbert space $) and possesses the
polynomial property [2, 3]; moreover, the lineal of polynomials 8 in an assertion similar to (1.6)
takes the form p = &2 x CF (cf. the definition (1.8)). Note that the relation

q(u,15.Q) > O ([’ H(Q)I* + [U% L2(Q)]%), € >0,

follows from the inequality (2.1) and positive definiteness of the matrix A. With q we can
associate a continuous selfadjoint positive definite operator 9 : $ — $*. Denote by Q2 its
positive square root (cf., for example, [10, Section 10.4]).

The polynomial property guarantees (cf. [2, 3]) the ellipticity of the system (3.31) in the
sense of Douglis—Nirenberg with framing
{tl,...,tgk} = {81,...,82k} = {1,...,1,0,...,0}
(k units and k zeros) and also yields its covering of the Dirichlet boundary condition (3.11) at
each point x € 9. In other words, the boundary value problem (3.21), (3.11) is elliptic in €2.

The Hermitian form t on the right-hand side of (3.33) is not sign-definite and takes positive
and negative values on the infinite-dimensional linear sets

He = {u = {00, +u0) 1 € ﬁl(g)k}
respectively. Since the mapping
H3u=(u,U% = Tu={m'20° m'?u’} € §* = H-H(Q)F x Ly(Q)*
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is compact, the above-listed observations yield the existence of sequences (3.24) and (3.25) of
eigenvalues of the problem (3.33) or (3.31), (3.11), and, consequently, the problem (3.22) or
the problem (3.21), (3.11). To obtain this assertion directly, it suffices to apply the max-min
principle (cf., for example, [10, Theorem 10.2.4]) to the compact operators & = Q'/20'/2 and
—@; the first operator appears in the abstract spectral equation
G = oqiv,
obtained from the problem (3.33) by the replacements
u— =0 Boo=p""

and are equivalent to this problem, Theorem 3.4 is proved. g

Remark 3.5. As in Remark 3.3, the vector-valued functions u(()j) belong to the space
C?9%+(Q)* ¢ C%(Q)* for small d,, and are infinitely differentiable inside the domain . O

3. Attempt of homogenization in high-frequency range. We consider the asymptotic
ansatze

u(z) = w@)U e ta) + ewV (e e, 2) + 2w (e e, z) + ... (3.34)
N=e2r+e W 4070 4 (3.35)

where {7,U} is the spectral pair of the problem on the cell

D(—Vy) () 2(V,)U(y) = mpy)U(y), y €S, (3.36)

with the periodicity condition on the opposite faces of the cube S = (0,1)". Numbers 7@ and
vector-valued functions w, w? are unknown and should be found (in particular, and height of
the column w).

Modifying the arguments of Subsection 1.3, we obtain the following assertion.

Proposition 3.6. The problem (3.36) in the variational form
a(U,V;8) =7(pU,V)s, V € HL.(S), (3.37)

has a discrete spectrum. With the eigenvalue 79 = 0 we associate the eigensubspace CF of
constant vector-valued functions. The remaining eigenvalues form two infinitely large sequences,
positive and negative:

N

0< 741 <740 ...T+j<"'—>+OO,

0>7 127922 ...7j =2 — —00,

and the corresponding vector-valued eigenfunctions Us; € H;er(S)k satisfy the orthogonality and
normalization conditions

(I(U(j),U(l);S) = 041, ],l = :|:1,:|:2,... (338)

We introduce several simplifying assumptions. First, 7 # 0 is a simple eigenvalue and U is
the corresponding eigenfunction which, by (3.38) and (3.37), satisfies the relation

(pU,U)s =7 (3.39)

232



By this assumption, the unknown w on the right-hand side of (3.34) becomes scalar. We
substitute the ansétze (3.34) and (3.35) into the system of differential equations (1.1) and,
using the chain rule (3.3), collect coefficients at the same powers of the small parameter. The
coefficient at e~2 vanishes since {7, U} is an eigenpair of the problem (3.36). The coefficients at
e~ form the following system of differential equations with parameter = € €:

Ly, Vy)w(y,z) — 7p(y)wV (y, z)

= 9(V.) A W) 2V YU () + Z(V,) o 0)2(Va)U )w(z) + 70 py)U ()w(z)

= FW(y,z), yes. (3.40)

Since 7 is a simple eigenvalue, the solvability condition for (3.40) in the class of periodic functions
is the orthogonality condition in the space Ly(S)* of vectors F (1) and U. Thus, the following
relation must hold:

- ow

rD(pU,U)s =Y (' 2(V,)U, 2(ep)U)s = (4 D(e), D(V,)U)s) 5

p=1

It is clear that the factor it, at the derivative Ow/0x, on the right-hand side of (3.41) is purely
imaginary. In particular, it vanishes for the real matrices &/ and . We formulate the second

simplified assumption: for a complex matrix the equality t, = 0 holds. Then M =0 in view
of (3.41) and (3.39), whereas the second term in the ansatz (3.34) takes the form

w0 (y,2) = 37 NGy ) o (), (3.42)
p=1 P

where Nipy € H;er

problem

(S)* is an analog of the above asymptotic corrector, i.e., a solution to the

Ly, V)N () — )N, () = D(ep) () P(V,)U(y)

+T(Vy) A () 2(e,)U(y), yeS. (3.43)

By the above assumption, the problem has a solution determined up to a summand cU and
becomes unique if the orthogonality condition is satisfied:

(PN, U)s = 0. (3.44)

We compose a (k x n)-matrix N7 of columns Niys - NG,

) and write (3.42) in the form

w(l) (yv .1‘) = NT(y)wa(ZC).

The superscript 7 indicates that the matrix N7 depends on the eigenvalue and vector-valued
eigenfunction.
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We continue calculations. The terms w(® and 72 of the asymptotic ansitze (3.34) and
(3.35) satisfy the system of equations

Ly, Vy)uw? (y,z) — 7p(y)w® (y,z)

= 9(Va) A W)P(V)U(y)w(z) + D(Vs) ()2 (V)N (4) V()

+ DY) A (W) 2(Va) N () V(@) + 7@ p(m)U (y)w(z), ye S, (3.45)

By (3.39), the above-mentioned solvability condition for this problem on a cell in the class of
periodic functions is written as the following scalar differential equation:

—V, TV, w(z) = @7 w(z), zeQ, (3.46)

where T7 is an (n x n)-matrix with entries

Typ = (A D(V )Ny, D(eq)U)s — (o D(eq)Nj,), 2(Vi)U)s. (3.47)

For Equation (3.46) we consider the Dirichlet condition following from the original boundary
condition (1.2):
w(x) =0, x €. (3.48)

Substituting the test function V' = N7 into the integral identity (3.43), we find
Tgy = (A D(Vy)Nipy, 2(Vy)Nip)s — T(pN(y, Nig )s-

Thus, T7 is the difference of two (symmetric) Gram matrices. The first matrix is nonnegative
definite, but the sign of the second matrix is unknown because, at least, p is a changing sign
density (cf. the assumption (1.18)).

The authors see no way of proving the positive definiteness of the matrix 77 in the general
case (the matrix is a priori nonnegative, but can be singular) so that, at least an elliptic operator
appears on the left-hand side of (3.46), which provides the discreteness of the spectrum of the
problem (3.46), (3.48). If the matrix T is singular, the spectrum is not necessarily discrete. In
all the cases, it is impossible to make an informative conclusion about eigenvalues of the problem
(1.1), (1.2). Furthermore, there are situations (cf., for example, comments in [19] to the paper
[20])), where the formal asymptotic analysis leads to wrong conclusions.

The following remark shows how to get rid of the above-introduced simplified assumptions.
However, such generalizations are little informative, as in the case of the above calculations.

Remark 3.7. If 7 is a multiple eigenvalue and {U!, ..., U"} is a basis for the corresponding

eigenspace, then the ansatz (3.34) is replaced with the following:
K
u®(z) = Z wy(2)UP (e 1) + ewD (e, ) + 2w (e7la ) 4. ..
p=1

and the vector w = (wy, ... ,w,«v)—r becomes unknown. In this sense, the eigenvalue 7y = 0 and
the corresponding vector-valued eigenfunctions were also used in the asymptotic analysis of the
previous subsections, where U? =e,, p=1,...,n. O]

Remark 3.8. Let 7 be a simple eigenvalue. If not all coefficients ity,...,it, on the right-
hand side of (3.41) vanish, then the solvability condition (3.40) can be written as the differential
equation

it Vow(z) = rMw(z), z e, (3.49)
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where t = (t1,...,t,)" is a number real column. Respectively, the problems (3.43) for the
columns N] in the asymptotic corrector (3.42) are also modified:

(ﬂ_@(vy)]\f{p), -@(vy)v)s - T(pN(pr V)S

= (DU, D(ep)V)s — (d D (ep)U, Z2(Vy)V)s — itp(pU,V)s, V € le)er(S)k‘

Furthermore, we need a general solution to the system (3.40), i.e.,

w(y, z) = N7(y)Vow (@) + w (@)U (y)
and w1? is a new unknown function. As above, the columns N(Tp ) satisfy the orthogonality
condition (3.44).

The system (3.45) with respect to the terms w(® and 7() of the asymptotic ansitze (3.34)
and (3.35) takes the form

Ly, Vy)w?(y,z) — 7p(y)w? (y, z)

= 9(V2) A WDV)U()w(x) + D(V2) o (y)2(Vy) (N7 () Vaw() + U (y)w (@)

+ DY) A () 2(Va) (N () Vaw(x) + U (y)w? ()

+ 7 p(y) (N7 (y)Vaow(@) + U(y)w'(2)) + 7@ p(y)U (y)w(z), y e S.
Owing to the orthogonality condition (3.44), the modification of the corrector N7 does not affect

the final formulas (3.47) for the entries of the matrix 77, but the homogenized equation (3.46)
takes the form

—VITV,w(z) = 17 w(z) + (W w0 (2) — irt Vw9 (z), zeq, (3.50)

Now, the right-hand side of (3.50) involves the differential operator 77~ — i7tTV, which
already appeared in (3.49). Therefore, it is reasonable to project this equation onto the subspace

{f € Lo(Q) : (f, 7 V7o —irt Vo) = 0, v € ﬁl(g)},

and complete the obtained relation with the equalities (3.50) and (3.48). The obtained problem
contains two spectral parameters, 7)) and 73; moreover, 7™ is involved in the projection
onto the subspace (3.50). Since the justification of asymptotics in the high-frequency range
|A¥| = O(e72) goes wrong, the authors do not consider this nonstandard spectral problem. [J

4. Justification of Asymptotics

1. Case p = 0; treatment of residuals. According to the asymptotic ansétze (3.16) and
(3.15), the pair {#,% } in Lemma 2.7 includes the following number and one of the vector-
valued functions

M = Eﬁi}v %(p) = HU(IJ);‘%ﬂH_lU(p)7 (4.1)
where j €N, p=j,...,5+34; — 1, and
Uy () = u((]ip) (x) + sXa(:c)(N(s’lx)@(V$)u?ip) (z) + ﬁijNO(sflx)u?ip) ()); (4.2)
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B+j is an eigenvalue of the pencil (3.22) with multiplicity s, i.e.,

TP1jF1 < EPrj =0 = Efajing 71 < Tlijti;, (4.3)

and 3, are elements of the sequences (3.24) and (3.25). Finally, U(iy . ,uoij 4+, 1 are the corre-
sponding vector-valued eigenfunctions satisfying the orthogonality and normalization conditions
(3.26), N and NY are the asymptotic correctors, i.e., a (k x K )-matrix and a (k x k)-matrix solv-
ing the problems (3.7) and (3.17) respectively, and X, is a smooth cut-off function introduced
before Proposition 2.6.

We begin by computing the inner products (Uy,),U,)) in accordance with the definitions
(4.2) and (1.15). Differentiating and making the change of variables y — x = ey, we find

D (Vo)) (@) = Xo(@) (T + D)) N () Z(Vo )l (2)
+ By 2 (V)N ()l (2))
+ e Xe(@)2(92) (N W) 2Ty (2) + Bip N ()l (1))
+ (1= X (@) 2(Va)uly ()

+ 22 (V). X (N @)D (Va)uls ) (@) + Bep N ()l () )
=i Xo(2)JG)) (x) + eXc(2) I35 () + JG) (), (4.4)

where [2(V;), X¢] is the operator of multiplication by a (K x k)-matrix-valued function z +—
9(V3)X.(z) with entries of order e~! in accordance with formula (2.23). The supports of these
entries, as well as the support of the difference 1— X, are concentrated in the (2he)-neighborhood

of 9. Denote by 3¢(9f2) the union of those periodicity cells that intersect this neighborhood;
moreover,

mes,, X°(092) = O(e)
and
|u?ip) (ZC)‘ S ce

for x € QN X5(0N) by the boundary condition (3.11). Consequently, taking into account the
inclusion u(() ip) € C%9(Q)F (cf. Remark 3.5), which yields the boundedness of the vector-valued
eigenfunction and its derivatives, we find

s La@IF < e [ (sup [Vauley @) (L + N 0)2) + sup ull, () 2N (7)) do
se{o0) zeQ z€eQ

<c(1+|N; Lo(S)]* + 2| N Lo (S)|*) mes, X°(99Q) < ce.
Let X¢(Q2) be the union of the cells intersecting 2. Then

(X L)

< ce? / (sug Vi) (@I 0) P+ sup \qu(()ip)(x)\Q\No(é_lx)\Q) dz < ce?.
xre xre
()
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Thus, we have established that
‘ (MEQ(VI)U(},), DV a)Uig)) — (A°XTE), XEJg;))Q( < ce. (4.5)

To compute the subtrahend on the left-hand side of (4.5), we use Proposition 2.6 (the version
(2.26)) and obtain the formula

‘ (%SXEJEs;),XEJ(aql))Q — a(u(()ip), u(():l:q); Q) — ﬁipﬁiq(mu(()ip),u(()iq)> < ce. (46)

o
Ezxplanation. We replaced J(E}}) and J(E(;) by the sums (cf. (4.4)), took into account that the

product of entries of 2(V,)N and 2(V,)N° belongs to the space Li(S), whereas the product of
components of the vector-valued functions u(() ) and u(() 1g) 88 well as their derivatives, belongs

to the space C1(f2), and, finally, we computed the mean of rapidly oscillating factors over the
cell S. We also used the definitions (3.10) and (3.19) of the matrices A and m and took into
account the equality

/ GV,)N) o (9) (I + D(V,)N(y)) dy
S

- / NO(y) (F(=Vy) o (y)(Ixc + D(V,)N(y)) dy = 0 € CK
S

which annihilates crossing terms, i.e., terms containing both correctors N and N, and can be
obtained by using the periodicity of the matrix-valued functions N, N°, and <7, the integration—
by-part formula, and the relations (3.6), (1.5).

Since the sum of two subtrahends under the sign of modulus in (4.6) forms the left-hand
side of the orthogonality and normalization condition (3.26), from (4.4)—(4.6) it follows that

|(ﬂ5.@(v$)U(p), .@(VgC)U(q))Q - (5p7q‘ < ce. (4.7)

Therefore, for small € > 0
Uy ) > 172 (4.8)

In order to apply Lemma 2.7, we estimate d in (2.30). Taking into account (4.1), (1.15), and
(1.16), we find

0 = || Uy — M) H |
= sup [(H Uy — M Up),w)]

(w,w)=1

w>|

= %HU@),%H_I ( sup |%_1<%€U(p)vw> - <U(p)7

w,w)=1

=1} sup |(S DTV, 2(Ta)w) = 7 Bey (Ugyyw) |

(w,w)=1

< ce sup K,ZU(},) —EilﬁijU(p)flU)Q , (4.9)

(w,w)=1

where the supremum is taken over w € J# = q L(Q)* such that [|w; 5| = 1. We emphasize that,
in the last transformation in the chain (4.9), we took into account the estimate (4.8) and used
the Green formula. It is important that the support of the cut-off function X. is located inside
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the domain 2 and the vector-valued eigenfunctions are infinitely differentiable there (cf. Remark
3.5), i.e., the expression .& U(p) is well defined. However, for obtaining estimates, uniform with

respect to €, we should get rid of the third order derivatives of u(() )

We remove the cut-off function X, from the differential operator .£° and then apply the
inequalities (2.23) and (2.21):

e|([£°, Xa](N@u(()ip) + ﬁijNou(()ip)), w)q|

< eee (INsHY () + [N HY(S) |y C2(Q)] € / rHw(w)| do

SUpp|Va Xe|
< ce'?|w; A
Here, we took into account that r < ce on the set supp |V, X.| of volume O(g). Similarly,
(1= X)(L0ulyy) — 7 Brjpulsy), wel

ce™! (mes,, supp(1 — Xé-))l/2 el|r~tw; |

N

< ce'P|w; 2.

In other words, with an (admissible) error O(¢'/2) the last inner product in formula (4.9) is
equal to the expression
(e 4+ ey + 013 + 1y, W), (4.10)

where W¢ = X.w and
T 0

L(y,2) = (V) (y)(Ix + D(Vy)NG) D (Va)ul, (@),

L{y, @) = Bi; (F(=V,)
L(y,a) = D(—Va) & ()P (Va)uls, (@)

. (4.11)

+2(=Va) A WD (Vy)(NG)D(Va)ul sy (x) + BN (y)uly,) (@)

+ Bip() (N (1) 2(Va )ul iy (@) + B NO(y)uly) (2)),

Ii(y,z) = —e{e1D(Vy) + D(Va) } A () D (Vo) (N () 2 (Ve )uly) ()
+ BN (y)ulsy ().

As in (4.4), on the right-hand sides of (4.11) after the differentiaton, we should return from
the fast variables (1.3) to the slow variable z. It is remarkable that the expression in the curly
brackets in the last formula of (4.11) contains the operator 2(V,) of “full” differentiation (cf.
the rule (3.3)). Hence, integrating by parts, we obtain the equality

(I, Wo)q = € / (GVIWE@) () 2V (N )PV )il () + B Nl () dar

Q
(4.12)
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On the right-hand side of (4.12), there are only the first order and second order derivatives of
vector-valued function u? ) (cf. comment to (4.9)).

Again, taking into account the property of supports of the derivatives of X., we find

IVaWe La(Q)I* < e (IVaw; La(Q)? + €7 |Jw; Lo (supp [ Vo Xe] )|
e (I Vow; La(Q)? + [lr~ w; L ()|

< cljw; 2)? = c. (4.13)

Since the matrices o7, N, and N° in the integrand of (4.12) depending on the fast variable y
are not differentiated, we find

(14, W¥)a| < ce||[ VoW La(Q)]| < ce.

The components I; and I3 of the first factor in (4.10) vanish by the definition of correctors
(cf. (3.7) and (3.17)). The relations (3.9) and (3.19)—(3.21) show that the mean of I3 over the cell
y € S vanishes since {43, U(;)tj} is the spectral pair of the problem (3.21), (3.11). Furthermore, it

is equal to the sum of products Z (e~ 'z)% (z), where Z € Ly(S) and # € C'(Q). Consequently,
the assumptions of Proposition 2.6 (the version (2.25)) are satisfied; moreover, ¥ = #W¢.
Thus, by (2.27) and (4.13),

|(I3, We)q| < cg||VaWE; La(Q)|| = ce.
Combining the obtained estimates, we get
|2 Uy — M Uy HN| < =
By Lemma 2.7, there is an eigenvalue pg of the operator J£° such that
G — eBEH| < 2. (4.14)
For the eigenvalue A7 of problem (1.1), (1.2) connected with g by formula (1.17), we have
NS — e Byl < ey = A <ee M1+ ee¥PXY),

ie., for € € (0,¢;] and small £; > 0

NS — e 1Byl < e V2 (4.15)

Now, we use the second part of Lemma 2.7 with Cje?’/ 2

constant. We find columns afp) of coefficients afgl such that

[0 = 32 s | <2570 < Gy, B I =1, (.16)

moreover, £p = £j,...,+jE 4 ;F1, and the sum is taken over those eigenvalues of the operator
J ¢ that satisfy the inequality

instead of 01, where C; is a large

1§ — eB1] < Cjeb/2. (4.17)

For small € they have the same sign as 51;‘ (the assumption &; € (6,¢|B+;|7!) of Lemma 2.7
is satisfied) and form the sequence {,uiJ(E), s B () K () H} From (4.16), (2.30), (1.24) and
(4.1), (4.7), (4.8) we find

(%) U a) <%(q Zalu(l %(q> <%(p Uq) —~ Zal“(l> q))Ta(p)
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and

(W), X)) — Opa| = | Zpys N H | 20 (U, Utg)) — 1Uys 117 | < ce.

Then we obtain the estimate

‘(%)Tafp) - 5p,q( <c(e+CY (4.18)
which means that for small € and C;l the columns afj), . ,afj f—1) of height K (¢) are “almost
orthonormal,” which is possible only if

K(e) = ;. (4.19)

Consequently, there are at least s; eigenvalues of the operator J# ¢ satisfying the inequality (4.17)
which is not too different from the inequality (4.14) and, consequently, implies the estimate (4.15)
for s¢; eigenvalues of the problem (1.1), (1.2). Our next goal is to verify the equalities K (e) = ;
and J(g) = j.

2. Case p = 0; convergence and approximation error. We fix j € N. By (1.24), the
H!(2)-norms of vector-valued eigenfunctions ug ; are uniformly bounded with respect to the
parameter € € (0, ]

[uissy H Q)] < e (4.20)
Consequently, there exists an infinitely small sequence {e,,}°_;, along which
ufyjy = Uxj) weakly in HY(Q)* and strongly in Ly (). (4.21)
Furthermore, taking into account (4.15), we find

eXs < Fedd < 2By + Cje'/? <oy (4.22)

Ezplanation. Since for every j € N there is a subscript ¢ = ¢(j) € N for which the inequality

(4.15) holds, from (4.19) it follows that {)\iq(l), ce )‘iq(j)} are ordered, i.e., q(j) > j. By (4.22),

there exists an infinitely small sequence {€,,} (we can assume that it coincides with the above
sequence) such that

EmAL — Bij for m — +o0. (4.23)

For an arbitrary vector-valued function V' € C° (Q)* we construct a test function in the

integral identity (1.10) in accordance with the asymptotic ansatz (4.2):
v (z) =V(z)+¢e (NE12)2(Ve)V(z) + f-:)\ijNO(z-:*lx)V(x)) .

It is not necessary to use a cut-off function X, since v®* = 0 in a neighborhood of the boundary
09). Integrating by parts, we obtain the equality

0= (ufij),.zvs — 23,0 (4.24)
Repeating the above calculations (which are even simpler since there is no cut-off function), we
see that the difference in the second position of the inner product (4.24) is expressed as follows:
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D(Va) S WD)V (@) + DY) o (W) DY) (N(y)2(Va)V (z)

+ XL N (Y)V (2)) +eXgp(y) (N () 2(Ve)V (%) + AN (y)V (2))

— T

+9(=Vy) A WD(Va) (NP (Va)V (2) +eXy;NO(y)V ()

— T
+e9(=Va) A (YD (Vo)(NY)2(Va)V (@) + XL ;N (y)V (2))
as usual, we mean that the replacement y — x = ey was made after the differentiation. It is
clear that the estimates (4.22) and (4.20) imply
\(ufij),slg,(V))Q\ < ce = 0.

The mean of I4(V) over the cell S > y vanishes, and I4(V') is represented as the sum of
expressions Z (e 'z)% (x), where Z € Lo(S) and % € C%7(Q). Hence, by the estimate (4.20)
and Proposition 2.6 with YV = @ufij), we have

(s, Ta(V)al < ce'/? — +0.
From the sum of the first three terms in (4.25) we subtract the expression

I(V,eAi;) = L(Vo)V(2) + eAl,;B(V,)V(z) — £2(AL,)°mV (2), (4.26)
where the operators L, B and matrices A, m are defined by formulas (1.28), (3.32) and (3.9),

(3.19) respectively. Then the resulting expression also has zero mean over the cell S 2 y. As
above,

Wiy, L(V) + (V) + I(V) = I(V,eX%))al < ce'/? = +0.
It remains to note that (4.21) and (4.23) imply the convergence
(ufzj),I(V, Em)\j:";»))g = (W), IV, Axj))a  as m — 4o0.
Passing to the limit along the sequence {e,,}7°_, in (4.24), we obtain the integral identity
(e, IV, Bj))a =0, V€ C(Q)F,
which can be written in the form
a(TUwj) Vi Q) = Bajb(Upe)), ViQ) — (Bej)*(miyy), Ve =0, Ve H(Q)F,

in view of the definitions (3.12), (3.23), (4.26) and the closure in the H'(Q)*-norm. Thus, Bij
is an eigenvalue of the problem (3.22) only if @(4;) # 0.

We check the last relation. First, by (3.17), we have
— € € — G o € €

= ((S2TYN) ti iy, DT
no (AU, T
(£9) .
+I; (87;7 (.@(vy)NO) ;z{@(ep)u(ij)> . (4‘27)

Q
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Second, & 2(V,)N° € Ly (S)V** in view of Proposition 2.3 (3). Consequently, by Proposi-
tion 2.6 (the variant (2.26)), from (4.21) it follows that

(S D(V)N )iy, — Mgy strongly in Ly(2)N*F, (4.28)

where M is the mean of the matrix-valued function 7 2(V,)N? over the cell S. We emphasize
that the operator 2(V,) in (4.27) and (4.28) acts on the corrector NV, but not on Uiy -

Third, owing to the normalization condition (1.24) and the identity (1.10), the left-hand
side of (4.27) has the limit (Bij)*l (which can be infinite) as ¢ — 0, whereas the right-hand
side is the sum of inner products where one factor is a term of a weakly converging sequence
in Ly(2) and another factor is a term of a strongly converging sequence. Hence the limit of
the right-hand side vanishes because of the assumption #(;) = 0. The obtained contradiction
means that 4 ;) # 0 is the vector-valued eigenfunction of the problem (3.22) corresponding to
the eigenvalue Bij-

Now, we are ready to check the first main assertion of the paper.

Theorem 4.1. Suppose that the assumptions about the smoothness of the data of the problem
(1.1), (1.2) are satisfied and the mean (1.25) of the density p vanishes. We also assume that B4
is an eigenvalue of the pencil (3.21), (3.11) (or (3.22)) with multiplicity >4, i.e., formula (4.3) is

valid. Then there ezists €; > 0 and c; such that for e € (0,¢;] the eigenvalues )‘fty .. 7)‘ftji%ij;1
of the problem (1.10) and only they satisfy the inequality (4.15). Furthermore, there are numbers
C; and columns bfp) = (bij’p, el biji%ij¢17p)T, p==j,...,£jExs;F1, that form a Hermitian
(#4 X 45 )-matriz b° and
djdret;F1
0 1 1/2
luiy = > v Ul H' Q)| < e (4.29)
q=+j

Here, € € (0,¢5], p==£j,..., ) £ 4 F 1,

U&) (e,z) = u?q) (x) — E(N(Eilx)@(vx)u?q) (z) — BijNO(efla:)u?q) (z)), (4.30)

ufp) and u(()p) are vector-valued eigenfunctions of the problems (1.10) and (3.22) satisfying the

orthogonality and normalization conditions (1.24) and (3.26) respectively, and N and N° are
asymptotic correctors i.e., periodic solutions to the problems (3.7) and (3.17) on the cell S.

Remark 4.2. By Lemma 2.5, the vector-valued functions (4.2) and (4.30) (the cut-off func-
tion X, is absent in (4.30)) satisfy the inequality

Uy = Ulyys HH () < ™. (4.31)

Consequently, the relation (4.7) yields the estimate
(UG Uly) = Fpal < cpe'’?, (4.32)

i.e., the asymptotic approximations (4.30) are “almost subject” to the orthogonality and nor-
malization conditions (1.24). O

Proof of Theorem 4.1. As was already established, the subscript ¢ in the inequality (4.15)
takes the values +.J4(¢),...,£J+j(e) £ K(¢) F 1 and formula (4.19) holds. Thus, to verify the

242



first assertion of the theorem, it remains to check that

Jj:j(E) =7, Kij(&‘) = 4. (4.33)

If £; > 0 is sufficiently small, then formula (4.19) remains valid after the replacement j — I
forany [ = 1,...,7. Thus, if one of the equalities (4.33) fails, then for some [ there are eigenvalues
ASpy e AL, oy, (the number of which is greater than the multiplicity scy; of the eigenvalue
B+1) such that

5)\ftt_>5:|:la t="h,....,h+ xq.
By (1.10) and (1.24), any linear combination of the corresponding vector-valued eigenfunctions

t+ogg
2
U = conulypy + o Cohben Wanyi,, D lex? =1,
t=h
satisfies the relation
t+ogg
2
L= @) = Y JeaXai (o, vl o

t=h

Consequently, as was shown above, the strong convergence % ¢ — 4 holds in Ly(Q)* and @ # 0
is a vector-valued eigenfunction of the pencil (3.22). The dimension of the space of such limits
cannot exceed the dimension sz4; of the eigensubspace of the pencil corresponding to S4;. The
obtained contradiction proves (4.33).

To verify the second assertion of the theorem, we again use Lemma 2.7. For C; in the inequal-
ity (4.17) we set C(;f-:*l/ 2 and choose a constant C(; so that the relation (4.17) is satisfied by only

the eigenvalues pg ;, ..., 15,4, LTl of the operator Z ¢, which becomes possible owing to the first
assertion of the theorem about eigenvalues AJ ;... A%, LTl of the problem (1.10) in terms of
the inverses of (1.17). Now, formula (4.18) means that the columns Ay 7afiji%ijq:1) form
an “almost unitary” matrix, whereas the first relation in (4.16) takes the form
:l:j:l:%ij:Fl
e 1/2
“ufp) N Z baUla)s H (Q)H < Gje /
q==%j
in view of Lemma 2.8. Moreover, b* = (bfij), e >bfijizij¢1)) is a unitary matrix. To obtain
the inequality (4.29), it remains to recall the definitions (4.1), (4.2), (4.30) and the estimates
(4.7), (4.31). O

We weaken the results of Theorem 4.1 by stating them as assertions about convergence.

Corollary 4.3. 1) Under the assumptions of Theorem 4.1, elements of the sequences (1.22),
(1.23) and (3.24), (3.25) of eigenvalues of the problems (1.10) and (3.22) are related as follows:

eNy; — B as e — +0.

2) Suppose, in addition, that f1; is a simple eigenvalue. Then for small € > 0 the eigenvalue
5, s also simple and for the corresponding vector-valued eigenfunction ufij) of the problem

(1.10) satisfying the normalization condition (1.24) the following assertions hold:

£

Ury)y u?ij) strongly in Lg(Q)k,
A D(Va)uyy — A@(Vx)u?ij) + ﬁijnou(()ij) weakly in Ly(Q)F, (4.34)
Uiy — E(N.@(V$)u((]ij) + ,B;I:jNOU?ij)) — u(()ij) strongly in H*(Q)F.
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Here, u(()ij) is a vector-valued eigenfunction of the problem (3.22) satisfying the normalization
condition (3.26) and

n' = / A (y)2(Vy)N(y) dy € CF>F, (4.35)
S

Proof. It suffices to check only the second convergence in (4.34) and the equality (4.35)
since the remaining assertions directly follow from Theorem 4.1. Differentiating (4.30), we find

S )P (V)Ue,7) = (o (y) + S (W) DTN W) 2T )l ()
+ Byl (1) 2(V )N ()l ()
+ (AW DTIN WD (Va)uly) (@) + By (1) D (V)N ()l (@),

where, as usual, we apply our agreement about the use of fast and slow variables. Now, the
required assertion is obvious because the last term contains the small parameter ¢. 0

3. Approximation error and convergence in the case p > 0. Partial analogs of
Theorem 4.1 and Corollary 4.3 in the case p > 0 are obtained by repeating the above arguments
(which are considerably simpler) in the case p = 0. Moreover, we can work within the framework
of standard methods of the homogenization theory (cf. [11, 12, 13] etc.). Therefore, we restrict
ourselves to formulations in the case of the positive part (1.22) of the spectrum of the problem
(1.1), (1.2). Some (not complete) information about the negative part (1.23) of the spectrum
will be given in the following subsection.

Theorem 4.4. Suppose that the smoothness assumptions on the data of the problem (1.1),
(1.2) listed in Subsection 1.1 are satisfied and the mean (1.25) of the density p is positive. Let
)\? be an eigenvalue of the problem (3.8), (3.11) (of (3.12)) with multiplicity s;, i.e.,

0 0_ ... ._ 0 0
Aot <A = = A1 < Ay
Then there exist €; > 0 and c; such that for all € € (0,¢;] the eigenvalues Sy )\§+%j71 of the
problem (1.10) and only they satisfy the inequality
NS — AY] < et/ (4.36)
Furthermore, there is a number C; and columns bfp) = (bj’p, cees b§+%],_1’p)T, D=7y, jtx—1,

that form a Hermitian (»; X »j)-matriz b° and
j—f—%j—l
Hufp) - Z Do (u(()q) o 5N9(v$)u?t1)) ’HI(Q)H S stl/Q’ pP=Jy--J =L
9=j

Here, € € (0,¢,], ug,) and u?p) are vector-valued eigenfunctions of the problems (1.10) and (3.12)

satisfying the orthogonality condition (1.24) and the normalization condition (3.14) respectively,
and N an the asymptotic corrector, i.e., a periodic solution to the problem (3.7) on the cell S.

Corollary 4.5. 1) Under the assumptions of Theorem 4.4, elements of the sequences (1.22)
and (3.13) of the eigenvalues of the problems (1.10) and (3.22) are related as follows:

)\j — )\9 as & — +0.
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2) Let, in addition, )\(])- be a simple eigenvalue. Then for small € > 0 the eigenvalue A5 is
also simple and the following assertions hold for the corresponding vector-valued eigenfunction
ufj) of the problem (1.10) satisfying the normalization condition (1.24):

£

uiy u? strongly in Ly(Q)F,

7)
A D(Vg)uiy  — A.@(Vx)u(()j) weakly in Ly(Q)F,

Uy — z-:N@(V:C)u((]j) — u?j) strongly in H*(Q)*.

Here, u(()ij) is a vector-valued eigenfunction of the problem (3.12) satisfying the normalization
condition (3.14).

4. Upper estimate for the negative part of the spectrum in the case p > 0. The
main goal of this subsection is to verify the last inequality in formula (1.27).

Theorem 4.6. If p > 0, then there is a positive number 0 such that for A € (—£7260,0) the
vartational problem

(A°D(V ) u, Z2(Va)v)a — Mpu,v)q = f(v), ve HY(QF, (4.37)

has a unique solution u € ﬁl(Q)k for any linear functional f € F* on the space F = ﬁl(Q)k
and the following estimate holds:

luw; || < c (NS5 27,
where ¢ (N) is independent of f.

Proof. Owing to the Riesz theorem on representation of linear functionals in a Hilbert
space, it suffices to check that the left-hand side of (4.37) is the inner product in the space .

We extend u € H L(Q)* by zero outside the domain 2 and represent it on each cell (2.24) in
the form

u(z) = p(x — z*)b* +u (x), (4.38)
where 2 is the center of the cube S, p = (p',...,p?%) is a polynomial (kxd)-matrix, d = dim &,

{p',...,p?} is a basis for the polynomial space (1.8) composed of columns p’(z) of homogeneous
polynomials of degree ¢7 in the variable z; moreover,

0201:---:ak<0k+1<...<0d.

The number column b® € C? is defined by the formula

b = P(e)"! / p(z — 2% u(z)de, (4.39)

It is clear that
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where
&(e) = diag{en /2, ... eoatn/2}

and P(1) is a Hermitian positive definite Gram (d x d)-matrix independent of the parameter
e. We construct the column 5% from the first k& elements b3 (they are associated with constant

polynomials) and the column b*’ € C4~* from the remaining elements. Since p**1, ... p? are
polynomials of positive degree, we have
d
IVap(z — 2)6% La(S) > < e D 2@ D pg)?
=kl
< || Vau; Lo (S22 (4.40)

By the definitions (4.39) and (4.38), the vector-valued function uq satisfies the orthogonality
condition

/ p(z — xo‘)Tui(aj) dx =0 e C4 (4.41)
S¢

By Lemma 2.4 with 2" (uq) coinciding with the left-hand side of (4.41),
e 2 |us La(S2) 1 + I Voud; La(SOIP < el 2(Va)ugs La(S2)I?
= | 2(Va)u; Ly (S2)|1%. (4.42)

We emphasize that the factor =2 appears because of the coordinate stretching x + y = ¢~ la,

made before applying the lemma; moreover, the last equality is valid since
2(Vy)p =0 e CKx4,
Taking into account (4.42) and (4.40), we get

1
(TP (Va)u, D(Va)u)se — Apu, u)se

1 (0% (6% 1 n—| o
2 e | 2(Va)ul; La(S Z + 5 Al Pl 2

d
—CI>\|< > 52"]'+”|b§“|2+HUi;Lz(S?)H?)

Jj=k+1
1
> SN PIb2 = e\ (11 Vs La(S2) 2 + | 2(Va)us Lo(S2)2). (4.43)
Note that the estimate from below becomes possible because |A[p = —\p is positive.

Summing the inequality (4.43) over all the cells, we find
1
(7°2(Va)u, 2(Va)ua = Alpu,u) ) > 5ewl|2(Ta)us La()
= N (V2 La(@) 2 + | 2(Ta)us La(@)2). (4.44)

By the inequality (2.1), the existence of a required 6 > 0 becomes obvious: in the case

Coy —4ce® N(1 +¢9) =0
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the left-hand side of (4.44) exceeds

1
16 12(Va)u; La(Q)|

The theorem is proved. 0

The result of Theorem 4.6 shows that the half-interval [#e~2,0) is free from the spectrum of

the problem (1.1), (1.2), i.e., A% ; < —0e~2, which agrees with the formal asymptotic of negative
eigenvalues (cf. Subsection 3.4).
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