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Homogenization of random convolution energies

Andrea Braides and Andrey Piatnitski

Abstract

We prove a homogenization theorem for a class of quadratic convolution energies with random
coefficients. Under suitably stated hypotheses of ergodicity and stationarity, we prove that
the Γ-limit of such energy is almost surely a deterministic quadratic Dirichlet-type integral
functional, whose integrand can be characterized through an asymptotic formula. The proof
of this characterization relies on results on the asymptotic behaviour of subadditive processes.
The proof of the limit theorem uses a blow-up technique common for local energies, which
can be extended to this ‘asymptotically local’ case. As a particular application, we derive a
homogenization theorem on random perforated domains.

1. Introduction

In this paper, we consider random energies of convolution type. Such energies and the
corresponding stationary and evolution non-local equations may be interpreted for example in
the context of mathematical models in population dynamics where macroscopic properties can
be reduced to studying the evolution of the first-correlation functions describing the population
density u in the system [21, 29]. Also, non-local problems of this type are used in biology
to model a swarm [33] and in image processing for image regularization [24] and for image
denoising and deblurring [28]. Among other applications are mathematical finance models
based on optimal control theory [4], particle systems [6], coagulation models.

Our model energies are defined on L2-functions in a reference domain D and are of the form

1
εd+2

∫
D×D

Bω
(x
ε
,
y

ε

)
a

(
y − x

ε

)
(u(y) − u(x))2dy dx, (1.1)

or
1

εd+2

∫
(D∩εEω)×(D∩εEω)

a

(
y − x

ε

)
(u(y) − u(x))2dy dx. (1.2)

Here a : R
d → R is a convolution kernel which describes the strength of the interaction at a

given distance and ε is a scaling parameter. In order that the limit of energies above be well
defined on H1(Ω), we require that∫

Rd

a(ξ)(1 + |ξ|2) dx < +∞. (1.3)

In (1.1), the strictly positive coefficient Bω represents the features of the environment, while in
(1.2) Eω is a random perforated domain giving the regions where interaction actually occurs,
both depending on the realization of a random variable. Note that functionals (1.2) can be also
written as (1.1) with the degenerate coefficient Bω(x, y) = χEω (x)χEω (y), where χE denotes
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the characteristic function of E. Note that more in general we may consider oscillations on a
different scale than ε; for example, taking coefficients Bω(x/δ, y/δ) with δ = δε, but the case
when these two scales differ can be treated more easily by a separation-of-scale argument.

The effect of the scaling parameter ε as ε → 0 is twofold, on one hand producing a local limit
model as the convolution kernel concentrates, and on the other hand ensuring a homogenization
effect through the oscillations provided by Bω. To illustrate the first issue, we may consider
the underlying energies (those with the perturbation Bω set to 1)

1
εd+2

∫
D×D

a

(
y − x

ε

)
(u(y) − u(x))2dy dx. (1.4)

We note that if u ∈ C1(D), then u(y) − u(x) ≈ 〈∇u(x), y − x〉. Here and in what follows 〈·, ·〉
stands for the standard scalar product in R

d. Then, using the change of variables y = x + εξ,
we have

lim
ε→0

1
εd+2

∫
D×D

a

(
y − x

ε

)
(〈∇u(x), y − x〉)2dy dx =

∫
D

∫
Rd

a(ξ)(〈∇u(x), ξ〉)2dξ dx, (1.5)

so that the quadratic functional∫
D

〈A∇u,∇u〉 dx, with the matrix A defined by 〈Az, z〉 =
∫
Rd

a(ξ)(〈z, ξ〉)2dξ, (1.6)

gives an approximation of (1.4). Conversely, we may think of (1.4) as giving a more general
form of quadratic energies allowing for interactions between points at scale ε. In terms of Γ-
convergence, this computation can be extended to a Γ-limit result and obtain the corresponding
convergence of minimum problems. To that end, we will suppose that a : R

d → R satisfies

0 � a(ξ) � C
1

(1 + |ξ|)d+2+κ
, (1.7)

for some C, κ > 0 (which is a quantified version of (1.3)), and

a(ξ) � c > 0 if |ξ| � r0 (1.8)

for some r0 > 0 and c > 0.
In a Γ-convergence context, energies (1.4) have been considered as an approximation of a

Dirichlet-type integral in phase-transition problems (see, for example, [1]) and more recently
in connection with minimal-cut problems in Data Science [23]. Limits of energies similar to
(1.4), of the form

1
εd

∫
D×D

a

(
y − x

ε

)∣∣∣∣u(y) − u(x)
y − x

∣∣∣∣2dy dx, (1.9)

have also been studied by Bourgain et al. as an alternative definition of the Lp-norm of the
gradient of a Sobolev function [7, 20], within a general interest towards non-local functionals
[19]. The relation between the regularity of functions u and the convergence of the functionals∫

D

∫
D

W

(
u(x) − u(y)

x− y

)
ρε(x− y)dxdy

with continuous W and ρε converging to the δ-function was considered in [36]. In the context
of Free-Discontinuity Problems, functionals of the form

1
εd

∫
D×D

a

(
y − x

ε

)
min

{∣∣∣∣u(y) − u(x)
y − x

∣∣∣∣2, 1
ε

}
dy dx, (1.10)
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have been proved to provide an approximation of the Mumford–Shah functionals by Gobbino
[25] after a conjecture by De Giorgi. Furthermore, discrete counterparts of functionals (1.4),
that is, energies of the form

1
εd+2

∑
i,j∈εL

aij(ui − uj)2, (1.11)

where L is a d-dimensional lattice, have been widely investigated (see, for example, [2, 11, 16,
34]) as a discrete approximation of quadratic integral functionals. Such type of functionals or
the corresponding operators have been analysed in different ways under various inhomogeneity
and randomness assumptions (see, for example, [3, 5, 13, 15, 23, 30, 32, 34]).

The homogenization results for linear elliptic random difference operators in Z
d were first

obtained in [32] and [30] and further developed in [34] and other works. A comparison with
results in deterministic discrete G-closure problems can be obtained from [15].

The paper [37] deals with an approximation of Mumford–Shah functional in the context
of random stationary lattices. Under some uniform geometric assumptions on the lattice, the
nearest Voronoi neighbour interaction model is considered. In contrast with Z

d models, in the
case of stochastically isotropic lattices the Γ-limit is isotropic.

In the work [3], discrete-to-continuous Γ-limits are investigated for energies defined on
random stationary lattices (for random thin-film energies, see, for example, [13]). The energies
admit both nearest neighbours and long distance interactions, it is assumed that the nearest-
neighbour terms satisfy p-growth conditions and for the long distance terms proper moment
conditions are fulfilled. Under the assumptions that the lattices satisfy some uniform geometric
estimates, the authors prove the almost-sure existence of the Γ-limit and study its properties.
That work represents somehow a discrete counterpart of our study in the case of uniformly
elliptic media. In general, the discrete-to-continuum analysis on lattices developed in the last
twenty years provides a number of useful techniques and results in parallel with the case of
convolution-type energies, with notable differences due to having interactions at all scales in
the convolution case.

In the recent paper [35], linear convolution type operators are studied in random stationary
uniformly elliptic media. The approach used in that paper relies on a corrector technique.
However, constructing correctors in a random perforated environment encounters serious
technical problems. It is an interesting open question.

In the mentioned works, the case of random perforated domains was not addressed. To
our best knowledge, this case was not studied in the existing literature (for some discrete
deterministic analog on lattices see [12], where, however, ‘perforated sets’ may be treated
in a quite simple way due to their discreteness). It should be noted that the presence of
perforation weakens the coerciveness properties of the studied functionals and makes the proof
of compactness results more delicate.

In our case, we will prove a general homogenization result, which, under proper stationarity
and ergodicity assumptions, will comprise both random coefficients and random perforated
domains as in (1.1), assuming that Bω satisfies 0 < λ1 � Bω(x, y) � λ2 < +∞, and (1.2), where
Eω is a random perforated domain consisting of a unique connected component, see Definition 3
for further details. The limit behaviour of these energies is described by their Γ-limit in the
L2(D) topology as a standard elliptic integral, of the form

Fhom(u) =
∫
D

〈Ahom∇u,∇u〉 dx. (1.12)

The matrix Ahom is characterized by an asymptotic formula obtained using a limit theorem
for subadditive processes, and can be compared to those in [27, 39, 40]. The choice of the
L2(D) topology is justified by the coerciveness of the convolution energies, which ensures the
convergence of minimum problems.
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The plan of the paper is as follows. In Section 2, we define the general form of the random
functionals that we are going to consider. Section 3 is devoted to the statement and proof of a
compactness theorem. The proof of this result follows closely that of the compactness result for
non-linear convolution energies used to approximate Free-Discontinuity Problems obtained by
Gobbino [8, 25]; due to the quadratic growth conditions on the energies, we can improve that
result from L1 to L2 compactness. In Section 4, we prove Poincaré and Poincaré–Wirtinger
inequalities, which, together with the compactness result, justify the application of the direct
method of the Calculus of Variations to minimum problems, and hence the asymptotic study
of convolution energies in terms of Γ-convergence.

More precisely, given a family of minimization problems for functionals whose principal terms
are defined by (1.1) or (1.2), we can claim that the corresponding minimizers converge to the
minimizer of the functional obtained as the Γ-limit of this family, if the set of minimizers is
compact in L2(D). The desired compactness follows from the results of Section 3 under the
condition that the set of minimizers is bounded in L2(D), and the proof of boundedness relies
on the Poincaré inequalities justified in Section 4. At the end of Section 7, we provide an
example of minimization problem that illustrates this approach.

In Section 5, we use the stationarity and ergodicity properties of the energies to prove
the existence of an asymptotic homogenization formula giving a deterministic homogeneous
integrand using results on the asymptotic behaviour of almost-subadditive processes in [31].
The formula is used in Section 6 to prove the homogenization theorem using an adaptation
to (non-local) homogenization problems of the blow-up technique of Fonseca and Müller [17,
22]. Finally, in Section 7 we remark that the result can be applied to the homogenization of
random perforated domains.

2. Setting of the problem

Let (Ω,F ,P) be a standard probability set, and assume that τx, x ∈ R
d is a measure-preserving

dynamical system on this probability space; that is, {τx}x∈Rd is a group of measurable mappings
τx : Ω 	→ Ω such that:

• τx ◦ τy = τx+y, τ0 = Id;
• P(τxA) = P(A) for all x ∈ R

d and A ∈ F ;
• τ· : R

d × Ω 	→ Ω is a measurable map. We assume here that R
d × Ω is equipped with a

product σ-algebra B × F , where B is a Borel σ-algebra in R
d.

We also assume that {τx} is ergodic; that is, the measure of any set A ∈ F which is invariant
with respect to τx for all x ∈ R

d is equal to 0 or 1.
Given an open subset D of R

d, for all ε > 0 and u ∈ L2(D) we will consider convolution-type
energies of the form

Fω
ε (u) =

1
εd+2

∫
D

∫
D

bω
(x
ε
,
y

ε

)
(u(y) − u(x))2 dy dx, (2.1)

where bω are stationary ergodic integrands satisfying

0 � bω(x, y) � C
1

(1 + |x− y|)d+2+κ
. (2.2)

More precisely, we assume that

bω(x, y) = b(τxω, τyω, x− y), (2.3)

where b(ω1, ω2, ξ) is a function defined on Ω × Ω × R
d such that

0 � b(ω1, ω2, ξ) � C
1

(1 + |ξ|)d+2+κ
. (2.4)
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In order to make the definition of a function b in (2.3) well defined, we need additional
assumptions on b. One option is to assume that b(ω1, ω2, ξ) = b1(ω1)b2(ω2)a(ξ), where b1

and b2 are non-negative bounded random variables, and a(ξ) is a measurable function in R
d

that satisfies estimate (1.7). Another option is to assume that Ω is a topological space, the
group τxω is continuous in x, and the function b = b(ω1, ω2, ξ) is continuous in ω1 and ω2 and
measurable in ξ and b(ω1, ω2, ξ) � a(ξ) with a function a(·) satisfying estimate (1.7). In both
cases, the definition of bω in (2.3) makes sense.

In order to obtain coerciveness properties which allow to include in our results both types
of models (1.1) and (1.2), that is, with integrands

• bω(x, y) = Bω(x, y)a(x− y) with 0 < λ1 � Bω(x, y) � λ2 < +∞; or
• bω(x, y) = χ.Eω (x)χ.Eω (y)a(x− y) with Eω being a random perforated domain (see

Section 7 for the precise definition of random perforated domain);
we will make the following abstract assumption.

Definition 1. We say that bω is a coercive energy function if there exist constants C
and Ξ0 such that for all U open subsets of R

d, z ∈ R
d, Ξ � Ξ0 and u ∈ L2(U) satisfying the

boundary condition

u(x) = 〈z, x〉 if dist(x, ∂U) < Ξ,

there exists a function v ∈ L2(U) satisfying the boundary condition

v(x) = 〈z, x〉 if dist(x, ∂U) < Ξ/2,

such that∫
U×U

bω(x, y)(v(y) − v(x))2 dy dx �
∫
U×U

bω(x, y)(u(y) − u(x))2 dy dx, (2.5)

and ∫
{x,y∈U :|x−y|<1}

(v(y) − v(x))2 dy dx � C

∫
U×U

bω(x, y)(v(y) − v(x))2 dy dx. (2.6)

Remark 1. Note that if bω(x, y) � C > 0 when |x− y| < 1, or if bω(x, y) =
χEω (x)χEω (y)a(x− y) with Eω a realization of a random perforated domain, then bω is
coercive. Indeed, in the former case, we take u = v in the definition above, while in the latter
case, v is a suitable extension of u in the perforation that was constructed in [18].

Remark 2 (coerciveness). The terminology in Definition 1 is justified by the Compactness
Theorem in Section 3, which ensures that if bω is a coercive energy function, then sequences
bounded in L2(D) and for which the energy on the left-hand side of (2.6) is equibounded admit
L2

loc(D) converging subsequences and their limit is in H1(D).

2.1. Notation

Unless otherwise stated C denotes a generic strictly positive constant independent of the
parameters of the problem taken into account.
QT = [−T/2, T/2]d denotes the d-dimensional coordinate cube centred in 0 and with side-

length T . If T = 1, then we write Q = Q1.
If x, y ∈ R

d, then |y − x|1 =
∑d

j=1 |yj − xj |.
�t� denotes the integer part of t ∈ R.
χA denotes the characteristic function of the set A.
For all t > 0 and D open subset of R

d, we denote D(t) = {x ∈ D : dist(x, ∂D) > t}.
As a shorthand, the notation {P (ξ)} will stand for {ξ ∈ R

d : P (ξ) holds} if no confusion
may arise.
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3. A compactness theorem

Let D be an open set with Lipschitz boundary. We show that families of functions that have
bounded energies of the type (1.4) are compact in L2

loc(D). To this end, for 0 < r � σ, we
define the functional

F σ,r
ε (w) =

∫
D(σ)

∫
{|ξ|�r}

(
w(x + εξ) − w(x)

ε

)2

dξ dx, w ∈ L2(D).

In the case when D = R
d, the L1

loc-compactness can be directly obtained by comparison with
finite-difference energies approximating the Mumford–Shah functional studied by Gobbino [25].
Here we follow his proof, to deduce the L2

loc-compactness.

Theorem 3.1 (compactness theorem). Let D be an open set with Lipschitz boundary, and
assume that for a family {wε}ε>0, wε ∈ L2(D), the estimate

F kε,r
ε (wε) :=

∫
D(kε)

∫
{|ξ|�r}

(
wε(x + εξ) − wε(x)

ε

)2

dξ dx � C (3.1)

is satisfied with some k > 0 and r > 0. Assume moreover that the family {wε} is bounded in
L2(D). Then for any sequence εj such that εj > 0 and εj → 0, as j → ∞, and for any open
subset D′ � D the set {wεj}j∈N is relatively compact in L2(D′) and every limit point of the
sequence {wεj} is in H1(D).

Before proving the theorem, we prove some auxiliary results. We first introduce the local
average of a function u ∈ L2(D) by

◦
uδ =

∫
{|ξ|�1}

u(x + δξ)φ(ξ) dξ,

where φ is a symmetric non-negative C∞
0 function in R

d supported in the unit ball centred
at the origin,

∫
φ(ξ) dξ = 1. In our framework, the function

◦
uδ is well defined in D(δ). The

properties of the local average operator are described in the following statement.

Proposition 3.2. Let δ and σ be positive numbers with δ < σ. Then we have

‖ ◦
uδ − u‖2

L2(D(σ)) � Cφδ
2F σ,1

δ (u). (3.2)

For any δ > 0 such that D′ ⊂ D(δ), the function
◦
uδ is smooth in D′ and satisfies the inequalities

‖ ◦
uδ‖L∞(D′) � Cφδ

− d
2 ‖u‖L2(D), ‖∇ ◦

uδ‖L∞(D′) � Cφδ
− d

2−1‖u‖L2(D). (3.3)

Proof. For any u ∈ L2(D) by the Cauchy–Schwartz inequality, we have

‖ ◦
uδ − u‖2

L2(D(σ)) =

∫
D(σ)

∫
{|ξ|�1}

∫
{|η|�1}

(u(x + δξ) − u(x)) (u(x + δη) − u(x))φ(ξ)φ(η) dη dξ dx

� δ2

(∫
D(σ)

∫
{|ξ|�1}

∫
{|η|�1}

(
u(x + δξ) − u(x)

δ

)2

(φ(ξ))2dxdξdη

) 1
2

×
(∫

D(σ)

∫
{|ξ|�1}

∫
{|η|�1}

(
u(x + δη) − u(x)

δ

)2

(φ(η))2dxdξdη

) 1
2

� Cφδ
2Fσ,1

δ (u).

The estimates in (3.3) are standard. �
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Proposition 3.3. For any j ∈ N such that jε � dist(D′, ∂D) − kε, the following inequality
holds:

F
(j+k)ε,1
jε (u) � F kε,1

ε (u) (3.4)

for all u ∈ L2(D).

Proof. Representing u(x + jεξ) − u(x) as (u(x + jεξ) − u(x + (j − 1)εξ)) + (u(x + (j −
1)εξ) − u(x + (j − 2)εξ)) + · · · + (u(x + εξ) − u(x)), we obtain

F
(j+k)ε,1
jε (u) � j

∫
D((j+k)ε)

∫
{|ξ|�1}

j∑
m=1

(u(x + mεξ) − u(x + (m− 1)εξ))2

(jε)2
dxdξ

� j2

∫
D(kε)

∫
{|ξ|�1}

(u(x + εξ) − u(x))2

(jε)2
dxdξ = F kε,1

ε (u)

as desired. �

Proof of Theorem 3.1. One may assume without loss of generality that r = 1. In order to
prove the compactness result, it suffices to show that, fixed D′, for each δ > 0 there exists a
relatively compact set Kδ in L2(D′) such that for any j ∈ N, we have

‖wεj − hj‖L2(D′) � δ (3.5)

for some hj ∈ Kδ.
We define Kδ as follows. If εj � δ, we set hj = wεj ; otherwise,

hj =
◦
wεj ,δj =

∫
{|ξ|�1}

wεj (x + δjξ)φ(ξ) dξ,

where δj = � δ
εj
� εj . Note that 1

2δ < δj � δ for any j such that εj < δ. We finally set Kδ =⋃∞
j=1{hj}.
It is convenient to represent Kδ as a union Kδ = Kδ,1 ∪ Kδ,2 with

Kδ,1 =
⋃

{j : εj�δ}
hj , Kδ,2 =

⋃
{j : εj<δ}

hj

Since εj tends to zero as j → ∞, the first set consists of a finite number of elements and thus
is compact. By (3.3) for any hj ∈ Kδ,2, we obtain

|hj(x)| � C(δ), |∇hj(x)| � C(δ) for all x ∈ D′.

Therefore, by the Arzelà–Ascoli theorem, the set Kδ,2 is relatively compact in C(D′).
Consequently, this set is also relatively compact in L2(D′). This yields the desired relative
compactness of Kδ.

If εj � δ, then hj = wεj , and (3.5) holds. If εj < δ, then by (3.2) we get

‖wεj − hj‖ � CφδjF
(δj+kεj)
δj ,1

(wεj ).

Combining this inequality with (3.4) and recalling that δj = � δ
εj
� εj , we obtain

‖wεj − hj‖ � CφδjF
kεj
εj ,1

(wεj ) � Cδj � Cδ;

here we have also used (3.1). The last inequality implies (3.5).
It remains to show that each limit point w is in H1(D). To that end we may use the ‘slicing

technique’ (see, for example, [8] Section 4.1, [9] Chapter 15 or [10] Section 3.4). This general
method allows to reduce the analysis to that of one-dimensional sections, and recover a lower
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bound by integrating over all sections. It has already been applied in [25] to sequences of
non-linear functionals of the form

1
εd+1

∫
D

∫
D

a

(
y − x

ε

)
f

(
(u(y) − u(x))2

ε

)
dy dx (3.6)

in order to obtain compactness in spaces of functions with bounded variation. In our case,
we are in a simplified situation with f equal the identity and we can improve the result to
compactness in H1(D).

In the one-dimensional case, it is not restrictive to study functionals of the form

Gε(u) =
∫

(0,1)

∫
(−1,1)

(
u(x + εξ) − u(x)

ε

)2

dξ dx, (3.7)

and regard all functions as defined on R. With Fatou’s lemma in mind, in order to have a lower
bound it suffices to examine separately the functionals

Gξ
ε(u) =

∫
(0,1)

(
u(x + εξ) − u(x)

ε

)2

dx (3.8)

for fixed ξ ∈ (−1, 1).
For simplicity, we treat the case ξ ∈ (0, 1). We may suppose that uε → u in L2(R). Note that

for almost all t ∈ (0, 1) the piecewise-constant functions uε,ξ,t defined by

uε,ξ,t(x) = uε(εξt + εξk) if εξk � x < εξ(k + 1)

converge to u in L2(R), and we have

Gξ
ε(uε) �

�1/εξ�−1∑
k=1

∫ (k+1)εξ

kεξ

(
uε(x + εξ) − uε(x)

ε

)2

dt

=
�1/εξ�−1∑

k=1

∫ 1

0

εξ

(
uε((k + 1)εξ + tεξ) − uε(kεξ + tεξ)

ε

)2

dt

= ξ2

∫
(0,1)

�1/εξ�−1∑
k=1

εξ

(
uε,ξ,t((k + 1)εξ) − uε,ξ,t(kεξ)

εξ

)2

dt

� ξ2

∫
(0,1)

∫
(δ,1−δ)

(u′
ε,ξ,t(x))2 dx dt, (3.9)

eventually for all δ > 0 fixed, where we have identified the discrete function kεξ 	→ uε,ξ,t(kεξ)
defined on εξZ with its piecewise-affine interpolation. Note that for almost all t, this functions
still converge to u. From (3.9), we deduce that u ∈ H1(δ, 1 − δ). By the arbitrariness of δ and
the uniformity of the bound on the L2-norm of u′, we deduce that u ∈ H1(0, 1). For more
details on this proof, we refer to [8], where the non-linear case is treated.

The deduction of the d-dimensional lower bound from the one-dimensional one can be
obtained by repeating word for word the proof of [8, Theorem 5.19] with Gξ

ε in the place
of F 1

ε in the notation therein. This completes the proof of the compactness. �

4. Poincaré inequalities

We first prove a Poincaré–Wirtinger inequality as follows.
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Theorem 4.1 (Poincaré–Wirtinger inequality). Let D be a Lipschitz bounded domain. For
each fixed r0 > 0, there exists a constant C > 0 such that for any v ∈ L2(D), we have∫

D

(v(x) − vD)2 dx � C

∫
D

∫
{ξ:|ξ|�r0,x+εξ∈D}

(
v(x + εξ) − v(x)

ε

)2

dξ dx, (4.1)

and vD is the average of v over D. The constant C does not depend on ε.

Proof of Theorem. 4.1 We set

F 0
ε (r, v) =

∫
D

∫
{ξ:|ξ|�r,x+εξ∈D}

(
v(x + εξ) − v(x)

ε

)2

dξ dx

and

F 1(G1, G2, v) =
∫
G1

∫
G2

(v(x) − v(y))2dx dy.

In what follows, the notation Dε is used for 1
εD.

We first consider the case when D is a cube, D = (−L
2 ,

L
2 )d, and r is a sufficiently large

number, say r � 3
√
d. We also assume that L

2ε is an integer number.
Denote Sε = {j ∈ Z

d : j + [− 1
2 ,

1
2 ]d} ∩Dε �= ∅. For any i ∈ Sε and j ∈ Sε, construct a path

γ(i, j) = {jk}Nk=1 in Z
d such that j1 = i, jN = j, |jk − jk+1| = 1. The path is constructed in

such a way that it starts along the first coordinate direction until the first coordinate of jk
coincides with the first coordinate of j, then it follows the second coordinate direction and so
on. We then have:

(i) the length of each path is not greater than dL
ε ;

(ii) for each j ∈ Sε the total number of paths {γ(i, l) : i, l ∈ Sε} that pass through j is not
greater than (Lε )d+1:

#{γ(i, l) : i, l ∈ Sε, j ∈ γ(i, l)} � d

(
L

ε

)d+1

. (4.2)

Property (i) is evident. In order to justify (ii), consider all paths that come to j along mth
coordinate direction, that is all paths j1, . . . , jN such that for some k ∈ Z

+ we have jk = j and
jk − jk−1 coincides with the mth coordinate vector. By construction, the number of starting
points for such paths does not exceed (j + L

2ε ) × (Lε )m−1. Similarly, the number of end points
for such paths does not exceed (Lε − j + 1) × (Lε )d−m. Since starting and end points define the
corresponding path uniquely, the total number of paths that come to j along mth coordinate
direction is not greater than (j + L

2ε ) × (Lε − j + 1) × (Lε )d−1 < (Lε )d+1. Summing up over m,
we arrive at (4.2).

For any j ∈ Sε denote Qj = εj + ε[− 1
2 ,

1
2 ]d. For i and j in Sε, the ‘interaction energy of the

cubes Qi and Qj ’ can be estimated as follows. We consider a path γ(i, j), denote the length of
this path by N and its elements by γ1, γ2, . . . , γN , and introduce the variables η2, . . . , ηN−1,
ηk ∈ Q0. Then we have∫

εQi

∫
Qj

(
u(x) − u(εξ)

ε

)2

dξdx

= εd−2

∫
Q0

∫
Q0

(u(εγ1 + εη1) − u(εγN + εηN ))2 dη1dηN

= εd−2

∫
Q0

· · ·
∫
Q0

(u(εγ1 + εη1) − u(εγ2 + εη2) + u(εγ2 + εη2) − . . .
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−u(εγN + εηN ))2dη1dη2 · · · dηN

� Nεd−2
N−1∑
i=1

∫
Q0

∫
Q0

(u(εγi + εηi) − u(εγi+1 + εηi+1))2dηidηi+1

� (Ld)εd−3
N−1∑
i=1

∫
Q0

∫
Q0

(u(εγi + εη) − u(εγi+1 + εξ))2dξdη

� (Ld)ε−3
N−1∑
i=1

∫
εQ0

∫
{ξ:εγi+x+εξ∈D,|ξ|<r}

(u(εγi + x) − u(εγi + x + εξ))2dξdx,

the last inequality here follows from the fact that for any x ∈ εQ0 the set {εγi+1 + εξ : ξ ∈ Q0}
is a subset of {ξ : εγi + x + εξ ∈ D, |ξ| < r}, if r > 2

√
d.

Considering (4.2), we deduce from the last inequality that∫
D

∫
D

(u(x) − u(y))2dx dy

=
∑

i, l∈Sε

εd+2

∫
εQi

∫
Ql

(
u(x) − u(εξ)

ε

)2

dξdx

� (Ld)εd−1

(
L

ε

)d+1 ∑
j∈Sε

∫
x∈εQ0

∫
{ξ:x+εξ∈D,|ξ|<r}

(u(εj + x) − u(εj + x + εξ))2dxdξ

� Ld+2d

∫
x∈D

∫
{ξ:x+εξ∈D,|ξ|<r}

(
u(x) − u(x + εξ)

ε

)2

dxdξ.

Since ∫
D

∫
D

(u(x) − u(y))2dx dy = 2
∫
D

(u(x) − uD)2dx,

this yields the desires inequality in the case of a cubic domain.
The case of an arbitrary r > 0 and L > 0 can be reduced to the one just studied by standard

scaling arguments.
If D is a strongly star-shaped domain, then there exists a cube B and a Lipschitz isomorphism

J : D 	→ B such that |J(x) − J(y)| � �|x− y|, |∂J∂x | � �, |(∂J∂x )−1| � � for some � > 0. This
statement follows from [38, Theorem 2]. For an arbitrary u ∈ L2(D) denote uJ(x) = u(J−1(x))
and uB,J =

∫
B
uJ(x)dx. Also, we set r1 = r/�. Since the desired inequality has been proved for

cubic domains, we have∫
D

∫
D

(u(x) − u(y))2 dx dy

=
∫
B

∫
B

(uJ (x) − uJ(y))2
∣∣∣∣∂J−1

∂x
(x)

∣∣∣∣ ∣∣∣∣∂J−1

∂x
(y)

∣∣∣∣ dx dy
� �2

∫
B

∫
B

(uJ(x) − uJ(y))2 dx dy

� Cε−d�2
∫
B

∫
{y∈B:|y−x|<εr1}

(
uJ(x) − uJ(y)

ε

)2

dy dx
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� Cε−d�2
∫
D

∫
{ξ:x+εξ∈D,|ξ|<r}

(
u(x) − u(y)

ε

)2∣∣∣∣∂J∂x (x)
∣∣∣∣ ∣∣∣∣∂J∂x (y)

∣∣∣∣ dy dx
� Cε−d�4

∫
D

∫
{ξ:x+εξ∈D,|ξ|<r}

(
u(x) − u(y)

ε

)2

dy dx,

where the constant C depends only on the size of B, r1 and d.
It remains to consider an arbitrary bounded Lipschitz set D. Such a set can be represented

as a union of a finite number of strongly star shaped domains, we denote these domains
D1, . . . , DN .

We first consider the case N = 2, we denote by B̃ a cube such that B̃ ⊂ D, |B̃ ∪D1| �
1
2 |B̃|, |B̃ ∪D2| � 1

2 |B̃|. Note that |B̃ ∪D1| = |B̃ ∪D2| = 1
2 |B̃| if the interiors of D1 and D2

do not intersect. In the rest of the proof, the symbols B̃1 and B̃2 stand for B̃ ∪D1 and
B̃ ∪D2, respectively.

If we denote

uk =
1

|Dk|
∫
Dk

u(x) dx, k = 1, 2; u0,k =
1

|B̃k|

∫
˜Bk

u(x) dx, k = 1, 2; u0 =
1

|B̃|

∫
˜B

u(x) dx

then

(u1 − u0,1)2 =

(
1

|B̃1| |D1|

∫
˜B1

∫
D1

u(x) dx dy − 1

|B̃1| |D1|

∫
˜B1

∫
D1

u(y) dx dy

)2

� 1

|B̃1| |D1|

∫
˜B1

∫
D1

(u(x) − u(y))2 dx dy

� 1

|B̃1| |D1|

∫
D1

∫
D1

(u(x) − u(y))2 dx dy

� Cε−d

∫
D1

∫
{y∈D1:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx

� Cε−d

∫
D

∫
{y∈D:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx;

here we have used inequality (4.1) in D1 that holds because D1 is a strongly star shaped
domain. In the same way, we prove that

(u0,1 − u0,2)2 � Cε−d

∫
D

∫
{y∈D:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx,

and

(u0,2 − u2)2 � Cε−d

∫
D

∫
{y∈D:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx.

Therefore,

(u1 − u2)2 � Cε−d

∫
D

∫
{y∈D:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx.
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Since uD ∈ (u1, u2), the last inequality yields∫
D

(u(x) − uD)2 dx �
2∑

k=1

(
2
∫
Dk

(u(x) − uk)2 dx + 2|Dk|(uk − uD)2
)

� 2
2∑

k=1

∫
Dk

(u(x) − uk)2 dx + 2|D|(u1 − u2)2

� Cε−d

∫
D

∫
{y∈D:|y−x|<εr}

(
u(x) − u(y)

ε

)2

dy dx.

The case N > 2 can be achieved by induction. �

We next consider functions with given boundary data.

Lemma 4.2 (Poincaré inequality). Let D be a bounded set and let u ∈ L2(D) be such that
u = 0 on a 2ε-neighbourhood of ∂D (and extended to 0 outside D). Then there exists a constant
C depending only on the diameter of D such that∫

D

|u(x)|2 dx � C
1

εd+2

∫
D

∫
{|ξ|�ε}

(u(x + ξ) − u(x))2dξdx . (4.3)

Proof. It suffices to treat the case d = 1 and D = (0, 1), the general case being recovered
from this one by considering one-dimensional stripes. For notational convenience, we replace ε
by 2ε, so that our claim becomes that∫ 1

0

|u(x)|2 dx � C
1
ε3

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx , (4.4)

keeping in mind that the first integral in the right-hand side is indeed restricted to (0,1).
For all k ∈ N, we note that, since

(x− 2ε, x + 2ε) ⊃ (kε− ε, kε + ε) if x ∈ (kε− ε, kε + ε),

we have∫ kε+ε

kε−ε

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx

�
∫ kε+ε

kε−ε

∫ kε+ε

kε−ε

(u(y) − u(x))2dy dx

�
∫ kε

kε−ε

∫ kε+ε

kε

(u(y) − u(x))2dy dx

= ε

∫ kε

kε−ε

|u(x)|2 dx− 2
∫ kε

kε−ε

u(x) dx
∫ kε+ε

kε

u(y)dy + ε

∫ kε+ε

kε

|u(y)|2dy

� ε

⎛⎝∫ kε

kε−ε

|u(x)|2 dx− 2

√∫ kε

kε−ε

|u(x)|2 dx
√∫ kε+ε

kε

|u(y)|2dy +
∫ kε+ε

kε

|u(y)|2dy
⎞⎠

= ε

(√∫ kε

kε−ε

|u(x)|2 dx−
√∫ kε+ε

kε

|u(y)|2dy
)2

. (4.5)
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Note that for k = 0 this gives√∫ ε

0

|u(y)|2 dy �

√
1
ε

∫ ε

−ε

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dy,

and for k > 0√∫ kε+ε

kε

|u(y)|2 dy −
√∫ kε

kε−ε

|u(y)|2 dy �

√
1
ε

∫ kε+ε

kε−ε

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dy,

By a recursive argument from k = 0, we deduce that∫ kε+ε

kε

|u(y)|2 dy � 1
ε

(
k∑

j=0

√∫ jε+ε

jε−ε

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx

)2

� 1
ε2

k∑
j=0

∫ jε+ε

jε−ε

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx

� 2
ε2

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx,

where the factor 2 takes into account that the intervals (jε− ε, jε + ε) overlap for consecutive
values of j. Noting that indeed the term with k = 0 is 0 by our assumptions on the values of
u close to the boundary, it suffices now to sum up the contribution over all k ∈ {1, . . . , �1/ε�}
to obtain ∫ 1

0

|u(y)|2 dy � 2
�1/ε�
ε2

∫ +∞

−∞

∫ x+2ε

x−2ε

(u(y) − u(x))2dy dx,

which gives (4.4) with C = 2. Note that if the interval (0,1) is substituted by any interval, then
we can take C as twice the length of the interval. �

5. Definition of the homogenized energy density

Let b be as in Section 2. For all K ∈ N, we set

bωK(x, y) =

{
bω(x, y) if |x− y| < K

0 otherwise,
(5.1)

and, for z ∈ R
d, U open subset of R

d, and K ∈ N, we define

Mω
K(z, U) = inf

{∫
U

∫
Rd

bωK(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K

}
.

(5.2)

Note that, using v(x) = 〈z, x〉 as a test function, we get

Mω
K(z, x + QR) � CRd|z|2 (5.3)

for all x and R.
We now recall that the function bω defined in (2.3) and thus bωK are statistically homogeneous

and satisfy estimates (2.2). This allows us to prove the following statement:
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Lemma 5.1. For all K and z, the limit

γK(z) = lim
R→+∞

Mω
K(z,QR)
Rd

(5.4)

exists almost surely, it is independent of ω, and K 	→ γK(z) is an increasing function. Moreover,
there exists an increasing function fK with

lim
R→+∞

fK(R) = +∞

such that

γK(z) = lim
R→+∞

Mω
K(z, xR + QR)

Rd
(5.5)

for all {xR} such that |xR| � RfK(R).

Proof. Our arguments rely on a uniform version of the sub-additive ergodic theorem, see
[31, Theorem 1]. For any j ∈ Z

d,+ = {0, 1, 2, . . .}d, we define Qj = j + 1̄
2 + Q, where 1̄

2 is the
vector ( 1

2 ,
1
2 , . . . ,

1
2 ). For any finite subset A of Z

d,+ denote QA =
⋃

j∈A Qj , and Φω
K(z,A) =

Mω
K(z,QA).
From definition (5.2) for any non-intersecting finite sets A and B, we have

Φω
K(z,A ∪ B) � Φω

K(z,A) + Φω
K(z,B).

Remark 3. Observe that the last inequality holds for the truncated kernels bωK , however,
it need not hold for the generic kernel bω if its support does not belong to the set {(x, y) :
|x− y| � K}.

Since bωK(x, y) is statistically homogeneous, the family {ΦK(z,A)} is stationary; that
is, for any j ∈ Z

d,+ and any finite collection A1, . . . ,AN the joint law of {ΦK(z,A1 +
j), . . . ,ΦK(z,AN + j)} is the same as the joint law of {ΦK(z,A1), . . . ,ΦK(z,AN )}.

In order to justify the stationarity, consider first an arbitrary A1 ⊂ Z
d,+ and a vector j ∈

Z
d,+. By the definition of Φω

K(z,A1), we have

Φω
K(z,A1 + j) = Mω

K(z,QA1+j) = Mω
K(z,QA1 + j)

= inf

{∫
QA1+j

∫
Rd

bωK(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂(QA1 + j)) < K

}

= inf

{∫
QA1

∫
Rd

bωK(x− j, y − j)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 − 〈z, j〉 if dist(x, ∂(QA1))<K

}

= inf

{∫
QA1

∫
Rd

b
τ−jω

K (x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂(QA1)) < K

}

= Mτ−jω

K (z,QA1 = Φ
τ−jω

K (z,A1).

The case of a finite collection of sets can be considered in the same way.
Then according to [31, Theorem 1], there exists γK(z) such that for any N > 0, we have

lim
R→∞

sup
{∣∣∣∣Mω

K(z,R(x + Q))
Rd

− γK(z)
∣∣∣∣ : |x| � N

}
= 0 (5.6)

almost surely. This implies (5.4); moreover, since bω > 0, K 	→ γK(z) is an increasing function.
Note that we can choose a (slowly growing) sequence N = Nω(R) such that (5.6) still holds,

which yields (5.5). �
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Definition 2 (homogenized energy function). We define

γ(z) = lim
K→+∞

γK(z) = sup
K>0

γK(z).

For z ∈ R
d, U open subset of R

d, and K ∈ N, we set

M̃ω
K(z, U) = inf

{∫
U

∫
U

bω(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K

}
.

(5.7)
Note that M̃ω

K(z, U) cannot be directly compared with Mω
K(z, U) as defined in (5.2) since

on one side bωK � bω while the second integral is performed on U and not R
d. However, still

using v(x) = 〈z, x〉 as a test function, we get

M̃ω
K(z, x + QR) � CRd|z|2 (5.8)

for all x and R.

Lemma 5.2. Let bω be coercive. For all K and z, we have

γ(z) = lim
K→+∞

lim sup
R→+∞

M̃ω
K(z,QR)
Rd

= lim
K→+∞

lim inf
R→+∞

M̃ω
K(z,QR)
Rd

(5.9)

almost surely.

The proof of this lemma is based on the following proposition.

Proposition 5.3. If U is a cube in R
d and v ∈ L2(U), then we have∫

{x,y∈U :|x−y|>K}
bω(x, y)(v(x) − v(y))2dx dy � CK−κ

∫
{x,y∈U :|x−y|<1}

(v(x) − v(y))2dx dy,

(5.10)
with the same κ as in (2.4) and the constant C depending only on the bounds on bω and the
dimension d.

Proof of Proposition 5.3. Without loss of generality, we may assume that the cube U is
centred at the origin; that is, U = QT for some T > 0. Furthermore, we may suppose that T
is integer, and cover QT with the set of unit cubes Q(j) = Q + j, j ∈ Z

d ∩ U . If K > T , the
statement trivially holds. Otherwise, for any j′ and j′′ such that |j′ − j′′|1 = n with n � K, we
consider a path (that is, an array of points in Z

d), j′ = j0, j1, . . . , jn = j′′, with |ji − ji+1|1 = 1,
that has the following properties: in the starting segment of this path j0, j1, . . . , jn1 only the
first coordinate is changed until it is equal to the first coordinate of j′′ (that is, n1 = j′′1 − j′1,
and ji+1 = ji + (1, 0, . . . , 0)). Then we proceed with the second coordinate, and so on.

In order to estimate the contribution to the energy of the interaction between the cubes
Q(j′) and Q(j′′), with fixed n we first estimate the integral∫

{(y0,yn)∈Q×Q}
(v(y0 + j0) − v(yn + jn))2dy0dyn

=
∫
Q

. . .

∫
Q

(
n−1∑
i=0

(v(yi + ji) − v(yi+1 + ji+1))

)2

dy0dy1 . . . dyn

� n

∫
Q

∫
Q

n−1∑
i=0

(v(x + ji) − v(y + ji+1))
2
dx dy .
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Note that each pair of neighbouring points in U ∩ Z
d belongs to not more than nd paths as

described above for some pair j′, j′′ in U such that |j′ − j′′|1 = n. Taking this into account
and summing up over all j′, j′′ in U ∩ Z

d with |j′ − j′′|1 = n, we obtain∑
j′, j′′∈U∩Z

d

|j′−j′′|
1
=n

∫
Q×Q

(v(x + j′) − v(y + j′′))2dx dy � nd+1

∫
(U×U)∩{|x−y|1�2}

(v(x) − v(y))2dx dy.

Taking (2.4) into account, we have∫
{(x,y)∈U×U :|x−y|>K}

bω(x, y)(v(x) − v(y))2dx dy

� C

T∑
n=K

nd+1

(1 + n)d+2+κ

∫
{(x,y)∈U×U :|x−y|1�2}

(v(x) − v(y))2dx dy

� CK−κ

∫
{(x,y)∈U×U :|x−y|1�2}

(v(x) − v(y))2dx dy.

The desired statement follows from the last inequality by a scaling argument. �

Proof of Lemma 5.2. Denote

Mω

K(z, U) = inf
{∫

U

∫
U

bωK(x, y)(v(x) − v(y))2dx dy : v(x) = 〈z, x〉 if dist(x, ∂U) < K

}
.

(5.11)
Then

0 � Mω
K(z, U) −Mω

K(z, U) =
∫
U

∫
Rd\U

bωK(x, y)〈z, (x− y)〉2dx dy

� C|z|2K1−κHd−1(∂U). (5.12)

Let u be a minimizer for Mω
2K(z, U) (which we may assume exists). Let v be given by

Definition 1 with Ξ = 2K. We then have

M̃ω
K(z, U) �

∫
U

∫
U

bω(x, y)(v(x) − v(y))2dx dy

=
∫
U

∫
U

bω2K(x, y)(v(x) − v(y))2dx dy

+
∫
{x,y∈U :|x−y|>2K}

bω(x, y)(v(x) − v(y))2dx dy

� Mω

2K(z, U) + CK−κ

∫
{x,y∈U :|x−y|<1}

(v(x) − v(y))2dx dy

� Mω

2K(z, U) + CK−κ

∫
U×U

b(x, y)(v(x) − v(y))2dx dy

� Mω

2K(z, U) + CK−κ|z|2|U |
� Mω

2K(z, U) + CK−κ|z|2|U | + C|z|2K1−κHd−1(∂U). (5.13)
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Conversely, since Mω

K(z, U) � M̃ω
K(z, U), we have

Mω
K(z, U) � M̃ω

K(z, U) + C|z|2K1−κHd−1(∂U). (5.14)

Dividing by Rd, taking the upper limit in (5.13) and the lower limit in (5.14) with U = QR,
we obtain

γK(z) = lim inf
R→+∞

Mω
K(z,QR)
Rd

� lim inf
R→+∞

M̃ω
K(z,QR)
Rd

� lim sup
R→+∞

M̃ω
K(z,QR)
Rd

� lim sup
R→+∞

Mω
2K(z,QR)
Rd

+ CK−κ|z|2

= γ2K(z) + CK−κ|z|2.
Taking the limit as K → +∞, we obtain the claim. �

6. Homogenization

We now state and prove a homogenization result with respect to the strong L2-convergence.

Theorem 6.1. Let D be an open set with Lipschitz boundary, and let Fω
ε be given by

(2.1) on L2(Ω). Then Fω
ε almost surely Γ-converge with respect to the L2-convergence to the

functional

Fhom(u) =
∫
D

〈Ahom∇u,∇u〉 dx (6.1)

on H1(D), where Ahom is a symmetric matrix which satisfies

〈Ahomz, z〉 = γ(z). (6.2)

The proof of this theorem will make use of a ‘convolution version’ of a classical lemma by
De Giorgi that allow to match the boundary values of a target function (see [18, Proposition
2.2])

Proposition 6.2 (Treatment of boundary values). Let A be a bounded open set with
Lipschitz boundary and let vη → v in L2(A) with v ∈ H1(A). For every δ > 0, there exist
vδη converging to v in L2(A) such that

vδη = v in A \A(δ), vδη = vη in A(2δ)

and

lim sup
η→0

(Fω
η (vδη) − Fω

η (vη)) � o(1)

as δ → 0.

Proof of Theorem. 6.1 By Remark 2, it suffices to describe the Γ-limit in H1(D).
We note that Fω

ε are quadratic functionals, so that also their Γ-limit is a quadratic functional
(see [9]). Then, if we prove that the Γ-limit exists and admits the representation

Fhom(u) =
∫
D

γ(∇u) dx, (6.3)
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then also γ must be a quadratic form on R
d, from which the existence of a matrix Ahom

satisfying (6.2) follows.
We now prove (6.3), first showing a lower bound. We fix ω, u ∈ H1(D) and a sequence

uε → u with bounded Fε(uε). As in [18], we use a variation of the Fonseca–Müller blow-up
technique [22]. We first define the measures on D given by

με(A) =
1

εd+2

∫
A

∫
D

bω
(x
ε
,
y

ε

)
(uε(y) − uε(x))2dξ dx.

Since με(D) = Fε(uε), these measures are equibounded, and we may suppose that they converge
weakly∗ to some measure μ. We now fix an arbitrary Lebesgue point x0 for u and ∇u, and set
z = ∇u(x0). The lower bound inequality is proved if we show that

dμ

dx
(x0) � γ(z). (6.4)

Upon a translation argument, it is not restrictive to suppose that x0 be a Lebesgue point of
all uε (upon passing to a subsequence), and that uε(x0) = u(x0) = 0. We note that for almost
all ρ > 0, we have με(x0 + Qρ) → μ(x0 + Qρ). Since

dμ

dx
(0) = lim

ρ→0+

μ(x0 + Qρ)
ρd

,

and for almost all ρ > 0

μ(Qρ) = lim
ε→0

με(x0 + Qρ)

we may choose (upon passing to a subsequence) ρ = ρε with 1 >> ρ >> ε such that

dμ

dx
(0) = lim

ε→0+

με(x0 + Qρ)
ρd

.

Note that we may choose ρε tending to zero ‘arbitrarily slow’; that is, for all f with lim
ε→0

f(ε) = 0,
we may choose ρε with

ρε � f(ε). (6.5)

Note moreover that

με(x0 + Qρ) =
1
εd

∫
x0+Qρ

∫
D

bω
(x
ε
,
y

ε

)(uε(y) − uε(x)
ε

)2

dx dy

� 1
εd

∫
x0+Qρ

∫
x0+Qρ

bω
(x
ε
,
y

ε

)(uε(y) − uε(x)
ε

)2

dx dy.

We now change variables and set

vε(y) =
uε(x0 + ρy)

ρ
for y ∈ Q1 .

Note that, since x0 is a Lebesgue point of both u and ∇u and we have assumed that u(x0) = 0,
then u(x0+ρy)

ρ converges (for a subsequence) to 〈z, y〉 as ρ → 0 in L2(Q1). Since we also have
assumed that uε(x0) = 0, we may choose ρ = ρε above so that

vε → 〈z, y〉 in L2(Q1).
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By Proposition 6.2 above, applied with v = 〈z, x〉, A = Q1 and η = ε/ρ, for all δ > 0 there
exists a sequence vδε such that vδε(y) = 〈z, y〉 on Q1 \Q1−δ and

1
εdρd

∫
Qρ

∫
Qρ

bω
(x
ε
,
y

ε

)(uε(x) − uε(y)
ε

)2

dx dy

� ρd

εd

∫
Q1

∫
Q1

bω
(
x0

ε
+

x

ε/ρ
,
x0

ε
+

y

ε/ρ

)(
vδε(x) − vδε(y)

ε/ρ

)2

dx dy + o(1)

as δ → 0 uniformly in ε.
If we set R = Rε = ρ/ε and change variables, we get

1
ρd

με(x0 + Qρ) �
1
Rd

∫
x0
ε +Q ρ

ε

∫
x0
ε +Q ρ

ε

bω(x, y)(vR(x) − vR(y))2 dx dy + o(1)

as δ → 0, where

vR(x) = vδε

(
x

R
− x0

ρ

)
.

For every fixed K > 0, we have that

vR(x) = 〈z, x〉 if dist
(
x, ∂

(x0

ε
+ Q ρ

ε

))
< K

for ε small enough (and hence R large enough). Hence, we may use vR as a test function in
the definition on M̃ω

K(z,QR). We also note that suitably choosing f in (6.5) we have that
xR = x0/ρ satisfies |xR| � RfK(R) in Lemma 5.1, so that we finally obtain

lim
ε→0

1
ρd

με(x0 + Qρ) � lim
R→+∞

Mω
K(z, xR + QR)

Rd
+ o(1) = γK(z) + o(1)

as δ → 0. Hence we have

Γ- lim inf
ε→0

Fε(u) �
∫
U

γK(∇u) dx + o(1).

By taking the supremum in K, using the Monotone Convergence Theorem, and by the
arbitrariness of δ, we get the desired lower bound.

The proof of the upper bound is obtained by a standard density argument by piecewise-affine
functions (see also [18]) once it is shown for D a d-dimensional simplex S and u(x) = 〈z, x〉 a
linear function. We consider L large enough so that QL ⊃ D for some L > 0. We fix m ∈ N and
subdivide QL into md cubes Qm

i = xm
i + QL/m of side-length L/m and disjoint interiors. With

fixed K ∈ N we choose ui
ε ∈ L2( 1

εQ
m
i ) such that v(x) = 〈z, x〉 if dist(x, 1

ε∂Q
m
i ) < K and∫

1
εQ

m
i × 1

εQ
m
i

bω(x, y)(ui
ε(x) − ui

ε(y))
2dx dy � Mω

K

(
z,

1
ε
xm
i + Q L

mε

)
+ 1

� Ld

mdεd
(γK(z) + o(1)) + 1 (6.6)

as ε → 0 and K → +∞.
We then define um

ε ∈ L2(Q) by setting

um
ε (x) = ε ui

ε

(x
ε

)
if x ∈ Qm

i .

We set

Im = {I : Qm
i ∩D �= ∅},
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and compute

Fω
ε (um

ε ) �
∑
i∈Im

1
εd+2

∫
Qm

i ×Qm
i

bω
(x
ε
,
y

ε

)
(um

ε (x) − um
ε (y))2dx dy

+
1

εd+2

∑
i
=j

∫
{x∈Qm

i :dist(x,∂Qm
i )<εK}

∫
{y∈Qm

i :dist(y,∂Qm
i )<εK}

bω
(x
ε
,
y

ε

)
|z|2|x− y|2 dx dy

+
1

εd+2

∫
{x,y∈QL:|x−y|>εK}

bω
(x
ε
,
y

ε

)
(um

ε (x) − um
ε (y))2dx dy

�
∑
i∈Im

εd
∫

1
εQ

m
i × 1

εQ
m
i

bω(x, y)(ui
ε(x) − ui

ε(y))
2dx dy + CKmε|z|2 + CK−η

�
(
|U | + O

(
1
m

))
γK(z) + o(1) + CKmε|z|2 + CK−η.

Note that we have used assumption (2.2) to estimate the second term in the sum, and
Proposition 5.3 with U = L

εQ and the coerciveness of bω to estimate the third term in the sum.
We may now choose m = mε → +∞ such that

lim sup
ε→0

Fω
ε (um

ε ) � LdγK(z) + o(1)

as K → +∞. Note that, since um
ε (x) = 〈z, x〉 if dist(x,

⋃
i ∂(Qm

i )) < εK, then um
ε → 〈z, x〉 in

L2(D) and we obtain an upper bound with γK(z) + o(1). Letting K → +∞, we finally have
the desired estimate. �

7. Random perforated domains

In this section, we note that Theorem 6.1 can be applied to the homogenization on randomly
perforated domains.

First we define random sets in R
d.

Definition 3 (Random sets and random perforations). We say that Eω is a random set in
R

d if there exists Ω1 ∈ F with P(Ω1)P(Ω \ Ω1) > 0 such that Eω = {x ∈ R
d : χΩ1(τxω) = 1}

for each ω ∈ Ω.
A random set Eω is called a random perforated domain if it possesses the following

properties.

(i) Almost surely R
d \ Eω is a union of bounded open sets in R

d.
(ii) The diameters of these sets are uniformly bounded.
(iii) The distance between any two distinct sets is bounded from below by a positive constant.
(iv) The boundary of these sets are uniformly Lipschitz continuous; that is, there exist

constants L > 0 and ρ1, ρ2 > 0 such that for any point x ∈ ∂Eω there exists a set C which, up
to translation by x and rotation, is of the form (−ρ1, ρ1)d−1 × (−ρ2, ρ2) such that C ∩ Eω is
the sub-graph of a L-Lipschitz function defined on (−ρ1, ρ1)d−1.

There is a great variety of random perforated domains. We consider here two examples to
clarify a possible structure of such domains.

(i) Consider a random point set in R
d that was used in [3, 37]. Recall that this set is

stationary, and there exist constants r > 0 and R > r such that the distance between any two
points of this set is almost surely greater than r, and any ball of radius R contains at least one
point of this set. Then, for each point of the set, we place a ball of radius r/2 centred at this
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point and take the union of such balls. The complement to this union gives us an example of
random perforated domain.

(ii) For a Poisson point process X(ω) = {xω
j } in R

d with intensity one, we consider the
corresponding Voronoi tessellation V (ω) = vωj with vj = {x ∈ R

d : dist(x, xj) < dist(x,X \
xj)}. Then for positive r and R, 0 < r < R, we select all the indices j such that the ball
of radius r centred at xj belongs to vj and diam(vj) < R. We introduce a random perforation
as the union over these j of the sets ṽj = {x ∈ R

d : dist(x, xj) < 1
2dist(x,X \ xj)} and define

a random perforated set as its complement.
We now assume that Eω is a random perforated domain, and we set

bω(x, y) = χ
Eω (x)χ

Eω (y)a(x− y). (7.1)

The key observation is that such bω is coercive. This is implied by the following theorem in
[18, Theorem 3.2].

Theorem 7.1 (extension theorem). Let Eω be a random perforated domain that satisfies
condition (1)–(4) above. Let bω be defined by (7.1). Then there exists k > 0 and r > 0 such
that almost surely for all u ∈ L2(D ∩ εEω) there exists v ∈ L2(D) such that

v = u on D ∩ εEω, (7.2)∫
D(kε)

∫
{|ξ|�r}

(
v(x + εξ) − v(x)

ε

)2

dξ dx � CFω
ε (u) (7.3)

and ∫
D(kε)

|v|2 dx � C

∫
D∩εE

|u|2 dx. (7.4)

Theorem 6.1 can be rephrased as follows.

Theorem 7.2. Let D be an open set with Lipschitz boundary, let Eω be a random
perforated domain as above, and let Fω

ε be given by

Fω
ε (u) =

1
εd+2

∫
(D∩εEω)×(D∩εEω)

a

(
x− y

ε

)
(u(y) − u(x))2dy dx. (7.5)

Then Fω
ε almost surely Γ-converge with respect to the L2-convergence to the functional (6.1)

on H1(D), where Ahom is a symmetric matrix which satisfies

〈Ahomz, z〉 = lim
K→+∞

lim
R→+∞

1
Rd

inf

{∫
QR∩Eω

∫
Eω

a(x− y)(v(x) − v(y))2dx dy :

v(x) = 〈z, x〉 if dist(x, ∂QR) < K

}
. (7.6)

In order to deal with minimization problems in perforated domains, we need a version of
Poincaré inequality adapted to the perforated domains geometry. The following statement is a
corollary of Theorem 4.1.

Corollary 7.3. Let r0 > 0 be defined in (1.8). Let k > 0 and r > 0 be the same as in
Theorem 7.1. Then for any u ∈ L2(D), the following inequality holds:∫

D(kε)∩εE

(
u(x) − u{D(kε)∩εE}

)2
dx � CFε(u); (7.7)
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here

u{D(kε)∩εE} =
1

|D(kε) ∩ εE|
∫
{D(kε)∩εE}

u(x) dx.

Proof. Consider an extension of function u that belongs to L2(D) and satisfies conditions
(7.2)–(7.4). We denote this extension by v, its existence is granted by Theorem 7.1. Denoting

v{D(kε)} =
1

|D(kε)|
∫
D(kε)

v(x)dx,

we have ∫
D(kε)∩εE

(
u(x) − u{D(kε)∩εE}

)2
dx

�
∫
D(kε)∩εE

(
u(x) − v{D(kε)}

)2
dx �

∫
D(kε)

(
v(x) − v{D(kε)}

)2
dx

� C

∫
D(kε)

∫
{|ξ|�r0}

(
v(x + εξ) − v(x)

ε

)2

dξ dx � C1Fε(u);

here we have used Theorem 4.1 and inequality (7.3). �

We provide now an example of homogenization of a minimization problem. Let D be a
bounded Lipschitz domain in R

d, and assume that Eω is a random perforated domain. From
the definition of Eω, it follows that D \ εEω is a union of a finite number of bounded open sets
whose diameter does not exceed cε with a deterministic constant c > 0. We denote these sets
Sε

1 , . . . S
ε
N with N = N(ε, ω), and define

D̃ε = D \
⋃

{j : dist(Sε
j ,∂D)>

√
ε}
Sj .

Denote
◦
L2(D̃ε) = {u ∈ L2(D̃ε) :

∫
L2(D̃ε)

udx = 0} and
◦
L2(D) = {u ∈ L2(D) :

∫
L2(D)

udx = 0}.
Given f ∈ ◦

L2(D), consider the following minimization problem

1
εd+2

∫
D̃ε×D̃ε

a

(
x− y

ε

)
(u(y) − u(x))2dxdy −

∫
D̃ε

f(x)u(x)dx −→ min, (7.8)

where the minimum is taken over
◦
L2(D̃ε).

Proposition 7.4. Under assumptions (1.7) and (1.8), problem (7.8) has a unique minimizer

uε. Moreover, as ε → 0, uε converges in
◦
L2(D̃ε) towards the unique minimizer u0 of the problem

Fhom(u) − P(Ω1)
∫
D

f(x)u(x)dx −→ min,

where the minimum is taken over
◦
L2(D) ∩H1(D), and Fhom is defined in (7.6).

Proof. By [18, Theorem 3.2] for any u ∈ ◦
L2(D̃ε), there exist k > 0, r > 0 and an extension

vε of u to D such that∫
(D(kε)×D(kε))∩{|x−y|�rε}

(vε(x) − vε(y))2dxdy � C

∫
D̃ε×D̃ε

a

(
x− y

ε

)
(u(y) − u(x))2dxdy



HOMOGENIZATION OF RANDOM CONVOLUTION ENERGIES 317

with D(kε) = {x ∈ D : dist(x, ∂D) > kε}. Since for all sufficiently small ε in D \D(kε), we
have vε(x) = u(x) and the last inequality yields∫

(D×D)∩{|x−y|�rε}
(vε(x) − vε(y))2dxdy � C

∫
D̃ε×D̃ε

a

(
x− y

ε

)
(u(y) − u(x))2dxdy. (7.9)

By the Poincaré inequality stated in Theorem 4.1, we obtain

1
εd+2

∫
(D×D)∩{|x−y|�rε}

(vε(x) − vε(y))2dxdy � c

∫
D

(vε(x) − vεD)2 dx

� c

∫
D̃ε

(u(x) − vεD)2 dx � c

∫
D̃ε

(u(x))2 dx.

Therefore,

1
εd+2

∫
D̃ε×D̃ε

a

(
x− y

ε

)
(u(y) − u(x))2dxdy �

∫
D̃ε

(u(x))2 dx.

This implies that for each ε > 0 the functional in (7.8) has a unique minimum point, and,
denoting this minimum point uε, we have ‖uε‖L2(D̃ε)

� C. Taking one more time the extension
of uε to D and applying Theorem 3.1, we conclude that the said extensions are relatively
compact in L2(D′) for any open set D′ such that D′ ⊂ D. The desired statement now follows
from Theorem 7.2 and we should also take into account the relation∫

D̃ε

fuεdx → P(Ω1)
∫
D

fu0dx, as ε → 0,

which is a consequence of the Birkhoff theorem. �
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