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Abstract

We study the asymptotic behavior of solutions to a boundary value problem for the Poisson equation with a singular right-hand
side, singular potential and with alternating type of the boundary condition. Assuming that the boundary microstructure is periodic,
we construct the limit problem and prove the homogenization theorem by means of the unfolding method. The proof requires that
the dimension be larger than two.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Le but de cet article est d’étudier le comportement asymptotique des solutions d’une équation de Poisson avec un potentiel et
un membre de droite singuliers et des conditions aux limites oscillantes. Le problème aux limites est posé dans un domaine de
R

n, n � 3. Sous l’hypothèse que la microstructure de la frontière est périodique, on démontre un théorème d’homogénéisation en
utilisant la méthode d’éclatement périodique.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this work we consider the homogenization of a boundary value problem for the Poisson equation with singular
(asymptotically high contrast) zero order term and right-hand side, the support of which is concentrated near a fixed
subset of the domain boundary and with a periodic microstructure. The boundary condition alternates rapidly between
Dirichlet and Neumann on this subset.
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Fig. 1. Side view.

Problems in domains with singularly perturbed density (“concentrated masses”) have been widely discussed
previously (see [16] already back in 1913). The behavior of solutions of a wave equation with one concentrated
mass and the vibration of a body with a concentrated mass were studied in [29] and [30], respectively. The behavior
of the spectrum of the elasticity system with volume distributed concentrated masses was described in [25,28,24].
The eigenvalue problem for an elastic membrane with a concentrated mass was treated in [26,17], and the case of
concentrated masses located along the boundary of a domain was investigated in [19,6,9,7].

The spectral problem with mass concentration on periodic rod structures was considered in [21–23].
Other spectral and boundary value problems in domains with high contrast and singularly perturbed densities can

be found in [15,14,1,2].
Problems with rapidly alternating boundary conditions have also been intensively studied (see [12,20,4,13,3,10]).
In this paper we consider a homogenization problem with two small parameters (going to zero), the first one, ε,

characterizes the boundary microstructure period, while the second, δ, characterizes the volume fraction of the set
where the source term is large, as well as the portion of the boundary where the Dirichlet condition is imposed.
It should be noted that, depending on the ratio between ε and δ, one can obtain different boundary conditions in the
limit problem (see, for instance, [18,4]).

In this paper, the periodic unfolding method is used for the first time for such a type of problems. It allows to
characterize the oscillation of solutions, build the boundary layer term, show the convergence in H 1 norm and improve
on the estimates for the rate of convergence. We use the version of the unfolding procedure adapted to the boundary
homogenization. The boundary unfolding method was originally introduced in [27] and [11]. For technical reasons,
the dimension has to be larger or equal to three.

The main results are presented in Theorem 5.4 where the unfolded limit of solutions is constructed, and in
Theorem 6.2 where the macroscopic effective model is derived. In particular, the singular inhomogeneity concen-
trated near the boundary can give rise to a nontrivial term (a kind of “strange term”) in the boundary operator of the
limit equation.

A problem similar to that studied in the present work, was previously considered in [5].

2. Settings

For a given fixed h � 0, consider a domain Ω in R
n, n � 3, which lies in the upper half-space, with a piecewise

smooth boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3 consisting of three parts (see Fig. 1).
The part Γ3 is the (n − 1)-dimensional unit cube

Γ3
.=

{
x: −1

2
< xi <

1

2
for i = 1, . . . , n − 1, xn = 0

}
.

The part Γ2 is the union of Γ i for i = 1, . . . , n − 1, where
2
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Fig. 2. Perspective.

Γ i
2

.=
{
x: xi = ±1

2
, −1

2
< xj <

1

2
for j �= i, 1 � j � n − 1, 0 � xn � h

}
.

The remainder Γ1 is the part of ∂Ω located in the half-space xn � h. Moreover, Γ3 (see Fig. 2) has a periodic
microstructure associated to the small parameters δ < 1 and ε = 1

(2N +1)
where N is a natural number, N � 1 and

δ = δ(ε) → 0 as ε → 0,

Γ3 = Γε,δ ∪ γε,δ.

To describe the microstructure, let D be the hyperdisc

D = {
z ∈ R

n: |z| < 1, zn = 0
}
. (1)

Then

γε,δ = Γ3 ∩
( ⋃

ξ∈Zn−1

ε(ξ + δD)

)
, Γε,δ

.= Γ3 \ γε,δ.

In the figures, we use the following notation. Let α0 > 0 and B be the half-ball

B = {
z: |z| < α0, zn > 0

}
.

Then Bε,δ is the set

Bε,δ = Ω ∩
( ⋃

ξ∈Zn−1

B
ξ
ε,δ

)
, where B

ξ
ε,δ = ε(ξ + δB).

Remark 2.1. The set B defined above as a half-ball, can be replaced by any bounded connected open subset of the
upper half-space with Lipschitz boundary. All the results of this paper remain valid for such a choice of B .

Our aim is to study the asymptotic behavior as ε and δ go to 0, of the solutions to the following boundary value
problem: ⎧⎪⎪⎨

⎪⎪⎩
−
uε,δ + (εδ)−�ρε,δuε,δ = fε,δ in Ω,

uε,δ = 0 on γε,δ ∪ Γ1,

∂uε,δ = 0 on Γε,δ ∪ Γ2,

(2)
∂ν
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where ν is the outward unit normal on ∂Ω , and (εδ)−�ρε,δ is a nonnegative density supported in Bε,δ , and such that
ρε,δ is bounded in L∞(Bε,δ). We also suppose � � 0. The right-hand side fε,δ ∈ L2(Ω) is of the form

fε,δ(x) =
{

f in Ω\Bε,δ,

f̃ε,δ in Bε,δ,
(3)

where fε,δ belongs to L2(Ω), and, for simplicity, f is fixed in L2(Ω). The function f̃ε,δ is not necessarily bounded
with respect to ε and δ, the exact scaling being specified in Proposition 3.1 below.

Let Vε,δ be the following space:

Vε,δ = {
v ∈ H 1(Ω)

∣∣ v = 0 on Γ1 ∪ γε,δ

}
.

The variational formulation of problem (2) is now⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find uε,δ ∈ Vε,δ satisfying∫
Ω

∇uε,δ∇φ dx +
∫
Ω

(εδ)−�ρε,δ uεφ dx =
∫
Ω

fε,δφ dx,

∀φ ∈ Vε,δ.

(Pε,δ)

In the sequel we will make use of the following spaces:

V0 = {
w ∈ H 1(Ω)

∣∣ w = 0 on Γ1
}
,

V c
0 = {

w ∈ C∞(Ω)
∣∣ w = 0 in some neighborhood of Γ1

}
.

Notice that V c
0 is a dense subspace of V0.

Remark 2.2. The spaces Vε,δ are all closed subspaces of H 1(Ω) and more precisely, of V0. The Poincaré–Friedrichs
inequality holds for V0, hence uniformly for the spaces Vε,δ .

Remark 2.3. The presence of the density (εδ)−�ρε,δ means that Eq. (2) is asymptotically singular near the boundary
Γ3 within the set Bε,δ .

2.0.1. The case of periodic data
Consider now the particular case where the functions ρε,δ and fε,δ are periodic or locally periodic in the variable

x′ .= (x1, . . . , xn−1) (see Example 5.3 below). In this case the functions ρε,δ and fε,δ are of the form

ρε,δ(x) = ρ̄

(
1

δ

{
x′

ε

}
,
xn

εδ

)
, f̃ε,δ(x) = 1

εδn
f̄

(
1

δ

{
x′

ε

}
,
xn

εδ

)
with ρ̄(z) and f̄ (z) defined in R

n+ and supported in B , here {·} stands for the fractional part. Note that this definition
implies the fact that ρε,δ and f̃ε,δ are ε-periodic with respect to x′.

We suppose that

ρ̄ ∈ L∞(
R

n+
)
, f̄ ∈ L2(

R
n+
)
.

As shown below, the effective (homogenized) boundary condition in problem (2) depends crucially on the ratio
between ε and δn−2. We assume that δ is a function of ε such that there exists k ∈ [0,+∞] satisfying

k = lim
ε→0

δn−2

ε
. (4)

To formulate the convergence results, we will need the following auxiliary problems stated in the half-space
R

n+ = {z ∈ R
n: zn > 0} (recall that D is defined by (1)):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
zU + ρ̄(z)U = 0,

U |D = 1,
∂U

∂νz

∣∣∣∣
Rn−1\D

= 0,

∇U ∈ L2(
R

n
)
,

(5)
+
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
zŨ + ρ̄(z)Ũ = f̄ (z),

Ũ |D = 0,
∂Ũ

∂νz

∣∣∣∣
(Rn−1\D)

= 0,

∇Ũ ∈ L2(
R

n+
)
.

Define

Θ
.=

∫
B

ρ̄(z)U(z) dz −
∫
D

∂U

∂νz

(
z′)dz′ (6)

and

F
.=

∫
B

f̄ (z) dz −
∫
B

ρ̄(z)Ũ (z) dz +
∫
D

∂Ũ

∂νz

(
z′)dz′. (7)

Theorem 2.1. Assume that � = 2 and that (4) holds. Let uε,δ be the solution of (2). Then, there exists a unique u0 such
that

uε,δ ⇀ u0 weakly in V0.

This u0 is the unique solution of a limit problem which depends on the value of k.

• If k ∈ (0,+∞), the limit problem is ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,(
∂u0

∂ν
+ Θku0

)∣∣∣∣
Γ3

= F,

(8)

with Θ and F defined in (6) and (7), respectively.
• If k = 0, then the limit problem is ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,

∂u0

∂ν

∣∣∣∣
Γ3

= F

(9)

(note the Neumann boundary condition on Γ3).
• If k = +∞, then the limit problem is ⎧⎨

⎩
−
u0 = f in Ω,

u0|Γ1∪Γ3 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0 (10)

(note the Dirichlet boundary condition on Γ3).

In order to formulate the convergence result in the case � �= 2, we introduce the usual half-space harmonic capaci-
ties of the sets D and D ∪ B . We denote these capacities by ΘD and ΘD∪B̄ (see Definition 6.1 below).

Theorem 2.2. Assume that � < 2 and that (4) holds with k finite. Then, there exists a unique u0 such that

uε,δ ⇀ u0 weakly in V0,
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where u0 is the unique solution of the following problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,(
∂u0

∂ν
+ Θγ ku0

)∣∣∣∣
Γ3

= FD,

(11)

with FD defined by

FD
.=

∫
B

f̄ (z) dz +
∫
D

∂ŨD

∂νz

(
z′)dz′,

where ŨD is a solution in R
n+ of the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
zŨD = f̄ ,

ŨD|D = 0,
∂ŨD

∂νz

∣∣∣∣
(Rn−1\D)

= 0,

∇ŨD ∈ L2(
R

n+
)
.

For � > 2 the following result holds true.

Theorem 2.3. Assume that � > 2 and that (4) holds with k finite, and suppose that ρ̄(z) > 0 everywhere in B . Then a
solution uε,δ of problem (2) converges in L2(Ω), as ε → 0, toward a unique solution of the problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,(
∂u0

∂ν
+ ΘD∪B̄ku0

)∣∣∣∣
Γ3

= 0.

(12)

Finally, in the case of k = +∞, the homogenized problem takes the form (10) whatever the value of � .

2.0.2. The case of locally periodic data
In the locally periodic case, the functions ρε,δ and f̃ε,δ are of the form

ρε,δ(x) = ρ̄

(
x′, 1

δ

{
x′

ε

}
,
xn

εδ

)
, f̃ε,δ(x) = 1

εδn
f̄

(
x′, 1

δ

{
x′

ε

}
,
xn

εδ

)
with ρ̄(x′, z) and f̄ (x′, z) defined in Γ3 × R

n+ and supported in Γ3 × B . We suppose that

ρ̄ ∈ C
(
Γ3;L∞(

R
n+
))

, f̄ ∈ C
(
Γ3;L2(

R
n+
))

.

All the auxiliary functions U , Ũ , etc. and the quantities Θ , F , etc. will depend on x′ as a parameter. In particular,
problem (5) reads ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
zU

(
x′, z

) + ρ̄
(
x′, z

)
U

(
x′, z

) = 0,

U
(
x′, ·)∣∣

D
= 1,

∂U

∂νz

(
x′, ·)∣∣∣∣

Rn−1\D
= 0,

∇U
(
x′, ·) ∈ L2(

R
n+
)
,

and Θ = Θ(x′) is defined by

Θ
(
x′) .=

∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
dz −

∫
D

∂U

∂νz

(
x′, z′)dz′.

The definitions of Ũ and F should be modified accordingly.
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The statement of Theorem 2.1 in the locally periodic case reads:

Theorem 2.4. Assume that � = 2, and that (4) holds. Then, there exists a unique u0 such that

uε,δ ⇀ u0 weakly in V0.

This u0 is the unique solution of a limit problem which depends on the value of k.

• If k ∈ (0,+∞), then the limit problem is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,(
∂u0

∂ν
+ Θ

(
x′)ku0

)∣∣∣∣
Γ3

= F
(
x′).

(13)

• If k = 0 then the limit problem is ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

u0|Γ1 = 0,
∂u0

∂ν

∣∣∣∣
Γ2

= 0,

∂u0

∂ν

∣∣∣∣
Γ3

= F
(
x′).

(14)

• If k = +∞, then the limit problem coincides with problem (10).

Theorems 2.1–2.4 are corollaries of Theorems 5.4, 5.5 and 5.7 where the assumptions on ρε,δ and fε,δ are more
general.

The plan of the paper is as follows. In Section 2 uniform estimates are established. Section 3 introduces the
boundary layer operator periodic, which is the main tool in the proof presented in Section 5 (the unfolded limit
problems). Section 6 gives the macroscopic form of these limit problems. Section 7 is devoted to the convergence of
the energy in these problems and improves on the convergence of the solutions.

3. Estimates

In this section we establish uniform estimates for the solution of problem (Pε,δ). Here we assume that ε and δ are
two independent small parameters.

Proposition 3.1. There is a constant C independent of ε and δ such that

‖uε,δ‖H 1(Ω) + (εδ)−�/2
∥∥ρ

1/2
ε,δ uε,δ

∥∥
L2(Bε,δ)

� C
(‖f ‖L2(Ω) + min

{
(εδ)�/2

∥∥ρ
−1/2
ε,δ f̃ε,δ

∥∥
L2(Bε,δ)

, εδ‖f̃ε,δ‖L2(Bε,δ)

})
.

Proof. We denote by c a generic constant which does not depend on ε and δ.
Using uε,δ as a test function in (Pε,δ), we obtain∫

Ω

|∇uε,δ|2 dx + (εδ)−�

∫
Ω

ρε,δu
2
ε,δ dx =

∫
Bε,δ

f̃ε,δuε,δ dx +
∫

Ω\Bε,δ

f uε,δ dx.

By the Poincaré–Friedrichs inequality for V0 and the standard use of the Young inequality,

1

2

∫
|∇uε,δ|2 dx + (εδ)−�

∫
ρε,δu

2
ε,δ dx �

∫
|f̃ε,δuε,δ|dx + c‖f ‖2

L2(Ω)
. (15)
Ω Ω Bε,δ
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The Cauchy–Schwarz inequality and the Young inequality, give∫
Bε,δ

|f̃ε,δ||uε,δ|dx �
∥∥ρ

−1/2
ε,δ f̃ε,δ

∥∥
L2(Bε,δ)

∥∥ρ̃
1/2
ε,δ uε,δ

∥∥
L2(Bε,δ)

and ∫
Ω

|∇uε,δ|2 dx + (εδ)−�

∫
Ω

ρε,δu
2
ε,δ dx � c

(
(εδ)�

∥∥ρ
−1/2
ε,δ f̃ε,δ

∥∥2
L2(Bε,δ)

+ ‖f ‖2
L2(Ω)

)
. (16)

On the other hand, by [8], there is a Poincaré–Friedrichs inequality in the set B for functions vanishing on D ∩ B . By
scaling, it follows that

‖uε,δ‖L2(Bε,δ)
� cεδ‖∇uε,δ‖L2(Bε,δ)

.

Using this estimate and the Young inequality (again) in (15), gives

1

4

∫
Ω

|∇uε,δ|2 dx + (εδ)−�

∫
Ω

ρε,δu
2
ε,δ dx � c

(
εδ‖f̃ε,δ‖2

L2(Bε,δ)
+ ‖f ‖2

L2(Ω)

)
. (17)

The conclusion is obtained by combining (16) and (17). �
Corollary 3.2. If

min
{
(εδ)�/2

∥∥ρ
−1/2
ε,δ f̃ε,δ

∥∥
L2(Bε,δ)

, εδ‖f̃ε,δ‖L2(Bε,δ)

}
� C

as ε and δ tend to zero, then uε,δ is bounded in H 1(Ω). Furthermore,∥∥ρ
1/2
ε,δ uε,δ

∥∥
L2(Bε,δ)

� C(εδ)�/2.

4. The boundary-layer unfolding operator T bl
ε,δ

Recall the notation x′ .= (x1, . . . , xn−1). We use the periodicity cells

Y ′ .= (−1/2,1/2)n−1, Y
.= Y ′ × (0,1), (18)

and define the layer ωε as

ωε = Ω ∩ {x: 0 < xn < ε}. (19)

For y′ in R
n−1, [y′]Y ′ denotes the point ξ ∈ Z

n−1 such that y′ − ξ belongs to Y ′. This is defined uniquely (except
on a set of measure zero). Similarly, {y′}Y ′ denotes y′ − ξ which belongs to Y ′. From now on, when referring to a
point (x′,0) in Γ3, we often drop the last coordinate and just write x′.

Definition 4.1. For φ ∈ Lp(ωε),p ∈ [1,+∞), the unfolding operator T bl
ε,δ : Lp(ωε) → Lp(Γ3 × R

n+) is defined by

T bl
ε,δ(φ)

(
x′, z

) =
⎧⎨
⎩φ

(
ε

[
x ′

ε

]
Y ′

+ εδz

)
if (x′, z) ∈ Γ3 × 1

δ
Y,

0 otherwise.

(20)

This operation, designed to capture the contribution of the barriers in the limit process, was originally used in [27].
We also introduce the notion of local average in the neighborhood of the hyperplane Γ3.

Definition 4.2. The local average M
ε,bl
Y : Lp(ωε) �→ Lp(Γ3), is defined for every φ in Lp(ωε), 1 � p < +∞, by

M
ε,bl
Y (φ)

(
x′) = δn

|Y |
∫

1
δ
Y

T bl
ε,δ(φ)

(
x′, z

)
dz = 1

εn

∫
ε[ x′

ε
]+εY

φ(ζ ) dζ, for x′ ∈ Γ3

(note that the measure of Y is equal to 1).
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Remark 4.3. Since elements of Lp(Γ3) can be considered as functions of Lp(ωε), M
ε,bl
Y can be applied to them. With

this convention,

T bl
ε,δ

(
M

ε,bl
Y (φ)

) = M
ε,bl
Y (φ) on Γ3.

The following statements are straightforward modifications of the corresponding results of [11].

Proposition 4.4. Let wε be a sequence such that wε ⇀ w weakly in H 1(Ω). Then

M
ε,bl
Y (wε) → w|Γ3

strongly in L2(Γ3).

Theorem 4.5 (Properties of the operator T bl
ε,δ).

1. For any v,w ∈ Lp(ωε),

T bl
ε,δ(vw) = T bl

ε,δ(v)T bl
ε,δ(w).

2. For any u ∈ L1(ωε),

εδn

∫
Γ3×R

n+

T bl
ε,δ(u) dx′ dz =

∫
ωε

udx,

and

εδn

∫
Γ3×R

n+

∣∣T bl
ε,δ(u)

∣∣dx′ dz =
∫
ωε

|u|dx.

3. For any u ∈ L2(ωε), ∥∥T bl
ε,δ(u)

∥∥2
L2(Γ3×R

n+)
= 1

εδn
‖u‖2

L2(ωε)
.

4. Let u be in H 1(ωε). Then,

T bl
ε,δ(∇xu) = 1

εδ
∇z

(
T bl

ε,δ(u)
)

in Γ3 × 1

δ
Y.

5. Suppose n � 3 and let Q be an open and bounded set in R
n+. Then the following estimates hold:∥∥∇z

(
T bl

ε,δ(u)
)∥∥2

L2(Γ3× 1
δ
Y )

� ε

δn−2
‖∇u‖2

L2(ωε)
,

∥∥T bl
ε,δ

(
u − M

ε,bl
Y (u)

)∥∥2
L2(Γ3;L2∗

(Rn+))
� Cε

δn−2
‖∇u‖2

L2(ωε)
,

and ∥∥T bl
ε,δ(u)

∥∥2
L2(Γ3,L

2∗
(Q))

� 2
Cε

δn−2
‖∇u‖2

L2(ωε)
+ 2|Q|2/2∗‖u‖2

L2(ωε)
,

where C denotes the Sobolev–Poincaré–Wirtinger constant for H 1(Y ) and 2∗ is the Sobolev exponent defined by
1
2∗

.= 1
2 − 1

n
.

6. Assume n � 3 and ε

δn−2 is bounded. Let wε,δ be in H 1(ωε) such that

‖∇wε,δ‖L2(ωε)
� C.

Then, up to a subsequence, there exist two functions W ∈ L2(Γ3;L2∗
(Rn+)) and U in L2(Γ3;H 1

loc(R
n+)) with ∇zW

and ∇zU in L2(Γ3 × R
n+), such that
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(
Mε

Y (wε,δ)1 1
δ
Y

− Tε,δ(wε,δ)
)
⇀ W weakly in L2(Γ3;L2∗(

R
n+
))

,

Tε,δ(wε,δ) ⇀ U weakly in L2(Γ3;L2∗
loc

(
R

n+
))

,

∇z

(
Tε,δ(wε,δ)

)
1 1

δ
Y

⇀ ∇zU weakly in L2(Γ3 × R
n+
)
.

Furthermore, ∇zW = −∇zU , W + U is independent of z and

wε,δ|Γ3 → U + W strongly in L2(Γ3).

Remark 4.6. In the present work, for simplicity we assume that Γ3 is the exact union of εY ′-cells. The general case
of Γ3 with Lipschitz boundary can actually be handled as in [11].

5. Unfolding procedure

5.1. Functional setting

In the study of the limit behavior of problem (Pε,δ) as ε, δ → 0, the following functional space, well-known in
potential theory, plays an essential role (n � 3 is required so that 2∗ is finite):

KD
.= {

Φ ∈ L2∗(
R

n+
); ∇Φ ∈ L2(

R
n+
)
, Φ|D is a constant

}
. (21)

It is known that ‖Φ‖KD

.= ‖∇Φ‖L2(Ω) is a Hilbert norm on KD and the space

Kc
D

.= {
Φ ∈ KD ∩ C∞(

R
n+
)
, support of Φ is bounded

}
, (22)

is dense in KD . Moreover, the map Φ → Φ(D)
.= Φ|D is a continuous linear form on KD and its kernel is

K0
D = {

Φ ∈ L2∗(
R

n+
); ∇Φ ∈ L2(

R
n+
)
, Φ|D = 0

}
.

Associated with KD , is the space

K̃D
.= {

Ψ = Φ(D) − Φ, Φ ∈ KD

}
,

which is a Hilbert space isometric to KD when endowed with the norm ‖Ψ ‖K̃D
= ‖∇Ψ ‖L2(Ω). The elements of K̃D

vanish on D and the map

�(Ψ )
.= Φ(D)

is a continuous linear form on K̃D .
Analogously, let K̃c

D be defined by

K̃c
D

.= {
Ψ = Φ(D) − Φ, Φ ∈ Kc

D

}
.

This subspace is constituted of smooth functions which are constant outside a bounded subset in R
n+ and is dense

in K̃D . One should remark that � is just the limit at +∞ for the elements of K̃c
D , so it is a generalization of this limit

for the full space K̃D . Note also that K̃0
D = K0

D = Ker�.
Associated with these spaces,consider the auxiliary boundary layer problem, for F in L2∗′

(Rn+) (2∗′ = 2n
n+2 ),

G ∈ Ln/2(Rn+) and nonnegative, and C a real number,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Findw ∈ KD satisfying w(D) = C and∫
R

n+

(∇w∇ϕ + Gwϕ)dz =
∫

R
n+

Fϕ dz,

∀ϕ ∈ K0
D.

(23)
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Proposition 5.1. Problem (23) has a unique solution and the following Green formula holds for every φ in KD :∫
R

n+

(∇w∇ϕ + Gwϕ)dz =
∫

R
n+

Fφ dz − φ(D)

∫
D

∂w

∂zn

dz′. (24)

Proof. Let Φ1 be an arbitrary element of KD with Φ1|D = 1 and look for w̃ in K0
D solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R

n+

(∇w̃∇ϕ + Gw̃ϕ)dz

=
∫

R
n+

Fϕ dz − C

∫
R

n+

(∇Φ1∇ϕ + GΦ1ϕ)dz,

∀φ ∈ K0
D.

(25)

The second integral makes sense since, by the Hölder inequality, Gw belongs to L2∗′
(Rn+). Therefore, by the Lax–

Milgram theorem, w̃ exists and is unique, hence w = CΦ1 + w̃ is the unique solution of (23).
To obtain the Green formula, for φ ∈ KD use ϕ

.= φ − φ(D)Φ1 ∈ K0
D as a test function in (23) to get∫

R
n+

(∇w ∇φ + Gwφ)dz =
∫

R
n+

Fφ dz + φ(D)

∫
R

n+

(∇w∇Φ1 + GwΦ1 − FΦ1) dz. (26)

The last integral does not depend upon the choice of Φ1 (use ϕ
.= Φ1 − Φ̂1 in (24)) and can be interpreted as

(a generalization of) − ∫
D

∂w
∂zn

dz′. �
Corollary 5.2. For F ′ in L2∗′

(Rn+), G ∈ L2∗′
(Rn+) ∩ Ln/2(Rn+) and nonnegative, and C′ a real number, there is a

unique solution u for the auxiliary boundary layer problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Findu ∈ K̃D satisfying �(u) = C′ and∫
R

n+

(∇u∇ϕ + Guϕ)dz =
∫

R
n+

F ′ϕ dz,

∀ϕ ∈ K0
D,

(27)

and for every φ in KD : ∫
R

n+

(∇u∇φ + Guϕ)dz =
∫

R
n+

Fφ dz − φ(D)

∫
D

∂u

∂zn

dz′. (28)

Proof. Note that for every u ∈ K̃D and ϕ ∈ K0
D , the product Guϕ is integrable since it equals G(u−�(u))ϕ +�(u)Gϕ

and each term is integrable by the Hölder inequality due to the two conditions on G.
Let F

.= F ′ − C′G, which belongs to L2∗′
(Rn+), and C

.= −C′. Then, the solution w of (23) exists and is unique.
It is straightforward to check that u

.= w − w(D) is the unique solution of (27) and that formula (28) follows from
formula (24). �
5.2. The unfolded limit for 0 < k < +∞

In this subsection, we assume that (4) holds with 0 < k < +∞. Note that this implies the relation εδn ∼ k(εδ)2.
Also we suppose that the following conditions on the functions ρε,δ and f̃ε,δ are satisfied:
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H1. The functions ρε,δ satisfy the estimate ‖ρε,δ‖L∞ � C uniformly in ε, δ, and T bl
ε,δ(ρε,δ) converges in measure (or

almost everywhere) in Γ3 × B to a function ρ̄.
H2. The functions εδnT bl

ε,δ(f̃ε,δ) converge weakly to some f̄ in L2(Γ3 × B).

Hypothesis H2 implies that εδ‖f̃ ‖L2(Bε,δ)
is uniformly bounded, so that Corollary 3.2 applies.

Example 5.3. A typical example of ρε,δ and f̃ε,δ satisfying Hypotheses H1 and H2 is the case of Section 2.0.1, where

ρε,δ(x) = ρ̄

(
1

δ

{
x′

ε

}
,
xn

εδ

)
, f̃ε,δ(x) = 1

εδn
f̄

(
1

δ

{
x′

ε

}
,
xn

εδ

)
,

with ρ̄ and f̄ defined in R
n+ and supported in B .

Our first statement deals with the case � = 2.

Theorem 5.4. Let uε,δ be a solution of problem (Pε,δ). Assume that � = 2, and that conditions H1 and H2 are fulfilled.
Then

uε,δ ⇀ u0 weakly in V0, (29)

and there exists U = U(x′, z) in L2(Γ3; K̃D) with �(U) = u0|Γ3 , such that the pair (u0,U) solves the equations∫
R

n+

∇zU
(
x′, z

)∇zv dz +
∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
v(z) dz =

∫
B

f̄
(
x′, z

)
v(z) dz (30)

for a.e. x′ in Γ3 and all v ∈ K0
D ;∫

Ω

∇u0∇ψ dx + k

∫
Γ3

(∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
dz −

∫
D

∂U

∂νz

dz′
)

ψ
(
x′)dx′

=
∫
Ω

f ψ dx +
∫
Γ3

(∫
B

f̄
(
x′, z

)
dz

)
ψ

(
x′)dx′ (31)

for all ψ ∈ V0. Furthermore, the solution (u0,U) of (30)–(31) is unique.

The next statement treats the case � < 2.

Theorem 5.5. Let uε,δ be a solution of problem (Pε,δ). Assume that � < 2, and that conditions H1 and H2 are fulfilled.
Then

uε,δ ⇀ u0 weakly in V0,

and there exists U = U(x′, z) with U − u0 in L2(Γ3;KD), U(x′, z) = 0 for z ∈ D, such that the pair (u0,U) solves
the equations ∫

R
n+

∇zU
(
x′, z

)∇zv dz =
∫
B

f̄
(
x′, z

)
v(z) dz (32)

for a.e. x′ in Γ3 and all v ∈ K0
D ; ∫

Ω

∇u0∇ψ dx − k

∫
Γ3

(∫
D

∂U

∂νz

dz′
)

ψ
(
x′)dx′

=
∫
Ω

f ψ dx +
∫
Γ3

(∫
B

f̄
(
x′, z

)
dz

)
ψ

(
x′)dx′ (33)

for all ψ ∈ V0.
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Remark 5.6. The statements of Theorem 5.5 is actually the same as that of Theorem 5.4 if we set ρ̄ ≡ 0.

We now consider the case � > 2. For simplicity we assume:

H1′. There is a subset B ′ of B with Lipschitz boundary such that T bl
ε,δ(ρε,δ) vanishes on Γ3 × (B \ B ′), and

T bl
ε,δ(ρε,δ)

a.e.−→ ρ̄,

where ρ̄ > 0 a.e. on Γ3 × B ′.

We introduce the following notations:

B ′′ = B ′ ∪ D, D′′ = (
∂B ′ ∪ D

) \ (
∂B ′ ∩ D

)
,

and define in the same way as KD (see (21)) the following space:

KB ′′ .= {
Φ ∈ L2∗(

R
n+
); ∇Φ ∈ L2(

R
n+
)
, Φ|B ′′ is a constant

}
.

The spaces Kc
B ′′ and K0

B ′′ are defined similarly.

Theorem 5.7. Let uε,δ be a solution of problem (Pε,δ). Assume that � > 2, and that conditions H1′ and H2 are
satisfied. Then

uε,δ ⇀ u0 weakly in V0,

and there exists U = U(x′, z) with U − u0 in L2(Γ3;KB ′′), U(x′, z) = 0 for z ∈ B ′′, such that the pair (u0,U) solves
the equations ∫

R
n+\B ′

∇zU
(
x′, z

)∇zv dz =
∫

B\B ′
f̄

(
x′, z

)
v(z) dz (34)

for a.e. x′ in Γ3 and all v ∈ K0
B ′′ ;∫

Ω

∇u0∇ψ dx − k

∫
Γ3

(∫
D′′

∂U

∂νz

dσ(z)

)
ψ

(
x′)dx′

=
∫
Ω

f ψ dx +
∫
Γ3

( ∫
B\B ′

f̄
(
x′, z

)
dz

)
ψ

(
x′)dx′ (35)

for all ψ ∈ V0, where νz is the outward normal to D′′.

Remark 5.8. In Theorem 5.7 assumption H1′ can be relaxed to the case where the subset B ′ depends on x′ ∈ Γ3 in a
regular enough way, in which case D′′ depends on x′ too.

For the proofs of Theorems 5.4, 5.5 and 5.7, we use the following lemma:

Lemma 5.9. For v in Kc
D and δ small enough, set

wbl
ε,δ(x) = v(D) − v

(
1

δ

{
x′

ε

}
Y

,
xn

εδ

)
for x ∈ R

n+. (36)

Then, for 0 < k < ∞,

wbl
ε,δ ⇀ v(D) weakly in H 1(Ω),

and for k = 0,

wbl
ε,δ → v(D) strongly in H 1(Ω).

Furthermore, ∇wbl
ε,δ vanishes outside the layer ωε (defined by (19)).
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The proof of the lemma is similar to the proof of Lemma 4.2 from [11].

Proof of Theorem 5.4. By Proposition 3.1, the solutions uε,δ are bounded in V0, so that, up to a subsequence, we can
assume that

uε,δ ⇀ u0 weakly in V0.

By item 6 of Theorem 4.5, there exists a U in L2(Γ3;L2
loc(R

n+)) such that, up to a subsequence,

T bl
ε,δ(uε,δ) ⇀ U weakly in L2(Γ3;L2

loc

(
R

n+
))

. (37)

Since T bl
ε,δ(M

ε,bl
Y (uε,δ)) = M

ε,bl
Y (uε,δ)1 1

δ
Y

, Proposition 4.4 implies

M
ε,bl
Y (uε,δ)1 1

δ
Y

→ u0|Γ3
strongly in L2(Γ3;L2

loc

(
R

n+
))

. (38)

On the other hand, item 6 of Theorem 4.5 gives a W in L2(Γ3;L2∗
(Rn+)) with ∇zW in L2(Γ3 × R

n+), such that

M
ε,bl
Y (uε,δ)1 1

δ
Y

− T bl
ε,δ(uε,δ) ⇀ W weakly in L2(Γ3;L2∗(

R
n+
))

. (39)

From (37), (38) and (39) it follows

U + W = u0|Γ3
and ∇zU + ∇zW = 0,

and

εδT bl
ε,δ(∇uε,δ) = ∇z

(
T bl

ε,δ(uε,δ)
)
1 1

δ
Y

⇀ ∇zU weakly in L2(Γ3 × R
n+
)
. (40)

This, combined with (37), implies the weak convergence of T bl
ε,δ(uε, δ) toward U in L2(Γ3;H 1

loc(R
n+)).

By Definition 4.1, T bl
ε,δ(uε,δ) = 0 in Γ3 × D, so (37) implies the relation

U = 0 on Γ3 × D. (41)

Therefore, U belongs to L2(Γ3; K̃D) and W = u0|Γ3
− U belongs to L2(Γ3;KD). Recall that by Corollary 3.2∥∥ρ

1/2
ε,δ uε,δ

∥∥
L2(Bε,δ)

� C(εδ)�/2.

Under unfolding, this yields ∥∥T bl
ε,δ

(
ρ

1/2
ε,δ

)
T bl

ε,δ(uε,δ)
∣∣
L2(Γ3×B)

� C(εδ)(�/2−1). (42)

Summarizing the above estimates, we obtain∥∥T bl
ε,δ

(
ρ

1/2
ε,δ

)
T bl

ε,δ(uε,δ)
∥∥

L2(Γ3×B)
� C min

{
1, (εδ)(�/2−1)

}
. (43)

In order to capture the contribution of the singular terms in the limit problem, we adapt the proof of Theorem 3.1
from [11] and use Lemma 5.9.

For ψ ∈ V c
0 and v ∈ Kc

D , we set

wbl
ε,δ(x) = v(D) − v

(
1

δ

{
x′

ε

}
Y

,
xn

εδ

)
for x ∈ R

n+,

and let Φ
.= ψwbl

ε,δ . Since wbl
ε,δ vanishes on γε,δ , Φ is a test function for problem (Pε,δ). Thus,∫

ωε

∇uε,δ∇wbl
ε,δψ dx +

∫
Ω

∇uε,δ∇ψwbl
ε,δ dx + (εδ)−�

∫
Bε,δ

ρε,δuε,δψwbl
ε,δ dx

=
∫

Ω\Bε,δ

f wbl
ε,δψ dx +

∫
Bε,δ

f̃ε,δw
bl
ε,δψ dx. (44)

We now determine the limits for each of the terms in (44).
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By item 2 of Theorem 4.5,∫
ωε

∇uε,δ∇wbl
ε,δψ dx = εδn

∫
Γ3×R

n+

T bl
ε,δ(∇uε,δ)T bl

ε,δ

(∇wbl
ε,δ

)
T bl

ε,δ(ψ)dx′ dz. (45)

By item 4 of the same theorem,

T bl
ε,δ

(∇wbl
ε,δ

) = − 1

εδ
∇z v and T bl

ε,δ(∇uε,δ) = 1

εδ
∇z

(
T bl

ε,δ(uε,δ)
)

in Γ3 × 1

δ
Y,

so that (45) yields ∫
ωε

∇uε,δ∇wbl
ε,δψ dx = δn−2

ε

∫
Γ3×R

n+

∇z

(
T bl

ε,δ(uε,δ)
)
(−∇zv)T bl

ε,δ(ψ)dx′ dz. (46)

Since v is with compact support, the obvious inequality∥∥T bl
ε,δ(ψ) − ψ

∥∥
L∞(Γ3× 1

δ
Y )

� cε‖∇xψ‖L∞(Ω)n,

implies

T bl
ε,δ(ψ)∇zv → ψ∇zv strongly in L2(Γ3 × R

n+
)
. (47)

This, together with (40), allows to pass to the limit in (46) to get

lim
ε→0

∫
ωε

∇uε,δ∇wbl
ε,δψ dx = −k

∫
Γ3×R

n+

∇zU
(
x′, z

)∇zv(z)ψ(x)dx′ dz. (48)

The second term in (44) converges as follows:

lim
ε→0

∫
Ω

∇uε,δ∇ψwbl
ε,δ dx = v(D)

∫
Ω×Y

∇u0∇ψ dx dy.

By item 2 of Theorem 4.5 again, the last term on the left-hand side of (44) now reads

(εδ)−�

∫
Bε,δ

ρε,δuε,δψwbl
ε,δ dx

= ε1−�δn−�

∫
Γ3×B

T bl
ε,δ(ρε,δ)T bl

ε,δ(uε,δ)T bl
ε,δ(ψ)T bl

ε,δ

(
wbl

ε,δ

)
dx′ dz

= δn−2

ε
(εδ)2−�

∫
Γ3×B

T bl
ε,δ(ρε,δ)T bl

ε,δ(uε,δ)T bl
ε,δ(ψ) T bl

ε,δ

(
wbl

ε,δ

)
dx′ dz. (49)

Since � = 2, this is simply

(εδ)−2
∫

Bε,δ

ρε,δuε,δψwbl
ε,δ dx = δn−2

ε

∫
Γ3×B

T bl
ε,δ(ρε,δ)T bl

ε,δ(uε,δ)T bl
ε,δ(ψ)T bl

ε,δ

(
wbl

ε,δ

)
dx′ dz.

Note that T bl
ε,δ(w

bl
ε,δ) is just −v(z), and that by assumption H1, T bl

ε,δ(ρε,δ) converges a.e. to ρ̄(x′, z). At the limit,

lim
ε→0

(εδ)−2
∫

Bε,δ

ρε,δuε,δψwbl
ε,δ dx

= k

∫
ρ̄
(
x′, z

)
U

(
x′, z

)
ψ

(
x′, z

)(
v(D) − v(z)

)
dx′ dz. (50)
Γ3×B
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Regarding the right-hand side of (44), using again the unfolding, it is easily seen that

lim
ε→0

∫
Ω\Bε,δ

f wbl
ε,δψ dx = v(D)

∫
Ω

f (x)ψ(x)dx,

lim
ε→0

∫
Bε,δ

f̃ε,δw
bl
ε,δψ dx = k

∫
Γ3×B

f̄
(
x′, z

)(
v(D) − v(z)

)
Ψ

(
x′)dx′ dz.

Summarizing, the limit of Eq. (44) reads

v(D)

∫
Ω

∇u0∇ψ dx − k

∫
Γ3

( ∫
R

n+

∇zU
(
x′, z

)∇zv dz

)
ψ

(
x′)dx′

+ k

∫
Γ3

(∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
ψ

(
x′, z

)(
v(D) − v(z)

)
dz

)
ψ

(
x′)dx′

= v(D)

∫
Ω

f ψ dx + k

∫
Γ3

(∫
B

f̄
(
x′, z

)(
v(D) − v(z)

)
dz

)
ψ

(
x′)dx′. (51)

By density arguments, the last relation holds true for every ψ ∈ V0 and v ∈ KD .
With v ∈ K0

D , i.e. v(D) = 0, and since ψ is arbitrary, Eq. (51) gives (30) for a.e. x′ in Γ3.
In view of Corollary 5.2, for v ∈ KD , it follows that,∫

R
n+

∇zU
(
x′, z

)∇zv dz +
∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
v(z) dz

=
∫
B

f̄
(
x′, z

)
v(z) dz − v(D)

∫
D

∂U

∂zn

dz′.

Multiplying this equality by ψ = ψ(x′) and integrating over Γ3 and subtracting the result from (51) gives (31).
The uniqueness of the solution of (30)–(31) will be proved in Section 6. �

Proof of Theorem 5.5. The proof is similar. In this case, in view of (49) and κ < 2, the third term converges to 0 in
(44) and the limit problem is the same as before but with ρ replaced by 0. �
Proof of Theorem 5.7. The proof proceeds essentially along the same lines. Under the extra hypotheses, however,
estimate (43) implies that U vanishes a.e. on Γ3 × B ′′. Then, by choosing v ∈ KB ′′ , the third term in (44) is already
zero and we obtain the weak formulation (34)–(35). �
5.3. Unfolded limit for k = 0

In the case k = 0 the contribution of γε,δ and Bε,δ is asymptotically negligible, and the limit problem includes the
Neumann boundary condition on Γ3.

We introduce the following hypothesis:

H3. The number � and the functions ρε,δ and f̃ε,δ are such that, as ε and δ tend to zero,

min
{
(εδ)�/2

∥∥ρ
−1/2
ε,δ f̃ε,δ

∥∥
L2(Bε,δ)

, εδ‖f̃ε,δ‖L2(Bε,δ)

}
is bounded (so that Corollary 3.2 applies).

Theorem 5.10. Let uε,δ be a solution of problem (Pε,δ). Assume that Hypothesis H3 is fulfilled and k = 0. Then

uε,δ ⇀ u0 weakly in V0,
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and u0 is the solution of the following variational problem∫
Ω

∇u0∇ψ dx =
∫
Ω

f ψ dx (52)

for all ψ ∈ V0.

Remark 5.11. Note that for k = 0 the value of � has no influence on the structure of the limit problem. Its formulation
(52) only involves the function u0 and thus, represents the macroscopic limit problem.

Proof of Theorem 5.10. We take an arbitrary v ∈ KB and construct wbl
ε,δ as in Lemma 5.9. Since k = 0,

actually wbl
ε,δ converges strongly in H 1(Ω) to v(B). For ψ ∈ C∞(Ω) and vanishing in a neighborhood of Γ1, let

Φ
.= ψwbl

ε,δ . Since wbl
ε,δ vanishes on Bε,δ , Φ is a test function in problem (Pε,δ). One has∫

ωε

∇uε,δ∇wbl
ε,δψ dx +

∫
Ω

∇uε,δ∇ψwbl
ε,δ dx =

∫
Ω\Bε,δ

f wbl
ε,δψ dx.

Passing to the limit ε → 0 and using a density argument (of the ψ ’s in V0) completes the proof. �
5.4. Unfolded limit for k = ∞

In this case the “spots” γε, δ are large enough to ensure the Dirichlet boundary condition on Γ3 in the limit problem.

Theorem 5.12. Let uε,δ be the solution of problem (Pε,δ). Assume that Hypothesis H3 is fulfilled, and k = ∞. Then

uε,δ ⇀ u0 weakly in V0,

and u0 is the solution of the following variational problem∫
Ω

∇u0∇ψ dx =
∫
Ω

f ψ dx, u0 = 0 on Γ3,

for all ψ ∈ V0 with ψ = 0 on Γ3.

Proof. By items 5 and 6 of Theorem 4.5 it follows(
Tε,δ(wε,δ) − Mε

Y (wε,δ)1 1
δ
Y

) → W ≡ 0 weakly in L2(Γ3;L2∗(
R

n+
))

,

∇z

(
Tε,δ(wε,δ)

)
1 1

δ
Y

→ 0 strongly in L2(Γ3 × R
n+
)
,

Tε,δ(wε,δ) ⇀ U weakly in L2(Γ3;L2
loc

(
R

n+
))

,

and W(x′, z) = U(x′, z)+u0(x
′,0). Since U(x′, z) = 0 for z ∈ B and W ≡ 0, it follows that u0 = 0 on Γ3. The desired

statement follows by taking the test ψ vanishing on a neighborhood of Γ3, and by using density arguments. �
Remark 5.13. Note that for k = +∞ the value of � has no influence on the structure of the limit problem. Its
formulation in the statement of Theorem 5.12 only involves the function u0 and thus, represents the macroscopic limit
problem.

6. Macroscopic description of the limit problem for 0 < k < ∞

6.1. The case � = 2

One can rewrite system (30), (31) in a form where only u0 appears.
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Let U be the unique solution of the following problem, where x′ ∈ Γ3 appears as a parameter:

∫
R

n+

∇zU
(
x′, z

)∇v dz +
∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
v(z) dz = 0 (53)

for all v ∈ K0
D , where U belongs to L2(Γ3; K̃D) and �(U) = 1.

Because ρ̄ is nonnegative, essentially bounded and with compact support in z ∈ R
n+, this problem admits a unique

solution given by Corollary 5.2 for U in L2(Γ3; K̃D).

Definition 6.1. For a.e. x′ ∈ Γ3, the generalized capacity in R
n+ associated with the weight function ρ̄(x′, z) for the

set D is

Θ
(
x ′) .=

∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
dz −

∫
D

∂U

∂νz

(
x′, z′)dz′. (54)

Note that by Hypothesis H1, Θ belongs to L∞(Γ3).
Define also Ũ ∈ K0

D to be the unique solution of the following problem:

∫
R

n+

∇zŨ
(
x′, z

)∇v dz +
∫
B

ρ̄
(
x′, z

)
Ũ

(
x′, z

)
v(z) dz =

∫
B

f̄
(
x′, z

)
v(z) dz (55)

for all v ∈ K0
D . Here again, the Lax–Milgram theorem applies directly in K0

D . We then set

F
(
x′) .=

∫
B

f̄
(
x′, z

)
dz −

∫
B

ρ̄
(
x′, z

)
Ũ

(
x′, z

)
dz +

∫
D

∂Ũ

∂νz

(
x′, z′)dz′.

By Hypothesis H2, the function F belongs to L2(Γ3).
The macroscopic formulation can now be expressed in terms of the functions Θ and F .

Theorem 6.2. The limit function u0 given by Theorem 5.4 is the unique solution of the homogenized equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 ∈ V0,∫
Ω

∇u0∇ψ dx + k

∫
Γ3

Θu0ψ dx′ =
∫
Ω

f ψ dx +
∫
Γ3

Fψ dx′,

∀ψ ∈ V0.

(56)

Proof. It is straightforward that

U
(
x′, z

) = u0
(
x′)U(

x′, z
) + Ũ

(
x′, z

)
.

Combining this with (31) gives (56). Uniqueness for the solution of (56) is standard, and also implies uniqueness in
Theorem 5.4. Consequently, the whole sequence {uε,δ} converges weakly to u0 in the space V0. �
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Remark 6.3. The strong formulation for (56) is:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
u0 = f in Ω,

∂u0

∂ν
+ kΘu0 = F on Γ3,

∂u0

∂ν
= 0 on Γ2,

u0 = 0 on Γ1.

6.2. The case � �= 2

For � < 2, the formulation (32)–(33), being the same as (30)–(31) for � = 2 with ρ̄ ≡ 0, the macroscopic for-
mulation is the same as above. In this case, Θ is a constant which is the usual capacity of the set D in R

n+
(half of its capacity in R

n).
For � > 2, the system (34)–(35) is again of the same form as (30)–(31) with D replaced by D′′ and B replaced by

B \ B ′. The macroscopic formulation is therefore as above with these modifications.

7. Convergence of the energy and improved convergence results

In Section 6, the sequence uε,δ was shown to converge weakly to u0 in the space V0. Can strong convergence hold?
The following theorem gives a positive answer (we give the details only for the case 0 < k < ∞, � = 2, for which the
proof is the most elaborate). It improves on converges (29), (37) and (40).

Theorem 7.1. Under the hypotheses of Theorem 5.4, the following strong convergences hold:

uε,δ → u0 strongly in V0,

T bl
ε,δ(uε,δ) → U strongly in L2(Γ3;L2

loc

(
R

n+
))

,(∇zT bl
ε,δ(uε,δ)

)
1 1

δ
Y

→ ∇zU strongly in L2(Γ3 × R
n+
)
.

The limit U of the boundary layer term is in L2(Γ3; K̃D). Due to the discontinuity of the boundary layer term
T bl

ε,δ(uε,δ) at ∂( 1
δ
Y ), one cannot expect its convergence in this space. However, the last two convergences above imply

that one can extend T bl
ε,δ(uε,δ) into (Γ3 × R

n+), so that this extension converges strongly to U in L2(Γ3; K̃D).
The complete information at the limit is encapsulated in the pair (u0,U). It belongs to the Hilbert space G(V0,D),

defined as

G(V0,D)
.= {

(φ,ψ) ∈ V0 × L2(Γ3; K̃D); �
(
ψ

(
x′, ·)) = φ|Γ3

(
x′) for a.e. x′ ∈ Γ3

}
.

We first show a density result in G(V0,D).

Lemma 7.2. The subspace Gc
0

.= {(�(v)ϕ,ϕ|Γ3v),ϕ ∈ V c
0 and v ∈ K̃c

D} is total in G(V0,D).

Proof. Let (p, q) be an element of the product Hilbert space V0 ×L2(Γ3; K̃D). We show that if it is orthogonal to Gc
0

in V0 × L2(Γ3; K̃D), then it is also orthogonal to G(V0,D).
Now, (p, q) orthogonal to Gc

0 reads

�(v)

∫
Ω

∇p∇ϕ dx +
∫

Γ3×R
n+

ϕ∇zq∇v dx′ dz = 0 for all ϕ ∈ V c
0 and v ∈ K̃c

D.

Choosing v with �(v) = 0 implies
∫
Γ3×R

n+ ϕ∇zq∇v dx′ dz = 0, which in turn implies that, for a.e. x′ ∈ Γ3, q satisfies⎧⎨
⎩

−
zq
(
x′, ·) = 0 in R

n+,

∂q(x′, ·) = 0 on R
n−1 \ D.
∂νz
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Using Green’s formula (28) with ϕ
.= v − �(v), for v in K̃c

D , gives∫
R

n+

∇zq
(
x′, z

)∇v dz = �(v)

∫
D

∂q(x′, z)
∂zn

dz′ (57)

for a.e. x′ ∈ Γ3 and all v ∈ K̃D . From the above formulae we deduce the relation

�(v)

(∫
Ω

∇p∇ϕ dx +
∫

Γ3×D

ϕ
∂q(x′, z)

∂zn

dx′ dz′
)

= 0.

Consequently, for all ϕ ∈ V c
0 one has∫

Ω

∇p∇ϕ dx +
∫

Γ3×D

ϕ
∂q(x′, z)

∂zn

dx′ dz′ = 0. (58)

This holds also for every ϕ in V0 by density, and can be interpreted as p satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
p = 0 in Ω,

p = 0 on Γ1,

∂p

∂ν
= 0 on Γ2,

∂p

∂x3

(
x′) =

∫
D

∂q(x′, z)
∂z3

dz′ for almost all x′ in Γ3.

Now let (Φ,Ψ ) belong to G(V0,D). Applying (57) for a.e. x′ ∈ Γ3 with v replaced by Ψ (x′, ·) and integrating over
Γ3 gives ∫

Γ3×R
n+

∇zq∇zΨ dx′ dz =
∫

Γ3×D

�(Ψ )
∂q

∂zn

dx′ dz′.

But by definition, �(Ψ ) = Φ|Γ3 , so by (58) it follows that (p, q) is orthogonal to (Φ,Ψ ), which concludes the
proof. �
Proposition 7.3. The following convergence holds:∫

Ω

|∇uε,δ|2 dx + (εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx →

∫
Ω

|∇u0|2 dx

+ k

∫
Γ3×R

n+

∣∣∇zU
(
x′, z

)∣∣2
dx′ dz + k

∫
Γ3×B

ρ̄
(
x′, z

)∣∣U(
x′, z

)∣∣2
dx′ dz. (59)

Proof. By Lemma 7.2, equality (51) implies for every (Φ,Ψ ) in G(V0,D)∫
Ω

∇u0∇Φ dx + k

∫
Γ3×R

n+

∇zU
(
x′, z

)∇zΨ
(
x′, z

)
dx′ dz

+ k

∫
Γ3×B

ρ̄
(
x′, z

)
U

(
x′, z

)
Ψ

(
x′, z

)
dx′ dz

=
∫
Ω

f Φ dx +
∫

Γ3×B

f̄
(
x′, z

)
Ψ

(
x′, z

)
dx′ dz. (60)

This is true in particular for (Φ,Ψ ) = (u0,U). Hence
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∫
Ω

|∇u0|2 dx + k

∫
Γ3×R

n+

∣∣∇zU
(
x′, z

)∣∣2
dx′ dz + k

∫
Γ3×B

ρ̄
(
x′, z

)∣∣U(
x′, z

)∣∣2
dx′ dz

=
∫
Ω

f u0 dx +
∫

Γ3×B

f̄
(
x′, z

)
U

(
x′, z

)
dx′ dz. (61)

The variational formulation Pεδ (rewritten here with � = 2) with uεδ as a test function, and together with (3) implies∫
Ω

|∇uε,δ|2 dx + (εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx =

∫
Bε,δ

f̃ε, δuε,δ dx +
∫

Ω\Bε,δ

f uε,δ dx.

By unfolding, it is easy to see that under Hypothesis H2,

lim
ε→0

∫
Bε,δ

f̃ε,δuε,δ dx =
∫

Γ3×B

f̄ U dx′,

lim
ε→0

∫
Ω\Bε,δ

f uε,δ dx =
∫
Ω

f u0 dx,

so that, confronting with (61) completes the proof. �
Now we claim that from the above convergence, Theorem 7.1 follows. But this proof is not straightforward. Indeed,

if we unfold (εδ)−�
∫
Ω

ρε,δu
2
ε,δ dx, it is not too hard to see that

(εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx = δn−2

ε

∫
Γ3×R

n+

T bl
ε,δ(ρε,δ)

∣∣T bl
ε,δ(uε,δ)

∣∣2
dx′ dz

so, by the weak lower semi-continuity of norms,

lim
ε→0

∫
Ω

|∇uε,δ|2 dx + (εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx

�
∫
Ω

|∇u0|2 dx + k

∫
Γ3×B

ρ̄
(
x′, z

)∣∣U(
x′, z

)∣∣2
dx′ dz.

Here we have used the following simple integration result:

Lemma 7.4. Let O be a measure space with measure μ, {αm} a sequence in L2(O) which weakly converges to some α,
{pm} a sequence of nonnegative functions which is bounded in L∞(O) and converges to some p almost everywhere.
Then,

lim inf
m→∞

∫
O

|αm|2pm dμ �
∫
O

|α|2p dμ.

Furthermore, if equality holds, then

√
pmαm → √

pα strongly in L2(O),

and if pm/p is bounded, then αm also converges to α. �
Therefore, (59) is more precise and indicates a gap, we will with it in the proof of Theorem 7.1.

Proof of Theorem 7.1. We introduce a sequence of functions vδ in Kc such that
D
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vδ(D) = 1, 0 � vδ � 1, vδ(z) ↗ 1, ∀z as δ → 0,

supp(vδ) ⊂ 1

δ1/2
Y.

The important part is that the support of vδ grows slower that 1/δ. From this function, using formula (36) from
Lemma 5.9, we construct the sequence w̃ε,δ as follows:

w̃ε,δ(x) = vδ(D) − vδ

(
1

δ

{
x′

ε

}
Y

,
xn

εδ

)
for x ∈ R

n+

and introduce the sequence ṽε,δ ,

ṽε,δ = 1 − w̃ε,δ.

So

w̃ε,δ + ṽε,δ = 1, 0 � ṽε,δ, w̃ε,δ � 1 and w̃ε,δ ↗ 1 a.e. in Ω. (62)

Now we rewrite the left-hand side of (59) as∫
Ω

|∇uε,δ|2w̃ε,δ dx +
∫
Ω

|∇uε,δ|2ṽε,δ dx + (εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx.

By Lemma 7.4, the first term satisfies

lim inf
ε,δ→0

∫
Ω

|∇uε,δ|2w̃ε,δ dx �
∫
Ω

|∇u0|2 dx. (63)

By unfolding the second term∫
Ω

|∇uε,δ|2ṽε,δ dx = δn−2

ε

∫
Γ3×R

n+

∣∣∇z

(
T bl

ε,δ(uε,δ)
)∣∣2

vδ(z) dx′ dz,

and Lemma 7.4 again gives

lim inf
ε,δ→0

∫
Ω

|∇uε,δ|2ṽε,δ dx � k

∫
Γ3×R

n+

|∇zU |2 dx′ dz. (64)

In an analogous way,

lim inf
ε,δ→0

(εδ)−2
∫
Ω

ρε,δu
2
ε,δ dx � k

∫
Γ3×B

ρ̄
(
x′, z

)∣∣U(
x′, z

)∣∣2
dx′ dz.

Combining this with (63), (64) and (59), one finally obtains the term by term convergence:∫
Ω

|∇uε,δ|2w̃ε,δ dx →
∫
Ω

|∇u0|2 dx,

δn−2

ε

∫
Γ3×R

n+

∣∣∇z

(
T bl

ε,δ(uε,δ)
)∣∣2

vδ(z) dx′ dz → k

∫
Γ3×R

n+

|∇zU |2 dx′ dz,

δn−2

ε

∫
Γ3×R

n+

T bl
ε,δ(ρε,δ)

∣∣ T bl
ε,δ(uε,δ)

∣∣2
dx′ dz → k

∫
Γ3×B

ρ̄
(
x′, z

)∣∣U(
x′, z

)∣∣2
dx′ dz.

Now applying Lemma 7.4 repeatedly completes the proof of Theorem 7.1. �
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8. Some generalizations

All the above results can be extended for the case of a second order elliptic operator with a possibly oscillating
matrix Aε,δ(x). The original problem is changed to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Finduε,δ ∈ Vε,δ satisfying∫
Ω

Aε,δ(x)∇uε,δ∇φ dx +
∫
Ω

(εδ)−�ρε,δuε,δφ dx =
∫
Ω

fε,δφ dx,

∀φ ∈ Vε,δ.

(Pε,δ)

The extra hypotheses for Aε,δ are

A1. Aε,δ is positive definite and bounded uniformly in ε and δ and for a.e. in x ∈ Ω .
A2. Aε,δ H -converges to some limit matrix Ahom.
A3. T bl

ε,δ(Aε,δ) converges to some A0 a.e. on Γ3 × R
n+.

Let us briefly describe the limit problem in the case 0 < k < +∞, and � = 2. Eqs. (30) and (31) become respec-
tively, ∫

R
n+

A0(x′, z
)∇zU

(
x′, z

)∇zv dz +
∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
v(z) dz =

∫
B

f̄
(
x′, z

)
v(z) dz

for a.e. x′ in Γ3 and all v ∈ K0
D ;∫

Ω

Ahom(x)∇u0∇ψ dx + k

∫
Γ3

(∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
dz +

∫
D

∂U

∂νA0
dz′

)
ψ

(
x′)dx′

=
∫
Ω

f ψ dx +
∫
Γ3

(∫
B

f̄
(
x′, z

)
dz

)
ψ

(
x′)dx′.

For the corresponding macroscopic formulation, the auxiliary problem (53) reads∫
R

n+

A0∇zU
(
x′, z

)∇zv dz +
∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
v(z) dz = 0,

and the corresponding generalized capacity becomes

Θ
(
x′) .=

∫
B

ρ̄
(
x′, z

)
U

(
x′, z

)
dz +

∫
D

∂U

∂νA0

(
x′, z′)dz′.

The first term of (55) is modified in a similar way. The proof goes along the same lines making also use of the
definition of H -convergence.

The convergence of the energy still holds (with obvious modifications) and implies the strong convergence for the
boundary layer term. The strong convergence of uε,δ → u0 in V0 is replaced by the standard corrector result associated
with the H -convergence of the operators Aε,δ(x).

The other cases for k and � are modified accordingly.
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