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We study the asymptotic behavior of the solution to boundary-value problem for
the second order elliptic equation in the bounded domain ), € R" with a very
rapidly oscillating locally periodic boundary. We assume that the Fourier boundary
condition involving a small positive parameter ¢ is posed on the oscillating part of
the boundary and that the (n — 1)-dimensional volume of this part goes to infinity
as ¢ — 0. Under proper normalization conditions that homogenized problem is
found and the estimates of the residual are obtained. Also, we construct an
additional term of the asymptotics to improve the estimates of the residual. It is
shown that the limiting problem can involve Dirichlet, Fourier or Neumann
boundary conditions depending on the structure of the coefficient of the original
problem.  © 1999 Academic Press
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1. INTRODUCTION

The paper is devoted to the boundary-value problems in domains with
rapidly oscillating boundaries. In recent years the interest in this kind of
problem appears in connection with the development of technologies of
porous, composite and other microinhomogeneous materials, and also as a
result of various physical experiments. For example, the morphology of
contacting surfaces plays an important role in the frictional behavior of
deformable bodies. The roughness of the contact surface and the material
properties near this surface are microcharacteristics which influence the
large scale behavior. The mathematical analysis of these problems based
on boundary homogenization was presented in [18], [5], [4], [17] and others.
Different boundary homogenization problems were considered in [16], [1],
(2], [13], [14], [7].

In the present paper the authors study an elliptic problem with the
inhomogeneous Fourier boundary condition in domains with very rapidly
oscillating locally periodic boundaries, depending on a small parameter.
The peculiarity of the problems considered is the unlimited growth of the
(n — 1)-dimensional volume of the boundary as the small parameter tends
to zero, while in the cases studied earlier [2], [4], [17], the (n — 1)-
dimensional volume of the oscillating part of the boundary remained
uniformly bounded. Thus, in the case under consideration the height of
the “cogs” forming the boundary is much greater than the size of their
bases. This leads to the appearance of special normalizing factors both in
the coefficients and in the right hand side of boundary operators. Depend-
ing on these normalizing factors, different limiting boundary conditions
can be obtained.

Also, an additional term of the asymptotic expansion which allows
precision of the limiting behavior of the solution and improvement of the
estimate of the residual is constructed. This term is defined with the help
of a family of auxiliary problems posed in a fixed domain, with nonoscillat-
ing boundary conditions. In this context we call it the smooth corrector.
Earlier, in a different framework, the corrector and the asymptotic expan-
sion questions were considered in [2], [13].

For simplicity we suppose the oscillating part of the boundary to lie in a
small neighborhood of a hyperplane. Without loss of generality one can
consider the coordinate hyperplane {x | x, = 0}.

2. SETTING OF THE PROBLEM

Let Q) be a bounded domain in R”, n > 2, with a smooth boundary
dQ =T, UT,, where Q lies in the half-space x, > 0and I';  {x: x, = 0}.
Given smooth nonpositive 1-periodic in the ¢ function F(X, &), ¥ =
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(Xy,..n %, ) E= (&, ..., & _,), define the domain Q, as follows: 7€), =
I'fUT,, where weset I'Y ={x:X eI}, x, = ¢eF(X,X/e%)}, a > 1. Usu-
ally, we will assume F(X, £) to be compactly supported on I'; uniformly in
&. Consider the following boundary-value problem:

—Au, = f(x) in Q,,

du, X X

— + &ePp|%, — |u, = e g| X, — on Iy, (1)
ov, € &

u,=0 onT,,

where v, is an outer normal on I'Y and p(%, &), g(x, &) are 1-periodic
in &.

DeriniTion 1. The function u, € H*(Q,, T,) is a solution of problem
(1) if the following integral identity

X
e”

jQEVua(x)VU(x) dx + sﬁfrgp( ) u, (x)v(x)ds

= [ SCe)o(x) de + oo /F( gi) o(x) ds

holds for all v € HY(Q,,T,). Here we use the standard notation
HY(Q,,T,) for the closure by the H(Q,) norm of the set C*(Q2,) of
functions vanishing in a neighborhood of T’,.

In what follows we study the limiting behavior of solution u, of (1) as
g — 0. It will be shown that the boundary condition of the limit problem
depends on the relation between « and B. In particular, the Dirichlet
boundary condition as well as the Neumann and the Fourier boundary
conditions can be obtained.

3. THE CASE B> a—-1

In this section we consider the case 8 > a — 1. The main result here is
the following theorem.

THEOREM 1. Let B> o — 1, f € L,(R") and F(%, £), g(%, &), p(%, &)
be periodic in & smooth functions. Suppose that F(X, €) is compactly sup-

ported inx € T uniformly in &. Then, for all sufficiently small &, problem (1)
does have unique solution and the inequality holds

lug — u llmra,) < Ky(max(eP=e*t eot, \/;)) (2)
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where K, does not depend on &, u, satisfies the following limiting equations

—Auy=f in Q,

du, G2 r
o =G(x) only, (3)
u, =0 onl,,

and

Remark 1. The definition of solution to problem (3) is analogous to
that given for problem (1).

Denote by V' an n-dimensional open neighborhood of (supp F) such
that dist((V N T)), dT)) > 0; here 9T, means the (n — 2)-dimensional
boundary of I';. It is clear that for sufficiently small & the oscillating part
of I'Y belongs to V. Due to the smoothness of the boundary ¢ the
solution u, belongs to H2(Q N 1) [8], and, hence, can be continued on V/
to belong to H2(V) [12].

Preliminary lemma

LEMMA 1. There exist such constants C,, C, that for any v € H*(Q_,T,)
the inequalities

o s X -
v| % eF| %, — || — v(%.0) < Ciellvlluya,), (4)

LI

lollz,.n0) < Cz‘/;“UHHl(QS) (5)
take place.
Proof. Without loss of generality we assume v € C*(Q2,). Note that
y (91)(56\, l‘)
X,y) —v(x,0) = | ————dt
v(Ey) —u(®,0) = [[—=
for any (X, y) € Q_\ Q. Then, we have

2 y
syfo

(902

ox

Jv(X,t
/y¥ dt dr.
0

ox,

l0(%,y) - 0(F,0)[" =

n
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Substituting y = eF(X, X/&®) and integrating over T';, we obtain (4).
Further, for (X, y) € OQ_\ Q the following inequality

~ 2
Ju(x,t
/y¥ dt)
0 ax

n

v?(X,y) < 2v%(%,0) + 2

2

dt

X

~aa, an| JU
< 20%(%,0) + 23F(£, a)fgm’x/s )
& 0

ox,

holds. Consequently,
/F df/:”f’f/“’uZ(f,y) dy < 2 max Fllvll? )
1

2
dt.

2%

+ £2 max sz d,'v‘/SF(’?"?/SQ)
r, 0 ox,

This implies (5). The lemma is proved.

LEMMA 2. Let (ds) be an element of the (n — 1)-dimensional volume
of T'f. Then
ds = {1+ &2 2V (R, E)F

= et (IveF (R E)P

Proof. Due to our assumptions I';° is defined by the equation

g:;/ga) & (1 + 0(e))

frjer + 0o )| & (6)

~

X
xn—sF(x,—a) = 0.

&
Therefore,

ds = \/(aF,;l + alegl)z 4 - +(aF;n71 + 81*“12;”71)2 + 1 dx,

where §= X/&“ The direct calculations show that

Ve IVeF P +262%(VoF VoF) + 62 24| VaF|” + 1 —/1 + &2 2¢|VeF|?
e?|VeF|* + 267 *(V;F, V¢F)
Ve IVeF P +262(VoF VaF) + &2 2 IVaFIP + 1 49/ 1+ 6229 VoF )

=0(¢)
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and
¢82|V2F|2+2827Q(V2F,V5F) +£272"|V§‘F|2+1 —glm@ ‘/|V5F(f, g)|2

e2VeF|? + 262 *(VeF, V;F) + 1
\/82|V5€F|2+2827H(V55F,V5F) +£272"|V5F|2+1 +elma \/|V5F(55, g)|2

<C(1+0(e)) =&t c0(e* 1),

where the constant C is independent of &.
These inequalities imply (6). The lemma is proved.

PROPOSITION 3. Uniformly in u,v € HY*(T))

fuvcﬁv‘

Iy

< C3||M||H1/2(r1)||U||H1/2(F1)- (7)

Proof. This inequality is a direct consequence of the Cauchy-
Schwartz—Bunyakovskii inequality and the compactness of embedding
L,(T) in HY2(T)).

LEMMA 4. There exists such a positive constant M, independent of &, that

~

X
fﬂ Vo> dx + &P Iwp()'c\, ;)1)2 ds > Mllvllip(gg)
& 1

for any v € HY(Q,).

Proof. In view of (4) and Lemma 2

X X
eP| p|X, — |v*|x eF|X, — || ds
rf & e

3
f,—a))a'x
&

_ 2 - 2
< C/(SB QHHU”LZ(Fl) + &k a+3/2“U”H1(QS))

3683‘9“*1/ v?| x, eF
ry

< c"eP Yol

Then, the assertion of the lemma is a consequence of the Friedrichs type
inequality (see [10]).
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LEMMA 5. Let h(F, £) be 1-periodic in the ¢ Lipschitz function such that

[ [z & aé=o (8)

Then, an inequality

< CyVe|lullpraapllollmrrar, (9)

frh(f,;)u(f)u(;’c‘)df

1

is satisfied, C, depending only on the Lipschitz constant of h.

Remark 2. This statement for smooth A(X,x/e%) and n =2 was
proved in [2] and, independently, in [3]. Here we use the technique
developed in [2].

Proof. In view of (8) an equation
AsP (X, g) = h(%, 5)

is solvable in the space of 1-periodic in £ functions. The solution is unique
up to an additive constant. . R
Suppose, initially, that v(X, 0) and u(X, 0) belong to H(T',) and (X, ¢)
is a C' function. Then, substituting i(X, £) = A;W(X, &), integrating by
parts, and using the Cauchy—Schwartz—Bunyakovskii inequality, we have

/Fh(f,;)u(f)u(f) df‘

1

- frl(Ag‘If(ic‘, £))| g;/sau(f)u(?)(ﬁ‘

oSl D] (5 5¥(5 D))

<e&“

/F(Vg\P(f’ §)| ézf/salvf(”’f)) 655‘

+ &

< Cge*llull prrplloll gy (10)
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Now, approximating arbitrary Lipschitz function i(Z, &) by a sequence of
C! functions we extend the last inequality to the space of Lipschitz
functions. Clearly, C; depends only on Lipschitz constant.

Let p < [0,1]. On the base of a bilinear form

fh()?;) (R)v(X) &, u,v € HP(T)

we define an operator 7, : H?(I';) - H7(T'}) by the formula

~

T,y = [ ( gi)u(x 0)u(,0) d&.

From (10) it follows
T Loy, H-100y < Cee®.
Then, clearly
I T Nz 50), L0y < Cq

with the constant, independent of &.
Using the space interpolation technique ([9], [15]) we derive from the
above estimates

TN L crron), m-raay < C3 P CLaP™. (11)

Setting p = 3 in (11), we obtain (9). The lemma is proved.

LEMMA 6. There exists Cg > 0, such that for all v € H*(Q),)

-~

frpaalg(f,;)v(f, gF( i))ds—fc;(x)u(x 0) &

&

< Cs(«s‘a*l + \/E)”U“Hl(ﬂg)- (12)
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Proof.  According to Lemma 2 we have

~

/ngalg()?, %)u(f eF()?, ;)) ds — /DG(?)U()?’O) &

el el merle )

+ 0(8“1)) dx

Xglfa

V:F|x .
3 x’ga

—fFG(J'c‘)U(f,O) df‘

+ / (x — (&, O)W—G(X)U(x 0))

+ Cgea_1||U||H1(9£>. (13)

Set (%, &)= \/IVAF )I g(%, &) — G(2). Then, by the definition
of G(%)

/Olfol--~folh(5c‘,§)dfso.

Hence, the inequality (12) follows if we estimate the first integral in the
right-hand side by means of Lemma 1 and the second one by means of
Lemma 5.

Proof of Theorem 1. Due to Lemma 4 the existence and the uniqueness
of solution to problem (1) can be obtained on the base of the Lax-Milgram
lemma [19].
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Then, after simple transformations we find
f V(u, —u,)Vodx + sﬁf p(uy —u,)vds
Q, re
=f Vu,Vodx — f fodx — s“’lf guds+83f puyv ds
Q, Q, ¥ T{

= /QVMOVde— fﬂfudx—s“‘lf guvds
& ry

&
1

+ VuVodx + an pugvds
QN0 re

- /QS\QVMOVde — ol frfgvds + /FlGudk‘

— [ fodc+ef[ pugds. (14)
QN0 re

According to Lemma 2 and Proposition 3 the last integral in the right-hand
side of (14) is estimated as follows

ehB

+ O(a“l)) dx

frfpuov ds

= eﬁfpuou &
r

< gbPetiCy, ,/FPMOU&‘ = gﬂ_MlCloHUHH“ZU‘o
1

IA

ePm o1 vllgya,).

By (5) considering the uniform boundedness of [|ulln2q,), We have

< ||Vu0||L2(Q£\Q)”U”Hl(()g) < Cz\/;”u()”HZ(QE)”U”Hl(ﬂg)

[ Vugvd
QN0

&

and

< ”f”LZ(QS\Q)“U“LZ(QE\Q) < Cz\/;”fHLZ(QS)”U||H1(Q€)-

v
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Then, Lemma 6 implies

oot [ qvds = [ Godi < C(e !+ ol

Combining these inequalities with (14) we deduce

‘f V(uy — u,)Vodx
QS

+ sﬁf p(uy —u,)vds
r
< K1||U||H1(Q£)(\/; + 8a_1 + 8B_a+l).
It remains to substitute v = u, — u,. Then, (2) follows from Lemma 4 and
the Friedrichs type inequality (see, for example, [10]). The theorem is
proved.

4. THE CASE B=a—1

In this section we study problem (1) in the case B8 = a — 1. We show
that the limit problem has an inhomogeneous Fourier boundary condition.

THEOREM 2. Let B = a — 1, f belong to L,(R") and F(X, &), p(%, &),
g(R, &) be periodic in & smooth functions. Suppose that F(X, £) is compactly
supported in x € I'; uniformly in & and that the function

P(x)—jf f\/IVAF E)p(%, €)dé

is non-negative. Then, for all sufficiently small & > 0 the existence and the
uniqueness of solution to problem (1) follow and

lug — u,llma, < K,(Ve + e*71), (15)

where K, does not depend on &, uy(x) satisfies the following limiting equation

—Aug=f in (),

dug = =

e + P(X)ug=G(X) only, (16)
u, =20 onl,,

and G(X) was defined in Theorem 1.
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Remark 3. The definition of solution to problem (16) is analogous to
that given for problem (1). Problem (16) is well-posed because of the
assumptions of the theorem.

Due to the smoothness of the boundary 4}, the solution u, belongs to
H?(Q N V) [8], and, hence, can be continued on V' to belong to H?*(})
[12].

LEMMA 7. There exists C,, > 0, such that

~ ~

X _ X R X
/ ga—lp(x,—a)uo(x,gF(xl—a))U(x,é‘F(x,_a))ds
r & & &

&
1

—[Fp(f)uo(sa, 0)u(%,0) df‘

< Clz(é‘oﬁl + \/;)”uo”Hl(Qg)”U”Hl(Qg)- (17)
forall u,v € HX(Q,).
The proof is similar to that of Lemma 6.

Proof of Theorem 2. The existence and uniqueness of u,_ are due to the
positiveness of P(X), Lemma 7 and the Lax—Milgram lemma.
Then, according to (1) and (16)

fﬂgwo —u,)Vodx + & frfp(uo —u,)vds
— /;nguovudx - /ﬂfudx — g ! frfgvds + a“’lfrfpuouds
= fQVrode - fﬂgfudx — g1 frngds

+f VuVodx + e* 1 | pugvds
QN0 Iy

= Vu,Vodx — a”‘_lf guds + f G(f)ud?c‘—f fodx
QN0 ry Iy Q\Q

+ a""lf pugvds — f P(X)uqvdr.
re I

Let us estimate all the terms in the right hand side of the last relation. By
(5) considering the smoothness of u,, we have

f VuVodx| < |IVugll 2o\ o)llvllaya,) < CZ\/EHMOHHZ(QS)HUHHl(QS)
QO
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and

< ”f”LZ(QS\Q)”U”LZ(QE\SZ) < Cz\/E”f”LZ(QE)”U”Hl(&lg)-

I

Then, according to Lemma 6 and 7 the inequalities

e 1/ guds — ervﬁ‘ < Cg(e* ' + \/;)”U”HI(QH)

and

et [ pugds — [ Puouc&‘ < Cpp( & + Ve )llugllialoll o,
Iy I
hold. With the help of these inequalities we obtain

‘f V(ug — u,)Vodx + f p(ug — u,)vds| < Kyllvlluya, (Ve + 97%).
Q, e

Substituting v = u, — u, and using Lemma 7 and the Friedrichs type
inequality (see [10]), we obtain (15). The theorem is proved.

5. THE CASE B<a-1

This section is devoted to the case of the Dirichlet limiting problem.
Here we suppose the function P(X) to be uniformly positive on I';. This
means, in particular, that F(%, g) is not compactly supported in x € I';.

THEOREM 3. Let B < a — 1, f belong to L,(R") and F(X, &), p(®, &),
g(%, &) be periodic in & smooth functions. Assume P(X) = Cy, >0 on I
and, also, at least one of the following conditions, p(X, £)>0or B>a-— 2
to be satisfied. Then, for each sufficiently small & > 0, problem (1) does have
a unique solution. The family of solutions is uniformly bounded in the
HY(Q,)-norm and an estimate

_g- 1/2
e, = uollizca,) < Ka(e* P74 + Ve) (18)
holds, where u,, satisfies the following Dirichlet problem

—Au,=f inQ, (19)
u, =0 on 9Q).
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If B> a — 2 then, in addition,

1/2
i, — ol < Ky(& B ar2/2 4 glamB=1/2 4 g1/4)Y/2  (9q)

&
In both inequalities above the constant K is independent of ¢.

Remark 4. In general one has only weak convergence of u, in H((Q,).
Due to the smoothness of the boundary d€} the solution u, belongs to
H?(Q) [8], and, hence, can be continued on R" to belong to H2(R") [12].

Proof of Theorem 3. In the case of positive p(X, £) the existence,
uniqueness and uniform boundedness of u, follow directly from standard
energy estimates and the Lax—Milgram Lemma (see [11]). Otherwise, they
are based on the following statement. Denote

P&, %) = /Olfol---[ol\/ngﬂ +IVeF(%, E) p(%, §) dE.

LEMMA 8. For all u,v € H'(Q,)

~

frlPl(s,ic‘)u(x)u(x) dx — ga—lf p(ic‘, %)u(x)u(x) ds

rf

< Cl\/g(||u||H1(Q8)||U”L2(F1) + ”u”Lz(Fl)”U||H1(SL£))
+ ellullgrollvllmia,)
< Cll/;”u“Hl(QS)”U“Hl(ﬂﬁ)
where C, does not depend on ¢.

Proof. The lemma can be proved in the same way as Lemma 6.
Now, let us transform the integral identity for the solution of problem
(1) as follows

fg Vi, (x)Vo(x) dx + aﬁfﬁlfrpl(a,f)ug(x)u(x) d%

= /Qf(x)u(x)dx+ ga—lfrsg(f,%)v(x) ds—/;G(f)U(x) d’x‘)

+/FIG(55)U(x)d55+

eﬁ_“”frlPl(s,f)ug(x)v(x) d%

8(1

_gﬁfrfp(f, . )ug(x)u(x)ds). (21)
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Substituting here v = u,_ and estimating all the terms in the right hand
side with the help of Lemma 6, Lemma 8, and the Cauchy-Schwartz—
Bunyakovskii inequality we find

[ Vu (x)P dx + 88702 [ Py(e, R)ul(x) &R
Q, I,

< flle,capllu L,
+ C((é‘a*l + \/;)Hug“Hl(Qﬁ) + llu, o,

_ — 2
+ &8 2ol iy + €8 Pl lca,). (22)

Next, considering an evident estimate |P,(&, X) — P(X)| < Ce“ ! it is easy
to see that under conditions of the theorem

P(&,X) =Cy> 0. (23)
Thus, under the assumption B8 > « — 2 we have for all sufficiently small &

_ - 2
C(é‘B a+3/2||M€||H1(QE)||M8||L2(FI) + &P a+2||ug||H1(Qg))

1
< o [ IVu ()P de + eP ot [ P2, R)u?(x) dF;
279, I,

the constant C here is taken from (22). Then, the existence and the
uniqueness of the solution to problem (1) as well as its uniform bounded-
ness in the H'(Q,_)-norm follow from (21), (22) and (23) by standard
arguments [11].

In order to prove (18) let us divide (22) by g¢#~*1:

e L [ Vu, (1) dr + [ PAF)ud(x) ¥
Q, T
< sa_ﬁ_1||f||Lz(szg)H”g”Lz(ﬂg)
+C((2* P2 + e P D) lullwo,
+e P u gy, + ‘/E””s”%’l(ﬂe))' (24)

From this relation taking into account (23) and the uniform boundedness
of |lu,llyiq,) we derive

_g— 1/2
Ny < (27071 + V)%, (25)
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Since the family {u,} is uniformly bounded in H(Q,), it is compact in

HY2(Q). Consider arbitrary convergent subsequence u,, g — 0. Itis

evident that the limiting function u’(x) satisfies the equation Au’ = f and,

in view of (25), the boundary condition u'|lr, = 0. Hence, u'(x) = uy(x).

Then, the whole family {u,} does converge and the estimate (18) holds.
The estimate (20) is based on the following transformations

f IV(u, — uy)l* dx
Qs

= f Vu V(u, —u,y) dx
Q,

—fVro(us—uo)dx— f VuV(u, — uy) dx
Q Q.\0

X
. —

- fﬂgf(ug — ug) dx — gﬁfrfp( e )ug(us — uy) ds

J
_fﬂf(”s — Up) dx + '/;“1‘3_%.”0(”8 —uy) dx

X
—f VuOV(ug—uo)dx+e“*1f g(x,—a)(ug—uo) ds
QN0 Iy &
= [ fu,—ug)de— [ Vu¥(u, — ug) dx
Q\Q Q\Q
X X
— &P p(x, —a)uﬁ ds + 8“‘1f g(x, —a)(us — uy) ds
G & Iy &
X J

+ &P x,— |uugds + | u,—u,dx. 26
[op|x 2 mas s+ [ .z (26)

n

In further considerations we use the following statement that can be
proved in the same way as Lemma 1.

PrROPOSITION 9.  Let u(x) belong to H*(R"). Then,

frer(s ) -weo

- < Gsellullpza,).

L,(Ty)
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Now, in case of non-negative p(X, &) we deduce from (26) by means of
(18), Lemma 1, Lemma 2 and Proposition 9

~

X

fIV(uS—uO)Izdx+33/ p(x, )ug ds
Q, Iy

;
< C(\/E||f||L2(Q€)||LA9 — ugllgra,) + ‘/;”u()”HZ(R”)”ug — ugllrya,)
+83_a+1€||bl0||H2(R")( glaB=b/2 4 81/4)””6”}11(92)

+ (e B2 4 VY u o, + 8||uo||H2(R"))-

Since [lu,llnq,) is uniformly bounded, this implies
f |V(L£E— MO)|2dXS C(81/4 + 8(01—[3—1)/2 + S(B—a+3)/2 _ 8B—a+9/4)
QS

and (20) follows.
In the case B > o — 2 we start with the following identity

/ IV(uy — u,)|* dx + aﬁ_“”fPl(s,f)(uo —u,)? df
Qs Fl
:f VuV(ug —u,) dx - f f(ug = u,) dx
Q, Q,
- s"_l/ g(ug —u,)ds + sﬁf puo(uy —u,) ds
e If

+ ghmatl f P&, %) (uy — u,)’ dt — eB/ p(uy — u,)’ ds.
I, Iy
(27)

Then, taking into account the assumption 8 > « — 2 we obtain by (23)
and Lemma 8

e et [ P, R) (o —u,)* d¥ = & [ p(ug —u,)’ ds
r, ry

IA

_ 2
ghP aHC(\/;”Mg - Mo”Lz(rl)”Mg - M0||H1(Q£) + 8||Mg - uoHHl(Qg))

1
< 5([Q£|V(uo —u,)? dx + 83_“+1LIP1(8,x)(u0 —u,)’ dsz)
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for all sufficiently small £ > 0. Combining this with (27) we find
[ 19 = ) de+ &7 [ Pye,B) (g = u,)’ &F
Q, r

<2

fQ VuoV(ug —u,) dx — fﬂf(uo —u,)dx

—s“_lf g(ug —u,)ds + gﬁf pug(uy —u,) ds
rf Iy

Now, (20) can be obtained in the same way as above. The theorem is
proved.

6. THE “SMOOTH” CORRECTOR

In this section we find more precise asymptotics of u® all over the
domain €}, in the case B > a — 1. For this aim we introduce a family of
auxiliary problems posed in the fixed domain €, with nonoscillating
boundary conditions depending on e. With the help of these auxiliary
problems we define the corrector term which is regular in & and allows
us to_improve the estimate of the residual. For simplicity we suppose
p(x, €) = 0. One can easily generalize the results to the case of arbitrarily
smooth p(X, ¢)and B> o — 1.

THEOREM 4. Let all the conditions of Theorem 1 be satisfied and
p(x, &) = 0. Then,

Uy — u o, < Kye (28)

where K, does not depend on &, Uy(&, x) is the solution of the problem

—AU, =f in Q,

Il ~

ﬁ_xn =G1(g,x) on Flv (29)
U,=0 onl,,

and

~
~

Gy(e, %) = /01/01---[)1\/82%2 +IVeF(%, £) g (%, £) dé.
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The relation

1Us(&, %) = o(x) Iy = O£~ (30)

holds.

Proof of Theorem 4. We start with the following statement that can be
proved in the same way as Lemma 6.

PRopPOSITION 10.  For any v € H(Q,)

~ ~

[ ewtg|2 ol 2 eE (2 25 || ds — [ Gie B)u(R.0) @@
ng | e R R rllgl ’

< CYellvllaya,).-

Due to the smoothness of the boundary () the solution U, belongs to
H?(Q N V) [8], and, hence, can be continued on V' to belong to H?(})
[12].

Let us write the integral identity for problem (29)

/QSV(UO — u,)Vodx
_ fﬂgvuovudx - fﬂefudx — gl fr fguds
= fQVUoVde - fs fode = et fr gods + fs RSO
_ fﬂg\QVUOVde _ gt fr fguds + [F 1Glud32— fﬂg\ﬂfydx,

By Lemma 1

<IVUyllL,co\ollvllara, < Cz\/;”Uo”HZ(QH)HU”Hl(Qb,)

f VUV dx
QN0

&

and

< ”f”LZ(QS\Q)HU“LZ(QE\Q) < Cz\/;”fHLZ(QE)”U”Hl((),g)-

v
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Then, due to Proposition 10

< C\/;“U”Hl(ﬂg)-

e“ilfreguds - erlvd)?

From these inequalities we deduce

"/;2 V(Uy — u,)Vodx| < K4\/E||U||H1(QS).

Substituting v = U, — u, and applying the Friedrichs type inequality, we
obtain (28). The theorem is proved.

In the remaining part of this section we analyze in more detail the
asymptotics of corrector term (u, — U,) depending on the structure of
function F(X, §) It is clear that the principal term of these asymptotics
depends only on the behavior of F in a small neighborhood of the singular
points of F (zero points of VF). For simplicity we consider the case n = 2.
The multidimensional case can be studied in an analogous way.

The following assertion takes place.

PROPOSITION 11. Suppose that n = 2, (a — 1) is sufficiently small and
dist(supp, g(*, €),T; \ supp, F(%, 5)) > 0.

Then,

(i) If F is a Morse function of & uniformly in x € supp, g and all its
singular points are quadratically nondegenerate, then

||Lt0 — U0||H1(Q) < M182(a71) Iln 8|.

(i) If F has a finite number of singular points and the degeneracy of
|VF|? at these points is of order 2k, then

lg — Upllgiay < Mzé‘(l“/k)(a_l)-

Remark 6. In general estimate (30) cannot be improved.

Proof. Let us introduce a new small parameter o = ¢~ * and estimate
the derivative in w of the function G,(w, X) for small . We have

IG(w,X) _ fl g(%, g)wdf
Jo 0 \/w? +IV,FI?
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Now,

(i) If F(, ) is a Morse function one can easily verify that the main
contribution to the derivative dG,(w, X)/dwl,-o is given by the small
neighborhood of the singular points. Let us estimate the contribution of
one of them. We denote it by &,. By our assumption |V, F|* = C|&— &)*-
1+ o(1) as &£ — &, — O; therefore,

g+o 8(w, M) wdé g 8w, XY)wdé
2 1/ 2 O(w)
&5 /w? +|V,F| f-d J0? + ClE - &

F) o ds
<Gf S L < Cwlin wl.
0

V1 + Cs?

Hence,
IG(0,%) — G(X)| < C,0%|In o],
and by the standard energy estimate

lug — Upllmicay < Mlé‘z(a_l) [In &l.

(ii) By the same reason as in 1 we will estimate the contribution of
one of the singular points. If IV§F|2 =C|&é- §0|2k(1 +o(l)as £€—- & —
0, then

£otd g(w,f)wdg £+ o wd§
fg,g \/ 2 7| = 1/ s 2 2k
0 o + |V, F| £o \/w + Clé— &l
l/kd
S/wl/k w S 1k
<C — < C0%k,
sz V1 + Cs?* ’

Thus, in this case
IG(w,X) — G(X)| < C,ot" /%,

The proposition is proved.
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