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HOMOGENIZATION OF A NONLINEAR
CONVECTION-DIFFUSION EQUATION WITH RAPIDLY

OSCILLATING COEFFICIENTS AND STRONG CONVECTION

EDUARD MARUŠIĆ-PALOKA and ANDREY L. PIATNITSKI

Abstract

A Cauchy problem for a nonlinear convection-diffusion equation with periodic rapidly oscillating
coefficients is studied. Under the assumption that the convection term is large, it is proved that
the limit (homogenized) equation is a nonlinear diffusion equation which shows dispersion effects.
The convergence of the homogenization procedure is justified by using a new version of a two-scale
convergence technique adapted to rapidly moving coordinates.

1. Introduction

This paper is devoted to homogenization of a model semilinear parabolic equation of
convection-diffusion type with periodic, rapidly oscillating coefficients. The material
is stratified, that is oscillations are allowed in all but one direction. We assume that
the convection term is large, which is related to the self-similar diffusive scaling in
the equation. For this strong convection term we do not suppose that the convection
velocity is divergence free, nor that the effective drift is zero. As described in [8,
Chapter 2] in such a situation the convection might dominate the diffusion, and
we cannot expect nontrivial convergence of the family of solutions uε(t, x) for a
fixed spatial frame x but only in moving coordinates x + Bε(t). Due to the choice
of scaling, in appropriate moving coordinates the homogenized problem shows the
diffusive dynamics. As a consequence of the presence of strong nonlinear convection,
the dispersion effects appear, that is the diffusion coefficients of the limit quasilinear
problem depend on the convection velocity (see, for example [2] or [11] for the
formal asymptotic explanation of the dispersion). To prove the result we adapt the
two-scale convergence method introduced by Nguetseng [12] and Allaire [1], to the
case of rapidly moving coordinates, and we combine it with the appropriate choice
of test functions depending on the solution of the adjoint auxiliary problem (5).

Also, since classical theorems on compactness of embedding of Sobolev spaces in
bounded domains do not apply in the whole space, in our case the compactness
result for the family of solutions is not a straightforward consequence of a priori
estimates. We show that the uniform localization of solutions holds in moving
coordinates, and, in this way, we gain the compactness in the moving coordinates.

The problem under consideration appears, for instance, when studying the long-
term behaviour of the nonlinear convection-diffusion model in stratified periodic
media. In this case, letting ε = 1/

√
T and making self-similar rescaling, we arrive

at our homogenization problems. The desired long-term behaviour can now be
described in terms of the effective characteristics of this problem.
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Previously, homogenization problems for linear convection-diffusion models with
a zero mean drift were considered in [4] and then in many other works. The
case of divergence-free convection term has been widely studied in the existing
literature; for instance, [3, 7] dealt with equations with small diffusion coefficients.
The homogenization result for general linear periodic convection-diffusion operators
with nontrivial effective drift was obtained in [13].

2. Setting of the problem

We study the asymptotic behaviour of solutions of the Cauchy problem
∂uε

∂t
− div(Aε(t, x)∇uε) + ε−1bε(t, x, uε) · ∇uε = 0 in ]0, T [×Rn , (1)

uε(0, x) = ϕ(x), x ∈ Rn , (2)

with Aε(t, x) = A(t, x′/ε) and

bε(t, x, v) =
(

a

(
t,

x′

ε

)
, h

(
t,

x′

ε

)
f(v)

)
, (3)

where x = (x′, xn ) ∈ Rn , x′ ∈ Rn−1, xn ∈ R. The matrix function A(t, y) =
[Aij (t, y)], vector function a(t, y) = (a1(t, y), . . . , an−1(t, y)) and scalar function
h(t, y) are assumed to be 1-periodic in y = (y1, . . . , yn−1), and thus can be identified
with the corresponding functions on the (n − 1)-dimensional torus denoted by Y .
We suppose throughout this paper that the following hold.

(1) Coefficients A, a and h are of class C2
per(Y ).

(2) The nonlinearity f ∈ C2(R).
(3) The initial condition ϕ ∈ C∞

0 (Rn ).
(4) The diffusion tensor A is uniformly positive definite, that is there exists a

constant c0 > 0 such that for any (t, y) ∈ ]0, T [ × Y and ξ ∈ Rn

ξ · A ξ =
n∑

i,j=1

Aij (t, y) ξi ξj � c0 |ξ|2. (4)

Since the convection term here is not divergence free, the following auxiliary
problem plays an important role in further analysis:

divy (At ∇y z + a z) = 0 in Y, (5)

where we use the following notation for partial differential operators with respect
to y.

divy v =
n−1∑
α=1

∂vα

∂yα
, ∇y χ =

(
∂χ

∂y1
, . . . ,

∂χ

∂yn−1

)
, (At ∇y z)α (t, y)

=
n−1∑
β=1

Aαβ (t, y)
∂z

∂yβ
,

and we always assume that any function depending on y is Y periodic, that is
defined on the torus Y = Tn−1. Equation (5) is linear and has a nontrivial solution
in the space of Y -periodic functions. Furthermore, under the normalization∫

Y

z(t, y) dy = 1 (6)
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the solution is unique and, due to the zero maximum principle (see [8, Chapter 1]),
strictly positive.

In addition to the above assumptions, for the nonlinear convection term we
assume that the function h satisfies the hypothesis

∫
Y

z(t, y) h(t, y) dy = 0, ∀ t ∈ [0, T ]. (7)

In case of divergence-free linear convection velocity divx′ a = 0 the auxiliary func-
tion z is a constant and the above hypothesis reduces to the assumption that the
mean value of h is zero.

Remark 1. The above assumption should be understood in the sense that the
average, taken with respect to the corresponding invariant measure z dy, of the last
nonlinear component of convection velocity, is zero.

The particular form of the nonlinear convection term (3) is a technical assumption
which enables the separation of scales in the homogenized problem and it does not
seem to be essential. On the contrary, hypothesis (7) seems to be crucial. Under this
hypothesis the (large) principal term of the effective convection does not depend on
the profile of the solution which makes it possible to introduce moving coordinates.
It turns out that, without condition (7), the formal homogenization procedure leads
to an ill-posed problem.

3. Solvability of the ε-problem

In this section we present the existence and uniqueness result for the Cauchy
problem (1), (2). Since a priori estimates are easy to derive (see Section 5), it is a
simple exercise to prove the existence of the weak solution using the compactness
argument. We can also combine [9, Theorem 8.1] (about classical solutions) and [9,
Theorem 5.2] (about weak solutions) to get the following result.

Theorem 1. Suppose that f ∈ C2(R), h ∈ C1,β ([0, T ];C1,β
per (Y )), a ∈

C1,β ([0, T ];C1,β
per (Y )n−1), ϕ ∈ C2,β (Rn ) ∩ L∞(Rn ) and A ∈ C1,β ([0, T ];

C1,β
per(Y )n×n ) for some β ∈ ]0, 1[ , and let the uniform ellipticity condition (4)

be fulfilled. Then problem (1), (2) has a unique classical solution:

uε ∈ H2+β ,1+β/2
(
Rn

T

)
= {v ∈ C([0, T ] × Rn );(

∂

∂t

)r

Ds
x v ∈ C([0, T ] × Rn ), 2r + s < 2 + β}.

Furthermore, if ϕ ∈ L2(Rn ) then there is a solution uε ∈ L2(0, T ;H1(Rn ))∩
L∞( ]0, T [×Rn ), and it is unique in this class.

4. Main result

We are interested in the macroscopic behaviour of the solution uε . The main
result of the paper is summarized in the following theorem.
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Theorem 2. Let uε be the solution of the problem (1), (2), and let wε(t, x) =
uε(t, x + ε−1B(t)), where B is defined by

B(t) =
∫ t

0

∫
Y

(a(s, y) − divA(s, y)) z(s, y) dy ds.

Then

wε → w0 weakly in L2(0, T ;H1(Rn )) and strongly in L2(0, T ;L2(Rn )).

The limit w0 is the unique solution of homogenized problem (40) below. This
homogenized problem is well-posed.

The proof of this theorem is given in Section 6.

5. A priori estimates

As was explained in the introduction, there is no hope of obtaining a nontrivial
convergence result for uε itself. In order to improve the situation, we introduce
moving coordinates (t, x) → (t, x + ε−1B(t)) and study the function

wε(t, x) = uε(t, x + ε−1B(t)),

where

B(t) =
∫ t

0

∫
Y

(a(s, y) − divA(s, y)) z(s, y) dy ds. (8)

We also denote by

b(t) =
d

dt
B(t) =

∫
Y

(a(t, y) − divA(t, y)) z(t, y) dy (9)

the effective drift vector (see [8]).
To avoid the dimension inconsistency, we also introduce the n-dimensional vectors

(B, 0) = (B1, . . . , Bn−1, 0), (b̄, 0) = (b̄1, . . . , b̄n−1, 0), (aε, 0) = (aε
1, . . . , a

ε
n−1, 0), etc.

Abusing slightly the notation we will use, for these extended vectors, the same
symbols B, b̄, aε , etc. if it does not lead to ambiguity.

We are now ready to prove the a priori estimates.

Proposition 1. There exists a constant C > 0, independent of ε, such that

|wε |L2(0,T ;H 1(Rn)) � C (10)
|wε |L∞( ]0,T [ ×Rn) � C. (11)

Proof. We define

zε(t, x) = z

(
t,

x′

ε

)
.

Using zε uε as a test function in the variational formulation of problem (1), (2), we
arrive at the relation∫T

0

∫
Rn

zε Aε∇uε · ∇uεdx dt =
1
2

∫
Rn

[ϕ(0, x)2 zε(0, x) − uε(T, x)2 zε(T, x)] dx

−
∫T

0

∫
Rn

(uε)2
∂zε

∂t
dx dt,
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which implies, by the Gronwall lemma, the uniform in ε bound (10). Estimate (11)
follows from the maximum principle (see [9] or [10]).

The above estimates only imply weak compactness of wε . Since our equation is
nonlinear, we need some strong compactness result in order to pass to the limit. The
problem is posed in the whole space Rn which is inconvenient for proving strong
compactness. Thus, our first goal is to restrict our study to a compact subset. We
introduce the notation

QR = ]−R,R[ n .

Lemma 1. For any δ > 0, there exists R(δ) > 0 such that

|wε |L2(]0,T [× (Rn\QR (δ ))) � δ. (12)

Proof. Let ϕ ∈ C∞(R) be a cut-off function, such that 0 � ϕ � 1, ϕ(s) = 0
for s � 1 and ϕ = 1 for s � 2. We denote by ϕr (x) = ϕ(|x|/r) and by ϕε

r (t, x) =
ϕr (x − ε−1B(t)), where r > 0 will be chosen later on. Multiplying (1) by uε zε ϕε

r

and integrating by parts, we get on the left-hand side
∫T

0

∫
Rn

∂uε

∂t
uε zεϕε

r dx dt = −1
2

∫T

0

∫
Rn

|uε |2ϕε
r

∂zε

∂t
dx dt

+
1
2ε

∫T

0

∫
Rn

|uε |2 b(t) ·
(

x − ε−1B

r |x − ε−1B|

) (
ϕε

r

)′
zεdx dt

+
1
2

∫
Rn

|uε(T, ·)|2 ϕε
r (T, ·) zε(T, ·) dx − 1

2

∫
Rn

|u0|2 ϕr zε(0, ·) dx, (13)

where (ϕε
r )

′(t, x) = (d/ds)ϕ(s)
∣∣∣
s=(r−1 |x−ε−1B (t)|)

. By choosing sufficiently large r

we obtain ∫
Rn

|u0|2 ϕr zε(0, ·) dx = 0.

On the right-hand side we have
∫T

0

∫
Rn

uε ϕε
r z

ε [divAε∇uε − ε−1bε · ∇uε ] dx dt

= − 1
2ε

∫T

0

∫
Rn

hε f(uε)uε ∂uε

∂xn
ϕε

r zε dx dt

−
∫T

0

∫
Rn

zεϕε
rA

ε∇uε · ∇uε −
∫T

0

∫
Rn

uεzε
(
ϕε

r

)′
Aε

(
x − ε−1B

r |x − ε−1B|

)
· ∇uε dx dt

+
1
2

∫T

0

∫
Rn

|uε |2
(
ϕε

r

)′
Aε

(
x − ε−1B

r |x − ε−1B|

)
· ∇zε dx dt

+
1
2ε

∫T

0

∫
Rn

|uε |2zεaε ·
(

x − ε−1B

r |x − ε−1B|

)(
ϕε

r

)′
dx dt

+
1
2ε

∫T

0

∫
Rn

|uε |2 ϕε
r div(zε aε) dx dt +

1
2

∫T

0

∫
Rn

|uε |2 ϕε
r div(At∇zε) dx dt.

We recall that aε in this formula stands for (aε
1, . . . , a

ε
n−1, 0). The last two integrals

mutually cancel due to the definition of z. With the remaining terms, (13) can be
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written in the form

1
2

∫
Rn

|uε(T, ·)|2 ϕε
r (T, ·) zε(T, ·) dx +

∫T

0

∫
Rn

Aε∇uε · ∇uε zε ϕε
r dx dt

= − 1
2ε

∫T

0

∫
Rn

ϕε
r z

εhεf(uε)uε ∂uε

∂xn
dx dt (14)

− 1
2

∫T

0

∫
Rn

zε
(
ϕε

r

)′
Aε

(
x − ε−1B

r |x − ε−1B|

)
· ∇|uε |2 dx dt (15)

+
1
2ε

∫T

0

∫
Rn

|uε |2
(
ϕε

r

)′ ( x − ε−1B

r |x − ε−1B|

)
·
(
−zε b + (At∇y z)ε + zε aε

)
dx dt.

The last integral can be controlled using the fact that there exists a periodic in y
matrix-function η(t, y), such that

divy η = (a − b) z + At∇y z. (16)

Indeed, due to the definition of b, the right-hand side has a zero mean for any
t ∈ [0, T ] ∫

Y

(a − b + At∇y z) =
∫
Y

(a − b − divA) z dy = 0,

which is a necessary and sufficient condition for the existence of such a function η.
Then we have for ηε(t, x) = η(t, x′/ε)

Jε
1 =

1
2ε

∫T

0

∫
Rn

|uε |2
(
ϕε

r

)′ ( x − ε−1B

r |x − ε−1B|

)
· (−b zε + (At∇y z)ε + aεzε) dx dt

= −1
2

∫T

0

∫
Rn

|uε |2
(
ϕε

r

)′ ( x − ε−1B

r |x − ε−1B|

)
· div ηε dx dt

=
1
2

∫T

0

∫
Rn

{(
ϕε

r

)′ ( x − ε−1B

r |x − ε−1B|

)
· ηε∇ |uε |2

+ |uε |2 (ηε∇) ·
[(

ϕε
r

)′ ( x − ε−1B

r |x − ε−1B|

)]}
dx dt.

Since

∇
[(

ϕε
r

)′ ( x − ε−1B

r |x − ε−1B|

)]
= ϕ′′(r−1 |x − ε−1B|)

(
x − ε−1B

r |x − ε−1B|

)
⊗

(
x − ε−1B

r |x − ε−1B|

)
+ ϕ(r−1 |x − ε−1B|) |x − ε−1B|−1 r−2

×
(
I +

(x − ε−1B) ⊗ (x − ε−1B)
|x − ε−1B|2

)
we have ∣∣Jε

1

∣∣ � C (r−1 + r−2) (17)

with C > 0 independent of ε. Next we treat the integral

Jε
2 =

1
2ε

∫T

0

∫
Rn

ϕε
r z

εhεf(uε)uε ∂uε

∂xn
dx dt.

We first notice that, due to assumption (7), there exists a function ψ(t, y) such that

divyψ = h z in ]0, T [ ×Y. (18)
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We let ψε(t, x) = ψ(t, x′/ε) and, furthermore, define the function

G(τ) =
∫ τ

0

s f(s) ds.

Then

2 Jε
2 =

∫T

0

∫
Rn

ϕε
r divψε ∂

∂xn
G(uε) dx dt = −

∫T

0

∫
Rn

∂ϕε
r

∂xn
div ψε G(uε) dx dt

=
∫T

0

∫
Rn

(
∂ϕε

r

∂xn
ψε f(uε)uε ∇x′uε + G(uε)ψε ∇x′

∂ϕε
r

∂xn

)
� C (r−1 + r−2 ),

again with C > 0 independent of ε. Since the remaining integral on the right-hand
side of (15) does not have a big factor, it is straightforward to see that this integral
is of order r−1, so that

1
2

∫
Rn

|uε(T, ·)|2 ϕε
r (T, ·) zε(T, ·) +

∫T

0

∫
Rn

Aε∇uε ∇uεzε ϕε
r � C (r−1 + r−2),

proving the claim.

Our next step is to introduce the orthonormal basis {ej}j∈Zn in L2(]0, 1[n ), such
that ej ∈ C∞

0 ([0, 1]n ). Then the functions {ejk}j,k∈Zn, where ejk (x) = ej (x − k),
form an orthonormal basis in L2(Rn ). Now we introduce the following, time-
dependent, Fourier coefficients:

µε
kj (t) = (wε(t, ·) z̃ε(t, ·), ekj )L2(Rn)

νε
kj (t) = (wε(t, ·) , ekj )L2(Rn)

with z̃ε(t, x) = z((x + ε−1B(t))/ε). We now explore the properties of these Fourier
coefficients.

Lemma 2. There are constants Cjk > 0, independent of ε such that

|µkj (t) − µkj (s)| = |(wε(t, ·), z̃ε(t, ·) ekj )L2(Rn)

− (wε(s, ·), z̃ε(s, ·)ekj )L2(Rn) | � Ckj

√
t − s. (19)

.

Proof. Denote ẽkj (t, x) = ekj (t, x − B(t)/ε). Using zε ẽkj as a test function in
the variational formulation of (1), we arrive at

(wε(t, · )z̃ε(t, ·) − wε(s, ·)z̃ε(s, ·), ekj )L2(Rn)

=
∫ t

s

∫
Rn

[
∂

∂t
(uε zε)(τ, x) + ε−1b(τ) · ∇(uε zε)(τ, x)

]
ẽkj (x) dx dτ

=
∫ t

s

∫
Rn

uε(τ, x)
∂zε

∂t
(τ, x) ẽkj (x) dx dτ

−
∫ t

s

∫
Rn

(zε Aε∇uε · ∇ẽkj + ẽkj (Aε)t∇zε · ∇uε) dx dτ

+ ε−1

∫ t

s

∫
Rn

(
uε ẽkjdiv(aε zε) + zε uε(aε · ∇) ẽkj + ẽkj b · ∇(uεzε

)
dx dτ

− ε−1

∫ t

s

∫
Rn

zε hεf(uε)
∂uε

∂xn
ẽkj dx dτ.
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We proceed as in the proof of Lemma 1. Define ηε by (16) and ψε by (18), and let
F (τ) =

∫τ

0
f(s)ds. Then

(wε(t, · )z̃ε(t, · ) − wε(s, · )z̃ε(s, · ), ekj )L2(Rn) =
∫ t

s

∫
Rn

{
ηε : ∇ (uε ∇ẽkj )

− zε Aε∇uε ∇ẽkj − ψε · ∇x′

×
(

F (uε)
∂ẽkj

∂xn

)
+ uεẽkj

∂zε

∂t

}
� C

∫ t

s

|uε(τ)|H 1(Rn) dτ

� C
√

s − t . �

Notice that the above result gives the equicontinuity in time for wε z̃ε . Our next
aim is estimating the difference between µε

kj and νε
kj .

Lemma 3. For each k, j ∈ Zn , there exists a constant Ckj > 0, independent of
ε, such that

|(wε, ekj (1 − z̃ε)L2(Rn)|L2(0,T ) � Ckj ε.

Proof. Making use of relation (6), one can solve the problem

divyΨ = 1 − z in Y × ]0, T [.

Thus we have εdivx′Ψ(t, x′/ε) = 1 − zε(t, x) implying the claim.

According to the Arzela–Ascoli theorem, Lemma 2 implies that, for any k, j ∈ Zn ,
and each sequence εi → 0, there is a subsequence ε′i → 0 and some µkj ∈ C([0, T ])
such that

µ
ε′

i

kj → µkj in C([0, T ]). (20)

Furthermore, we can use the diagonal procedure to get the subsequence

ε′′i → 0 (21)

such that (20) holds for all j, k ∈ Zn . Due to the uniform boundedness of z̃ε wε in
L2( ]0, T [ ×Rn ), the function

w(t, x) =
∑
j,k

µjk (t) ejk (x)

is an element of L2( ]0, T [ ×Rn ). Moreover, we have the following.

Lemma 4. For any N > 0 and any δ > 0 there exists K(δ) > 0 such that∣∣∣∣∣wε χQN
−

∑
|k |�K (δ)

∑
|j |�N

νε
kj ekj

∣∣∣∣∣
L2(]0,T [ ×Rn)

� δ,

where χQN
denotes the characteristic function of a set QN.

Proof. This is a straightforward consequence of the embedding H1(QN ) ↪→
L2(QN ), bound (10) and Lemma 1.
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Theorem 3. For any εi → 0 the sequence {wεi }i∈N has a subsequence strongly
convergent in L2(]0, T [ ×Rn ).

Proof. Let {ε′′i } be the subsequence constructed in (21). We intend to show that
the subsequence {wε′′

i }ε′′
i →0 tends to w strongly in L2(]0, T [×Rn ). Let δ > 0 be

an arbitrary number. We first note that, due to Lemma 1, there exists N > 0 such
that

|wε − wε χQN
|L2(]0,T [×Rn ) � δ

8
. (22)

Now, by Lemma 4, there exists K(δ) > 0 such that∣∣∣∣∣wε χQN
−

∑
|k |�K (δ)

∑
|j |�N

νε
kj ekj

∣∣∣∣∣
L2(]0,T [×Rn)

� δ

8
. (23)

By Lemma 3, for ε small enough∣∣∣∣∣ ∑
|k |�K (δ)

∑
|j |�N

νε
kj ekj −

∑
|k |�K (δ)

∑
|j |�N

µε
kj ekj

∣∣∣∣∣
L2(]0,T [×Rn)

� δ

8
. (24)

Finally, the convergence (20) implies the existence of a ε0(δ) > 0, such that, for all
ε′′i � ε0 (or equivalently for all i � i0(δ)) one has∣∣∣∣∣ ∑

|k |�K (δ)

∑
|j |�N

µ
ε′′

i

kj ekj −
∑

|k |�K (δ)

∑
|j |�N

µkj ekj

∣∣∣∣∣
L2(]0,T [×Rn)

� δ

8
. (25)

It remains to chose K(δ) large enough, so that∣∣∣∣∣w −
∑

|k |�K (δ)

∑
|j |�N

µkj ekj

∣∣∣∣∣
L2(]0,T [×Rn)

� δ

8
. (26)

Summing up (22)–(26) we achieve the convergence of {wε′′
i } towards w in the norm

of L2(]0, T [×Rn ).

6. Convergence of the homogenization procedure

Two-scale convergence, introduced by Nguetseng in [12], has to be slightly
modified to make an appropriate tool for our problem. In fact we modify its
evolutional version from [6]. We define the two-scale convergence for oscillating
functions and fast traveling frame. We give its definition: we say that the
sequence ϕε ∈ L2(]0, T [×Rn ), |ϕε |L2(]0,T [×Rn ) � C, two-scale converges to ϕ0 ∈
L2( ]0, T [×Rn ×Y ) in moving coordinates (x + ε−1B(t)) if

∫T

0

∫
Rn

ϕε(t, x)ψ(t, x − ε−1B(t), ε−1x′) dx dt

→
∫T

0

∫
Rn

∫
Y

ϕ0(t, x, y)ψ(t, x, y) dy dx dt, (27)

for any test function ψ ∈ L2(Rn × ]0, T [ ;Cper(Y )).
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Remark 2. Our modification consists of allowing the test function to be taken
in the form

ψε(t, x) = ψ(t, x − ε−1B(t), ε−1x′).

It is clear that

lim
ε→0

|ψε |L2(Rn ×]0,T [) = |ψ|L2(Rn ×]0,T [×Y ).

Hence the shifted test functions admit uniform bound, and the compactness argu-
ments used in the theory of two-scale convergence, also work in our case. However,
we repeat the proof of the compactness theorem for the reader’s convenience.

We also modify slightly the compactness result from [1] and [6].

Proposition 2. Let functions ϕε ∈ L2(0, T ;H1(Rn )) satisfy the bound

|ϕε |L2(0,T ;H 1(Rn)) � C.

Then there exist a subsequence, denoted by the same symbol {ϕε}, and functions
ϕ0 ∈ L2(0, T ;H1(Rn )) and ϕ1 ∈ L2(]0, T [×Rn ; H1(Y )) such that

ϕε → ϕ0 two-scale (28)
∇ϕε → ∇xϕ0 + ∇yϕ1 two-scale. (29)

Proof. We proceed as in [1] to find the bound for the integral∣∣∣∣∣
∫T

0

∫
Rn

ϕε(t, x) ψ(t, x − ε−1B(t), ε−1x′) dx dt

∣∣∣∣∣
� C |ψ(t, x − ε−1B(t), ε−1x′)|L2(]0,T [×Rn )

� C |ψ(t, x, y)|L2(]0,T [×Rn ;Cper(Y )).

Therefore the sequence of measures defined by

〈�ε , ψ〉 ≡
∫T

0

∫
Rn

ϕε(t, x) ψ(t, x − ε−1B(t), ε−1x′) dx dt

admits a subsequence that converges weakly* in L2(]0, T [×Rn ; Mper(Y )) to some

�0 ∈ L2(]0, T [×Rn ; Mper(Y )),

where Mper(Y ) = (Cper(Y ))′. Using the property stated in Remark 2, that is,

lim
ε→0

|ψε |L2(]0,T [×Rn) = |ψ|L2(]0,T [×Rn ×Y ),

we conclude that �0 is continuous functional on L2( ]0, T [ ×Rn ×Y ). Thus it can be
represented as

〈�0, ψ〉 =
∫T

0

∫
Rn

∫
Y

ϕ0(t, x, y) ψ(t, x, y) dx dt dy
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for some ϕ0 ∈ L2(]0, T [×Rn × Y ) implying (28). By the same reasons we can
associate with the sequence ∇ϕε a function ζ0 ∈ L2( ]0, T [×Rn × Y )n such that

lim
ε→0

∫T

0

∫
Rn

∇ϕε(t, x) ψ(t, x − ε−1B(t), ε−1x′) dx dt

=
∫T

0

∫
Rn

∫
Y

ζ0(t, x, y) ψ(t, x, y) dx dt dy.

Integration by parts leads to

ε

∫T

0

∫
Rn

∇ϕε(t, x) ψ(t, x − ε−1B(t), ε−1x′) dx dt

= −
∫T

0

∫
Rn

ϕε(t, x)[divy ψ(t, x − ε−1B(t), ε−1x′)

+ ε divx ψ(t, x − ε−1B(t), ε−1x′)] dx dt.

Thus ∫T

0

∫
Rn

∫
Y

ϕ0(t, x, y) divy ψ(t, x, y) dx dt dy = 0,

implying that ϕ0 does not depend on y. Taking ψ such that divy ψ = 0 and passing
to the limit gives ∫T

0

∫
Rn

∫
Y

(ζ0 ψ + ϕ0 divx ψ ) = 0,

that is, ζ0 − ∇ϕ0 ⊥ ψ for all ψ ∈ C∞
0 (]0, T [×Rn ;C∞

per(Y )) such that
divy ψ(t, x, y) = 0. Consequently ζ0(t, x, y) = ∇x ϕ0(t, x) + ∇y ϕ1(t, x, y) for some
ϕ1 ∈ L2(]0, T [×Rn ; H1

per(Y )).

Remark 3. If we rewrite the functions ϕε in moving coordinates: ϕ̃ε(x, t) =
ϕε(x + ε−1B(t), t), then relation (27) takes the form∫T

0

∫
Rn

ϕ̃ε(t, x)ψ(t, x, ε−1(x′ + ε−1B(t))) dx dt

→
∫T

0

∫
Rn

∫
Y

ϕ0(t, x, y) ψ(t, x, y) dy dx dt.

Abusing slightly the notation we will write in this case ϕ̃ε → ϕ0 two-scale.

Estimates (10), (11) and Theorem 3 derived in the previous section imply the
following convergence.

Lemma 5. There exist w0 ∈ L2(0, T ;H1(Rn )) and w1 ∈ L2(]0, T [×Rn ×;
H1

per(Y )) such that

wε → w0 weakly in L2(0, T ;H1(Rn ))
strongly in L2(0, T ;L2(Rn))
two-scale, (30)

∇wε → ∇xw0 + ∇yw1 two-scale. (31)

Further analysis will rely on the following statement.
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Lemma 6. Let p ∈ L2(]0, T [×Y ) have zero average in y, that is,

∫
Y

p(t, y) dy = 0

for (almost everywhere) t ∈ (0, T ). Then for any φ ∈ C∞
0 (]0, T [×Rn ) the following

hold.

(i)

ε−1

∫T

0

∫
Rn

p̃ε wε φ dx dt −→
∫T

0

∫
Rn

( ∫
Y

p w1 dy

)
φ dx dt.

(ii)

ε−1

∫T

0

∫
Rn

p̃ε f(wε)
∂wε

∂xn
φ dx dt −→

∫T

0

∫
Rn

φ

( ∫
Y

p
∂

∂xn
(f(w0)w1) dy

)
dx dt,

where p̃ε(t, x) = p(t, ε−1 x′ + ε−2B(t)).

Proof. (i) Since p ∈ L2(0, T ;L2
0(Y )) there exists q ∈ L2(0, T ;H1

per(Y )) such that

divy q =
n−1∑
α=1

∂qα

∂yα
= p

and
∫

Y
q = 0. Then for the function

q̃ε(t, x) = (q1(t, ε−1x′ + ε−2B(t)), . . . , qn−1(t, ε−1x′ + ε−2B(t)))

we have

divx′ q̃ε =
n−1∑
α=1

∂q̃ε
α

∂xα
= ε−1 p̃ε .

Thus

ε−1

∫T

0

∫
Rn

p̃ε wε φ dx dt =
∫T

0

∫
Rn

divx′ q̃ε wε φ dx dt

= −
∫T

0

∫
Rn

(
qε · ∇x′wε φ + wε q̃ε · ∇x′ φ

)
dx dt

→ −
∫T

0

∫
Rn

( ∫
Y

{q · ∇x′w0 + q · ∇yw1} dy

)
φ dx dt

−
∫T

0

∫
Rn

( ∫
Y

q dy

)
w0 ∇x′φ dx dt

= −
∫T

0

∫
Rn

φ

( ∫
Y

q · ∇yw1 dy

)
dx dt =

∫T

0

∫
Rn

φ

( ∫
Y

divy q w1 dy

)
dx dt

=
∫T

0

∫
Rn

( ∫
Y

p w1 dy

)
φ dx dt.
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(ii) For the second assertion we combine the same idea with the strong
convergence (30). Defining q as in (i), we have

ε−1

∫T

0

∫
Rn

p̃ε f(wε)
∂wε

∂xn
φ0 dx dt = ε−1

∫T

0

∫
Rn

p̃ε ∂F (wε)
∂xn

φ0 dx dt

= −
∫T

0

∫
Rn

F (wε) divx′ q̃ε ∂φ0

∂xn
dx dt

=
∫T

0

∫
Rn

q̃ε ·
[
∇x′

(
∂φ0

∂xn

)
F (wε) + ∇x′wε f(wε)

∂φ0

∂xn

]
dx dt

→
∫T

0

∫
Rn

∂φ0

∂xn
f(w0)

( ∫
Y

q · ∇yw1 dy

)
dx dt

= −
∫T

0

∫
Rn

∂φ0

∂xn
f(w0)

(∫
Y

p w1

)
. �

Our next step is to pass to the limit in equation (1).
We take the test function of the form

ψε(t, x) = zε(t, x)φ0(t, x − ε−1B(t)) + εφ1

(
t, x − ε−1B(t),

x′

ε

)
,

where φ0 ∈ H1(0, T ;H1(Rn )) is such that φ0(T, x) = 0 and φ1 ∈ H1
0 (]0, T [×Rn ;

H1
per(Y )).

Thus we obtain
∫T

0

∫
Rn

[
−uε

(
∂zε

∂t
(φ0)ε + zε

(
∂φ0

∂t

)ε )
+ Aε∇uε {∇zε (φ0)ε

+ (∇φ0)ε zε + (∇y φ1)ε}
]

dx dt

− ε−1

∫T

0

∫
Rn

[(aε − b) · (∇xφ0)ε zε + div(zεaε) (φ0)ε ]uε dx dt

+
∫T

0

∫
Rn

(aε · ∇uε(φ1)ε + b · (∇xφ1)ε uε ) dx dt (32)

+ ε−1

∫T

0

∫
Rn

hε f(uε)
∂uε

∂xn
zε (φ0)ε dx dt −

∫T

0

∫
Rn

hε f(uε)
∂uε

∂xn
(φ1)ε dx dt (33)

=
∫
Rn

ϕ(x) z

(
0,

x

ε

)
φ0(0, x) dx + O(ε),

where

(φ1)ε(t, x) = φ1(t, x − ε−1B, ε−1x′),
(∇y φ1)ε(t, x) = (∇y φ1)(t, x − ε−1B, ε−1x′)
(∇x φ1)ε(t, x) = (∇x φ1)(t, x − ε−1B, ε−1x′)

(φ0)ε(t, x) = φ1(t, x − ε−1B), (∇x φ0)ε(t, x) = (∇x φ0)(t, x − ε−1B).
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In some of the above integrals we change the variables x → x − ε−1 B(t); then we
denote

ãε(t, x) = a

(
t,

x′

ε
+

B(t)
ε2

)
, Ãε(t, x) = A

(
t,

x′

ε
+

B(t)
ε2

)
.

Now, by Lemma 5, we get for the first two terms on the left-hand side of (32)
∫T

0

∫
Rn

uε zε

(
∂φ0

∂t

)ε

=
∫T

0

∫
Rn

wε z̃ε
∂φ0

∂t
→

∫T

0

∫
Rn

w0 ∂φ0

∂t
,

∫T

0

∫
Rn

uε ∂zε

∂t
(φ0)ε →

∫T

0

∫
Rn

w0 φ0 ∂

∂t

(∫
Y

z

)
= 0.

Next, we group together the terms
∫T

0

∫
Rn

Aε∇uε∇zε (φ0)ε dx dt − ε−1

∫T

0

∫
Rn

(aε − b) · (∇x φ0)εuε zε dx dt

− ε−1

∫T

0

∫
Rn

div(aεzε) (φ0)ε uε dx dt = −ε−2

∫T

0

∫
Rn

uε(φ0)ε{(divy (At∇y z))ε

+ (divy (z a))ε} dx dt − ε−1

∫T

0

∫
Rn

{(At∇y z)ε + (aε − b̄)zε} · (∇xφ0)εuε dx dt

= −ε−1

∫T

0

∫
Rn

{(At∇y z)ε + (aε − b̄)zε} · (∇xφ0)εuε dx dt;

equation (5) has also been used here. By the definition of b, we have

−
∫
Y

{At∇y z + (a − b̄)z} dy =
∫
Y

(
divy A − a + b

)
(t, y) z(t, y) dy = 0.

Therefore, item (i) of Lemma 6 applies and we obtain

−ε−1

∫T

0

∫
Rn

{(At∇y z)ε + (aε − b̄)zε} · (∇xφ0)εuε dx dt

= −ε−1

∫T

0

∫
Rn

[
Ãε(∇̃y z)ε + (ãε − b) z̃ε

]
(t, x) · ∇φ0(t, x) wε(t, x) dx dt

→−
∫T

0

∫
Rn

∫
Y

w1 (At∇y z + (a − b)z) · ∇φ0 dy dx dt

=
∫T

0

∫
Rn

∫
Y

z
{
w1 (divy A − a + b) + At∇yw1

}
· ∇φ0 dy dx dt.

We proceed with other terms in (32). Directly from (31) we get
∫T

0

∫
Rn

Ãε∇wε∇φ0z̃ε dx dt →
∫T

0

∫
Rn

(∫
Y

zA(∇xw0 + ∇yw1)
)
∇φ0 dy dx dt.

The next integral is easy to handle:
∫T

0

∫
Rn

Aε ∇uε [∇yφ1]ε dx dt →
∫T

0

∫
Rn

(∫
Y

At ∇yφ1

)
· ∇w0 dy dx dt

+
∫T

0

∫
Rn

( ∫
Y

A∇yw1 ∇yφ1

)
dy dx dt.
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The linear convection terms related to φ1 give

∫T

0

∫
Rn

(aε · ∇uε (φ1)ε + b · (∇xφ1)ε uε) dx dt

→
∫T

0

∫
Rn

∫
Y

a ·
(
∇xw0 + ∇yw1

)
φ1 dx dt dy +

∫T

0

∫
Rn

∫
Y

b · ∇xφ1 w0 dx dt dy

=
∫T

0

∫
Rn

[(∫
Y

φ1 (a − b)
)

· ∇w0 dx dt dy +
(∫

Y

φ1 (a · ∇yw1)
)]

dx dt dy.

We now have to deal with the nonlinear terms. Thanks to hypothesis (7), strong
convergence (30), and item (ii) of Lemma 6, we obtain

ε−1

∫T

0

∫
Rn

h̃ε z̃ε f(wε)
∂wε

∂xn
φ0 dx dt → −

∫T

0

∫
Rn

(∫
Y

h z w1 dy

)
f(w0)

∂φ0

∂xn
dx dt.

Finally, for the last integral on the left-hand side of (32), considering (11), we get

∫T

0

∫
Rn

hε f(uε)
∂uε

∂xn
(φ1)ε dx dt →

∫T

0

∫
Rn

f(w0)
∂w0

∂xn

(∫
Y

h φ1 dy

)
dx dt.

Since z is periodic in variable y, we have

∫
Rn

ϕ(x)φ0(0, x) z

(
0,

x′

ε

)
dx →

∫
Rn

ϕ(x) φ0(0, x) dx.

Combining all the above convergences we prove the following statement.

Proposition 3. The limit functions w0 and w1 satisfy the following coupled
problem.

∫
Rn

ϕ(x)φ0(0, x) dx = −
∫T

0

∫
Rn

w0 ∂φ0

∂t
dx dt

+
∫T

0

∫
Rn

{(∫
Y

w1 z (divy A − a + b) dy

)
· ∇φ0 +

(∫
Y

z A dy

)
∇w0∇φ0

}
dx dt

+
∫T

0

∫
Rn

{(∫
Y

z (A + At)∇yw1 dy

)
∇φ0 +

(∫
Y

φ1 a · (∇w0 + ∇yw1) dy

)
−

(∫
Y

φ1 dy

)
b · ∇xw0

}
dx dt +

∫T

0

∫
Rn

(∫
Y

A(∇w0 + ∇yw1) · ∇yφ1

)
dx dt

−
∫T

0

∫
Rn

(∫
Y

h z w1 dy

)
f(w0)

∂φ0

∂xn
dx dt +

∫T

0

∫
Rn

f(w0)
∂w0

∂xn

(∫
Y

h φ1 dy

)
dx dt,

(34)

for any φ ∈ L2(0, T ;H1(Rn )) and φ1 ∈ L2(]0, T [×Rn ;H1
per(Y )).
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Remark 4. It could be more convenient to rewrite (34) in a symmetric form
by choosing φ1(t, x, y) = z(t, y)ψ(t, x, y). Thus (34) becomes
∫
Rn

ϕ(x)φ0(0, x) dx = −
∫T

0

∫
Rn

w0 ∂φ0

∂t
dx dt +

∫T

0

∫
Rn

(∫
Y

zAt ∇yw1 dy

)
∇xφ0 dx dt

+
∫T

0

∫
Rn

(∫
Y

zA(∇xw0 + ∇yw1) (∇xφ0 + ∇yψ) dy

)
dx dt

−
∫T

0

∫
Rn

(∫
Y

zAt∇yψ dy

)
∇xw0 dx dt +

∫T

0

∫
Rn

(∫
Y

[w1 z (divy A − a + b) · ∇φ0

+ z ψ(a − b − divy A) · ∇w0] dy

)
dx dt

+
∫T

0

∫
Rn

(∫
Y

[z a + At ∇y z ] · ∇yw1 ψ dy

)
dx dt

−
∫T

0

∫
Rn

(∫
Y

h z w1 dy

)
f(w0)

∂φ0

∂xn
dx dt +

∫T

0

∫
Rn

(∫
Y

z h ψ

)
f(w0)

∂w0

∂xn
dx dt.

(35)

To justify the convergence of the homogenization procedure it suffices to prove
the uniqueness of the homogenized limit. That way all the subsequences wε have the
same limit w0. We prove the uniqueness by decoupling. The idea is as follows: first
we notice that the coupled problem (35) is linear with respect to w1. Therefore, for
fixed w0, there exists a unique w1 such that (w0, w1) solves the coupled problem.
Furthermore, such w1 admits a separation of ‘fast’ and ‘slow’ variables, see (36)
below. Substituting w1 of this form in (35) reduces the above two-scale problem to
the quasilinear parabolic equation (40) (the homogenized problem). It then remains
to prove that (40) has only one solution.

7. Decoupling the homogenized problem

We write down the solution w1 in the form

w1(t, x, y) =
n−1∑
α=1

χα (t, y)
∂w0

∂xα
(t, x) + θ(t, y) f(w0(t, x))

∂w0

∂xn
(t, x). (36)

By substituting the above ansatz in (35) and choosing φ0 = 0, we find that χα and
θ must satisfy the equations

a · ∇(χα + yα ) − div[A∇(χα + yα )] = bα (37)
a · ∇θ − div(A∇θ) + h = 0. (38)

Those two equations are stationary, linear convection-diffusion equations on the
torus Y . Due to the choice of b and condition (7), each of them has a unique (up
to a constant) classical solutions on Y or, equivalently, in the space of 1-periodic
functions. This statement relies on Fredholm’s alternative and reads as follows.

Proposition 4. Problems (37) and (38) have unique (up to a constant)
solutions if and only if ∫

Y

(a − b − divA) z dy = 0
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and ∫
Y

z h dy = 0.

Furthermore, χα, θ ∈ C2([0, T ] × Y ).

Clearly, w1(t, x, y) is defined up to an additive function of the arguments t and
x. In order to make the choice of this additive function fixed, later on we always
impose the normalization condition

∫
Y

w1(t, x, y)dy = 0.

Lemma 7. Given the first component w0 ∈ L2(0, T ;H1(Rn )) ∩ L∞(]0, T [×Rn )
of a solution to problem (35), the second component

w1 ∈ L2
(
]0, T [×Rn ;H1

per(Y )
)

is uniquely defined. Furthermore, such w1 can be written in the form (36), with χα

and θ defined by (37) and (38), respectively.

Proof. Let w0 ∈ L2(0, T ;H1(Rn )) ∩ L∞(]0, T [×Rn ) and w1 ∈ L2(]0, T [×Rn ;
H1

per(Y )) be a solution of the coupled problem (the existence is granted by
Theorem 3). For fixed w0 the problem for w1 can be written in the form

−divy (z A∇yw1) + (z a + At ∇y z) · ∇yw1

= z (b − a + divy A) · ∇x w0 − z h f(w0)
∂w0

∂xn
. (39)

This is a linear elliptic equation with respect to y (where (t, x) are only parameters).
It has a unique solution w1 ∈ L2(]0, T [×Rn ;H1

per(Y )). The representation (36) is
a straightforward consequence of solvability of the equations (37) and (38).

Taking φ1 = 0 in (35), substituting w1 in the form (36), we get the macroscopic
(homogenized) problem for w0 in the form of a nonlinear diffusion equation. In fact,
we have the following.

Lemma 8. Let (w0, w1) be a solution of coupled problem (35). Then w0 satisfies
the quasilinear equation

∂w0

∂t
− div (A(w0)∇w0) = 0 in ]0, T [×Rn , w0(0, · ) = ϕ in Rn , (40)

where the homogenized diffusion tensor A(w0) has the form

A(w0) = A0 + f(w0)A1 + f(w0)2 A2, (41)

with

A0
αβ =

∫
Y

{
z

[
Aαβ +

n−1∑
γ=1

(Aαγ + Aγα )
∂χβ

∂yγ
+ (divA − a + b)β χα

]}
(42)

A1
αβ =

∫
Y

{
z

[
(divA − a + b)α θδβn+

n−1∑
γ=1

(Aαγ + Aγα )
∂θ

∂yγ
δβn + h χβ δαn

]}
(43)

A2
αβ =−

(∫
Y

h z θ

)
δαnδβn . (44)
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We know that (40) has a solution. To prove the uniqueness we shall use, again,
[9, Theorem 8.1]. We should verify its conditions.

Lemma 9. There are c(w0) > 0 and C > 0 such that

ξ · A(w0) ξ � c(w0) |ξ|2 � C|ξ|2,
for any ξ ∈ Rn .

Proof. Multiplying (37) by z χβ ξα ξβ , integrating over Y and taking the
summation over α and β, we obtain

n∑
α,β=1

A0
αβ ξα ξβ =

∫
Y

z A∇(χ̂ + y) · ξ ∇(χ̂ + y) · ξ > 0, (45)

where ξ = (ξ1, . . . , ξn ) and χ̂ = (χ1, . . . , χn−1, 0). Analogously, multiplying (38) by
z θ and integrating over Y we obtain

−
∫
Y

hzθ =
∫
Y

z A∇θ∇θ � 0. (46)

Finally, combining (37) and (38), we get
n∑

α,β=1

A1
αβ ξα ξβ = ξn

∫
Y

z (A + At)∇θ∇[(χ̂ + y) · ξ]. (47)

Summing up the above relations we obtain
n∑

α,β=1

A(w0)αβ ξα ξβ =
∫
Y

z A∇y ω · ∇y ω, (48)

where
ω = (χ̂ + y) · ξ + f(w0) θ ξn .

Theorem 4. The homogenized problem (40) has a unique classical solution
w0 ∈ H2+β ,1+β/2(Rn

T ) ∩ L2(0, T ;H1(Rn )).

Proof. This follows from [9, Theorems 8.1 and 5.2].

This completes the proof of the main theorem, Theorem 2.
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Bijenička 30
10000 Zagreb
Croatia

Andrey L. Piatnitski
Narvik Institute of Technology
PO Box 385
8501 Narvik
Norway

Lebedev Physical Institute RAS
Leninski prospect 53
Moscow 117924
Russia


