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Abstract

We study the homogenization of lattice energies related to Ising systems of the form

Eε(u) = −
∑
ij

cε
ij uiuj ,

with ui a spin variable indexed on the portion of a cubic lattice Ω ∩ εZd , by computing their Γ -limit in
the framework of surface energies in a BV setting. We introduce a notion of homogenizability of the sys-
tem {cε

ij
} that allows to treat periodic, almost-periodic and random statistically homogeneous models (the

latter in dimension two), when the coefficients are positive (ferromagnetic energies), in which case the limit
energy is finite on BV(Ω; {±1}) and takes the form

F(u) =
∫

Ω∩∂∗{u=1}
ϕ(ν) dHd−1

(ν is the normal to ∂∗{u = 1}), where ϕ is characterized by an asymptotic formula. In the random case ϕ

can be expressed in terms of first-passage percolation characteristics. The result is extended to coefficients
with varying sign, under the assumption that the areas where the energies are antiferromagnetic are well-
separated. Finally, we prove a dual result for discrete curves.
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1. Introduction

In this paper we study surface energies defined on lattice systems through bond interactions.
These energies are related to Ising energies, commonly written in the form

E(u) = −
∑
ij

cij uiuj ,

where ui is a spin variable taking values +1 or −1 and i, j are indices varying in (a suitable
subset of) a square lattice Z

d (see e.g. [19]). If the coefficients cij are supposed to be positive
then ground states are constant. Even with this assumption, if boundary conditions or additional
constraint are added, minimizers are not trivial and it is interesting to determine their behaviour
when the minimization process involves an increasingly large number of indices. This problem
can be set in a variational framework involving energies on lattice subsets, after identifying a
function {ui} with the set A = {i ∈ Z

d : ui = 1}. To that end, note that the energy above can be
written equivalently as

E(u) =
∑
ij

cij (uj − uj )
2,

upon addition of a constant. Under the simplifying assumption that the relevant interactions are
those between nearest neighbours (i.e., that we may assume cij = 0 if |i − j | �= 1) then this
energy can be seen as a discrete surface energy, concentrated on the boundary of A; i.e., on
nearest-neighbour pairs (i, j) such that ui �= uj . If moreover cij is constant for nearest-neighbour
interactions, then we have the prototypical ferromagnetic energy of a subset A of the lattice Z

d ,
defined as

E(A) = #
{
(i, j): i ∈ A, j /∈ A, |i − j | = 1

}
.

A continuous approximation of such energies can be obtained in the framework of surface en-
ergies defined on sets of finite perimeter. In fact, if we identify each lattice subset A with the
union of (coordinate) cubes

⋃
i∈A(i + Q), where Q = (−1/2,1/2)d is the unit coordinate cube

centered in 0, and we still denote this set by A with a slight abuse of notation, then

E(A) =Hd−1(∂A)

coincides with the (d − 1)-dimensional measure of the boundary of A (i.e., the perimeter of A).
The overall behaviour of such energy for large sets (compared with the lattice spacing) can be
described by scaling it as

Eε(A) = εd−1#
{
(i, j): i ∈ A, j /∈ A, |i − j | = ε

}
for A ⊂ εZd ,
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and using the methods of Γ -convergence (see [8,9]). These energies are approximated as ε → 0
by the surface energy ∫

∂∗A

‖ν‖1 dHd−1,

with the family of sets of finite perimeter (see [1]) as domain. The anisotropic energy density
‖ν‖1 = ∑d

n=1 |ν1| depends on the normal ν to the essential boundary of A, and inherits the
symmetries of the underlying cubic lattice.

In this paper we consider an inhomogeneous discrete environment modeled on the energies
above, where the main assumption is their dependence only on nearest-neighbour interactions
(this assumption can be weakened – see below). This is done by considering positive weights cij

(without loss of generality we can assume cij = cji ) for every pair of nearest neighbours (i, j)

in Z
d (i.e., such that |i − j | = 1), or equivalently coefficients ck for every index k in the dual

lattice

Z =
{
k: there exist i, j ∈ Z

d , |i − j | = 1, k = i + j

2

}
corresponding to the bond between the nodes labeled by i and j . We can also localize our ener-
gies by considering a smooth bounded open set Ω ⊂R

d and the (scaled) energies

Eε(A) = εd−1
∑{

cij : εi ∈ A, εj ∈ Ωε \ A, |i − j | = 1
}

(1)

defined on sets A ⊂ Ωε , where

Ωε = εZd ∩ Ω.

The main goal of the paper is then to characterize the limit of these energies as ε → 0. We note
that if we identify each A ⊂ Ωε with

⋃
εi∈A ε(i + Q) (and we still denote this set by A with the

same slight abuse of notation as above) then Eε is defined on the family of such unions of cubes,
and Eε(A) is related to the continuous perimeter functional

Eε(A) =
∫

∂A∩Ω

a

(
x

ε

)
dHd−1,

where

a(x) = cij if x ∈ ∂(i + Q) ∩ ∂(j + Q)

(some care has to be taken to deal with the part of ∂A close to the boundary of Ω). The nearest-
neighbour assumption can be relaxed to assuming the non-negativeness of all cij , the strict
positiveness of nearest-neighbour coefficients, and a decay estimate on cij as |i − j | → +∞,
but the general case of cij changing sign arbitrarily is not addressed in this paper, involving
microscopical homogenization and surface relaxation (see [1,10]).
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We first deal with the elliptic case when 0 < α � cij � β < +∞, in which the energies are
equi-coercive with respect to the L1-convergence of sets (or equivalently the weak∗-BV conver-
gence of characteristic functions). We introduce a general notion of a ‘homogenizable system’
of coefficients {cij }, which is satisfied in particular by periodic and almost-periodic systems, but
also covers statistically homogeneous random systems. With this definition we can develop a
discrete analog of the arguments already introduced for the continuous case (see e.g. Ambrosio
and Braides [4]) to prove the existence of a limit anisotropic energy on sets of finite perimeter
in Ω , of the form

F(A) =
∫

∂A∩Ω

ϕ(ν)dHd−1.

In the case of ergodic statistically homogeneous random systems in dimension two the coeffi-
cients {cω

ij } depend on the realization of a random variable; in that case we prove that the limit
is deterministic and is characterized by a first-passage percolation formula. The main technical
tool is a use of the Fonseca and Müller [15] blow-up technique extended to the homogenization
setting by Braides, Maslennikov and Sigalotti [14], adapted to cover the new homogenizabil-
ity condition. The result can be compared with a variational percolation theorem for defects by
Braides and Piatnitski [12] (see also [13]), where the surface tension is given by the chemical dis-
tance on the weak cluster, noting that different growth assumptions on the variational problems
involve correspondingly different types of percolation issues.

In the elliptic case above, the limit energy density ϕ can be expressed in terms of the limit of
minimum problems involving ‘discrete hypersurfaces’, so that we have a direct analogy with the
continuous theory. This analogy is lost in the case of interactions cij with changing signs. Note
that in the continuous case energy densities must be always positive, otherwise the corresponding
functionals are not bounded from below. Also in the case of discrete interactions we may not have
a uniform lower bound; nevertheless, it is possible again to define a Γ -limit after the addition of
suitable positive constants if the regions where the coefficients are negative are sufficiently small
and well-separated. In fact, even though we do not have any bound in those regions we may
find an infinite connected set W with points with positive interaction and define a convergence
uε → u as the weak convergence of (uε −u)χεW . The estimates obtained on W are then sufficient
to prove that such a limit u is in BV(Ω; {±1}), and to obtain a limit that again can be described as
a surface integral of the same form as for the elliptic case. The type of arguments is similar to the
ones used for the homogenization of surface energies in perforated domains, where the surface
energy is zero on well-separated ‘holes’ (see [21]); in the discrete case though it is possible also
to have negative surface energies. It is interesting to note that the surface energy density ϕ is
described by a limit of problems that cannot be interpreted as minimal surface problems and
involve both surface and bulk terms.

A final part of the paper concerns the homogenization of lattice energies defined on discrete
paths γ = {εkj }; i.e., arrays of points in εZ (Z the dual lattice to Z

d ) such that ‖kj −kj−1‖1 = 1,
of the form

Eε(γ ) = ε
∑
j

ckj
.

Note that paths can be identified with piecewise-affine curves parameterized by arc-length. If the
coefficients are elliptic and satisfy another suitable notion of ‘homogenizability’ (which includes
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periodic and almost-periodic systems) then we prove the existence of a Γ -limit with domain
consisting of the W 1,∞-curves γ which satisfy ‖γ ′‖1 � 1 almost everywhere. This Γ -limit has
the form

F(γ ) =
L(γ )∫
0

ψ
(
γ ′(t)

)
dt.

Again the function ψ can be characterized by an asymptotic formula, and in the case of random
interactions (without any restriction on the dimension d) we prove that is a deterministic inte-
grand. The formula for ψ turns out to be different from the one obtained for surface integrals, and
underlines the fact that the Γ -limit is obtained with respect to a stronger topology (for a compar-
ison with a continuous problem we refer to Braides and Defranceschi [11, Chapter 16.1]).

2. Homogenization of spin systems

We consider the energies Eε defined in (1) under the growth hypothesis

0 < α � cij � β < +∞ (2)

(for weaker hypotheses see Remark 2.5 below).

Remark 2.1 (Compactness). We identify each subset A ⊂ εZd with the set⋃
εi∈A

(
ε(i + Q)

)
,

which we still denote by A. If Aε is such that Eε(Aε) � C then for all ε small enough we obtain
the estimate

Hd−1(∂Aε ∩ Ω ′)� C

α

for all Ω ′ � Ω . This implies that, up to subsequences, the sets Aε converge to a set A of finite
perimeter in Ω ; i.e., |A � Aε| → 0 (see, e.g., [7]).

We introduce the following notion of “homogenizable system”. The notation Qν
T (x) stands

for a cube with centre x, side length T , and one face orthogonal to ν.

Definition 2.2 (Homogenizable system). We say that the set of coefficients {cij } is a homogeniz-
able system if for every fixed vector ν ∈ Sd−1 and for every choice of a family (xT ) of points
on R

d with

sup
T >0

|xT |
T

< +∞ (3)

there exists the function
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ϕ(ν) = lim
T →+∞

1

T d−1
inf
A

{ ∑
ij

cij : i ∈ A, j ∈ R
d \ A, i ∈ Qν

T (xT )

or j ∈ Qν
T (xT ), |i − j | = 1

}
, (4)

the minimum being taken over all sets A ⊂ Z
d such that

A \ Qν
T (xT ) = (

Πν(xT ) ∩Z
d
) \ Qν

T (xT ), (5)

and where

Πν(x) = {
y ∈R

d : 〈y − x, ν〉 � 0
}

(6)

denotes the half space through x orthogonal to ν, and this limit is independent of such (xT ).

Note that in the minimum problem (4) we take into account both interactions internal to
Qν

T (xT ) (when both i and j belong to Qν
T (xT )) and interactions crossing its boundary (when

only one of the two indices belongs to Qν
T (xT )).

Remark 2.3. Note that, by (3) and a compactness argument, in the definition of ϕ we may limit
our choice to families (xT ) with xT = T x + o(T ) for some x ∈ R

d .
The function ϕ defined in (4), if it exists, enjoys some properties that are of easy verification

from its definition:

(i) the positively homogeneous extension of degree one of ϕ is convex. In particular it is Lips-
chitz continuous;

(ii) α‖ν‖1 � ϕ(ν) � β‖ν‖1.

As a consequence, if we define the energy

F(A) =
∫

Ω∩∂∗A

ϕ(ν) dHd−1, (7)

this is a lower-semicontinuous functional on sets of finite perimeter (we denote by ∂∗A the
reduced boundary of a set of finite perimeter (see [7])).

We have the following convergence result.

Theorem 2.4 (Homogenization of discrete perimeters). Let cij be a homogenizable system as in
Definition 2.2 satisfying (2). Then there exists the Γ -limit

Γ - lim
ε→0

Eε(A) = F(A), (8)

where F is defined in (7).
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Proof. We begin with the liminf inequality, and fix a family Aε such that Aε → A and
lim infε→0 Eε(Aε) < +∞. Up to subsequences, we may suppose that such liminf is actually
a limit.

For all ε we consider the set in the dual lattice εZ of εZd defined by

Ãε =
{
εk: k = i + j

2
, |i − j | = 1, εi ∈ Aε, εj ∈ Ωε \ Aε

}
and the measure

με =
∑

εk∈Ãε

εckδεk.

Note that the family of measures με is equibounded with

αHd−1(Ω ∩ ∂Aε) � με(Ω) � βHd−1(Ω ∩ ∂Aε).

Hence, up to further subsequences we can assume that με converges weakly∗ to a finite mea-
sure μ. We will estimate from below the part of μ that is concentrated on ∂A.

With fixed h ∈ N we can consider the collection Qh of cubes Qν
ρ(x) such that the following

conditions are satisfied:

(i) x ∈ ∂∗A and ν = ν(x);
(ii) |(Qν

ρ(x) ∩ A) � Πν(x)| � 1
h
ρd ;

(iii) |μ(Qν
ρ(x))

ρd−1 − dμ

dHd−1 ∂∗A(x)| � 1
h

;

(iv) | 1
ρd−1

∫
Qν

ρ(x)∩∂∗A ϕ(ν(y)) dHd−1(y) − ϕ(ν(x))| � 1
h

;

(v) μ(Qν
ρ(x)) = μ(Qν

ρ(x)).

Note that for fixed x ∈ ∂∗A and for ρ small enough (ii) is satisfied by the definition of reduced
boundary, (iii) follows from the Besicovitch Derivation Theorem provided that

dμ

dHd−1 ∂∗A
(x) < +∞;

(iv) holds by the same reason, and (v) is satisfied for almost all ρ > 0 since μ is a finite measure.
We deduce that Qh is a fine covering of the set

∂∗Aμ =
{
x ∈ ∂∗A:

dμ

dH1 ∂∗A
(x) < +∞

}
,

so that (by Morse lemma, see [18]) there exists a countable family of disjoint closed cubes

{Qνj
ρj

(xj )} still covering ∂∗Aμ. Note that we have

Hd−1(∂∗A \ ∂∗Aμ

) = 0

since μ(∂∗A) < +∞.
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Fig. 1. Construction of a test set.

We now fix one of such cubes Qν
ρ(x). Since Aε → A, for ε small enough we have

∣∣(Qν
ρ(x) ∩ Aε

) � Πν(x)
∣∣ � 2

h
ρd (9)

by (ii) above.
For simplicity of notation we can suppose that ν = e2 and x = 0. With fixed δ < 1/2, from

(9) we have in particular

∣∣∣∣((Qν
ρ(x) ∩ Aε

) � Πν(x)
) ∩

{
y: ρ

δ

2
� dist

(
y, ∂Qν

ρ(x)
)
� ρδ

}∣∣∣∣ � 2

h
ρd. (10)

We deduce that there exists

t ∈
[
ρδ

2
, ρδ

]
such that

Hd−1(((Qν
ρ(x) ∩ Aε

) � Πν(x)
) ∩ {

y: dist
(
y, ∂Qν

ρ(x)
) = t

})
� 4

hδ
ρd−1. (11)

We can then define the subset A1
ε ⊂ Qν

ρ(x) by

A1
ε =

{
Aε on Qν

ρ−t (x),

Πν(x) otherwise.
(12)

With the choice of ν = e2 the set A1
ε is pictured in Fig. 1. Note that the only change when ν is

not a basis vector is that we have a more wiggly shape of the (discretization of the) boundary
of Qν

ρ−t (x).
Note that

H1((∂A1
ε \ ∂Aε

) ∩ Qν
ρ(x)

)
� 4

ρd−1 + δ
ρd−1. (13)
hδ 2
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We can use the sets 1
ε
A1

ε in the definition of ϕ, with T = ρ/ε and xT = 1
ε
x = 1

ρ
T x, deducing

that

lim inf
ε→0

με

(
Qν

ρ(x)
)
� ρd−1ϕ(ν) − β

(
4

hδ
+ δ

2

)
ρd−1.

By (iv) above we then have

lim inf
ε→0

με

(
Qν

ρ(x)
)
�

∫
Qν

ρ(x)∩∂∗E

ϕ
(
ν(y)

)
dHd−1(y) −

(
β

(
4

hδ
+ δ

2

)
+ 1

h

)
ρd−1,

and we finally deduce that

lim inf
ε→0

με(Ω) �
∑
j

lim inf
ε→0

με

(
Q

νj
ρj

(xj )
)

�
∑
j

∫
Q

νj
ρj

(xj )∩∂∗E

ϕ
(
ν(y)

)
dHd−1(y) − C

(
β

(
4

hδ
+ δ

2

)
+ 1

h

)

=
∫

Ω∩∂∗E

ϕ
(
ν(y)

)
dHd−1(y) − C

(
β

(
4

hδ
+ δ

2

)
+ 1

h

)
,

which gives the liminf inequality letting first h → +∞ and then δ → 0.
The construction of a recovery sequence can be performed just for polyhedral sets, since they

are dense in energy in the class of sets of finite perimeter. We only perform the construction when
the set is of the form Πν(x) ∩ Ω since this construction is easily generalized to each face of a
polyhedral boundary.

It is no restriction to suppose that Πν(x) = Πν(0) =: Πν , that ν is a rational direction (i.e.,
there exits S such that Sν ∈ Z

d ), and that

Hd−1(∂Ω ∩ ∂Πν
) = 0, (14)

since also with these restrictions we obtain a dense class of sets. We denote by L := ∂Πν ∩ Z
d

the lattice of integer points on ∂Πν ; this set can be mapped isometrically to δZd−1, for some
δ > 0.

With fixed η > 0 we can therefore consider the points

xε
k = δ

(⌊
η

εδ

⌋
+ 1

)
k, k ∈ Z

d−1,

and the corresponding points on L, for which we still use the same notation (we use the nota-
tion �t� for the integer part of t).

Denoted M = sup{|x|: x ∈ Ω}, consider the collection of points{
xε
k ∈ L:

∣∣xε
k

∣∣� 2M
}
.

ε
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Fig. 2. Construction of the set A
η
ε .

We can take T = η
ε

and xT = xε
k in the definition of homogenizability, and find for all such xε

k a
cube Qν

η
ε

(xε
k ) centered in xε

k and of side length η
ε

, and a set Aε
k ⊂ Z

d such that

A \ Qν
η
ε

(
xε
k

) = (
Πν ∩Z

d
) \ Qν

η
ε

(
xε
k

)
,

∑
ij

cij �
(

η

ε

)d−1(
ϕ(ν) + o(1)

)
,

where the sum is performed on nearest neighbours i ∈ Aε
k , j ∈ R

d \ Aε
k , and i ∈ Qν

η
ε

(xε
k ) or

j ∈ Qν
η
ε

(xε
k ). We can then define A

η
ε ⊂ εZd as (see Fig. 2)

1

ε
Aη

ε ∩ Qν
η
ε

(
xε
k

) = Aε
k,

1

ε
Aη

ε = Πν ∩Z
d elsewhere.

With fixed η, the family A
η
ε is precompact, so that we may suppose that there exists a limit Aη.

We have

F ′′(Aη
) := Γ - lim sup

ε→0+
Eε

(
Aη

)
� lim sup

ε→0+
Eε

(
Aη

ε

)
� ϕ(ν)Hd−1({x ∈ ∂Πν :

(
x + 2ηQν

) ∩ Ω �= ∅})
.

Since we have Πν + ην ⊂ Aη ⊂ Πν − ην, by the lower semicontinuity of the functional F ′′ we
deduce then that

F ′′(A) � lim inf
η→0+ F ′′(Aη

)
� ϕ(ν)Hd−1(∂Πν ∩ Ω

)
.

Eventually, we obtain the desired inequality recalling that Hd−1(Ω ∩ ∂Πν) = Hd−1(Ω ∩ ∂Πν)

by (14). �
Remark 2.5 (Long-range interactions). The assumption that only nearest-neighbour interactions
are taken into account can be substituted by a coerciveness condition on nearest-neighbour in-
teractions (that ensures that the limit energy be defined on sets of finite perimeter), and a decay
condition (that ensures that the limit is local, and then of an integral form). Namely we may
suppose that
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(a) cij � α > 0 if |i − j | = 1;
(b) 0 � cij � βi−j and

∑
k∈Zd βk < +∞.

The statement of the homogenizability condition in Definition 2.2 can be then modified simply
by requiring that there exists the function

ϕ(ν) = lim
T →+∞

1

T d−1
inf
A

{ ∑
ij

cij : i ∈ A, j ∈R
d \ A, i ∈ Qν

T (xT ) or j ∈ Qν
T (xT )

}
, (15)

with the infimum taken on the same competing sets.
The proof of Theorem 2.4 needs some additional technical modifications as follows: we define

the measure

με =
∑

εi,εj ∈Ãε

ε
1

2
cij (δεi + δεj ),

and proceed as in the first part of the proof of Theorem 2.4 (the second condition above ensuring
that με is an equibounded family of positive measures). The proof must be then modified in the
choice of the point t in (10): for fixed M ∈ N we deduce from (9) that there exists t ∈ [ρδ

2 , ρδ]
such that

∣∣((Qν
ρ(x) ∩ Aε

) � Πν(x)
) ∩ {

y: t − εM � dist
(
y, ∂Qν

ρ(x)
)
� t + εM

}∣∣
� C

hδ
ρd−1εM. (16)

Defining again the subset A1
ε ⊂ Qν

ρ(x) as in (12) we can compute the error due to the change
in the boundary values by splitting the contributions into the interactions between pairs inside
{y: t − εM � dist(y, ∂Qν

ρ(x)) � t + εM} (for which we use condition (b) above), and those out-
side this set (using in particular that the distance between points εi, εj is at least 2εM whenever
dist(εi, ∂Qν

ρ(x)) � t + εM and dist(εj, ∂Qν
ρ(x)) � t − εM), obtaining in the end

lim inf
ε→0

με

(
Qν

ρ(x)
)
� ρd−1ϕ(ν) − C

(
1

hδ
+ δ +

∑
|k|�M

βk

)
ρd−1.

We leave the details of this computation to the interested reader – and also refer to similar com-
putations in the cut-off argument of Proposition 3.7 in [2] (see also [20]). From (b) and the
arbitrariness of M , the liminf inequality follows as in Theorem 2.4. The construction of the re-
covery sequences for the limsup inequality is essentially unchanged.

2.1. Homogenization of periodic and almost-periodic spin systems

Periodic and almost-periodic coefficients provide nice examples of homogenizable systems,
for which moreover the function ϕ defined in (4) exists also for sequences not satisfying assump-
tion (3).
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2.1.1. The periodic case
We check that periodic coefficients give a homogenizable system. To this end, we suppose

that there exists N ∈ N such that

c(k+Nej ) = ck for all k ∈ Z
d and j = 1, . . . , d. (17)

We then choose a sequence (xT ) and remark that by a translation argument by an element of
NZ

d we may suppose that xT ∈ [−N
2 , N

2 ]d . With fixed ν, we denote

ϕT (xT , ν) = 1

T d−1
inf
A

{ ∑
ij

cij : i ∈ A, j ∈R
d \ A, i ∈ Qν

T (xT )

or j ∈ Qν
T (xT ), |i − j | = 1

}
, (18)

with the minimum taken over the sets A satisfying (5). We then have(
T + N

T

)d−1

ϕT +N(0, ν) − C

T
� ϕT (xT , ν) �

(
T − N

T

)d−1

ϕT −N(0, ν) + C

T
,

so that it is sufficient to prove the convergence with xT = 0 for all T .
We can also additionally suppose that ν is a rational direction. In fact note that taking sets A′

defined by

A′ =
{

A in Qν
T (0),

Πν′
(0) in R

d \ Qν
T (0)

in the definition of ϕT ′(0, ν′) for T ′ > T such that Qν
T (0) ⊂ Qν′

T ′(0) we easily prove that

ϕT ′
(
0, ν′)� ϕT (0, ν) + ω

(∣∣ν − ν′∣∣) + ω

(∣∣∣∣T ′

T
− 1

∣∣∣∣)
for some modulus of continuity ω. From such a continuity estimate we easily deduce that if the
limit defining ϕ(ν) exists for all ν rational direction, then it exists for all ν ∈ Sd−1.

We can now use a classical subadditivity argument to prove the existence of the limit of
ϕT (0, ν) (see [4]). To that end it is not restrictive to consider ν = ed and any test set AT

for ϕT (0, ed); we then construct the test set AS for ϕS(0, ed) by

AS =
⋃
i

(
AT + [T + 1](i,0)

) ∪
(

Π
ed

0 \
⋃
i

(
Q

ed

T (0) + [T + 1](i,0)
))

,

where the set of indices i ∈ Z
d−1 concurring in the two unions above is defined by

Q
ed

T (0) + [T + 1](i,0) ⊂ Q
ed

S (0).

We then deduce that
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ϕS(0, ν) � ϕT (0, ν) + r(S,T ),

with lim supT →+∞ lim supS→+∞ r(S,T ) = 0, and then the existence of the desired limit.

2.1.2. The almost-periodic case
The same method used above can be extended to cover some almost-periodic cases. We then

suppose that

cij = f

(
i + j

2

)
with f a uniformly almost-periodic function (Bohr almost periodic) (see [5,16]).

We fix η > 0. Then there exists a set Tη ⊂ Z
d of η-almost periods of f and Nη ∈N such that

Tη + [0,Nη]d =R
d

and ∣∣f (x + �) − f (x)
∣∣ � η for all x ∈ R

d

for all � ∈ Tη.
Given xT let � ∈ Tη ∩ (xT + [−Nη/2,Nη/2]d); then we have∣∣ϕT (xT , ν) − ϕT (xT − �, ν)

∣∣ � η (19)

and xT −� ∈ [−Nη/2,Nη/2]d . It suffices then to prove the existence of the limit in (4) for points
xT satisfying xT ∈ [−Nη/2,Nη/2]d , the general case then following by (19) and the arbitrariness
of η. As above we can then further restrict to the case xT = 0.

The estimate of ϕS(0, ν) in terms of ϕT (0, ν) for T < S is slightly more complex than in
the periodic case. Note first that we cannot directly reduce to ν being a rational direction. We
then fix a lattice L in {〈x, ν〉 = 0} isometric to (T + Nη)Z

d−1, and for each i ∈ L with |i| ∈
Qν

(S−(T +Nη)/2)
(0), we choose �i ∈ Tη ∩ (i + [−Nη/2,Nη/2]d). Then, given a test set AT for

ϕT (0, ν) we construct the set AS by

AS =
⋃
i

(AT + �i) ∪
(

Πν
0 \

⋃
i

(
Qν

T (0) + �i

))
,

where the set of indices concurring in the two unions are now the i ∈ L defined above.
We then deduce that

ϕS(0, ν) � ϕT (0, ν) + ηC + 1

Sd

(
Sd −

(⌊
S

T + Nη

⌋
− 2

)d

T d

)
+ 1

Sd

⌊
S

T + Nη

⌋d

T dNη

the last term due to the misplacement of the centers of the cubes �i + QT (0) from the plane
{〈x, ν〉 = 0} (by at most CNη), and then the existence of the desired limit.
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2.2. Homogenization of random spin systems

In this section we will consider only the two-dimensional case for random interactions. To
this end we first introduce the probabilistic framework (in any dimension d for future reference).
Given a probability space (Σ,F,P) we consider an ergodic stationary discrete random pro-
cess cω

k , k ∈Z (the dual lattice of Zd ). In what follows we will assume that the probability space
is equipped with a discrete ergodic dynamical system Tz, z ∈ Z

d ; that is, a group of measurable
transformations of Σ such that

• T0 = Id, Tz+y = Tz ◦ Ty ,
• Tz preserves the measure P for all z ∈ Z

d .

Hence, there exists a random variable cω such that cω
k = cTkω.

We are going to compute the Γ -limit of the two-dimensional energies

Eω
ε (A) = ε

∑{
cω
ij : εi ∈ A, εj ∈ Ωε \ A, |i − j | = 1

}
(20)

(with the usual identification cω
ij = cω

k ), where Ωε = εZ2 ∩ Ω .

For any vector τ ∈R
2, m ∈ N and ω ∈ Σ we denote

ψω(x, y) = min

{
K∑

n=1

cω
inin−1

: i0 = x, iK = y, K ∈ N

}
, (21)

where the minimum is taken over all paths joining x and y ∈ Z
2. The following statement holds.

Lemma 2.6. (See Boivin [6].) For any τ ∈ R
2 the following limit exists almost surely and does

not depend on ω

ψ0(τ ) = lim
m

1

m
ψω

(
0, �mτ�), (22)

where �mτ�k = �mτk� is the integer part of the k-th component of mτ .

With this result in mind we can state the convergence theorem.

Theorem 2.7 (Random homogenization). Let cω
ij be defined as above and satisfy (2); then the

Γ -limit Fω = Γ -lim BVε→0F
ω
ε exists almost surely, is deterministic and is given by

Fω(A) =
∫

Ω∩∂∗A

ϕ(ν) dH1, (23)

where

ϕ(ν) = ψ0
(
ν⊥)

, (24)

and ν⊥ denotes the clockwise rotation of π/2 of ν.
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Before proving the theorem we make some preliminary remarks. We first note that in the case
d = 2 the notion of homogenizable system given in Definition 2.2 in the previous section can be
stated alternatively as follows.

Definition 2.8 (Homogenizable system). We say that the set of coefficients cij is a homogenizable
system if for every fixed vector τ ∈ R

d and for every choice of sequences (xm), (ym) of points
on Z

d with

sup
m

{ |xm|
m

+ |ym|
m

}
< +∞, and ym − xm = mτ + o(m) (25)

there exists the function

ψ0(τ ) = lim
m

1

m
min

{
K∑

n=1

cinin−1 : i0 = xm, iK = ym, K ∈ N

}
, (26)

the minimum being taken over all paths with arbitrary length joining xm and ym, and is indepen-
dent of (xm), (ym).

Remark 2.9. The definition above can be seen to be equivalent to the one in the previous section,
upon remarking that in the two-dimensional case we can always reduce to boundary of test sets
for the definition of ϕ that are curves joining two opposite sides of the square Qν

T (xT ).
The function ψ0 defined in (26), if it exists, can be compared with ψ defined later in (48), in

which definition we have a restriction on the length of the paths. Hence we have ψ0 � ψ .
Furthermore, ψ0 enjoys some properties that are of easy verification from its definition:

(i) ψ0 is positively homogeneous of degree one and convex. In particular it is Lipschitz contin-
uous;

(ii) α‖τ‖1 � ψ0(τ ) � β‖τ‖1.

As a consequence, if we define ϕ as in (24) the energy

F(A) =
∫

Ω∩∂∗A

ϕ(ν) dH1, (27)

is a lower-semicontinuous functional on sets of finite perimeter.

The translation invariance of the function ψ0 required in (26) will be ensured in the random
case by the following proposition.

Proposition 2.10. For any x ∈R
2 and τ ∈ R

2 the limit relation

lim
m

1

m
ψω

(�mx�, �mx + mτ�) = ψ0(τ ) (28)

holds almost surely.
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Proof. We first prove the statement of the proposition for the vectors x = (0,1) and τ = (1,0).
With this choice of x and τ for any ε > 0 we define the events

QN =
{
ω ∈ Σ : ∀m� N it holds

∣∣∣∣ 1

m
ψω(0,mτ) − ψ0(τ )

∣∣∣∣ < ε

}
.

By Lemma 2.6 for any δ > 0 there is N0(δ) such that

P{QN0} > 1 − δ.

By the ergodic theorem, almost surely for any γ > 0 there is m0 = m0(ω, γ ) such that for any
m �m0 it holds ∣∣∣∣∣ 1

m

m∑
i=1

1QN0
(Tixω) − P(QN0)

∣∣∣∣∣ < γ. (29)

Due to some technical reason we will assume that both δ < 1/4 and γ < 1/4.
For m � m0(ω, γ ) denote by L the maximum of integer numbers j such that j > m and for

all i ∈ (m, j) ∩ N it holds Tixω /∈ QN0 . In order to estimate L from above, we denote by m̃ the
number of unities in the sequence {1QN0

(Tixω)}mi=1. Then

γ >

∣∣∣∣ m̃

m + L
− P(QN0)

∣∣∣∣ =
∣∣∣∣1 − P(QN0) − L + (m − m̃)

m + L

∣∣∣∣.
Therefore,

L + (m − m̃)

m + L
< γ + (

1 − P(QN0)
)
< γ + δ.

Since (m − m̃) � 0 and γ + δ � 1/2, the last inequality yields the upper bound L <

2(γ + δ)m.
If we choose L̃ = 3(γ + δ)m and arbitrary m > max(m0(ω, γ ),N0(δ)), then there is n ∈

[m,m + L̃] such that Tnxω ∈ QN0 . Notice that if Tixω ∈QN0 , then for any m > N0∣∣∣∣ 1

m
ψω(ix, ix + mτ) − ψ0(τ )

∣∣∣∣ < ε.

Also, since 0 < n − m < 3(γ + δ)m, by the definition of ψω we have

ψω(nx,nx + nτ)� ψω(nx,mx) + ψω(mx,mx + mτ) + ψω(mx + mτ,nx + nτ)

� ψω(mx,mx + mτ) + 9(γ + δ)mβ,

ψω(mx,mx + mτ) � ψω(mx,nx) + ψω(nx,nx + nτ) + ψω(nx + nτ,mx + mτ)

� ψω(nx,nx + nτ) + 9(γ + δ)mβ.
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Thus, |ψω(mx,mx + mτ) − ψω(nx,nx + nτ)| � 9(γ + δ)mβ . Taking this into account, we
obtain ∣∣∣∣ 1

m
ψω(mx,mx + mτ) − ψ0(τ )

∣∣∣∣
�

(
1

m
− 1

n

)
ψω(mx,mx + mτ) + 1

n

∣∣∣∣ψω(mx,mx + mτ) − ψω(nx,nx + nτ)

∣∣∣∣
+

∣∣∣∣1

n
ψω(nx,nx + nτ) − ψ0(τ )

∣∣∣∣
� 3(γ + δ)

n
mβ + 9(γ + δ)β + ε = 12(γ + δ)β + ε.

Since γ , δ and ε are arbitrary positive numbers, this implies the desired limit relation.
One can easily check that the above arguments remain valid in the case of x and τ with integer

coordinates. Indeed, we have only used in the proof the ergodicity arguments and the fact that
any integer multiplier of x and τ has integer coordinates.

Since ψ0 is positive one-homogeneous, this implies, in turn, that (28) holds for any vectors x

and τ with rational coordinates.
This result can be easily generalized to arbitrary vectors x and τ with the help of continuity

arguments. �
Proof of Theorem 2.7. In view of Definition 2.8, Remark 2.9 and Proposition 2.10 the desired
statement is a consequence of Theorem 2.4. �
3. Homogenization of spin systems: interactions with changing sign

In this section we consider interactions with changing sign. In this case our energies are a
priori not coercive in the space of sets with finite perimeter, even though in the end we will be
able to recover a limit form of the same type as in the previous section. It is convenient then
to consider again as variables in place of the sets A ⊂ Ωε spin functions u : Ωε → {−1,1}.
The scaled energies now read as

Eε(u) = 1

8

∑
i,j

εd−1cij (ui − uj )
2, (30)

where now we only suppose

|cij | � β. (31)

In this case the identification of u with a set of finite perimeter as for the case of positive inter-
actions does not bring along a compactness property, since we cannot infer any estimates on the
perimeter from energy bounds.

Remark 3.1 (The case of only negative signs). Note that the case of strictly negative co-
efficients can be reduced to the case of positive coefficients, upon the change of variables
vi = (−1)i1+···+id ui , since we have
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(ui − uj )
2 = 2 − 2uiuj = 2 + 2vivj = 4 − (vi − vj )

2

when |i − j | = 1.

In general the energies Eε are not bounded from below, with only an estimate of the form
infEε � −β 1

ε
holding. We then need additional assumptions to guarantee both some compact-

ness properties and a suitable normalization of the energy
We say that I is a connected set in Z

d if for each pair of i, j points of I there exists
a path from i to j ; i.e., there exist K ∈ N and {in: n = 0, . . . ,K} with i0 = i, iK = j and
‖in − in−1‖1 = 1. The boundary of I is

∂I = {
i ∈ I : ∃j ∈ Z

d \ I, ‖i − j‖1 = 1
}
.

Definition 3.2 (Ground states). We will suppose that the set

N = {
i ∈ Z

d : ∃j such that cij � 0
}

(32)

can be decomposed as

N =
⋃
m

Km,

where Km is a connected set in Z
d such that

(i) supm #Km < +∞;
(ii) for all m there exists a connected safe zone Nm ⊃ Km such that all minimizers u of

min

{ ∑
i,j∈Nm

cij (ui − uj )
2
}

(33)

satisfy either ui = 1 or ui = −1 identically on ∂Nm. Furthermore, we assume that Nm are
disjoint and there exists κ > 0 such that∑

i,j∈∩Nm

cij

(
(ui − uj )

2 − (ui − uj )
2) � κ (34)

if u is not a minimizer. Note that this is not a restriction for example in the periodic setting,
or if cij take a finite number of values.

A (positive) ground state for Eε is defined as a function u which coincides with a minimizer
of (33) satisfying ui = 1 identically on ∂Nm for all m, and equal to 1 elsewhere; a negative
ground state is a function of the form −u, with u a positive ground state.

Normalization of the energy. From now on we will fix a positive ground state u. We then nor-
malize Eε by setting (with an abuse of notation)

Eε(u) =
∑

εd−1cij

(
(ui − uj )

2 − (ui − uj )
2). (35)
i,j∈Ωε
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Note that with this normalization we have

Eε(u) �
∑{ ∑

i,j∈Ωε∩Nm

cij ε
d−1((ui − uj )

2 − (ui − uj )
2): Nm ∩ ∂Ωε �= ∅

}

� −4βεd−1
∑

{#Nm: Nm ∩ ∂Ωε �= ∅}
� −cHd−1(∂Ω).

Connectedness hypothesis on the set P := Z
d \ N . We suppose that if m �= m′ then dist(Nm,

Nm′)� 2. This implies that the set P contains the connected set

C = Z
d \

⋃
m

Nm.

Note that, after possibly passing to a subsequence there exists the weak∗ (local) limit μ (in
the sense of measures) of

με =
∑
i∈C

εdδεi .

By our hypotheses then this limit can be written as μ = θLd for some strictly positive density
θ > 0.

Lemma 3.3 (Compactness). Suppose that cij � α > 0 for bonds connecting points in C. Let
(uε) be a sequence with equibounded energy. Then, up to subsequences, there exists a function
u ∈ BV(Ω; {−1,+1}) such that we have

uεχεC ⇀∗ uθ (36)

with respect to the weak∗-convergence in L∞(Ω).

Proof. By the boundedness in L∞ of (uε) it is enough to prove that (36) holds locally in Ω . We
consider the sets of indices

M = {m: Nm ⊂ Ω}, Mb = {m: Nm �⊂ Ω, Nm ∩ Ω �= ∅}

and the corresponding collection of “safe zones”. We further subdivide those in three families
corresponding to

M+
ε = {m: uε = +1 on ∂Nm}, (37)

M−
ε = {m: uε = −1 on ∂Nm}, (38)

M0 = M \ (
M+ ∪ M−)

. (39)
ε ε ε
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Note that for each m ∈ M0
ε the inequality in (34) holds, so that in particular

#
(
M0

ε

)
� C

εd−1
.

We then consider the functions ûε defined as

ûε =
⎧⎨⎩

uε on Ωε ∩ εC,

1 on Nm if m ∈ M+
ε ,

−1 on Nm if m ∈ M \ M+
ε .

We have the estimate

Eε(uε) � −cHd−1(∂Ω) + α
∑

i,j∈εC∩Ωε

εd−1((uε)i − (uε)j
)2

� −cHd−1(∂Ω) + α
∑

i,j∈Ωε

εd−1((ûε)i − (ûε)j
)2 − cεd−1

∑
m∈M0

ε

#(Nm)

� α
∑

i,j∈Ωε

εd−1((ûε)i − (ûε)j
)2 − c

= 4αHd−1(∂{ûε = 1} ∩ Ω
) − c,

so that the sequence (ûε) is equibounded in BV , and hence strongly precompact in L1. We can
therefore suppose that ûε → u.

We then have

uεχεC = ûεχεC ⇀∗ uθ

as desired. �
We can state a definition of homogenizable system analogous to the one in the previous sec-

tions.

Definition 3.4 (Homogenizable system). Let the set of coefficients {cij } satisfy the conditions
above; we say that {cij } is a homogenizable system if for every fixed vector ν ∈ Sd−1 and for
every choice of a family (xT ) of points on R

d with

sup
|xT |
T

< +∞ (40)

there exists the function

ϕ(ν) = lim
T →+∞ inf

1

T d−1

∑
ij

cij

(
(ui − uj )

2 − (ui − uj )
2) (41)

the minimum being taken over all functions u : Zd → {±1} such that
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u = u in
(
Πν(xT ) \ Qν

T (xT )
) ∪

⋃{
Nm: Nm ∩ Πν(x) �= ∅, Nm �⊂ Qν

T (xT )
}
, (42)

u = −u in
((
Z

d \ Πν(xT )
) \ Qν

T (xT )
) ∪

⋃{
Nm: Nm ∩ Πν(x) = ∅, Nm �⊂ Qν

T (xT )
}
,

(43)

and the sum is taken on all pairs (i, j) with i ∈ Qν
T (xT ) or j ∈ Qν

T (xT ) and |i − j | = 1, and this
limit is independent of the choice of (xT ).

With this definition we have a homogenization theorem with respect to the convergence (36).
With respect to the previous result for positive interactions, we may have a contribution result-
ing from the optimization of the interactions close to the boundary of Ω . This term depends on
the shape of the “safe zones” intersecting the boundary, and requires then a passage to a subse-
quence (see Remark 3.6 below). We here state an “interior homogenization theorem” where this
boundary term does not appear. To this end we define the interior approximation of Ω as

Ω̂ε = Ωε \
⋃

{Nm: Nm �⊂ Ωε}

and correspondingly the energy

Êε(u) =
∑

i,j∈Ω̂ε

cij

(
(uj − uj )

2 − (ui − uj )
2).

Theorem 3.5 (Interior homogenization theorem). Let Ω be a bounded open set with Lipschitz
boundary. Let (cij ) be a homogenizable system according to Definition 3.4, and let inf cij > 0
on C. Then the family (Eε) Γ -converges with respect to the convergence (36) to the energy

F(u) =
∫

S(u)∩Ω

ϕ(νu) dHd−1,

defined on u ∈ BV(Ω; {±1}), where ϕ is given by (41), S(u) is the set of discontinuity points of u

(coinciding with ∂∗{u = 1}) and νu is the normal to S(u).

Proof. The proof follows almost word for word the proof of Theorem 2.4 substituting sets Aε

with functions uε . The only care to be taken is in the construction of test functions for the def-
inition of ϕ from converging sequences uε . Since we control the energy only on the set C, the
definition of u1

ε (corresponding to (12)) must be given as

u1
ε =

{
uε in Qν

ρ−t (x) \ ⋃{Nm: Nm �⊂ Qν
ρ−t (x)},

uν
x otherwise,

(44)

where uν
x is defined as

uν
x =

{
u in Πν(x) \ ⋃{Nm: Nm ∩ Πν(x) �= ∅},

−u otherwise
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(giving the desired boundary datum for the definition of ϕ), and t is suitably chosen so as to have
estimate (11) hold, up to a multiplicative constant, with the boundary of

Qν
ρ−t (x) \

⋃{
Nm: Nm �⊂ Qν

ρ−t (x)
}

in place of {y: dist(y, ∂Qν
ρ(x)) = t}. �

Remark 3.6.

(i) If we consider the energies Eε , the Γ -limit as ε → 0 in general does not exist. From each (εj )

we can extract a subsequence such that the Γ -limit F exists along such subsequence. In this
case it has the form

F(u) =
∫

S(u)∩Ω

ϕ(νu) dHd−1 +
∫

∂Ω

g(x,u)dHd−1

(in this last integral u stands for its inner trace) for some g. This g satisfies |g(x,u)| � C,
with C depending only on d and sup #Nm.

(ii) The conclusions of Theorem 3.5 hold unchanged if we consider Eε as defined on the
whole Ωε but changing cij to (arbitrary) positive values on the Nm intersecting Z

d \ Ωε ,
and setting ui = 1 accordingly on such sets.

Remark 3.7 (The periodic case). If cij are periodic of period N the hypotheses of Theorem 3.5
are satisfied if we assume

(a) the minimizers of

min
∑

i,j∈{1,...,N}d
cij (ui − uj )

2

satisfy identically ui = 1 (or identically ui = −1) on the boundary of {1, . . . ,N}d ;
(b) cij > c > 0 if i ∈ {0, . . . ,N}d \ {1, . . . ,N}d .

In the special case when cij = ±1 this condition is satisfied if the set of bonds such that
cij = −1 inside {0, . . . ,N}d is contained in a cube of size k with k � d

√
(N/2).

4. Homogenization over curves in a discrete environment

We now include a treatment of energies defined on curves in a discrete setting, or rather on
parameterization of curves, which is in a sense dual to surface energies. In dimension d = 2 this
can be seen as an alternative way to treat boundaries, when parameterized by a finite family of
curves. Note that the discrete energies we consider and their limits are in a sense not defined on
geometrical objects, since they depend crucially on the parameterization of the curves. In the sim-
plest situation, when all interaction coefficients are equal, the discrete energies we are going to
consider can be seen as the length functional restricted to curves interpolating nearest-neighbour
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points on the lattice εZd and parameterized by arc-length. This is clearly a parameterization-
dependent energy. Note that if we also fix the total length Lε of the curves (i.e., we set the energy
equal to +∞ on all other curves) then the energies at ε-scale take only the value Lε or +∞ and
if Lε → L then the Γ -limit is finite and equal to L on functions which are parameterizations of
curves with “1-length” not greater than L. Hence, in the limit we have a description depending
on the velocity of the curve; the limit energy can be written as

L∫
0

ψ
(
γ ′)dt,

where simply

ψ(v) =
{

1 if ‖v‖1 � 1,

+∞ otherwise.

The same type of representation, with non-constant ψ , holds also when the coefficients oscillate
at scale ε. While in the case of constant coefficients it is ‘energetically convenient’ to use param-
eterizations with ‖v‖1 = 1 (i.e., these are the ones with a lower value of the Γ -limit for the same
curve), when the coefficients oscillate then the ‘optimal velocity’ may correspond to ‖v‖1 < 1,
and is described through a homogenization asymptotic formula. It may be clarifying to think
of discrete curves as objects with a mass, proportional to the number of nodes interpolated by
the curve, so that a limit continuous curve inherits the limit mass of the discrete approximations
(which is inversely proportional to the velocity of the parameterization). More complex function-
als depending explicitly on pairs curves–measures close in spirit to our approach and deriving
from a discrete model of ternary interactions can be found in [3].

We define a path γ in Ωε as an array of points

εi0, εi1, . . . , εiN−1, εiN ∈ Ωε, N ∈ N,

such that

|in − in−1|1 = 1,

where | · |1 stands for the L1 norm in Z
d . Each such path can be identified by the piecewise-affine

continuous curve γ : [0, εN ] → R
d satisfying γ (εn) = εin for n = 0,1, . . . ,N , parameterized

by arc-length. We say that a path γ joins x to y if γ (0) = εi0 = x and γ (εN) = εiN = y.
The energy of a path γ in Ωε is

Fε(γ ) =
N∑

n=1

εcinin−1 . (45)

Note that if we suppose that

0 < α � cij � β < +∞ (46)
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then if C1 � Fε(γ )� C2 we have

C1

β
� εN � C2

α
.

As a consequence, if we consider a family of paths γε : [0, εNε] → R
d with equibounded energy,

then, up to subsequences, we have εNε → L > 0, and γε converge weakly∗ in W 1,∞ to a curve
γ : [0,L] → R

d (to this end we may need to extend γε(s) as a constant for s � εNε).
In order to define a limit energy on γ as the Γ -limit of Fε we need some asymptotic properties

of cij .

Definition 4.1 (Homogenizable system). We say that the set of coefficients cij is a homogenizable
system if for every fixed direction τ ∈R

d with ‖τ‖1 = ∑d
j=1 |τj | < 1, any M > 1, and for every

choice of sequences (xm), (ym) of points in Z
d with

sup
m

{ |xm|
m

+ |ym|
m

}
� M < +∞, and ym − xm = mτ + o(m) (47)

there exists the function

ψ(τ) = lim
m

1

m
inf

{
m∑

n=1

cinin−1 : i0 = xm, im = ym

}
, (48)

the minimum being taken over all paths with length m that join xm and ym. The limit is indepen-
dent of the choice of (xm) and (ym), and exists uniformly in such (xm) and (ym).

Remark 4.2. We note that in the definition of ψ above we have not included the ‘boundary
case’ when ‖τ‖1 = 1. In fact, in that case the set of admissible paths in (48) may be empty or
not, depending on (xm) and (ym), so that the requirement of the existence of the limit ψ(τ) is
not satisfied even for cij constant. Such a drawback can be easily overcome by extending ψ to
‖τ‖1 = 1 by (lower semi)continuity.

If d = 2 we can obtain the relation

ψ0(τ ) = inf

{
λψ

(
τ

λ

)
: λ > ‖τ‖1

}
(49)

between the surface energy density for interfaces ψ0 and the function ψ above by comparing
formulas (48) and (26).

The function ψ defined in (48), if it exists, enjoys some properties on {‖τ‖1 < 1} that are of
easy verification from its definition:

(i) we have α � ψ(τ) � β , this inequality being proven by comparing with the trivial infimum
when cij are identically α (or β , respectively);

(ii) ψ is a convex and Lipschitz function (with Lipschitz norm not exceeding dβ).
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As a consequence, we can extend ψ by continuity for ‖τ‖1 = 1 and by ψ(τ) = +∞ for ‖τ‖1 > 1;
the function thus defined (which we still denote by ψ ) is a convex and lower-semicontinuous
function on R

d , so that the energy

F(γ ) =
L∫

0

ψ
(
γ ′)dt, (50)

is a lower-semicontinuous functional on curves with respect to the weak∗ W 1,∞ topology, whose
domain are curves such that ‖γ ′‖1 � 1 a.e.

For γ ∈ W 1,∞((0,L);Rd) denote ‖γ ′‖∞,1 = esssup0<t<L ‖γ ′(t)‖1.
We can then state our Γ -convergence result as follows.

Theorem 4.3 (Homogenization over discrete paths). Let (46) be satisfied and let the system {cij }
be homogenizable as in Definition 4.1. Let Ω be a bounded open subset of Rd . Then the Γ -limit
of the energies Fε in (45) is the energy F in (50). More precisely,

(i) if supε Fε(γε) < +∞ and γε(0) is equibounded, then, up to subsequences, there exist L� 0
and a curve γ ∈ W 1,∞((0,L);Rd) with ‖γ ′‖∞,1 � 1 such that γε ⇀∗ γ (all curves are
extended as constants outside their intervals of definition and this convergence is then un-
derstood as weakly∗ in W

1,∞
loc (R;Rd));

(ii) if γε ⇀∗ γ as in (i) then

F(γ )� lim inf
ε→0

Fε(γε);

(iii) for all γ ∈ W 1,∞((0,L);Ω) with ‖γ ′‖1 � 1 a.e. there exists a sequence γε such that
γε ⇀∗ γ as in (i) and

F(γ ) � lim sup
ε→0

Fε(γε).

Proof. Since (i) is proven by standard weak∗ compactness arguments, we need only to prove (ii)
and (iii).

Note preliminarily that, if we fix an arbitrary M > 1 and define the functions

ψm(τ) = 1

m
min

{
m∑

n=1

cinin−1 : i0 = xm, im = ym,
|xm|1

m
� M,

|ym|1
m

� M,

|ym − xm − mτ |1 � d

}
, (51)

then (ψm) is an equibounded family on D1 := {τ ∈ R
d : ‖τ‖1 � 1}. Furthermore, for any s < 1

the estimate ∣∣ψm(τ) − ψm

(
τ ′)∣∣� β

∥∥τ − τ ′∥∥
1 + o(1) (52)

holds true for τ, τ ′ ∈ Ds := {τ ∈ R
d : ‖τ‖1 < s}; here o(1) tends to zero as m → ∞.
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The equiboundedness is evident. In order to prove (52) denote r = τ ′ − τ . Let γm and γ ′
m be

the paths of length m that provide a minimum in the expressions

min

{
m∑

i=1

cinin−1 : i0 = 0, ‖im − mτ‖1 � d

}

and

min

{
m∑

n=1

cinin−1 : i0 = 0,
∥∥im − mτ ′∥∥

1 � d

}
,

respectively. Denote by γ̃m the shortest path that connects the end points of γm and γ ′
m. Clearly,

|γ̃m| � m‖r‖1 + 2d . Also, denote m̂ = m + |γ̃m|. Since the system {cij } is homogenizable, we
have

ψm

(
τ ′) = ψm(τ + r) = ψ(m+|γ̃m|)(τ + r) + o(1)

= 1

m̂
min

{
m̂∑

n=1

cinin−1 : i0 = 0,
∥∥im̂ − m̂τ ′∥∥

1 � d

}
+ o(1)

� 1

m̂

∑
γm∪γ̃m

cinin−1 + o(1)� 1

m

∑
γm

cinin−1 + m‖r‖1 + 2d

m
β + o(1)

� ψ(τ) + ‖r‖1β + o(1).

Thus,

ψm

(
τ ′) − ψ(τ)� ‖r‖1β + o(1).

Similarly,

ψm(τ) − ψ
(
τ ′)� ‖r‖1β + o(1).

This yields (52).
Hence, ψm → ψ uniformly on each Ds with s < 1.
We now prove (ii). Let γε : [0, εNε] → R

d converge to γ and suppose, without loss of gen-
erality, that εNε → L > 0. Fix J ∈ N; we may also suppose for the sake of simplicity that
Nε/J ∈ N so that we may consider the value γε(x

ε
j ) at the points xε

j = εjNε/J ∈ Ωε . Note that
xε
j → xj = jL/J , and, by the uniform convergence of γε to γ , that γε(x

ε
j ) → γ (jL/J ). We then

have (taking m = Nε/J )

lim inf
ε→0

Fε(γε) = lim inf
ε→0

J∑
j=1

ε

jNε/J∑
n=(j−1)Nε/J+1

cinin−1

� lim inf
ε→0

J∑ εNε

J
ψNε/J

(
γ (xε

j ) − γ (xε
j−1)

xε
j − xε

j−1

)

j=1
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=
J∑

j=1

L

J
ψ

(
γ (xj ) − γ (xj−1)

L/J

)

=
L∫

0

ψ
(
γ ′
J

)
dt,

where γJ is the piecewise-affine interpolation of γ at the points xj . Since γJ ⇀∗ γ in
W 1,∞((0,L);Rd) we obtain (ii) by lower semicontinuity.

The proof of (iii) proceeds by density. It is enough to construct a recovery sequence when
L = 1, γ is linear and γ (s) = sτ with ‖τ‖1 < 1. With fixed η > 0 let m be large enough so that

sup
D1

|ψm − ψ |� η.

We can then find points τ ε
0 , τ ε

1 , . . . , τ ε
[1/mε] ∈ εZd such that∥∥∥∥τ ε

j − j

mε
τ

∥∥∥∥
1
� dε,

and for each of those find a path {cε,j
n : n = 0, . . . ,m} joining xε

j−1 = 1
ε
τ ε
j−1 to xε

j = 1
ε
τ ε
j such

that

m∑
n=1

c
ε,j
inin−1

� m
(
ψm(τ) + o(1)

)
.

We can then construct the corresponding γε by assembling those paths on [0, εm� 1
mε

�], so that

γε(0) = 0, γε

(
εm

⌊
1

mε

⌋)
= τ ε

[1/mε] → τ

and

lim sup
ε→0

Fε(γε) = lim sup
ε→0

[1/mε]∑
j=1

m∑
n=1

εc
ε,j
inin−1

� lim sup
ε→0

[1/mε]∑
j=1

εmψm(τ) � ψm(τ).

By letting m → +∞ we prove (iii) for γ linear. In the same way we can construct a recovery
sequence for γ piecewise affine, and eventually conclude by a density argument. �
4.1. The almost-periodic case

The proof of the homogenizability for (periodic and) almost-periodic systems requires some
extra care due to the constraint on the path length in the minimum problem in (48). We will prove
that the limit defining the function ψ exists (also without assuming the first condition of (47)).
We will suppose that the almost periodicity condition in Section 2.1.2 holds, and we adapt the
notation therein for almost periods.
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Let ‖τ‖1 < 1 and let (xm) and (ym) be sequences satisfying ym − xm = mτ + o(m). With
fixed m, let {imn : 0 � n � m} be a path of length m with im0 = xm, imm = ym realizing the minimum
in

ψm(τ) = 1

m
inf

{
m∑

n=1

cinin−1 : i0 = xm, im = ym

}
. (53)

We now construct a test path {iMn : 0 � n � M} for the related problem for ψM(τ) with M > m

sufficiently large. To this end, let η > 0 and let �j be η-almost periods for f in Tη defined
recursively as

�0 ∈ xM + [0,Nη]d , �j ∈ �j−1 + (ym − xm) + [0,Nη]d ;

we also define

yM
0 = xM, yM

j = �j−1 + (ym − xm) for j � 1.

We fix K (to be determined later) and we define the path iMn as follows: Let {yj
n : 0 � n� Jj } be

a path joining yM
j to �j for j = 0, . . . ,K − 1 (with length Jj at most dNη). We set

I0 = 0, Ij = Ij−1 + m + Jj−1 = jm +
j−1∑
i=0

Jj for j � 1,

and, for 0 � n � JK−1 = Km + ∑K−1
j=0 Jj ,

iMn =
{

y
j
n−Ij

if Ij � n � Ij + Jj ,

imn−(Ij +Ji )
if Ij + Jj � n � Ij+1.

Note that the endpoint of such (iMn ) is

iMIK
= xM

K = K(ym − xm) +
K−1∑
j=0

(
�j − xM

j

) + xM.

In order to being able to complete this path to a path of length M and with final point yM it is
sufficient to check that the inequality

M −
(

Km +
K−1∑
j=0

Jj

)
>

∥∥yM − iMK−1

∥∥
1 (54)

is satisfied. Since
∑K−1

j=0 Jj � dKNη and also ‖∑K−1
j=0 (�j − xM

j )‖1 � dKNη we obtain the
condition
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Fig. 3. Layers of vertical connections in the horizontal direction.

K � M(1 − ‖τ‖1) + o(M)

m(1 − ‖τ‖1) + 2dNη

for some o(M) depending on yM − xM and ym − x − m. We then choose

K =
⌊

M(1 − ‖τ‖1 − η)

m(1 − ‖τ‖1) + 2dNη

⌋
,

so that this condition is satisfied for M large.
We can then estimate

ψM(τ) � Km

M

(
ψm(τ) + η

) + β

(
K

M
dNη + (M − IK−1)

)
�ψm(τ) + η + β

1

M

(
M(1 − ‖τ‖1 − η)

m(1 − ‖τ‖1)
dNη + η(m + dNη)

(1 − ‖τ‖1)

)
�ψm(τ) + η + β

1

m(1 − ‖τ‖1)
dNη + β

1

M

η(m + dNη)

(1 − ‖τ‖1)
.

By letting first M → +∞ and then m → +∞ the usual ‘subadditive’ argument and the arbitrari-
ness of η allow to conclude the proof.

Example 4.4. We give some examples with cij ∈ {α,β} with α < β in dimension two. In Figs. 3
and 4 the β-connections are represented by bold lines while the α-connections are represented
by dashed lines.

(1) We first consider a layered medium in the horizontal direction as in Fig. 3. In this case
optimal paths for ψ(τ) use the α horizontal connections in proportion 1 − τ2, so that we
easily obtain

ψ(τ1, τ2) = α +
(

β − α

2

)
|τ2|.

(2) We consider now the more complex geometry in Fig. 4 with period N (in the figure N = 9)
characterized by the fact that the minimal path of α-connection in the direction (±1/2,1/2)

is of minimal length. One of such paths and a minimal path of α-connection in the direc-
tion e1 are shown in the figure.
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Fig. 4. A geometry giving a non-trivial ψ and minimal paths of α-connections.

As a consequence, we have ψ(±1/2,1/2) = α. Conversely, if we denote by τ0 the inverse of
the length of the minimal path of α-connection in direction e1, we see that

ψ(te1) = ψ̂(t) :=
{

α if |t | � τ0,

α + (|t |−τ0)
1−τ0

(N−1)α+β
N

if τ0 � |t |� 1,

where the last coefficient is due to the fact that for t = 1 the minimal path is a horizontal straight
path with exactly one β-connection in each period.

The computation for a general τ is obtained after decomposing

τ = min
{|τ1|, |τ2|

}
(sign τ1, sign τ2) + (

τ − min
{|τ1|, |τ2|

}
(sign τ1, sign τ2)

)
and noting that the second vector is a multiple of a coordinate vector with modulus ‖τ‖∞ −
min{|τ1|, |τ2|}, thus obtaining

ψ(τ) = 2α min
{|τ1|, |τ2|

} + ψ̂

(‖τ‖∞ − min{|τ1|, |τ2|}
1 − 2 min{|τ1|, |τ2|}

)(
1 − 2 min

{|τ1|, |τ2|
})

.

4.2. The random case

We adapt the notation of Section 2.2 to the present setting (in this case valid for all dimen-
sions d) by introducing random coefficients cω

ij and energies Fω
ε of paths in Ωε as

Fω
ε (γ ) =

N∑
n=1

εcω
inin−1

. (55)

In the random case formula (48) reads
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ψω(τ) = lim
m

1

m
inf

{
m∑

n=1

cω
inin−1

: i0 = xm, im = ym

}
, (56)

where xm and ym satisfy (47). It is convenient to introduce the notation

ψω
m(x, y) = 1

m
inf

{
m∑

n=1

cω
inin−1

: i0 = x, im = y

}
.

Our analysis relies on the following result.

Lemma 4.5. For any τ ∈ R
d with ‖τ‖1 < 1 and for any x ∈ R

d there exists the limit in (56)
where xm = �mx� and ym = �mx + mτ�. Moreover this limit, denoted by ψ(τ), is deterministic,
and does not depend on x.

Proof. We first prove the statement of Lemma 4.5 in the special case x = 0. We also assume
that τ has rational coordinates and that m = m̌j0 with m̌ = 1,2, . . . , and j0 being such that
the vector j0τ has integer coordinates. Then by the Subadditive Ergodic Theorem (see, for in-
stance, [17]) under our standing stationarity and ergodicity assumptions the limit

ψ(τ) = lim
m→∞

1

m
inf

{
m∑

n=1

cinin−1 : i0 = 0, im = mτ

}
(57)

exists a.s. and is deterministic. The fact that (57) also holds for any sequence im such that
|im − mτ | = o(m) trivially follows from the boundedness of cij .

The existence of a deterministic limit in (57) for any τ ∈ R
d with ‖τ‖1 < 1 can be easily

deduced by the continuity arguments.
It remains to show that for any x ∈R

d

lim
m→∞

1

m
inf

{
m∑

n=1

cinin−1 : i0 = �mx�, �im = mx + mτ�
}

= ψ(τ).

We follow the same scheme as in the proof of Proposition 2.10. First we assume that x and τ

have rational coordinates. For arbitrary x and τ the desired statement can be easily obtained by
continuity arguments.

For the sake of definiteness, we set x = (0, . . . ,0,1) and τ = (1/2,0, . . . ,0). With this choice
of x and τ for any ε > 0 we define the events

QN = {
ω ∈ Σ : ∀m� N it holds

∣∣ψω
2m(0,2mτ) − ψ(τ)

∣∣ < ε
}
.

The a.s. existence of a deterministic limit in (57) implies that for any δ > 0 there is N0(δ) such
that

P{QN } > 1 − δ.
0



A. Braides, A. Piatnitski / Journal of Functional Analysis 264 (2013) 1296–1328 1327
By the ergodic theorem, almost surely for any γ > 0 there is m0 = m0(ω, γ ) such that for any
m �m0 it holds ∣∣∣∣∣ 1

m

m∑
i=1

1QN0
(T2ixω) − P(QN0)

∣∣∣∣∣ < γ. (58)

For m � m0(ω, γ ) denote by L the maximum of integer numbers j such that j > m and for
all i ∈ (m, j) ∩N it holds T2ixω /∈ QN0 . In order to estimate L from above, we denote by m̃ the
number of unities in the sequence {1QN0

(T2ixω)}mi=1. Then

γ >

∣∣∣∣ m̃

m + L
− P(QN0)

∣∣∣∣ =
∣∣∣∣1 − P(QN0) − L + (m − m̃)

m + L

∣∣∣∣.
Therefore,

L + (m − m̃)

m + L
< γ + (

1 − P(QN0)
)
< γ + δ.

Since (m − m̃) � 0 and γ + δ � 1/2, the last inequality yields the upper bound L < 2(γ + δ)m.
If we choose L̃ = 3(γ + δ)m and arbitrary m > max(m0(ω, γ ),N0(δ)), then there is n ∈

[m,m + L̃] such that T2nxω ∈QN0 . Notice that if T2ixω ∈ QN0 , then for any m > N0∣∣ψω
2m(2ix,2ix + 2mτ) − ψ0(τ )

∣∣ < ε.

Taking this into account, we obtain∣∣ψω(2mx,2mx + 2mτ) − ψ0(τ )
∣∣

�
(

1 − m

n

)
ψω(2mx,2mx + 2mτ)

+ 1

2n

∣∣2mψω(2mx,2mx + 2mτ) − 2nψω(2nx,2nx + 2nτ)
∣∣

+ ∣∣ψω(2nx,2nx + 2nτ) − ψ0(τ )
∣∣

� 3(γ + δ)β + 12(γ + δ)β + ε = 15(γ + δ)β + ε;
here we have also used the inequalities

2nψω(2nx,2nx + 2nτ)� 4β(n − m) + 2mψω(2mx,2mx + 2mτ)

and

2mψω(2mx,2mx + 2mτ)� 12β(n − m) + 2nψω(2nx,2nx + 2nτ),

which are valid for all sufficiently small δ > 0 and γ > 0. Since γ , δ and ε are arbitrary suffi-
ciently small positive numbers, this implies the desired limit relation. �

The homogenization theorem for discrete curves in the random case reads as follows.
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Theorem 4.6. Under the ellipticity condition (46) and the ergodicity conditions in Section 2.2
the Γ -limit of the energies Fω

ε exists almost surely, is deterministic and is given by (50), with ψ

defined from Lemma 4.5.

Proof. To prove the theorem it is enough to notice that Lemma 4.5 ensures the homogenizability
of cω

ij , after remarking that by a compactness argument it suffices to check the existence of the
limit in (48) only when xm = �mx� and ym = �mx +mτ�. The fact that the limit is deterministic
is then also ensured by the lemma. �
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