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In this paper we undertake the rigorous homogenization of a system of partial dif-
ferential equations describing the transport of a N-component electrolyte in a dilute
Newtonian solvent through a rigid porous medium. The motion is governed by
a small static electric field and a small hydrodynamic force, which allows us to
use O’Brien’s linearized equations as the starting model. We establish convergence
of the homogenization procedure and discuss the homogenized equations. Even if
the symmetry of the effective tensor is known from the literature [J. R. Looker and
S. L. Carnie, Transp. Porous Media, 65, 107 (2006)], its positive definiteness does not
seem to be known. Based on the rigorous study of the underlying equations, we prove
that the effective tensor satisfies Onsager properties, namely is symmetric positive
definite. This result justifies the approach of many authors who use Onsager theory
as starting point. C© 2010 American Institute of Physics. [doi:10.1063/1.3521555]

I. INTRODUCTION

The quasi-static transport of an electrolyte through an electrically charged porous medium is
an important and well-known multiscale problem in geosciences and porous materials modeling.
An N -component electrolyte is a dilute solution of N species of charged particles, or ions, in a
fluid which saturates a rigid porous medium. In such a case, an electric field can generate a so-
called electrokinetic flow. This electro-osmotic mechanism, which can facilitate or slow down fluid
flowing through clays, is due to the electric double layer (EDL) which is formed as a result of the
interaction of the ionized solution with static charges on the pore solid–liquid interfaces. The solute
ions of opposite charge cluster near the interface, forming the Stern layer. Its typical thickness is of
one ionic diameter. After the Stern layer the electrostatic diffuse layer or Debye’s layer is formed,
where the ion density varies. The EDL is the union of Stern and diffuse layers. The thickness of the
EDL is predicted by the Debye length λD , defined as the distance from the solid charged interface,
where the thermal energy is equal to the electrokinetic potential energy. Usually, λD is smaller than
100 nm. Outside Debye’s layer, in the remaining bulk fluid, the solvent can be considered as
electrically neutral.

The ion distribution in the EDL is characterized using the electrokinetic potential �. Its boundary
value at the edge of Stern’s layer is known as the zeta potential ζ . In many situations it is rather
the surface charge density σ , proportional to the normal derivative of �, than ζ , which is known.
Under the presence of an external electric field E, the charged fluid may acquire a plug flow
velocity which is proportional to Eζ and given by the so-called Smoluchowski’s formula. A more
detailed, mathematically oriented, presentation of the fundamental concepts of electro-osmotic flow
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in nanochannels can be found in the book by Karniadakis et al.1 (pp. 447–470), from which we
borrow the notations and definitions in this introduction.

In the case of porous media with large pores, the electro-osmotic effects are modeled by intro-
ducing an effective slip velocity at the solid–liquid interfaces, which comes from the Smoluchowski
formula. In this setting, the effective behavior of the charge transport through spatially periodic
porous media was studied by Edwards in Ref. 2, using the volume averaging method.

On the other hand, in the case of clays, the characteristic pore size is also of the order of a
few hundreds of nanometers or even less. Therefore the Debye’s layer fills largely the pores and
its effect cannot anymore be modeled by an effective slip boundary condition at the liquid–solid
interface. Furthermore, it was confirmed experimentally (see, e.g., Ref. 3) that the bulk Navier–
Stokes equations still hold for pores larger than 1 nm. Therefore, in the present paper we consider
continuum equations at the microscopic level and, more precisely, we couple the incompressible
Stokes equations for the fluid with the electrokinetic model made of a global electrostatic equation
and one convection–diffusion equation for each type of ions.

The microscopic electro-chemical interactions in an N -component electrolyte in a dilute New-
tonian solvent are now well understood and given by

E�� = −NAe
N∑

j=1

z j n j in �p, (1)

E∇� · ν = −σ on ∂�p \ ∂�, (2)

η�u = f + ∇ P + NAe
N∑

j=1

z j n j∇� in �p, (3)

div u = 0 in �p, (4)

Di�ni + div
(

ebi zi ni∇� − uni

)
= 0 in �p, i = 1, . . . , N , (5)

u = 0 on ∂�p \ ∂�, (6)

(
Di∇ni + ebi zi ni∇�

)
· ν = 0 ∂�p \ ∂�, i = 1, . . . , N . (7)

where �p is the pore space of the porous medium � and ν is the unit exterior normal to �p. We recall
that Eq. (1) links the electrokinetic potential � with the electric charge density ρe = NAe

∑N
j=1 z j n j .

In the momentum equation (3), the electrokinetic force per unit volume fE K = ρe∇� is taken into
account. The unknowns (u, P) denote, respectively, the fluid velocity and the pressure. Denoting
by ni the concentration of the i th species, each equation (5) is the i th mass conservation for a
multicomponent fluid, in the absence of chemical reactions. The boundary condition (7) means that
the normal component of the i th species ionic flux, given by ji = −Di∇ni − ebi zi ni∇� + uni ,
vanishes at the pore boundaries. The various parameters appearing in (1)–(7) are defined in Table I.
There is a liberty in choosing boundary conditions for � on ∂�p \ ∂� and following the literature
we impose a nonhomogeneous Neumann condition with σ in (2), rather than Dirichlet’s condition
with ζ .

For simplicity we assume that � = (0, L)d (d = 2, 3 is the space dimension), L > 0 and at the
outer boundary ∂� we set

� + �ext (x) , ni , u, and P are L − periodic. (8)

The applied exterior potential �ext (x) can typically be linear, equal to E · x , where E is an imposed
electrical field. Note that the applied exterior force f in the Stokes equations (3) can also be interpreted
as some imposed pressure drop or gravity force. Due to the complexity of the geometry and of the
equations, it is necessary for engineering applications to upscale the system (1)–(8) and to replace
the flow equations with a Darcy type law, including electro-osmotic effects.
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TABLE I. Data description.

Quantity Characteristic Value

e Electron charge 1.6e−19 C (Coulomb)
Di Diffusivity of the i th specie Di ∈ (1.79, 9.31)e−09 m2/s
kB Boltzmann constant 1.38e−23 J/K
NA Avogadro’s constant 6.022e23 1/Mole
T Temperature 293 K(Kelvin)
bi Electric mobility bi = Di /(kB T ) s/kg
E Dielectric constant 708e−12 C/(mV)
η Dynamic viscosity 1e−3 kg/(m s)
� Pore size 1e−6 m

λD Debye’s length

√
EkB T

NAe2
∑

j n j z j
∈ (3, 300) nm

z j j th electrolyte valence Given integer
σ Surface charge density C/m2

f Given applied force N/m3

It is a common practice to assume that the porous medium has a periodic microstructure. For
such media formal two-scale asymptotic analysis of system (1)–(8) has been performed in many
previous papers. Most of these works rely on a preliminary linearization of the problem which is
first due to O’Brien et al.4 The earliest paper, considering only one ionic species, is of Auriault
and Strzelecki.5 It was further extended by Looker and Carnie in Ref. 6. We also mention several
important numerical works by Adler et al.7–13 Moyne and Murad considered the case of electro-
osmosis in deformable periodic porous media without linearization in the series of articles.14–18 They
obtained a homogenized system involving two-scale partial differential equations and presented
numerical simulations.

Our goal here is to rigorously justify the homogenization of a linearized version of (1)–(8) in a
rigid periodic porous medium and to clarify the analysis of the homogenized problem. We feel that
our rigorous approach brings further light on the results obtained previously by the above mentioned
authors.

In Sec. II we present the linearization, corresponding to the seminal work of O’Brien et al.,4

and write the linearized system in a nondimensional form. This allows us to write the microscopic
ε-problem. Its solvability and the a priori estimates (uniform with respect to ε) are obtained in
Sec. III where we also state our main convergence result, Theorem 1. In Sec. IV, we present rigorous
passing to the homogenization limit, namely we prove our Theorem 1. The homogenized problem,
being identical to the one in Ref. 6, is then studied and uniqueness questions are discussed. We finish
Sec. IV with a short discussion of the linear relation linking the ionic current, filtration velocity,
and ionic fluxes with gradients of the electrical potential, pressure and ionic concentrations. In
other words, in Proposition 3 we prove that the so called Onsager relation (see, e.g., Ref. 19) is
satisfied, namely the full homogenized tensor is symmetric positive definite. Finally in Sec. V we
show that the two-scale convergence from Sec. IV is actually strong. It relies on a �-convergence-
type result, namely on the convergence of the associated energy. A numerical study of the obtained
homogenized coefficients (including their sensitivities to various physical parameters) is the topic
of further investigation and will appear later, together with a comparison with previous results in the
literature.

II. LINEARIZATION AND NONDIMENSIONAL FORM

The electrolyte flows in response to the static electric potential �ext (x), the constant surface
charge density σ on the pore walls and the applied fluid force f(x). The magnitude of the applied
fields f and �ext is assumed to be sufficiently small to permit the linearization of the ionic transport
(electrokinetic) equations. Then the system is only slightly perturbed from equilibrium and we are
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permitted to linearize (1)–(8). Following the calculations by O’Brien et al. from the seminal paper,4

we write the electrokinetic unknowns as

ni (x) = n0
i (x) + δni (x), �(x) = �0(x) + δ�(x),

u(x) = u0(x) + δu(x), P(x) = P0(x) + δP(x),

where n0
i , �

0, u0, P0 are the equilibrium quantities, corresponding to f = 0 and �ext = 0. The δ

prefix indicates a perturbation. It is easy to check that, in the case f = 0 and �ext = 0, a solution of
(1)–(8) is given by

u0 = 0, P0 = NAkB T
N∑

j=1

n0
j ,

n0
j (x) = n0

j (∞) exp{− ez j

kB T
�0(x)}, (9)

where n0
i (∞) are constants and �0 is the solution of the Boltzmann–Poisson equation⎧⎪⎨

⎪⎩
−��0 = NAe

E

N∑
j=1

n0
j (∞) exp{− ez j

kB T
�0} in �p,

E∇�0 · ν = −σ on ∂�p \ ∂�, �0 is L − periodic.

(10)

Motivated by the form of the Boltzmann equilibrium distribution and the calculation of n0
i , we follow

the lead from Ref. 4 and introduce a so-called ionic potential �i , which is defined in terms of ni by

ni (x) = n0
i (∞) exp{− ez j

kB T
(�(x) + �i (x) + �ext (x))}. (11)

After linearization it leads to

δni (x) = − ez j

kB T
n0

i (x)(δ�(x) + �i (x) + �ext (x)). (12)

Introducing (12) into (1)–(8) and linearizing yields the following equations for δ�, δu, δP , and �i

−�(δ�) + NAe2

EkB T

( N∑
j=1

z2
j n

0
j (x)

)
δ� = − NAe2

EkB T

( N∑
j=1

z2
j n

0
j (x)(� j + �ext (x))

)
in �p, (13)

E∇δ� · ν = 0 on ∂�p \ ∂�, (14)

δ�(x) + �ext (x) is L − periodic, (15)

η�δu − ∇
(

δP + NAe
N∑

j=1

z j n
0
j (δ� + � j + �ext (x))

)

= f − NAe
N∑

j=1

z j n
0
j (x)(∇� j + ∇�ext ) in �p, (16)

divδu = 0 in �p, δu = 0 on ∂�p \ ∂�, (17)

δu and δP are L − periodic, (18)

div
(
n0

i (ebi zi∇�i + ebi zi∇�ext + δu)
) = 0 in �p; (19)

(∇�i + ∇�ext ) · ν = 0 on ∂�p \ ∂�; (20)

�i is L − periodic. (21)
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Note that the perturbed velocity is actually equal to the overall velocity and that it is convenient to
introduce a global pressure p

δu = u, p = δP + NAe
N∑

j=1

z j n
0
j

(
δ� + � j + �ext (x)

)
. (22)

It is important to remark that δ� does not enter Eqs. (16)–(21) and thus is decoupled from the main
unknowns u, p, and �i . The system (9), (10), (16)–(22) is the microscopic linearized system for the
ionic transport in the papers by Adler et al.7–13 and in the work of Looker and Carnie.6 Our Stokes
system coincides with theirs after redefining the pressure.

Remark 1: It is also possible to introduce the electrochemical potential, relative to the j th
component, μ j (x) = μ

re f
j + log n j (x) + ez j

kB T �(x). Applying the same decomposition, μ j (x) =
μ0

j (x) + δμ j (x), it is easy to find that μ0
j (x) is a constant and δμ j (x) = − ez j

kB T (� j + �ext (x)).

In order to obtain a dimensionless form of the Eqs. (9), (10), (16)–(22), we first note that
the known data are the characteristic pore size �, the surface charge density σ (x) (having the
characteristic value σs), the static electrical potential �ext and the applied fluid force f. Following
Ref. 1, we introduce the ionic energy parameter α defined by α = eζ/(kB T ). Since it is not the
zeta potential ζ which is given, but the charge density σ , it makes sense to choose a characteristic
ζ by imposing α = 1. This choice was taken in the articles by Adler et al. After the work in
Ref. 1, we know that, at T = 293 K, α = 1 corresponds to the zeta potential ζ = 0.0254 V. The
small parameter is ε = �

L � 1. Next, following again the nondimensionalization from,1 we introduce
the parameter β relating the ionic energy parameter α and the characteristic pore size � to the Debye–
Hückel parameter ω = 1/λD , as follows:

β = (ω�)2

α
= (

�

λD
)2.

For large β the electrical potential is concentrated in a diffuse layer next to the liquid–solid interface.
Using the definition of Debye’s length from the Table I, we find out that the characteristic

concentration is

nc = EkB T

NAe2λ2
D

= β
EkB T

NA(e�)2
.

Note that the parameters n0
j (∞) should be compatible with nc. Following Ref. 1, we find out that

for � = 1.5e − 6 m and λD = 136 nm one has nc = 1e − 5 M (Mole/liter).
Next we rescale the space variable by setting �ε = �p/L and x ′ = x

L (we shall drop the primes
for simplicity in the sequel). Recalling that ζ = kB T/e, we introduce other characteristic quantities

pc = nc NAζe, uc = βE ζ 2

ηL
, nc

j = n0
j (∞)

nc
,

and adimensionalized unknowns

pε = p

pc
, uε = u

uc
, �ε

j = � j

ζ
, �ε = �0

ζ
, nε

j = n0
j

nc
.

We also define the rescaled electric potential �ext,∗, the rescaled fluid force f∗ the ratio between
electrical and thermal energy Nσ and the global Péclet number for the j-th species Pe j by

�ext,∗ = �ext

ζ
, f∗ = fL

pc
, Nσ = eσs�

EkB T
, Pe j = βEζ 2

ηD j
.

For simplicity, in the following we denote by E∗ the electric field corresponding to the potential
�ext,∗, i.e.,

E∗(x) = ∇�ext,∗(x).
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Straightforward algebra then yields

ε2�uε − ∇ pε = f∗ −
N∑

j=1

z j n
ε
j (x)(∇�ε

j + E∗) in �ε, (23)

uε = 0 on ∂�ε \ ∂�, divuε = 0 in �ε, (24)

uε and pε are 1 − periodic in x, (25)

− ε2��ε = β

N∑
j=1

z j n
ε
j (x) in �ε; (26)

nε
j (x) = nc

j exp{−z j�
ε}, (27)

ε∇�ε · ν = −Nσ σ on ∂�ε \ ∂�, (28)

div

(
nε

j (x)
(∇�ε

j + E∗ + Pe j

z j
uε

)) = 0 in �ε; (29)

(∇�ε
j + E∗) · ν = 0 on ∂�ε \ ∂�, (30)

�ε and �ε
j are 1 − periodic in x . (31)

System (23)–(31) is the adimensionalized scaled model that we are going to homogenize in the
following. We assume that all constants appearing in (23)–(31) are independent of ε, namely Nσ

and Pe j are of order 1 with respect to ε. The assumption Nσ = O(1) is classical in the literature,6, 14

while the assumption Pe j = O(1) is motivated by the following exemplary computation: If we take
D j = 1e − 9 m2/s, � = 1.5e − 6 m, λD = 136 nm and the parameters values from Table I, then we
find Pe j = 2.77.

III. UNIFORM A PRIORI ESTIMATES AND MAIN CONVERGENCE RESULT

Let us first make precise the geometrical structure of the porous medium. From now on we
assume that �ε is an ε-periodic open subset of Rd . It is built from (0, 1)d by removing a periodic
distributions of solid obstacles which, after rescaling, are all similar to the unit obstacle �0. More
precisely, the unit periodicity cell Y is identified with the flat unit torus T d on which we consider
a smooth partition �0 ∪ YF where �0 is the solid part and YF is the fluid part. The liquid/solid
interface is S = ∂�0 \ ∂Y . The fluid part is assumed to be a smooth connected open subset (no
assumption is made on the solid part). We define Y j

ε = ε(YF + j), � j
ε = ε(�0 + j), S j

ε = ε(S + j),
�ε = ⋃

j∈Zd

Y j
ε ∩ � , and Sε ≡ ∂�ε \ ∂� = ⋃

j∈Zd

S j
ε ∩ �.

The formal homogenization of the system (23)–(31) was undertaken in Ref. 6 by the method of
two-scale asymptotic expansions. Introducing the fast variable y = x/ε, it assumes that the solution
of (23)–(25) is given by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uε(x) = u0(x, y) + εu1(x, y) + . . . ,

pε(x) = p0(x, y) + εp1(x, y) + . . . ,

�ε(x) = �0(x, y) + ε�1(x, y) + . . . ,

�ε
j (x) = �0

j (x, y) + ε�1
j (x, y) + . . . .

They can be considered as a special case of the general expansions of this type from the papers
by Moyne and Murad.14–16, 18Our aim is to give a mathematically rigorous justification of the
homogenization results of Looker and Carnie,6 and to shed some light on the analysis of the
homogenized problem.
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A. Solvability of the ε-problem and a priori estimates

We start by noticing that the problem (26)–(28) is independent of the rest. Since �ε is periodic
as well as the coefficients and the boundary conditions, the solution is of the type

�ε(x) = �0(
x

ε
),

where �0(y) is the minimizer of the minimization problem

inf
ϕ∈V

J (ϕ), (32)

with V = {ϕ ∈ H 1(YF ), ϕ is 1 − periodic} and

J (ϕ) = 1

2

∫
YF

|∇yϕ(y)|2 dy + β

N∑
j=1

∫
YF

nc
j exp{−z jϕ} dy + Nσ

∫
S
σϕ d S.

Note that J is strictly convex, which gives the uniqueness of the minimizer. Nevertheless, for arbitrary
nonnegative β, nc

j , and Nσ , J may be not coercive on V if all z j ’s have the same sign. Therefore, we
must put a condition on the z j ’s so that the minimization problem (32) admits a solution. Following
the literature, we impose the bulk electroneutrality condition

N∑
j=1

z j n
c
j = 0, nc

j > 0, β > 0, (33)

which guarantees that for σ = 0, the unique solution is �0 = 0. Note that other conditions are
possible like having both positive and negative z j ’s. Under (33) it is easy to see that J is coercive
on V .

Next difficulty is that the functional J is not defined on V (except for n = 1), but on its proper
subspace V1 = {ϕ ∈ H 1(YF ), exp{max j |z j ||ϕ|} ∈ L1(YF )}. This situation makes the solvability of
the problem (32) not completely obvious. The corresponding result was established in Ref. 20,
using a penalization, with a cut-off of the nonlinear terms and the application of the theory of
pseudo-monotone operators. It reads as follows.

Lemma 1 (Ref. 20): Assume that the centering condition (33) holds true and σ ∈ L2(S). Then
problem (32) has a unique solution �0 ∈ V such that

N∑
j=1

z j e
−z j �

0 ∈ L1(YF ) and �0
N∑

j=1

z j e
−z j �

0 ∈ L1(YF ).

Furthermore, �0 ∈ H 2
loc(YF ) ∩ L∞(YF ). In particular, n0

j = nc
j exp{−z j�

0} satisfies the lower
bound n0

j (y) ≥ C > 0 in YF .

Let now σ ∈ C∞(S). Then further regularity of �0 can be obtained by standard elliptic regularity
in the Euler-Lagrange optimality condition of (32) which is similar to (10). Indeed, the right-hand side
in Eq. (10) is bonded and using the smoothness of the geometry, we conclude that �0 ∈ W 2,q (YF )
for every q < +∞. By bootstrapping, we obtain that �0 ∈ C∞(Y F ).

Therefore we have

�ε(x) = �0(
x

ε
), nε

j (x) = nc
j exp{−z j�

ε(x)}, j = 1, . . . , N . (34)

Having determined �ε and nε
j , we switch to the equations for �ε

j , uε , and pε. These functions
should satisfy Eqs. (23)–(25), (29)–(31) that we study by writing its variational formulation.

The functional spaces related to the velocity field are

W ε = {z ∈ H 1(�ε)d , z = 0 on ∂�ε \ ∂�, 1 − periodic in x}
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and

H ε = {z ∈ W ε, div z = 0 in �ε}.
Then, summing the variational formulation of (23)–(25) with that of (29)–(31) (weighted by z2

j/Pe j )
yields

Find uε ∈ H ε and {�ε
j } j=1,...,N ∈ H 1(�ε)N ,

�ε
j being 1 − periodic, such that

a
(
(uε, {�ε

j }), (ξ, {φ j })
)

:= ε2
∫

�ε

∇uε : ∇ξ dx

+
N∑

j=1

z j

∫
�ε

nε
j

(
uε · ∇φ j − ξ · ∇�ε

j

)
dx

+
N∑

j=1

z2
j

Pe j

∫
�ε

nε
j∇�ε

j · ∇φ j dx =< L, (ξ, {φ j }) >

:=
N∑

j=1

z j

∫
�ε

nε
j E

∗ ·
(

ξ − z j

Pe j
∇φ j

)
dx −

∫
�ε

f∗ · ξ dx, (35)

for any test functions ξ ∈ H ε and {φ j } j=1,...,N ∈ H 1(�ε)N , φ j being 1-periodic.

Lemma 2: Let E∗ and f∗ be given elements of L2(�)d . The variational formulation (35) admits a
unique solution (uε, {�ε

j }) ∈ H ε × H 1(�ε)d , such that �ε
j are 1-periodic and

∫
�ε �ε

j (x) dx = 0.
Furthermore, there exists a constant C, which does not depend on ε, f∗ , and E∗, such that the
solution satisfies the following a priori estimates

||uε||L2(�ε)d + ε||∇uε||L2(�ε)d2 ≤ C

(
||E∗||L2(�)d + ||f∗||L2(�)d

)
, (36)

max
1≤ j≤N

||�ε
j ||H 1(�ε) ≤ C

(
||E∗||L2(�)d + ||f∗||L2(�)d

)
. (37)

Proof: It is clear that the bilinear form a and the linear form L are continuous on our functional
spaces. Furthermore for ξ = uε and φ j = �ε

j , we find out that the second integral in the definition
of a cancels. In fact one can prove that this term is antisymmetric. Hence, since nε

j ≥ C > 0,
the form a((uε, {�ε

j }), (uε, {�ε
j })) is elliptic with respect to the norm of H ε × {z ∈ H 1(�ε)d ,

z is 1-periodic}/R. Now, the Lax–Milgram lemma implies existence and uniqueness for the
problem (35).

The a priori estimates (36)–(37) follow by testing the problem (35) by the solution, using
the L∞-estimate for �0 and using the well-known scaled Poincaré inequality in �ε (see, e.g.,
lemma 1.6 in section 3.1.3 of Ref. 27)

||ξ ||L2(�ε)d ≤ Cε||∇ξ ||L2(�ε)d2 , (38)

for any ξ ∈ H ε. �
To simplify the presentation we use an extension operator from the perforated domain �ε into

� (although it is not necessary). As was proved in Ref. 21, there exists such an extension operator
T ε from H 1(�ε) in H 1(�) satisfying T εφ|�ε = φ and the inequalities

‖T εφ‖L2(�) ≤ C‖φ‖L2(�ε), ‖∇(T εφ)‖L2(�) ≤ C‖∇φ‖L2(�ε)

with a constant C independent of ε, for any φ ∈ H 1(�ε). We keep for the extended function T ε�ε
j

the same notation �ε
j .
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We extend uε by zero in �\�ε. It is well known that extension by zero preserves Lq and W 1,q
0

norms for 1 < q < ∞. Therefore, we can replace �ε by � in (36).
The pressure field is reconstructed using de Rham’s theorem22 (it is thus unique up to an

additive constant). Contrary to the velocity, a priori estimates for the pressure are not easy to obtain.
Following the approach from Ref. 23, we define the pressure extension p̃ε by

p̃ε =
⎧⎨
⎩

pε in �ε,
1

|εYF |
∫

ε(YF +i)
pε in ε(�0 + i), (39)

for each i such that ε(�0 + i) ⊂ (0, 1)d . Note that the solid part of the porous medium � is the
union of all ε(�0 + i) ⊂ (0, 1)d . Then, according to the fundamental result of Tartar25 (see also
Ref. 26 or section 3.1.3 in Ref. 27), the pressure field pε satisfies uniform a priori estimates and do
not oscillate.

Lemma 3 (Ref. 25): Let p̃ε be defined by (39). Then it satisfies the estimates

‖ p̃ε − 1

|�|
∫

�

p̃εdx‖L2(�) ≤ C

(
||E∗||L2(�)d + ||f∗||L2(�)d

)
,

‖∇ p̃ε‖H−1(�)d ≤ C

(
||E∗||L2(�)d + ||f∗||L2(�)d

)
.

Furthermore, the sequence { p̃ε − 1
|�|

∫
�

p̃ε} is strongly relatively compact in L2(�).

B. Strong and two-scale convergence for the solution to the ε-problem

The velocity field is oscillatory and the appropriate convergence is the two-scale convergence,
developed in Refs. 28 and 29. We just recall its definition and basic properties.

Definition 1: A sequence {wε} ⊂ L2(�) is said to two-scale converge to a limit w ∈ L2(� × Y ) if
‖wε‖L2(�) ≤ C, and for any ϕ ∈ C∞

0

(
�; C∞

per(Y )
)

(“per” denotes 1-periodicity) one has

lim
ε→0

∫
�

wε(x)ϕ
(

x,
x

ε

)
dx =

∫
�

∫
Y

w(x, y)ϕ(x, y) dy dx .

Next, we give various useful properties of two-scale convergence.

Proposition 1 (Ref. 28):

1. From each bounded sequence {wε} in L2(�) one can extract a subsequence which two-scale
converges to a limit w ∈ L2(� × Y ).

2. Let wε and ε∇wε be bounded sequences in L2(�). Then there exists a function w ∈
L2

(
�; H 1

per(Y )
)

and a subsequence such that both wε and ε∇wε two-scale converge to w

and ∇yw, respectively.
3. Let wε two-scale converge to w ∈ L2(� × Y ). Then wε converges weakly in L2(�) to∫

Y w(x, y) dy.
4. Let λ ∈ L∞

per(Y ), λε = λ(x/ε) and let a sequence {wε} ⊂ L2(�) two-scale converge to a limit
w ∈ L2(� × Y ). Then λεwε two-scale converges to the limit λw.

5. Let vε be a bounded sequence in L2(�)d which two-scale converges to v ∈ L2(� × Y )d . If
div vε(x) = 0, then divyv(x, y) = 0 , and divx

(∫
Y v(x, y) dy

) = 0.

Using the a priori estimates and the notion of two-scale convergence, we are able to prove our
main convergence result for the solutions of system (23)–(31).

Theorem 1: Let nε
j be given by (34) and {uε, {�ε

j } j=1,...,N } be the variational solution of (35). We
extend the velocity uε by zero in � \ �ε and the pressure pε by p̃ε, given by (39) and normalized
by

∫
�ε p̃ε = 0. Then there exist limits (u0, p0) ∈ L2(�; H 1

per (Y )d ) × L2
0(�) and {�0

j ,�
1
j } j=1,...,N
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123103-10 Allaire, Mikelić, and Piatnitski J. Math. Phys. 51, 123103 (2010)

∈ (
H 1(�) × L2(�; H 1

per (Y ))
)N

such that the following convergences hold

uε → u0(x, y) in the two-scale sense, (40)

ε∇uε → ∇yu0(x, y) in the two-scale sense, (41)

p̃ε → p0(x) strongly in L2(�), (42)

{�ε
j } → {�0

j (x)} weakly in H 1(�) and strongly in L2(�) (43)

{∇�ε
j } → {∇x�

0
j (x) + ∇y�

1
j (x, y)} in the two-scale sense, (44)

nε
j → n0

j (y) and �ε → �0(y) in the two-scale sense. (45)

Furthermore, (u0, p0, {�0
j ,�

1
j }) is the unique solution of the two-scale homogenized problem

−�yu0(x, y) + ∇y p1(x, y) = −∇x p0(x) − f∗(x)

+
N∑

j=1

z j n
0
j (y)(∇x�

0
j (x) + ∇y�

1
j (x, y) + E∗(x)) in � × YF , (46)

divyu0(x, y) = 0 in � × YF , u0(x, y) = 0 on � × S, (47)

divx

(∫
YF

u0 dy

)
= 0 in �, (48)

−divy
(
n0

j (y)
(∇y�

1
j (x, y) + ∇x�

0
j (x) + E∗(x) + Pe j

z j
u0

)) = 0 in � × YF , (49)

(∇y�
1
j + ∇x�

0
j + E∗) · ν(y) = 0 on � × S, (50)

−divx
( ∫

YF

n0
j

(∇y�
1
j + ∇x�

0
j + E∗(x) + Pe j

z j
u0

)
dy

) = 0 in �, (51)

�0
j ,

∫
YF

u0 dy and p0 being 1-periodic in x, (52)

with periodic boundary conditions on the unit cell YF for all functions depending on y.

The limit problem introduced in Theorem 1 is called the two-scale and two-pressure homog-
enized problem, following the terminology of Refs. 27 and 30. It is well posed because the two
incompressibility constraints (47) and (48) are exactly dual to the two pressures p0(x) and p1(x, y)
which are their corresponding Lagrange multipliers.

Removing the y variable from the above two-scale limit problem and extracting the purely
macroscopic homogenized problem will be done later in Proposition 3.

IV. PASSING TO THE LIMIT IN THE ε PROBLEM AND THE HOMOGENIZED PROBLEM

This section is devoted to the proof of Theorem 1 and to the analysis of the homogenized problem
(46)–(52). We start by rewriting the variational formulation (35) with a velocity test function which
is not divergence-free, so we can still take into account the pressure
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ε2
∫

�ε

∇uε : ∇ξ dx −
∫

�ε

pε div ξ dx +
N∑

j=1

∫
�ε

z j n
ε
j

( − ξ · ∇�ε
j + uε · ∇φ j

)
dx

+
N∑

j=1

z2
j

Pe j

∫
�ε

nε
j∇�ε

j · ∇φ j dx

= −
N∑

j=1

z2
j

Pe j

∫
�ε

nε
j E

∗ · ∇φ j dx +
N∑

j=1

∫
�ε

z j n
ε
j E

∗ · ξ dx −
∫

�ε

f∗ · ξ dx, (53)

for any test functions ξ ∈ W ε and φ j ∈ H 1(�ε), φ j being 1-periodic, 1 ≤ j ≤ N . Of course, one
keeps the divergence constraint divuε = 0 in �ε. Next we define the two-scale test functions:

ξε(x) = ξ (x, x/ε), ξ ∈ C∞
per (�; H 1

per (Y )d ),

ξ = 0 on � × S, divyξ (x, y) = 0 on � × Y, (54)

φε
j (x) = ϕ j (x) + εγ j (x, x/ε), ϕ j ∈ C∞

per (�), γ j ∈ C∞
per (�; H 1

per (YF )). (55)

Recalling that nε
j (x) = n0

j (x/ε) is like a two-scale test function, we can pass to the limit in (53),
along the same lines as in the seminal Refs. 28 and 27. By virtue of the a priori estimates in Lemmas
2 and 3, and using the compactness of Proposition 1, there exist a subsequence, still denoted by
ε, and limits (u0, p0, {�0

j ,�
1
j }) ∈ L2(�; H 1

per (Y )d ) × L2
0(�) × H 1(�) × L2(�; H 1

per (Y )) such that
the convergences in Theorem 1 are satisfied. Passing to the two-scale limit in (53) we get that the
limit (u0, p0, {�0

j ,�
1
j }) satisfy the following two-scale variational formulation∫

�×YF

∇yu0(x, y) : ∇yξ dxdy −
∫

�×YF

p0(x) divxξ dxdy

+
N∑

j=1

∫
�×YF

z j n
0
j (y)

(
− ξ (x, y) · (∇x�

0
j (x) + ∇y�

1
j (x, y))

+ u0(x, y) · (∇xϕ j (x) + ∇yγ j (x, y))
)

dxdy

+
N∑

j=1

z2
j

Pe j

∫
�×YF

n0
j (y)(∇x�

0
j (x) + ∇y�

1
j (x, y)) · (∇xϕ j (x) + ∇yγ j ) dxdy

= −
N∑

j=1

z2
j

Pe j

∫
�×YF

n0
j (y)E∗(x) · (∇xϕ j (x) + ∇yγ j (x, y)) dxdy

+
N∑

j=1

∫
�×YF

z j n
0
j (y)E∗(x) · ξ (x, y) dxdy −

∫
�×YF

f∗(x) · ξ (x, y) dxdy, (56)

for any test functions ξ given by (54) and {ϕ j , γ j } given by (55). Furthermore the velocity u0(x, y)
satisfies the incompressibility constraints (47) and (48).

The next step is to prove the well-posedness of (56) which will automatically implies that the
entire sequence (uε, pε, {�ε

j }) converges by uniqueness of the limit.

Proposition 2: The problem (56) with incompressibility constraints (47) and (48) has a unique
solution(

u0, p0, {�0
j ,�

1
j } j=1,...,N

) ∈ L2(�; H 1
per (Y )d ) × L2

0(�) × (H 1(�)/R × L2(�; H 1
per (Y )d/R)

)N
.

Proof: Following Ref. 31 (see also section 3.1.2 in Ref. 27) we introduce the functional space for
the velocities

V = {u0(x, y) ∈ L2
per

(
�; H 1

per (Y )d
)

satisfying (47) − (48)},
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which is known to be orthogonal in L2
per

(
�; H 1

per (Y )d
)

to the space of gradients of the form
∇x q(x) + ∇yq1(x, y) with q(x) ∈ H 1

per (�)/R and q1(x, y) ∈ L2
per

(
�; L2

per (YF )/R
)
. We apply the

Lax-Milgram lemma to prove the existence and uniqueness of (u0, p0, {�0
j ,�

1
j }) in V × L2

0(�) ×
H 1

per (�)/R × L2
per (�; H 1

per (Y )d/R). The only point which requires to be checked is the coercivity
of the bilinear form. We take ξ = u0, ϕ j = �0

j , and γ j = �1
j as the test functions in (56). Using the

incompressibility constraints (48) and the antisymmetry of the third integral in (56), we obtain the
quadratic form∫

�×YF

|∇yu0(x, y)|2 dxdy +
N∑

j=1

z2
j

Pe j

∫
�×YF

n0
j (y)|∇x�

0
j (x) + ∇y�

1
j (x, y)|2 dxdy. (57)

Recalling from Lemma 1 that n0
j (y) ≥ C > 0 in YF , it is easy to check that each term in the sum in

the second term of (57) is bounded from below by

C

(∫
�

|∇x�
0
j (x)|2 dx +

∫
�×YF

|∇y�
1
j (x, y)|2 dxdy

)
,

which proves the coerciveness of the bilinear form in the required space. �
The next step is to recover the two-scale homogenized system (46)–(52) from the variational

formulation (56). In order to get the Stokes equations (46) we choose ϕ j = 0 and γ j = 0 in (56). By
a two-scale version of de Rham’s theorem22 (see, Ref. 31 or lemma 1.5 in section 3.1.2 of Ref. 27)
we deduce the existence of a pressure field p1(x, y) in L2(� × YF ) such that

−�yu0 + ∇y p1 = −∇x p0 − f∗ +
N∑

j=1

z j n
0
j (∇x�

0
j + ∇y�

1
j + E∗).

The incompressibility constraints (47) and (48) are simple consequences of passing to the two-scale
limit in the equation divuε = 0 in �ε. To obtain the cell convection-diffusion equation (49) we
now choose ξ = 0 and ϕ j = 0 in (56) while the macroscopic convection-diffusion equation (51) is
obtained by taking ξ = 0 and γ j = 0. This finishes the proof of Theorem 1.

It is important to separate the fast and slow scale, if possible. This was undertaken by Looker and
Carnie in Ref. 6 introducing three different types of cell problems. We propose a different approach
relying on only two type of cell problems. We believe our approach is more systematic and simpler, at
least from a mathematical point of view. The main idea is to recognize in the two-scale homogenized
problem (46)–(52) that there are two different macroscopic fluxes, namely (∇x p0(x) + f∗(x)) and
{∇x�

0
j (x) + E∗(x)}1≤ j≤N . Therefore we introduce two families of cell problems, indexed by k ∈

{1, . . . , d} for each component of these fluxes. We denote by {ek}1≤k≤d the canonical basis of Rd .
The first cell problem, corresponding to the macroscopic pressure gradient, is

−�yv0,k(y) + ∇yπ
0,k(y) = ek +

N∑
j=1

z j n
0
j (y)∇yθ

0,k
j (y) in YF , (58)

divyv0,k(y) = 0 in YF , v0,k(y) = 0 on S, (59)

−divy

(
n0

j (y)
(∇yθ

0,k
j (y) + Pe j

z j
v0,k(y)

)) = 0 in YF , (60)

∇yθ
0,k
j (y) · ν = 0 on S. (61)

The second cell problem, corresponding to the macroscopic diffusive flux, is for each species
i ∈ {1, . . . , N }

−�yvi,k(y) + ∇yπ
i,k(y) =

N∑
j=1

z j n
0
j (y)(δi j ek + ∇yθ

i,k
j (y)) in YF , (62)

divyvi,k(y) = 0 in YF , vi,k(y) = 0 on S, (63)
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−divy(n0
j (y)

(
δi j ek + ∇yθ

i,k
j (y) + Pe j

z j
vi,k(y)

)
) = 0 in YF , (64)(

δi j ek + ∇yθ
i,k
j (y)

) · ν = 0 on S, (65)

where δi j is the Kronecker symbol. As usual the cell problems are complemented with periodic
boundary conditions. The solvability of the cell problems (58)–(61) and (62)–(65) is along the same
lines as the proof of Proposition 2. Then, we can decompose the solution of (46)–(52) as

u0(x, y) =
d∑

k=1

(−v0,k(y)

(
∂p0

∂xk
+ f ∗

k

)
(x) +

N∑
i=1

vi,k(y)

(
E∗

k + ∂�0
i

∂xk

)
(x)), (66)

p1(x, y) =
d∑

k=1

(−π0,k(y)

(
∂p0

∂xk
+ f ∗

k

)
(x) +

N∑
i=1

π i,k(y)

(
E∗

k + ∂�0
i

∂xk

)
(x)), (67)

�1
j (x, y) =

d∑
k=1

(−θ
0,k
j (y)

(
∂p0

∂xk
+ f ∗

k

)
(x) +

N∑
i=1

θ
i,k
j (y)

(
E∗

k + ∂�0
i

∂xk

)
(x)). (68)

We now have to average (66)–(68) in order to get a purely macroscopic homogenized problem. From
Remark 1 we recall the nondimensional perturbation of the electrochemical potential

δμε
j = −z j (�

ε
j + �ext,∗)

and we introduce the ionic flux of the j th species

j j = z j

Pe j
nε

j

(
∇�ε

j + E∗ + Pe j

z j
uε

)
,

where E∗ = ∇�ext,∗, and we define the effective quantities

μ
e f f
j (x) = −z j (�

0
j (x) + �ext,∗(x)),

je f f
j (x) = z j

Pe j |YF |
∫

YF

n0
j (y)(∇x�

0
j (x) + E∗ + ∇y�

1
j (x, y) + Pe j

z j
u0(x, y))dy,

ue f f (x) = 1

|YF |
∫

YF

u0(x, y) dy, and pef f (x) = p0(x).

We are now able to write the homogenized or upscaled equations for the above effective fields.

Proposition 3: The macroscopic equations are, for j = 1, . . . , N,

divx ue f f = 0 and divx je f f
j = 0 in �,

ue f f (x) and je f f
j (x) 1 − periodic,

with

ue f f = −
N∑

i=1

Ji

zi
∇xμ

e f f
i − K∇x pe f f − Kf∗, (69)

where the matrices Ji and K are defined by their entries

{Ji }lk = 1

|YF |
∫

YF

vi,k(y) · el dy,

{K}lk = 1

|YF |
∫

YF

v0,k(y) · el dy,

and

je f f
j = −

N∑
i=1

D j i

zi
∇xμ

e f f
i − L j∇x pe f f − L j f∗, (70)
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where the matrices D j i and L j are defined by their entries

{D j i }lk = 1

|YF |
∫

YF

n0
j (y)(vi,k(y) + z j

Pe j

(
ek + ∇yθ

i,k
j (y)

)
) · el dy, (71)

{L j }lk = 1

|YF |
∫

YF

n0
j (y)

(
v0,k(y) + z j

Pe j
∇yθ

0,k
j (y)

)
· el dy. (72)

Furthermore, the overall tensor M, such that J = −MF − M(f∗, {0}) with J = (ue f f , {je f f
j })

and F = (∇x pe f f , {∇xμ
e f f
j /zi }), defined by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K
J1

z1
. . .

JN

zN

L1
D11

z1
· · · D1N

zN
...

...
. . .

...

LN
DN1

z1
· · · DN N

zN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(73)

is symmetric positive definite.

The tensor K is called permeability tensor, D j i are the electrodiffusion tensors. The symmetry
of the tensor M is equivalent to the famous Onsager’s reciprocal relations.

Remark 2: One of the important results of Looker and Carnie in their paper6 is the proof of
Onsager’s reciprocal relations, i.e., the symmetry of M (beware our definitions of K,L j , J j , and
D j i that are slightly different from those of Ref. 6). Our proof of the symmetry of M in Proposition
3 is actually similar to that in Ref. 6 (the difference being that their cell problems have distinct
definitions from ours). It is also proved in Ref. 6 that the diagonal blocks K and D j j are positive
definite. Nevertheless, the second law of thermodynamics requires that the full tensor M be positive
definite and it was not established in the literature. One of the novelty in our rigorous analysis is
that Proposition 3 establishes the positive definite character of M.

Remark 3: The homogenized equations in Proposition 3 form a symmetric elliptic system

divx {K(∇x p0 + f∗) +
N∑

i=1

Ji (∇x�
0
i + E∗)} = 0 in �,

divx {L j (∇x p0 + f∗) +
N∑

i=1

D j i (∇x�
0
i + E∗)} = 0 in �,

with periodic boundary conditions. In particular it implies that the pressure field p0 is smoother
than expected from the convergence in Theorem 1 since it belongs to H 1(�).

Proof: Averaging (66)–(68) on YF yields the macroscopic relations (69)–(72). The only thing to
prove is that M is symmetric positive. We start by showing that it is positive definite. For any
collection of vectors λ0, {λi }1≤i≤N ∈ Rd let us introduce the following linear combinations of the
cell solutions

vλ =
d∑

k=1

(
λ0

kv0,k +
N∑

i=1

λi
kvi,k

)
, (74)

θλ
j =

d∑
k=1

(
λ0

kθ
0,k
j +

N∑
i=1

λi
kθ

i,k
j

)
, (75)
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which satisfy a system of equations similar to (58)–(61) or (62)–(65) but with λ0 or λ j instead of ek

as right-hand sides, namely

−�yvλ(y) + ∇yπ
λ(y) = λ0 +

N∑
j=1

z j n
0
j (y)

(
λ j + ∇yθ

λ
j (y)

)
in YF , (76)

divyvλ(y) = 0 in YF , vλ(y) = 0 on S, (77)

−divy

(
n0

j (y)
(
λ j + ∇yθ

λ
j (y) + Pe j

z j
vλ(y)

)) = 0 in YF , (78)

(
λ j + ∇yθ

λ
j (y)

) · ν = 0 on S. (79)

Multiplying the Stokes equation (76) by vλ, the convection–diffusion equation (78) by θλ
j and doing

the same computation as the one that leads to (57), we obtain

∫
YF

(
|∇yvλ(y)|2 +

N∑
j=1

z2
j

Pe j
n0

j (y)|∇yθ
λ
j (y)|2

)
dy =

∫
YF

λ0 · vλ(y) dy

+
N∑

i=1

∫
YF

n0
i (y)λi · (zi vλ(y) − z2

i

Pei
∇yθ

λ
i (y))dy.

We modify the left-hand side which is still a positive quadratic form

∫
YF

⎛
⎝|∇yvλ(y)|2 +

N∑
j=1

z2
j

Pe j
n0

j (y)|∇yθ
λ
j (y) + λ j |2

⎞
⎠ dy

=
∫

YF

λ0 · vλ dy +
N∑

i=1

∫
YF

n0
i λ

i · (zi vλ + z2
i

Pei
(∇yθ

λ
i + λi ))dy

= Kλ0 · λ0 +
N∑

i=1

Jiλ
i · λ0 +

N∑
i, j=1

ziλ
i · Di jλ

j +
N∑

i=1

ziλ
i · Liλ

0

= M(λ0, {ziλ
i })T · (λ0, {ziλ

i })T (80)

which proves the positive definite character of M.
We now turn to the symmetry of M. Similarly to (74)–(75), for λ̃0, {λ̃i }1≤i≤N ∈ Rd , we define

vλ̃ and θ λ̃
j . Multiplying the Stokes equation for vλ by vλ̃ and the convection–diffusion equation for θ λ̃

j

by θλ
j (note the skew-symmetry of this computation), then adding the two variational formulations

yields

∫
YF

(
∇yvλ · ∇yvλ̃ +

N∑
j=1

z2
j

Pe j
n0

j∇yθ
λ
j · ∇yθ

λ̃
j

)
dy

=
∫

YF

λ0 · vλ̃ dy +
N∑

j=1

∫
YF

z j n
0
j (λ

j · vλ̃ − z j

Pe j
λ̃ j · ∇yθ

λ
j )dy. (81)

Since (81) is symmetric in λ, λ̃, we deduce that

∫
YF

λ0 · vλ̃ dy +
N∑

j=1

∫
YF

z j n
0
j

(
λ j · vλ̃ + z j

Pe j
λ j · ∇yθ

λ̃
j

)
dy

=
∫

YF

λ̃0 · vλ dy +
N∑

j=1

∫
YF

z j n
0
j (λ̃

j · vλ + z j

Pe j
λ̃ j · ∇yθ

λ
j ) dy,

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which is equivalent to

λ0 · Kλ̃0 +
N∑

i=1

λ0 · Ji λ̃
i +

N∑
j=1

z jλ
j ·

(
L j λ̃

0 +
N∑

i=1

D j i λ̃
i

)

= λ̃0 · Kλ0 +
N∑

i=1

λ̃0 · Jiλ
i +

N∑
j=1

z j λ̃
j ·

(
L jλ

0 +
N∑

i=1

D j iλ
i

)
,

or

M(λ̃0, {zi λ̃
i })T · (λ0, {ziλ

i })T = M(λ0, {ziλ
i })T · (λ̃0, {zi λ̃

i })T

from which we deduce the symmetry of M. �

V. STRONG CONVERGENCE AND CORRECTORS

Besides the standard convergences of the microscopic variables to the effective ones, we also
prove the following convergences of the energies.

Proposition 4: We have the following convergences in energy, for j = 1, . . . , N ,

lim
ε→0

ε2
∫

�ε

|∇uε|2 dx =
∫

�×YF

|∇yu0(x, y)|2 dydx, (82)

lim
ε→0

∫
�ε

nε
j |∇�ε

j |2 dx =
∫

�×YF

n0
j (y)|∇x�

0
j (x) + ∇y�

1
j (x, y)|2 dxdy. (83)

Proof: The proof is standard (see Theorem 2.6 in Ref. 28). We start from the energy equality
corresponding to the variational equation (35):

ε2
∫

�ε

|∇uε|2 dx +
N∑

j=1

z2
j

Pe j

∫
�ε

nε
j |∇�ε

j |2 dx

= −
N∑

j=1

z2
j

Pe j

∫
�ε

nε
j E

∗ · ∇�ε
j dx +

N∑
j=1

z j

∫
�ε

nε
j E

∗ · uε dx −
∫

�ε

f∗ · uε dx . (84)

For the homogenized variational problem (56) the energy equality reads

∫
�×YF

|∇yu0|2 dxdy +
N∑

j=1

z2
j

Pe j

∫
�×YF

n0
j (y)|∇x�

0
j + ∇y�

1
j |2 dxdy

= −
N∑

j=1

z2
j

Pe j

∫
�×YF

n0
j (y)E∗ · (∇x� j + ∇y�

1
j ) dxdy

+
N∑

j=1

z j

∫
�×YF

n0
j (y)E∗ · u0 dxdy −

∫
�×YF

f∗ · u0 dxdy. (85)

In (84) we observe the convergence of the right-hand side to the right-hand side of (85). Next we
use the lower semicontinuity of the left-hand side with respect to the two-scale convergence and the
equality (85) to conclude (82)–(83). �
Theorem 2: The following strong two-scale convergences hold

lim
ε→0

∫
�ε

∣∣∣uε(x) − u0(x,
x

ε
)
∣∣∣2

dx = 0 (86)
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and

lim
ε→0

∫
�ε

∣∣∣∇ (
�ε

j (x) − �0
j (x) − ε�1

j (x,
x

ε
)
)∣∣∣2

dx = 0. (87)

Proof: We first remark that the regularity of the solutions of the cell problems (58)–(61) and (62)–
(65) implies that the functions u0(x, x/ε) and �1

j (x, x/ε) are measurable and well defined in H 1(�).
We have ∫

�ε

ε2|∇[u0(x,
x

ε
)] − ∇uε(x)|2 dx =

∫
�ε

|[∇yu0](x,
x

ε
)|2 dx

+
∫

�ε

ε2|∇uε(x)|2 dx − 2
∫

�ε

ε[∇yu0](x,
x

ε
) · ∇uε(x) dx + O(ε). (88)

Using Proposition 4 for the second term on the right-hand side of (88) and passing to the two-scale
limit in the third term on the right-hand side of (88), we deduce

lim
ε→0

∫
�ε

ε2
∣∣∣∇ (

uε(x) − u0(x,
x

ε
)
)∣∣∣2

dx = 0

Using the scaled Poincaré inequality (38) in �ε (see the proof of Lemma 2) yields (86).
On the other hand, by virtue of Lemma 1, nε

j is uniformly positive, i.e., there exists a constant
C > 0, which does not depend on ε, such that∫

�ε

∣∣∣∇ (
�ε

j (x) − �0
j (x) − ε�1

j (x,
x

ε
)
)∣∣∣2

dx ≤ C
∫

�ε

nε
j

∣∣∣∇ (
�ε

j (x) − �0
j (x) − ε�1

j (x,
x

ε
)
)∣∣∣2

dx .

(89)

Developing the right-hand side of (89) as we just did for the velocity and using the fact that
nε

j (x) = n0
j (x/ε) is a two-scale test function, we easily deduce (87). �
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