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The paper deals with homogenization of a spectral problem for a
second order self-adjoint elliptic operator stated in a thin cylinder
with homogeneous Neumann boundary condition on the lateral
boundary and Dirichlet condition on the bases of the cylinder.
We assume that the operator coefficients and the spectral density
function are locally periodic in the axial direction of the cylinder,
and that the spectral density function changes sign. We show that
the behavior of the spectrum depends essentially on whether the
average of the density function is zero or not. In both cases we
construct the effective 1-dimensional spectral problem and prove
the convergence of spectra.
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1. Introduction

The paper is aimed at homogenization of a spectral problem for a second order divergence form
elliptic operator defined in a thin cylinder of finite length with homogeneous Neumann boundary
condition on the lateral boundary of the cylinder and Dirichlet conditions on the cylinder bases. We
make a crucial assumption that the spectral weight function changes sign and assume that both
operator coefficients and the weight function are locally periodic in the axial direction of the cylinder.

Under the said conditions we show that the asymptotic behavior of the spectrum depends essen-
tially on whether the average of the weight function over the period is equal to zero or not. In both
cases we construct an effective model and prove the convergence result; the estimates for the rate of
convergence are also obtained.
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The studied spectral problem might have interesting and important applications in the modern
theory of metamaterials, that is artificial composite materials engineered to produce a desired elec-
tromagnetic behavior with significantly enhanced performance over “natural” structures. For example,
when the world is observed through conventional lenses, the sharpness of the image is determined by
and limited to the wavelength of light. Metamaterials with negative refractive index aimed at creation
of “perfect” lenses, that is lenses with capabilities beyond conventional (positive index) ones.

First initiated by L.S. Pontrgyagin in [15], the qualitative theory of spectral problems in spaces with
indefinite metric was further developed by M.G. Krein [7], I.S. Iokhvidov [4] and other mathematicians.
The detailed presentation of this theory can be found, for example, in books [1,16].

The homogenization of spectral problems in the case of positive weight functions was considered
in [5,6,17], then in [13] for elasticity system and then in many other works. However, the presence of
sign-changing weight function makes the problem nonstandard and leads to new interesting phenom-
ena. For operators with pure periodic coefficients defined in a fixed (not asymptotically thin) domains
similar problems have been studied in the recent works [11,12]. In contrast with problems investi-
gated in these works, for the model considered in the present paper the limit spectral problem is
one-dimensional, so that dimension reduction arguments are to be used. We combine the asymptotic
expansion technique with the singular measure approach developed in [20] and [2].

For the density function having positive average the effective spectral problem happens to be a
Sturm–Liouville problem. In this case the convergence of the positive part of the spectrum is justified
by means of convergence in variable spaces with singular measures.

In the case of zero average weight function the limit spectral problem is that for a quadratic
operator pencil. To study this operator pencil we apply the results from [8] combined with usual
arguments used when studying Sturm–Liouville problems. It should be noted that in contrast with
[12], the presence of slow variable in the coefficients makes the limit operator pencil nontrivial, so
that it cannot be reduced to the standard Sturm–Liouville problem.

The fact that the considered operator is defined in a thin cylinder allows us to build boundary
layer correctors in the neighborhood of the cylinder bases and, as a result, improve essentially the
asymptotics. As a matter of fact, if the coefficients are sufficiently regular, then arbitrary many terms
in the asymptotic expansion can be constructed. This allows one to approximate the eigenpairs of
the studied problem up to an arbitrary large power of the small parameter characterizing the mi-
crostructure period. The existence of exponentially decaying boundary layer correctors is assured by
the results obtained in [14].

In the last section we address the case when the local average of the weight function changes sign.
In this case the convergence of both, positive and negative parts of the spectrum is justified.

The asymptotics of negative part of the spectrum in the case of positive average of the density
function will be treated in a separate publication.

The paper is organized as follows. Section 2 contains the statement of the problem together with
some preliminary results concerning the structure of the spectrum of the original operator. In Sec-
tion 3.1 we construct the formal asymptotic expansion in the case when the average of the weight
function over the period is positive. The justification of the homogenization procedure is given in Sec-
tion 3.2. Section 4 is devoted to the case when the average of the weight function is equal to zero. In
Section 5 the case when the average of the weight function changes sign is considered.

2. Problem setup and main results

Let Q be a bounded C2,α domain in R
d−1 with a boundary ∂ Q . The points in R

d are denoted
x = (x1, x′), where x′ = x2, . . . , xd . Denote by Gε a thin rod [−1,1] × εQ with the lateral boundary
Σε = (−1,1) × ∂(εQ ) and the bases S±1 = {±1} × εQ . In the cylinder Gε we consider the following
spectral problem:⎧⎪⎨⎪⎩

Aεuε(x) ≡ −div
(
aε(x)∇uε(x)

) = λερε(x)uε(x), x ∈ Gε,

Bεuε(x) ≡ (
aε∇uε,n

) = 0, x ∈ Σε,

uε
(−1, x′) = uε

(
1, x′) = 0, x ∈ ∂(εQ ),

(2.1)
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with

aε(x) = a

(
x1,

x

ε

)
, ρε(x) = ρ

(
x1,

x

ε

)
,

where a(x1, y) is a symmetric d × d matrix and ρ(x1, y) is a scalar function; (·,·) is the inner product
in R

d . We assume the following conditions to hold:

(H0) aij(x1, y),ρ(x1, y) ∈ C1,α([−1,1]; Cα(Y )) for some α > 0. Here Y = S1 × Q denotes the period-
icity cell, S1 is a unit circle;

(H1) Functions aij(x1, y) and ρ(x1, y), are 1-periodic in y1;
(H2) The matrix a(x1, y) satisfies the uniform ellipticity condition, that is for any x1 ∈ [−1,1] and

y ∈ Y

d∑
i, j=1

aij(x1, y)ξiξ j � Λ|ξ |2, ξ ∈ R
d, Λ > 0;

(H3) The weight function ρ(x1, y) changes sign, that is for any x1 ∈ [−1,1] the sets {y ∈ Y :
ρ(x1, y) < 0} and {y ∈ Y : ρ(x1, y) > 0} have positive Lebesgue measures, i.e.∣∣{y ∈ Y : ρ(x1, y) ≶ 0

}∣∣ > 0.

Also, for presentation simplicity we assume that

ε = 1/L, L = 1,2, . . . . (2.2)

The general case can be treated in the same way, see Remark 3.2 in Section 3 for further discussion.

Remark 2.1. It follows from condition (H3) that, for sufficiently small ε, the sets {x ∈ Gε: ρ(x1,
x
ε ) < 0}

and {x ∈ Gε: ρ(x1,
x
ε ) > 0} have positive Lebesgue measures.

The weak formulation of problem (2.1) is as follows: find λε ∈ C (eigenvalues) and uε ∈
H1(Gε) \ {0} (eigenfunctions) such that uε(±1, x′) = 0 and(

aε∇uε,∇v
)

L2(Gε)
= λε

(
ρεuε, v

)
L2(Gε)

, (2.3)

where v ∈ C∞(Gε) such that v(±1, x′) = 0, (·,·)L2(Gε) denotes the usual scalar product in L2(Gε).
First we study the qualitative properties of problem (2.1) for a fixed value of ε. For this aim,

following the ideas in [12], we are going to reduce the problem under consideration to an equivalent
spectral problem for a compact self-adjoint operator. To this end let us introduce the space

Hε = {
u ∈ H1(Gε): u|S±1 = 0

}
equipped with the norm

‖u‖2
Hε = (u, u)Hε = (

aε∇u,∇u
)

L2(Gε)
.

Thanks to the Friedrischs inequality

‖v‖L2(Gε) � 2‖∇v‖L2(G ), v ∈ Hε,

ε
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the quadratic form (aε∇u,∇u)L2(Gε) defines a norm in Hε , which is equivalent to the standard
H1(Gε) norm.

In view of condition (H0), the bilinear form (ρεu, v)L2(Gε) defines on Hε a bounded linear operator
Kε : Hε → Hε by the following rule:(

Kεu, v
)

Hε = (
ρεu, v

)
L2(Gε)

.

By definition, the operator Kε is symmetric and, since it is bounded, it is self-adjoint. Notice that Kεu
can be also introduced as a solution of the boundary value problem⎧⎪⎨⎪⎩

Aε
(

Kεu(x)
) = ρε(x)u(x), x ∈ Gε,

Bε
(

Kεu(x)
) = 0, x ∈ Σε,

Kεu(x) = 0, x ∈ S±1.

(2.4)

Considering this representation and the compactness of the imbedding H1(Gε) in L2(Gε), one can see
that Kε is a compact operator, both in Hε and in L2(Gε).

Remark 2.2. Since for any u ∈ L2(Gε) the function Kεu belongs to Hε , then the spectrum of Kε in
L2(Gε) coincides with that in Hε . We prefer to study the spectrum of Kε in the space Hε because in
this space Kε is self-adjoint.

In terms of the operator Kε problem (2.1) takes the form

Kεuε = μεuε, με = 1/λε. (2.5)

Exactly in the same way as in [12] (see Lemma 2.1) one can show that the discrete spectrum of the
operator Kε consists of two infinite sequences. The following statement holds.

Lemma 2.1. Suppose that conditions (H0)–(H3) are fulfilled. Then the spectrum σ(Kε) of the operator Kε

belongs to the interval [−kε,kε], kε = ‖Kε‖; the point μ = 0 is the only element of the essential spectrum
σe(Kε). Moreover, the discrete spectrum of the operator Kε consists of two infinite sequences

με,+
1 � με,+

2 � · · · � με,+
j � · · · → +0,

με,−
1 � με,−

2 � · · · � με,−
j � · · · → −0.

Taking into account (2.5), we conclude that problem (2.1) has a discrete spectrum which consists
also of two infinite sequences. More precisely, we have proved the following result.

Theorem 2.1. Under the assumptions (H0)–(H3) spectral problem (2.1) has a discrete spectrum which consists
of two sequences

0 < λ
ε,+
1 � λ

ε,+
2 � · · · � λ

ε,+
j � · · · → +∞,

0 > λ
ε,−
1 � λ

ε,−
2 � · · · � λ

ε,−
j � · · · → −∞.

Under proper normalization, the corresponding eigenfunctions uε,±
j satisfy the orthogonality condition

(
uε,±

i , uε,±
j

)
Hε = εd−1|Q |δi j, (2.6)

where |Q | is the Lebesgue measure of Q and δi j is the Kronecker delta.
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The goal of the present work is to study the asymptotic behavior of the spectrum of problem (2.1),
as ε → 0. As was already pointed out, the asymptotic behavior of the spectrum depends crucially
on whether the local average of ρ(x1, ·) is zero on [−1,1] or not. To avoid the technicalities for
the moment, we formulate here the main result of the paper in a slightly reduced form, without
specifying the rate of convergence. More detailed formulation can be found in Sections 3–5.

Theorem 2.2. Let conditions (H0)–(H3) be fulfilled. If λ
ε,+
j (λ

ε,−
j ) stands for the jth positive (negative) eigen-

value of problem (2.1), and uε,+
j (uε,−

j ) for the corresponding eigenfunction, then the following convergence
results hold:

1. If 〈ρ(x1, ·)〉 > 0 for all x1 ∈ [−1,1], then, for any j,

λ
ε,+
j → λ

0,+
j , ε → 0,

ε
d−1

2
∥∥uε,+

j − u0,+
j

∥∥
L2(Gε)

→ 0, ε → 0,

where (λ
0,+
j , u0,+

j ) is the jth eigenpair of the effective Sturm–Liouville problem

⎧⎨⎩− d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0〈ρ(x1, ·)

〉
u0(x1), x1 ∈ (−1,1),

u0(±1) = 0,

(2.7)

with a strictly positive continuous function aeff(x1) (see (3.3) for detailed definition).
2. If 〈ρ(x1, ·)〉 = 0 for all x1 ∈ [−1,1], then, for any j,

ελ
ε,±
j − ν0,±

j → 0, ε → 0,

ε
d−1

2
∥∥uε,±

j − v0,±
j

∥∥
L2(Gε)

→ 0, ε → 0,

where (ν0,±
j , v0,±

j ) are the jth eigenpairs of the following quadratic operator pencil:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− d

dx1

(
aeff(x1)

dv0(x1)

dx1

)
+ ν0B(x1)v0(x1)

− (
ν0)2

C(x1)v0(x1) = 0, x1 ∈ (−1,1),

v0(−1) = v0(1) = 0,

(2.8)

with the functions B(x1),C(x1) > 0 defined by (4.8) and (4.7), respectively. The spectrum of this operator
pencil is discrete and real, it consists of two infinite series

0 < ν0,+
1 � ν0,+

2 � · · · � ν0,+
j � · · · → +∞,

0 > ν0,−
1 � ν0,−

2 � · · · � ν0,−
j � · · · → −∞.

Moreover, all the eigenvalues ν0,±
j are simple.
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3. If 〈ρ(x1, ·)〉 changes sign, then, for any j,

λ
ε,±
j → λ

0,±
j , ε → 0,

ε
d−1

2
∥∥uε,±

j − u0,±
j

∥∥
L2(Gε)

→ 0, ε → 0,

where (λ
0,±
j , u0,±

j ) are the jth eigenpairs of the effective spectral problem

⎧⎨⎩− d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0〈ρ(x1, ·)

〉
u0(x1), x1 ∈ (−1,1),

u0(±1) = 0,

(2.9)

with the function aeff(x1) > 0 defined by (3.3). The spectrum of the effective problem is discrete and
consists of two infinite series

0 < λ
0,+
1 � λ

0,+
2 � · · · � λ

0,+
j � · · · → +∞,

0 > λ
0,−
1 � λ

0,−
2 � · · · � λ

0,−
j � · · · → −∞.

All the eigenvalues λ
0,±
j are simple.

Notice that in the case 〈ρ(x1, ·)〉 > 0 the eigenvalues of the effective problem form a monotone
sequence λ

0,+
j → +∞, as j → +∞, while in the cases 〈ρ(x1, ·)〉 = 0 and when 〈ρ(x1, ·)〉 changes

sign the spectra of the effective spectral problems (2.8) and (2.9) consist of two infinite sequences,
tending to +∞ and −∞ (see Theorems 3.1, 4.1 and Section 5). Thus, one cannot characterize the
asymptotic behavior of the negative part of the spectrum in the case 〈ρ(x1, ·)〉 > 0 in terms of the
effective problem (2.7). The negative part of the spectrum will be considered elsewhere.

Theorem 2.2 follows from stronger results given in Sections 3–5 (see Theorems 3.2, 4.3, 5.1). In all
cases we construct interior correctors, boundary layer correctors in the vicinity of the cylinder bases,
and obtain estimates for the rate of convergence.

3. The case 〈ρ(x1, ·)〉 > 0

3.1. Formal asymptotic expansion

In what follows we denote ∇y = {∂y1 , . . . , ∂yd }T ,

〈
ρ(x1, ·)

〉 = ∫
Y

ρ(x1, y)dy,

A yu ≡ −divy
(
a(x1, y)∇yu

)
, B yu ≡ (

a(x1, y)∇yu,n
)
.

We are looking for a solution (λε, uε) of problem (2.1) in the form

uε(x) = u0(x1) + εu1(x1, y) + ε2u2(x1, y) + ε3u3(x1, y) + · · · ,
λε = λ0 + ελ1 + · · · , y = x

, (3.1)

ε
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where unknown functions uk(x1, y) are 1-periodic in y1. Let us substitute ansatz (3.1) into (2.1) and
collect power-like with respect to ε terms. Equating the coefficient in front of ε−1 to 0, we obtain an
equation for u1(x1, ·), x1 ∈ (−1,1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A yu1(x1, y) = divy a·1(x1, y)
du0

dx1
, y ∈ Y ,

B yu1(x1, y) = −(
a·1(x1, y),n

)du0

dx1
, y ∈ ∂Y ,

u1(x1, ·) − y1-periodic,

where a·k is a kth column of the matrix a(y). Note that ∂Y = S1 × ∂ Q . Particular form of the right-
hand side in the last equation suggests the representation for u1,

u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ v1(x1),

with N1,1 being, for any x1 ∈ (−1,1), a solution of the problem⎧⎪⎨⎪⎩
A y N1,1(x1, y) = divy a·1(x1, y), y ∈ Y ,

B y N1,1(x1, y) = −(
a·1(x1, y),n

)
, y ∈ ∂Y ,

N1,1(x1, ·) − y1-periodic.

(3.2)

Under assumption (H0), N1,1(x1, y) ∈ C1,α([−1,1]; C1,α(Y )).
Similarly, collecting the terms of order ε0 we obtain the problem for u2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A yu2(x1, y) = ∂

∂x1

(
a1·(x1, y)∇y N1,1(x1, y)

du0(x1)

dx1

)
+ ∂

∂x1

(
a11(x1, y)

du0(x1)

dx1

)
+ ∂

∂x1

(
a11(x1, y)

du0(x1)

dx1

)
+ divy

(
a·1(x1, y)

∂

∂x1

(
N1,1(x1, y)u0(x1)

))
+ divy a·1(x1, y)

dv1(x1)

dx1
+ λ0ρ(x1, y)u0(x1),

x1 ∈ (−1,1), y ∈ Y ,

B yu2(x1, y) = −(
a·1(x1, y),n

) ∂

∂x1

(
N1,1(x1, y)u0(x1)

) − (
a·1(x1, y),n

)dv1

dx1
,

x1 ∈ (−1,1), y ∈ ∂Y ,

u2(x1, ·) − y1-periodic.

The compatibility condition for the last problem reads

d

dx1

∫
Y

(
a11(x1, y) + a1·(x1, y)∇y N1,1(x1, y)

)
dy

du0(x1)

dx1
+ λ0

∫
Y

ρ(x1, y)dyu0(x1) = 0,

x1 ∈ (−1,1).

Denoting

aeff(x1) =
∫

a1 j(x1, y)
(
δ1 j + ∂y j N1,1(x1, y)

)
dy, (3.3)
Y
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we derive the following problem for u0:

⎧⎨⎩ A0u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0〈ρ(x1, ·)

〉
u0(x1), x1 ∈ (−1,1),

u0(±1) = 0.

(3.4)

Lemma 3.1. The effective coefficient aeff(x1) ∈ C1,α[−1,1] is positive for all x1 ∈ [−1,1].

Proof. Obviously, aeff(x1) is an element {Aeff(x1)}11 of the matrix Aeff(x1) given by

Aeff
i j (x1) =

∫
Y

(
aij(x1, y) + aik∂yk N1,1

k (x1, y)
)

dy,

where functions N1,1
k solve the problems

⎧⎪⎪⎨⎪⎪⎩
A y N1,1

k (x1, y) = divy a·k(x1, y), k = 2, . . . ,d, y ∈ Y ,

B y N1,1
k (x1, y) = −(

a·k(x1, y),n
)
, y ∈ ∂Y ,

N1,1
k − y1-periodic.

Let us show that the matrix Aeff(x1) is positive definite. Notice that

0 =
∫
Y

∂ym

(
a jm N1,1

i

)
dy −

∫
∂Y

a jm N1,1
i nm dσ .

Reorganizing the last expression yields

0 =
∫
Y

∂ym

(
a jm N1,1

i

)
dy −

∫
∂Y

a jm N1,1
i nm dσ

=
∫
Y

(
a jm∂ym N1,1

i + ∂ym amj N
1,1
i

)
dy −

∫
∂Y

a jm N1,1
i nm dσ

=
∫
Y

(
a jm∂ym N1,1

i − ∂ym

(
amk∂yk N1,1

j

)
N1,1

i

)
dy −

∫
∂Y

a jm N1,1
i nm dσ

=
∫
Y

(
a jm∂ym N1,1

i + amk∂yk N1,1
j ∂ym N1,1

i

)
dy.

Consequently,

Aeff(x1) =
∫
Y

(
aij(x1, y) + aik∂yk N1,1

k (x1, y)
)

dy +
∫
Y

(
a jm∂ym N1,1

i + amk∂yk N1,1
j ∂ym N1,1

i

)
dy

=
∫ (

δim + ∂ym N1,1
i

)
amk

(
δkj + ∂yk N1,1

j

)
dy,
Y
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thus, the matrix Aeff is nonnegative. Let us show that aeff > 0. For an arbitrary nonnegative matrix
C we state that if C11 = 0, then C1k = 0, k = 2, . . . ,d, and, consequently, Ce1 = 0. Assuming that
(δ1 j + ∂y1 N1,1

j ) = 0 we arrive at contradiction with the periodicity of N1,1
1 in y1. Thus, aeff > 0. �

For the reader’s convenience we formulate here the classical result on Sturm–Liouville spectral
problem (see, for instance, [10]).

Theorem 3.1. The eigenvalues of the Sturm–Liouville problem (3.4) are real and form a monotone sequence

0 < λ
0,+
1 < λ

0,+
2 < · · · < λ

0,+
j · · · → +∞.

Moreover, all the eigenvalues are simple.

Remark 3.1. The corresponding eigenfunctions u0,+
i ∈ C2,α[−1,1] of problem (3.4) can be normalized

by

1∫
−1

aeff(x1)
du0,+

i

dx1

du0,+
j

dx1
dx1 = δi j. (3.5)

Our next goal is to derive the equation for the unknown function v1(x1). To this end we analyze
the right-hand side of the equation for u2(x1, y). The structure of the right-hand side suggests the
following representation:

u2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx2
1

+ N2,1(x1, y)
du0(x1)

dx1
+ N2,0(x1, y)u0(x1)

+ N1,1(x1, y)
dv1(x1)

dx1
+ v2(x1), (3.6)

where N2,2, N2,1 and N2,0 are y1-periodic solutions of the problems

⎧⎪⎨⎪⎩
A y N2,2(x1, y) = divy

(
a(x1, y)N1,1(x1, y)

)
+ a1 j(x1, y)

(
δ1 j + ∂y j N1,1(x1, y)

) − aeff(x1), y ∈ Y ,

B y N2,2(x1, y) = −(
a·1(x1, y),n

)
N1,1(x1, y), y ∈ ∂Y ,

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A y N2,1(x1, y) = divy

(
a·1(x1, y)

∂

∂x1
N1,1(x1, y)

)
+ ∂

∂x1

[
a1 j(x1, y)

(
δ1 j + ∂y j N1,1(x1, y)

)] − daeff(x1)

dx1
, y ∈ Y ,

B y N2,1(x1, y) = −(
a·1(x1, y),n

) ∂

∂x1
N1,1(x1, y), y ∈ ∂Y ,

(3.8)

{
A y N2,0(x1, y) = λ0(ρ(x1, y) − 〈

ρ(x1, ·)
〉)

, y ∈ Y ,

B y N2,0(x1, y) = 0, y ∈ ∂Y .
(3.9)
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Equating the coefficients in front of ε1, we get the equation for u3:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A yu3(x1, y) = divy

(
a·1(x1, y)

∂u2

∂x1

)
+ ∂

∂x1

(
a11(x1, y)

∂u1

∂x1

)
+ λ0ρ(x1, y)u1(x1, y) + λ1ρ(x1, y)u0(x1), y ∈ Y ,

B yu3(x1, y) = −(
a·1(x1, y),n

)∂u2

∂x1
.

The compatibility condition for the last equation reads

− d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0〈ρ(x1, ·)

〉
v1(x1) = F (x1) + λ1〈ρ(x1, ·)

〉
u0, (3.10)

where

F (x1) =
2∑

k=0

d

dx1

∫
Y

a1·(x1, y)∇y N2,k(x1, y)
dku0(x1)

dxk
1

dy

+ λ0
∫
Y

ρ(x1, y)N1,1(x1, y)
du0(x1)

dx1
dy. (3.11)

Determining the boundary conditions for v1(x1) at the points x1 = ±1 requires constructing boundary
layer correctors in the vicinity of these points.

Let G− = (0,+∞) × Q and G+ = (−∞,0) × Q be semi-infinite cylinders with the axis directed
along y1 and lateral boundaries Σ− = (0,+∞)× ∂ Q and Σ+ = (−∞,0)× ∂ Q . We denote by w±(y)

solutions to the following boundary value problems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−divy

(
a
(±1, y1 ± δ, y′)∇y w±) = 0, y ∈ G±,(

a
(±1, y1 ± δ, y′)∇y w±,n

) = 0, y ∈ Σ±,

w±(0, y′) = −N1,1(±1,±δ, y′)du0

dx1
(±1), y′ ∈ Q ,

(3.12)

where δ = δ(ε) is the fractional part of ε−1. Due to our assumption (2.2) we have δ = 0 so that
problem (3.12) reads ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−divy
(
a(±1, y)∇y w±) = 0, y ∈ G±,(

a(±1, y)∇y w±,n
) = 0, y ∈ Σ±,

w±(
0, y′) = −N1,1(±1,0, y′)du0

dx1
(±1), y′ ∈ Q .

(3.13)

According to [14] there exists a unique bounded solution w± ∈ H1
loc(G±)∩C1,α(G±) of problem (3.13).

It stabilizes to some constant ŵ± , as |y1| → +∞:∣∣w±(
y1, y′) − ŵ±∣∣ � C0e−γ |y1|, C0, γ > 0,∥∥∇w+∥∥

L2((n,n+1)×Q )
� Ce−γ n, ∀n > 0,∥∥∇w−∥∥

2 � Ce−γ n, ∀n > 0, (3.14)
L ((−(n+1),−n)×Q )
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for some γ > 0. As a boundary condition for v1(x1) we choose the uniquely defined constants ŵ±:
v1(±1) = ŵ± . Thus, the problem for v1 takes the form⎧⎨⎩− d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0〈ρ(x1, ·)

〉
v1(x1) = F (x1) + λ1〈ρ(x1, ·)

〉
u0, x1 ∈ (−1,1),

v1(±1) = ŵ±,

(3.15)

where F (x1) is defined by (3.11).
Due to the Fredholm alternative, problem (3.15) is solvable in H1(−1,1) if and only if the right-

hand side is orthogonal to the kernel of the adjoint operator, that is to the function u0(x1) (see (3.4)).
Thus, taking into account the normalization condition (3.5), we have

λ1 = −λ0

1∫
−1

F (x1)u0(x1)dx1 + λ0
(

aeff(1)
du0

dx1
(1)ŵ+ − aeff(−1)

du0

dx1
(−1)ŵ−

)
. (3.16)

Under our standing assumptions v1 ∈ C2,α[−1,1]. Notice that v1(x1) is defined up to a function of
the form Cu0(x1), where C is a constant. We fix the choice of v1 setting

1∫
−1

v1(x1)u0(x1)dx1 = 0.

In this way the function

u0(x1) + ε

[
N1,1

(
x1,

x′

ε

)
du0(x1)

dx1
+ v1(x1)

]
+ ε

[
w+

(
x1 − 1

ε
,

x′

ε

)
− ŵ+

]
+ ε

[
w−

(
x1 + 1

ε
,

x′

ε

)
− ŵ−

]
satisfies the homogeneous Dirichlet boundary conditions on S±1. We denote

uε,±
bl (x) ≡ ũε,±

bl (y)|y= x
ε

= w±
(

x1 ∓ 1

ε
,

x′

ε

)
− ŵ±, (3.17)

where

ũε,±
bl (y) = w±

(
y1 ∓ 1

ε
, y′

)
− ŵ±.

Remark 3.2. If assumption (2.2) does not hold, then problem (3.12) depends on a parameter δ =
δ(ε) ∈ [0,1) being the fractional part of 1/ε. In this case the boundary layer functions w±(y) also
depend on δ, so do ŵ± , v1 and λ1. Nevertheless, all the results of Theorem 2.2 remain valid. We
assume (2.2) just for presentation simplicity. The dependence on δ(ε) does not create any additional
technical difficulties.

Remark 3.3. We succeeded in constructing exponential boundary layer correctors uε,±
bl owing to the

special structure of the domain Gε . This allowed us to define v1, λ1 and other higher order terms
of the asymptotic expansion (3.1). In the case of a generic smooth bounded domain one is unable
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to construct such a boundary layer due to the disagreement between the periodic structure and the
domain boundary. By this reason in [11] and [12] only two leading terms of the expansion have been
constructed.

3.2. Justification procedure in the case 〈ρ(x1, ·)〉 > 0

Let λ
0,+
j be the jth eigenvalue and u0,+

j the corresponding eigenfunction of problem (3.4). For any
j ∈ N we denote

U ε,+
j (x) = u0,+

j (x1) + εN1,1
(

x1,
x

ε

)du0,+
j (x1)

dx1
+ εv1,+

j (x1) + ε
(
uε,+

bl (x) + uε,−
bl (x)

)
, (3.18)

where u0,+
j , N1,1 and v1,+

j solve problems (3.4), (3.2) and (3.15), respectively (with u0 = u0,+
j and

λ0 = λ
0,+
j ). The boundary layer functions uε,±

bl are defined by (3.17) and (3.13). Let us emphasize

that, due to the presence of the boundary layer terms, the function U ε,+
j satisfies the homogeneous

Dirichlet boundary conditions on S±1, and, as a consequence, belong to the space Hε .
The goal of this section is to prove the following result.

Theorem 3.2. Let conditions (H0)–(H3) be fulfilled, and suppose that 〈ρ(x1, ·)〉 > 0 for any x1 ∈ [−1,1].
If λ

ε,+
j is the jth positive eigenvalue of problem (2.1) and uε,+

j is the corresponding eigenfunction, then the
following statements hold:

(i) For any j ∈ N, there exist ε j and C j > 0 such that∣∣λε,+
j − λ

0,+
j

∣∣ � C jε, ∀ε ∈ (0, ε j].

(ii) For any j ∈ N,

∥∥uε,+
j − U ε,+

j

∥∥
H1(Gε)

� C jεε
d−1

2

where U ε,+
j is defined by (3.18), and (λ

0,+
j , u0,+

j ) is the jth eigenpair of the limit problem (3.4). Moreover,
the “almost eigenfunctions” are almost orthonormal, that is∣∣∣∣ε−(d−1)

|Q |
(
aε∇U ε,+

i ,∇U ε,+
j

)
L2(Gε)

− δi j

∣∣∣∣ � C jε.

(iii) For any j ∈ N, λε,+
j is simple, for sufficiently small ε > 0.

Remark 3.4. The estimates of Theorem 3.2 rely on the presence of the boundary layer correctors in
the asymptotics of uε,+

j . The estimates obtained in [11] and [12] for a generic smooth domain are of

order
√

ε.

Proof of Theorem 3.2. We make use of the following statement about “almost eigenvalues and eigen-
functions” (see [18,19]).

Lemma 3.2. Given a compact self-adjoint operator Kε : Hε → Hε , let ν ∈ R and v ∈ Hε be such that

‖v‖Hε = 1, δ ≡ ∥∥Kε v − νv
∥∥

ε < |ν|.
H
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Then there exists an eigenvalue με
l of the operator Kε such that

∣∣με
l − ν

∣∣ � δ.

Moreover, for any δ1 ∈ (δ, |ν|) there exist coefficients {bε
j } ∈ R satisfying

∥∥∥v −
∑

bε
j uε

j

∥∥∥
Hε

� 2
δ

δ1
,

where the sum is taken over all the eigenvalues of the operator Kε in the segment [ν −δ1, ν +δ1], and {uε
j } are

the corresponding orthonormalized in Hε eigenfunctions. The coefficients bε
j are normalized by

∑ |bε
j |2 = 1.

As v ∈ Hε and ν ∈ R in Lemma 3.2 we use the normalized ansatz (3.18)

U ε,+
j = U ε,+

j

‖U ε,+
j ‖Hε

and the numbers (λ
0,+
j +ελ

1,+
j )−1, respectively. Here λ

1,+
j is defined by formula (3.16) with u0 = u0,+

j .

Lemma 3.3. For any j ∈ N there is ε j > 0 such that

∥∥Kε U ε,+
j − (

λ
0,+
j + ελ

1,+
j

)−1 U ε,+
j

∥∥
Hε � C jε, ε < ε j, (3.19)

for some constant C j that does not depend on ε.

Proof. Letting

Iε ≡ ∥∥Kε U ε,+
j − (

λ
0,+
j + ελ

1,+
j

)−1 U ε,+
j

∥∥
Hε ,

after straightforward rearrangements we have

Iε = sup
w∈Hε

‖w‖Hε =1

∣∣(Kε U ε,+
j − (

λ
0,+
j + ελ

1,+
j

)−1 U ε,+
j , w

)
Hε

∣∣

= ‖U ε,+
j ‖−1

Hε

(λ
0,+
j + ελ

1,+
j )

sup
w∈Hε

‖w‖Hε =1

∣∣((λ0,+
j + ελ

1,+
j

)
KεU ε,+

j − U ε,+
j , w

)
Hε

∣∣

= ‖U ε,+
j ‖−1

Hε

(λ
0,+
j + ελ

1,+
j )

sup
w∈Hε

‖w‖Hε =1

∣∣(λ0,+
j + ελ

1,+
j

)(
ρεU ε,+

j , w
)

L2(Gε)
− (

aε∇U ε,+
j ,∇w

)
L2(Gε)

∣∣.
Integrating by parts and using the boundary conditions for N1,1 yield

Iε = ‖U ε,+
j ‖−1

Hε

(λ
0,+
j + ελ

1,+
j )

sup
w∈Hε

‖w‖ ε =1

∣∣∣∣(AεU ε,+
j − (

λ
0,+
j + ελ

1,+
j

)
ρεU ε,+

j , w
)

L2(Gε)
H
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+ ε

∫
Σε

(
aε
·1(x),n

) ∂

∂x1

(
N1,1(x1, y)

du0,+
j (x1)

dx1
+ v1,+

j (x1)

)∣∣∣∣
y=x/ε

dσ

+ ε

∫
Σε

(
aε∇y

(
ũε,−

bl + ũε,+
bl

)
,n

)
w dσ

∣∣∣∣
= ‖U ε,+

j ‖−1
Hε

(λ
0,+
j + ελ

1,+
j )

sup
w∈Hε

‖w‖Hε =1

∣∣∣∣(ε0 Iε0 + ε1 Iε1 + ε2 Iε2, w
)

L2(Gε)

+ ε

∫
Σε

(
aε
·1(x),n

) ∂

∂x1

(
N1,1(x1, y)

du0,+
j (x1)

dx1
+ v1,+

j (x1)

)∣∣∣∣
y=x/ε

dσ

+ ε

∫
Σε

(
aε∇y

(
ũε,−

bl + ũε,+
bl

)
,n

)
w dσ

∣∣∣∣.
Here

Iε0(x) = I0(x1, y)|y=x/ε = − ∂

∂x1

(
a1·∇y N1,1

du0,+
j

dx1

)
− ∂

∂x1

(
a11

du0,+
j

dx1

)
− λ

0,+
j ρu0,+

j

∣∣
y=x/ε,

Iε1(x) = Iεbl(x) −
{

divx +1

ε
divy

}(
a·1

∂

∂x1

(
N1,1

du0,+
j

dx1
+ v1,+

j

)∣∣∣∣
y=x/ε

)

− λ
1,+
j ρ

(
N1,1

du0,+
j

dx1
+ v1,+

j

)∣∣∣∣
y=x/ε

− λ
1,+
j ρεu0,+

j ,

Iεbl(x) = Aε
(
uε,−

bl + uε,+
bl

) − λ
0,+
j ρε

(
uε,−

bl + uε,+
bl

)
,

Iε2(x) = λ
1,+
j ρ(x1, y)N1,1(x1, y)

du0,+
j

dx1

∣∣∣∣
y=x/ε

+ λ
1,+
j ρ(x1, y)v1,+

j (x1)|y=x/ε

+ λ
1,+
j

(
uε,−

bl (x) + uε,+
bl (x)

)
.

Proposition 3.1. The boundary layer functions uε,±
bl satisfy the estimate

∣∣ε(
Aεuε,±

bl , v
)

L2(Gε)
+ ε

(
aε∇uε,±

bl v,n
)

L2(Σε)
− ελ

0,+
j

(
ρεuε,±

bl , v
)

L2(Gε)

∣∣
� Cεε(d−1)/2‖v‖H1(Gε)

, v ∈ Hε.

Proof. We prove the proposition for uε,−
bl , a similar proof can be performed for uε,+

bl . Due to the

definition of uε,−
bl , up to the terms of higher order,

εAεuε,−
bl (x) = −

(
divx +1

ε
divy

)(
(x1 + 1)

∂a

∂x1
(x1, y)∇yũε,−

bl (y)

)∣∣∣∣ .

y=x/ε
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Integrating by parts yields

ε
(

Aεuε,−
bl , v

)
L2(Gε)

+ ε
(
aε∇yuε,−

bl v,n
)

L2(Σε)

= ε

∫
Gε

(
y1 + 1

ε

)
∂a

∂x1
(−1, y)

(∇yũε,−
bl (y),∇v(x)

)∣∣
y=x/ε dx.

Schwartz inequality and the exponential decay of u−
bl give

∣∣ε(
Aεuε,−

bl , v
)

L2(Gε)
+ ε

(
aε∇yuε,−

bl v,n
)

L2(Σε)

∣∣ � Cεε(d−1)/2‖v‖H1(Gε)

with the constant C depending only on Λ and Q . Then, due to the boundedness of ρ and the
Schwartz inequality,

∣∣ελ
0,+
j

(
ρεuε,±

bl , v
)

L2(Gε)

∣∣ � Cε

∫
Gε

∣∣uε,−
bl

∣∣|v|dx.

By the exponential decay property of u−
bl,

∥∥uε,−
bl

∥∥
L2(Gε)

� C
√

εε
d−1

2 .

The last estimate completes the proof. �
Further analysis essentially relies on the following statement.

Lemma 3.4. Let g(x1, y) ∈ C1,α([−1,1]; Cα(Y )) be such that

〈
g(x1, ·)

〉 = ∫
Y

g(x1, y)dy = 0.

Then, for any w ∈ H1(Gε), the following estimate is valid:

∣∣∣∣ ∫
Gε

g

(
x1,

x

ε

)
w(x)dx

∣∣∣∣ � Cεε
d−1

2 ‖w‖H1(Gε)

with a constant C independent of ε.

Proof. Since 〈g(x1, ·)〉 = 0, then there exists a y1-periodic function ψ(x1, y) ∈ C1,α([−1,1]; C2,α(Y ))

being a solution of the problem

{−�yψ(x1, y) = g(x1, y), y ∈ Y ,(∇ Ψ (x , y),n
) = 0, y ∈ ∂Y .
y 1
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Then we have ∫
Gε

g(x1, y)w(x)dx = ε

∫
Gε

(∇yψ(x1, y),∇w(x)
)∣∣

y=x/ε dx

+ ε

∫
Gε

w(x)divx
(∇yψ(x1, y)

)∣∣
y=x/ε dx

� Cεε
d−1

2 ‖w‖H1(Gε)
. �

Let us turn back to the proof of Lemma 3.3. Since u0,+
j is a solution of problem (3.4), then

I0(x1, y) ∈ C1,α([−1,1]; Cα(Y )) and

∫
Y

I0(x1, y)dy = 0.

Thus, by Lemma 3.4,

∣∣∣∣ ∫
Gε

Iε0(x)w(x)dx

∣∣∣∣ � Cεε
d−1

2 ‖w‖H1(Gε)
. (3.20)

The terms containing uε
bl have been estimated in Proposition 3.1. Integrating by parts the remaining

terms of (Iε1, w)L2(Gε) , using (H0) and the regularity properties of u0,+
j , N1,1 and v1,+

j , one can show
that

∣∣∣∣ε(
Iε1, w

)
L2(Gε)

+ ε

∫
Σε

(
aε
·1,n

) ∂

∂x1

(
N1,1

du0,+
j

dx1
+ v1,+

j

)∣∣∣∣
y=x/ε

w dσ

∣∣∣∣
� Cεε

d−1
2 ‖w‖H1(Gε)

. (3.21)

The quantity (Iε2, w)L2(Gε) is estimated in a similar way:

ε2
∣∣(Iε2, w

)
L2(Gε)

∣∣ � Cε2ε
d−1

2 ‖w‖H1(Gε)
. (3.22)

It remains to estimate the norm ‖U ε,+
j ‖Hε . To this end we compute first the gradient of U ε,+

j :

∂

∂x1
U ε,+

j = du0,+
j (x1)

dx1
+ ε

∂u1,+
j

∂x1
(x1, y) + ∂

∂ y1
N1,1(x1, y)

du0,+
j (x1)

dx1

+ ∂

∂ y1

(
ũε,+

bl (y) + ũε,−
bl (y)

)∣∣
y= x

ε
,

∂
U ε,+

j = ∂
N1,1(x1, y)

du0,+
j (x1) + ∂ (

ũε,+
bl (y) + ũε,−

bl (y)
)∣∣

y= x
ε
, k �= 1,
∂xk ∂ yk dx1 ∂ yk
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where

u1,+
j (x1, y) = N1,1(x1, y)

du0,+
j (x1)

dx1
+ v1,+

j (x1).

It is easy to see that

(
aε∇U ε,+

i ,∇U ε,+
j

) = [
a11(x1, y) + a·1(x1, y)∇y N1,1(x1, y)

]du0,+
i

dx1

du0,+
j

dx1

+ [
a1·(x1, y) + a(x1, y)∇y N1,1(x1, y)

]∇y N1,1(x1, y)
du0,+

i

dx1

du0,+
j

dx1

+ Jεxx(x1, y) + Jεxy(x1, y) + Jεyy(x1, y), y = x

ε

where

Jεxx(x1, y) = εa11
du0,+

i

dx1

du1,+
j

dx1
+ εa11

∂u1,+
i

∂x1

du0,+
j

dx1
+ ε2a11

∂u1,+
i

∂x1

∂u1,+
j

∂x1
,

Jεxy(x1, y) = εa·1∇y N1,1 ∂u1,+
i

∂x1

du0,+
j

dx1
+ εa1·∇y N1,1

∂u1,+
j

∂x1

du0,+
i

dx1
,

Jεyy(x1, y) = a·1∇y
(
ũε,+

bl + ũε,−
bl

)du0,+
i

dx1
+ εa·1∇y

(
ũε,+

bl + ũε,−
bl

)∂u1,+
i

∂x1

+ εa1·∇y
(
ũε,+

bl + ũε,−
bl

)∂u1,+
j

∂x1
+ (

a∇y N1,1,∇y
(
ũε,+

bl + ũε,−
bl

))du0,+
i

dx1

+ (
a∇y N1,1,∇y

(
ũε,+

bl + ũε,−
bl

))du0,+
j

dx1
+ (

a∇y
(
ũε,+

bl + ũε,−
bl

)
,∇y

(
ũε,+

bl + ũε,−
bl

))
.

Using the regularity properties of u0,+
i and N1,1 one can easily see that

∣∣∣∣ ∫
Gε

Jεxx

(
x1,

x

ε

)
dx

∣∣∣∣ � Cε|Gε| � Cεεd−1.

Then, by the periodicity of N1,1 in y1, we have∣∣∣∣ ∫
Gε

Jεxy

(
x1,

x

ε

)
dx

∣∣∣∣ � Cε

∫
Gε

∣∣∇y N1,1
∣∣

y=x/ε dx = Cεε−1εd
∫
Y

∣∣∇y N1,1
∣∣dy � Cεεd−1.

Taking into account the exponential decay of uε,±
bl (see Proposition 3.1) we obtain the estimate

∣∣∣∣ ∫
G

Jεyy

(
x1,

x

ε

)
dx

∣∣∣∣ � Cεεd−1.
ε
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Thus,

∣∣∣∣(aε∇U ε,+
i ,∇U ε,+

j

)
L2(Gε)

−
∫
Gε

{
a11 + a·1∇y N1,1}

y=x/ε

du0,+
i

dx1

du0,+
j

dx1
dx

−
∫
Gε

{
a1· + a∇y N1,1}∇y N1,1

∣∣
y=x/ε

du0,+
i

dx1

du0,+
j

dx1
dx

∣∣∣∣ � Cεεd−1.

Considering (3.3) and Lemma 3.4, we get

∣∣∣∣(aε∇U ε,+
i ,∇U ε,+

j

)
L2(Gε)

−
∫
Gε

aeff(x1)
du0,+

i

dx1

du0,+
j

dx1
dx

∣∣∣∣ � Cεεd−1.

Consequently, in view of the normalization condition (3.5), one has

∣∣(aε∇U ε,+
i ,∇U ε,+

j

)
L2(Gε)

− |Q |εd−1δi j
∣∣ � Cεεd−1, (3.23)

and, for sufficiently small ε,

ε− (d−1)
2

∥∥U ε,+
i

∥∥
Hε � |Q |1/2

2
, ε < εi . (3.24)

Combining estimates (3.20), (3.21), (3.22), (4.35) and Proposition 3.1 yields the desired bound (3.19).
Lemma 3.3 is proved.

Combining Lemma 3.3 and Lemma 3.2, we conclude that for any eigenvalue λ
0,+
j of problem (3.4)

there exists an eigenvalue με,+
q of the operator Kε such that

∣∣με,+
q − (

λ
0,+
j + ελ

1,+
j

)−1∣∣ � c̃ jε.

Considering the fact that λ
ε,+
q = (με,+

q )−1, we have

∣∣λε,+
q − λ

0,+
j

∣∣ � c jε, ε < ε j. (3.25)

Generally speaking, there might be more than one eigenvalue of the operator Aε (problem (2.1))
satisfying inequality (5.14), but we will show that in the case under consideration such an eigenvalue
λ
ε,+
j is unique if ε < ε j .

Lemma 3.5. For any q, the estimate holds

0 < m � λε,+
q � Mq.

Proof. Let us first estimate the norm of the operator Kε ,

∥∥Kε
∥∥ = sup

‖u‖ ε =1

(
Kεu, u

)
Hε = sup

‖u‖ ε =1

(
ρεu, u

)
L2(Gε)

� C‖u‖L2(Gε)

H H
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where C does not depend on ε. Thus, με,+
q � C , for any q, and, consequently, λ

ε,+
q � m with m

independent of ε.
In order to show that the inverse inequality is valid, we recall that for any λ

0,+
j there is an eigen-

value of Kε such that

μ(ε, j) → (
λ

0,+
j

)−1
, ε → 0.

It implies that μ(ε, j) � c j and, moreover, με,+
k � c j for all k � j. Lemma 3.5 is proved. �

It follows from Lemma 3.5 that, up to a subsequence, λ
ε,+
j converges to some λ∗ , as ε → 0.

Lemma 3.6. Suppose that (perhaps for a subsequence)

λ
ε,+
j → λ∗, ε → 0.

Then λ∗ is an eigenvalue of problem (3.4).

There are several different ways of proving Lemma 3.6. Here we expose the proof based on the
technique of convergence in variable spaces with singular measures.

Introduce the “universal domain” Kd = [−1,1]d . For ε small enough, Gε ⊂ Kd . In what follows, for
arbitrary Borel set B ⊂ Kd , we denote

με(B) = ε−(d−1)

|Q |
∫
B

χ(Gε)dx, (3.26)

where χ(Gε) is the characteristic function of Gε; dx is a usual d-dimensional Lebesgue measure.
Then με converges weakly to a measure μ∗ = dx1 × δ(x′), as ε → 0. For any ε, the space of Borel
measurable functions g(x) such that ∫

Kd

(
g(x)

)2
dμε(x) < ∞

is denoted L2(Kd,με).
Let us also recall the definition of the Sobolev space with measure.

Definition 3.1. We say that a function g ∈ L2(Kd,με) belongs to the space H1(Kd,με) if there exists
a vector function z ∈ L2(Kd,με)

d and a sequence ϕk ∈ C∞(Kd) such that

ϕk → g in L2(Kd,με), k → ∞,

∇ϕk → z in L2(Kd,με)
d, k → ∞.

In this case z is called the gradient of g and is denoted by ∇με g .

Since in our case the measure με is a weighted Lebesgue measure, then ∇με g = ∇g and the space
H1(Kd,με) coincides with the usual Sobolev space H1(Gε).

Definition 3.2. We say that a sequence of functions {gε(x)} ⊂ L2(Kd,με) weakly converges in
L2(Kd,με) to a function g(x1) ∈ L2(Kd,μ∗), as ε → 0, if
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(i) ‖gε‖L2(Kd,με) � C ;

(ii) For any ϕ ∈ C∞(Rd) the following limit relation holds:

lim
ε→0

∫
Kd

gε(x)ϕ(x)dμε(x) =
∫
Kd

g(x1)ϕ(x)dμ∗(x).

A sequence {gε} is said to converge strongly to g(x1) in L2(Kd,με), as ε → 0, if it converges weakly
and

lim
ε→0

∫
Kd

gε(x)ψε(x)dμε(x) =
∫
Kd

g(x1)ψ(x1)dμ∗(x)

for any sequence {ψε(x)} weakly converging to ψ(x1) in L2(Kd,με).

Notice that the property of weak compactness of a bounded sequence in a separable Hilbert space
remains valid with respect to the convergence in variable spaces.

In order to prove Lemma 3.6 we use the technique of two-scale convergence in variable spaces
with measure, so for the reader’s convenience we recall the relevant definition.

Definition 3.3. We say that gε ∈ L2(Kd,με) two-scale converges in L2(Kd,με) to a function g̃(x1, y) ∈
L2(Kd × Y ,μ∗ × dy), as ε → 0, if

(i) ∥∥gε
∥∥

L2(Kd,με)
� C, ε > 0;

(ii) The following limit relation holds:

lim
ε→0

∫
Kd

gε(x)ϕ(x)ψ

(
x

ε

)
dμε(x) =

∫
Kd

∫
Y

g̃(x1, y)ϕ(x)ψ(y)dy dμ∗(x)

for any ϕ ∈ C∞(Kd), and ψ(y) ∈ C∞(Y ) periodic in y1.

Proof of Lemma 3.6. By the normalization condition (2.6)∥∥uε,+
j

∥∥
L2(Kd,με)

+ ∥∥∇uε,+
j

∥∥
L2(Kd,με)d � C, (3.27)

thus, up to a subsequence, uε,+
j (x) converges weakly in L2(Kd,με) to a function u∗(x1) ∈ L2(Kd,μ∗),

as ε → 0. Let us show that in fact the convergence is strong. Denote

uε
j (x1) =

∫
εQ

uε,+
j

(
x1, x′)dx′.

Then, due to the Poincaré inequality,∫
εQ

(
uε,+

j (x) − uε
j (x1)

)2
dx′ � Cε2

∫
εQ

∣∣∇(
uε,+

j (x) − uε
j (x1)

)∣∣2
dx′.
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Integrating with respect to x1 and taking into account (3.27), we get∫
Kd

(
uε,+

j (x) − uε
j (x1)

)2
dμε � Cε.

On the other hand, uε
j (x1) is uniformly bounded in H1(−1,1), thus there exists u(x1) such that

lim
ε→0

ε−(d−1)

|Q |
∫
Gε

(
uε

j (x1)
)2

dx =
1∫

−1

(
u(x1)

)2
dx1.

The strong convergence of uε,+
j (x) to u(x1) = u∗(x1) in L2(Kd,με) is the immediate consequence of

the last two formulae.
By Lemma 3.4, ρε(x) converges weakly to 〈ρ(x1, ·)〉 in L2(Kd,με). Thus,

λ
ε,+
j ρε(x)uε,+

j (x) → λ∗
〈
ρ(x1, ·)

〉
u∗(x1) weakly in L2(Kd,με), ε → 0.

Denoting

f ε(x) = λ
ε,+
j ρε(x)uε,+

j (x), f 0(x1) = λ∗
〈
ρ(x1, ·)

〉
u∗(x1),

we arrive at the following boundary value problem:⎧⎪⎪⎨⎪⎪⎩
Aεuε,+

j (x) = f ε(x), x ∈ Gε,

Bεuε,+
j (x) = 0, x ∈ Σε,

uε,+
j

(±1, x′) = 0, x′ ∈ εQ .

(3.28)

The homogenization theorem for locally periodic elliptic equations in variable spaces (see [2,20]) im-
plies that

uε,+
j (x) → u∗(x1) weakly in L2(Kd,με), ε → 0,

aε(x)∇uε,+
j (x) →

{
aeff(x1)

du∗
dx1

(x1),0, . . . 0

}T

weakly in L2(Kd,με)
d, ε → 0,

where u∗(x1) ∈ H1
0(−1,1) is a solution of problem (3.4).

It follows from the normalization condition (2.6), boundedness of ρ(x1, y) and λ
ε,+
j that

1 = ε−(d−1)

|Q |
(
aε∇uε,+

j ,∇uε,+
j

)
L2(Gε)

= λ
ε,+
j

∫
Kd

ρε
(
uε,+

j

)2
dμε

� C j
∥∥uε,+

j

∥∥2
2 .
L (Kd,με)
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Considering the strong convergence of uε,+
j to u∗ in L2(Kd,με), we conclude that u∗ �= 0. Thus,

(λ∗, u∗) is an eigenpair of the effective problem (3.4). Lemma 3.6 is proved. �
Turning back to the proof of Theorem 3.2, suppose that there exist two different eigenvalues

λ
ε,+
i �= λ

ε,+
j satisfying inequality (5.14) with λ0,+ being an eigenvalue of the operator A0. As was

proved in Lemma 3.6, in this case the corresponding eigenfunctions uε,+
i and uε,+

j converge strongly

in L2(Kd,με) to the eigenfunctions u0,+
i and u0,+

j of A0, which correspond to λ0,+ . Let us show that

u0,+
i and u0,+

j are linearly independent. By the normalization condition

λ
ε,+
i

(
ρεuε,+

i , uε,+
j

)
L2(Kd,με)

= δi j .

Notice that, by Lemma 3.4, ρε converges weakly in L2(Kd,με) to its average 〈ρ(x1, ·)〉. Thus, passing
to the limit in the last identity, we obtain

λ0,+
∫
Kd

〈
ρ(x1, ·)

〉
u0,+

i (x1)u0,+
j (x1)dμ∗ = δi j

that implies the linear independence of u0,+
i and u0,+

j . But λ0,+ as an eigenvalue of A0 is simple by

Theorem 3.1. We arrive at contradiction, thus, for any j there exists a unique λ
ε,+
j satisfying (5.14). In

particular, it means that for sufficiently small ε the eigenvalues λ
ε,+
j are simple.

Combining Lemma 3.2, Lemma 3.5 and Lemma 3.6 one obtains the first statement of Theorem 3.2.
The second statement (ii) of Theorem 3.2 follows immediately from Lemma 3.2 and (i). This com-

pletes the proof. �
Theorem 3.2 might be formulated in terms of convergence in variable spaces with measure.

Corollary 3.1. Suppose that conditions (H0)–(H3) hold true and 〈ρ(x1, ·)〉 > 0. Let (λ
ε,+
j , uε,+

j ) and

(λ
0,+
j , u0,+

j ) be eigenpairs of problems (2.1) and (3.4), respectively. Then

(a) For any j ∈ N, λε,+
j → λ

0,+
j , as ε → 0, and

uε,+
j (x) → u0,+

j (x1) strongly in L2(Kd,με), ε → 0

in terms of Definition 3.2.
(b) The convergence of fluxes takes place, that is

aε(x)∇uε,+
j (x) →

{
aeff(x1)

du0,+
j

dx1
(x1),0, . . . ,0

}T

weakly in L2(Kd,με)
d, as ε → 0.

Proof. The first statement follows from the normalization condition (2.6) (see proof of Lemma 3.6).
The convergence of fluxes is a consequence of the homogenization result used while proving
Lemma 3.6. �
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4. The case 〈ρ(x1, ·)〉 = 0

4.1. Formal asymptotic expansion

Using the arguments similar to those in Section 3.4.1, [12], yields

cε−1 � λ
ε,±
1 � Cε−1,

for some constants c and C .
Considering the last estimate, we look for a solution of problem (2.1) in the form

uε(x) = u0(x1) + εu1(x1, y) + ε2u2(x1, y) + · · · , y = x

ε
,

λε = ε−1ν0 + ν1 + · · · , (4.1)

where ν0, ν1, u0(x1), u1(x1, y) and u2(x1, y) are to be determined. We suppose that u1(x1, y) and
u2(x1, y) are 1-periodic in y1. Substituting asymptotic ansatz (4.1) into (2.1) and collecting terms of
order ε−1, we obtain the following equation for the unknown function u1(x1, y):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A yu1(x1, y) = divy a·1(x1, y)

du0(x1)

dx1
+ ν0ρ(x1, y)u0(x1), y ∈ Y ,

B yu1(x1, y) = −ai1(x1, y)ni
du0(x1)

dx1
, y ∈ ∂Y ,

u1(x1, y) is 1-periodic in y1.

Note that, since 〈ρ(x1, ·)〉 = 0, the compatibility condition is satisfied. The structure of the right-hand
side of the last equation suggests the following representation for u1(x1, y):

u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ ν0N1,0(x1, y)u0(x1) + v1(x1). (4.2)

Then the functions N1,1 and N1,0 are 1-periodic in y1 solutions of the problems

⎧⎪⎨⎪⎩
A y N1,1(x1, y) = divy a·1(x1, y), y ∈ Y ,

B y N1,1(x1, y) = −ai1(x1, y)ni, y ∈ ∂Y ,

N1,1(x1, y) is 1-periodic in y1,

(4.3)

⎧⎪⎨⎪⎩
A y N1,0(x, y) = ρ(x1, y), y ∈ Y ,

B y N1,0(x1, y) = 0, y ∈ ∂Y ,

N1,0(x1, y) is 1-periodic in y1.

(4.4)

Under assumption (H0) the functions N1,1(x1, y), N1,0(x1, y) belong to the space C1,α([−1,1] × Y ).
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Similarly, substituting (4.1) into (2.1) and collecting the terms in front of ε0, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A yu2(x1, y) = divy

(
a·1(x1, y)

∂u1

∂x1
(x1, y)

)
+ ∂

∂x1

(
a1·(x1, y)∇yu1(x1, y)

)
+ ∂

∂x1

(
a11(x1, y)

du0(x1)

dx1

)
+ ν1ρ(x1, y)u0(x1)

+ ν0ρ(x1, y)u1(x1), y ∈ Y ,

B yu2(x1, y) = −ai1(x1, y)ni
∂

∂x1
u1(x1, y), y ∈ ∂Y ,

u2(x1, y) is 1-periodic in y1.

(4.5)

The compatibility condition for the last problem reads

d

dx1

∫
Y

(
a11 + a1·(x1, y)∇y N1,1(x1, y)

)du0(x1)

dx1
dy

+ ν0 d

dx1

∫
Y

a1·(x1, y)∇y N1,0(x1, y)u0(x1)dy

+ ν0
∫
Y

ρ(x1, y)N1,1(x1, y)dy
du0(x1)

dx1

+ (
ν0)2

∫
Y

ρ(x1, y)N1,0(x1, y)u0(x1)dy = 0. (4.6)

Rearranging the last three terms in (4.6) gives

ν0 d

dx1

∫
Y

a1·(x1, y)∇y N1,0(x1, y))u0(x1)dy

+ ν0
∫
Y

ρ(x1, y)N1,1(x1, y)dy
du0(x1)

dx1

+ (
ν0)2

∫
Y

ρ(x1, y)N1,0(x1, y)u0(x1)dy

= (
ν0)2

u0(x1)

∫
Y

(
a(x1, y)∇y N1,0,∇y N1,0)dy

+ ν0u0(x1)
d

dx1

∫ (
a(x1, y)∇y N1,1,∇y N1,0)dy.
Y
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Denote

C(x1) =
∫
Y

(
a(x1, y)∇y N1,0,∇y N1,0)dy, (4.7)

B(x1) = ∂

∂x1

∫
Y

(
a(x1, y)∇y N1,1,∇y N1,0)dy. (4.8)

In view of the regularity properties of N1,1 and N1,0, C ∈ C1,α[−1,1] and B ∈ Cα[−1,1]. Thus, (4.6)
supplemented with an appropriate boundary condition takes the form of a quadratic operator pencil⎧⎪⎪⎪⎨⎪⎪⎪⎩

Π
(
ν0)u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)
+ ν0B(x1)u0(x1)

− (
ν0)2

C(x1)u0(x1) = 0, x1 ∈ (−1,1),

u0(−1) = u0(1) = 0.

(4.9)

The variational formulation of problem (4.9) reads: find u0 ∈ H1
0(−1,1), u0 �= 0, such that

1∫
−1

aeff du0

dx1

dv

dx1
dx1 + ν0

1∫
−1

Bu0 v dx1 − (
ν0)2

1∫
−1

Cu0 v dx1 = 0, (4.10)

for any v ∈ H1
0(−1,1).

The next theorem characterizes the spectrum of the quadratic operator pencil (4.9).

Theorem 4.1. The spectrum of problem (4.9) is discrete. The eigenvalues are real, algebraically and geometri-
cally simple, and form two infinite sequences

0 < ν0,+
1 < ν0,+

2 < · · · < ν0,+
j · · · → +∞,

0 > ν0,−
1 > ν0,−

2 > · · · > ν0,−
j · · · → −∞.

The corresponding eigenfunctions can be normalized by

1∫
−1

aeff du0,±
i

dx1

du0,±
j

dx1
dx1 + ν0,±

i ν0,±
j

1∫
−1

Cu0,±
i u0,±

j dx1 = δi j, (4.11)

where aeff and C are defined by (3.3) and (4.7), respectively.

Proof. The existence of infinite number of eigenvalues is given by the following classical theorem (see
[3,8]).

Theorem 4.2 (Keldysh theorem). Given compact operators T and H, such that H is a normal operator with
Ker H = {0} (H H∗ = H∗H) and H2 is self-adjoint. Consider the Keldysh operator pencil

B(λ) = Id − λT H − λ2 H2,

where Id is the identity operator. The following statements hold:
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1. For any δ > 0, there is only finite number of eigenvalues outside the angle

{
λ:

∣∣∣∣argλ − kπ

2

∣∣∣∣ < δ

}
, k = 0,2;

2. Denote N+(r) the number of eigenvalues counted according to their multiplicity of the operator H2 in the
interval (1/r2,+∞). Let Nk(r, B(λ)) be a number of eigenvalues of the operator pencil B(λ) contained in
the sector

{
λ:

∣∣∣∣argλ − kπ

2

∣∣∣∣ <
π

4
, |λ| < r

}
, k = 0,1,2,3.

If

lim inf
r→∞

log N+(r)

log r
< ∞, (4.12)

then

lim inf
r→∞

∣∣∣∣ N2k(r, B(λ))

N+(r)
− 1

∣∣∣∣ = 0, k = 0,1.

In our case the operator pencil has the form

Π
(
ν0) = A0 + ν0B(x1)Id − (

ν0)2
C(x1)Id.

Since (A0)−1 is a self-adjoint compact positive operator from L2(−1,1) into itself, then there exists
a self-adjoint positive operator S = (A0)−1/2. It is compact as an operator from L2(−1,1) into itself,
bounded if we consider it as an operator from L2(−1,1) into H1

0(−1,1), and compact if it acts on
H1

0(−1,1) with values in H1
0(−1,1). We apply the operator S to both sides of the operator pencil

Π(ν0). As a result we obtain

Π̃
(
ν0) = Id + ν0 SB(x1)S − (

ν0)2
SC(x1)S. (4.13)

One can check that H2 = SC(x1)S : L2(−1,1) → L2(−1,1) is a self-adjoint compact positive operator.
Then H = (SC(x1)S)1/2 is also compact positive and self-adjoint with Ker H = {0}. Introducing

T = SB(x1)S
(

SC(x1)S
)−1/2

,

we see that T is a compact operator from L2(−1,1) into itself. Indeed, SB(x1)S is a compact operator
from L2(−1,1) into H1

0(−1,1), and H−1 = (SC(x1)S)−1/2 : H1
0(−1,1) → L2(−1,1) is bounded.

The spectrum of the quadratic operator pencil (4.13) is discrete and consists of eigenvalues of finite
multiplicity possibly accumulating at ∞.

Let us estimate the number of eigenvalues of H2 in the interval (1/r2,+∞). Let L be a subspace
of L2(−1,1). Then due to the minimax principle, the kth eigenvalue of H2 can be found from the
formula
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ν+
k = min

L
max

x∈L\{0}
(H2x, x)L2(−1,1)

(x, x)L2(−1,1)

� C min
L

max
x∈L\{0}

(Sx, Sx)L2(−1,1)

(x, x)L2(−1,1)

= Cμ+
k ,

where μ+
k is the kth eigenvalue of the operator (A0)−1. Similarly, since C(x1) is bounded from below,

we get the lower bound for ν+
k , and, consequently,

Cμ+
k � ν+

k � Cμ+
k .

Thus, we conclude that the number of eigenvalues of the operators H2 and (A0)−1 in (1/r2,+∞) is
asymptotically equivalent. The following inequality characterizes the growth of the eigenvalues of the
Sturm–Liouville problem for the operator A0 (see, for example, [9,10]):

C1π
2k2

4
� 1

μ+
k

� C2π
2k2

4
,

where the constants C1 and C2 are lower and upper bounds for aeff(x1), respectively.
Thus, we conclude that the number of eigenvalues of H2 in the interval (1/r2,+∞) is proportional

to r, and, consequently, condition (4.12) is satisfied. By the Keldysh theorem, N0(r, Π̃(ν0)), as well as
N2(r, Π̃(ν0)), goes to infinity, as r → ∞, thus, it is true also for Π(ν0).

Let us show that the eigenvalues of problem (4.9) are real. Suppose

ν0 = �(
ν0) + i�(

ν0),
where �(ν0) and �(ν0) represent the real and imaginary parts of ν0, respectively. Substituting the
last expression in (4.10) and setting v = u0 we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1∫
−1

aeff
∣∣∣∣du0

dx1

∣∣∣∣2

dx1 + �(
ν0) 1∫

−1

B
∣∣u0

∣∣2
dx1 − [(�(

ν0))2 − (�(
ν0))2] 1∫

−1

C
∣∣u0

∣∣2
dx1 = 0,

�(
ν0) 1∫

−1

B
∣∣u0

∣∣2
dx1 − 2�(

ν0)�(
ν0) 1∫

−1

C
∣∣u0

∣∣2
dx1 = 0.

By our assumption �(ν0) �= 0. Thus, it follows from the last equation that

1∫
−1

B
∣∣u0

∣∣2
dx1 = 2�(

ν0) 1∫
−1

C
∣∣u0

∣∣2
dx1,

and, therefore,

1∫
aeff

∣∣∣∣du0

dx1

∣∣∣∣2

dx1 + [(�(
ν0))2 + (�(

ν0))2] 1∫
C
∣∣u0

∣∣2
dx1 = 0
−1 −1
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that contradicts the positiveness of aeff and C, and, consequently, ν0 is real. In this way the existence
of two infinite sequences of eigenvalues tending to ±∞ is proved.

Let us show that the algebraic multiplicity of ν0 is equal to 1. Suppose there exists ϕ1 ∈ H1
0(−1,1)

such that

Π
(
ν0)ϕ1(x1) = −B(x1)u0(x1) + 2ν0C(x1)u0(x1),

where Π is defined by (4.9). Using ϕ1 as a test function in (4.10) and substituting the resulting
equality into the last formula yields

2ν0

1∫
−1

C
(
u0)2

dx1 −
1∫

−1

B
(
u0)2

dx1 = 0.

In view of (4.9),

0 = 2
(
ν0)2

1∫
−1

C
(
u0)2

dx1 − ν0

1∫
−1

B
(
u0)2

dx1

= (
ν0)2

1∫
−1

C
(
u0)2

dx1 +
1∫

−1

aeff
∣∣∣∣du0

dx1

∣∣∣∣2

dx1 > 0.

We arrive at contradiction. Thus, the eigenvalues of problem (4.9) are algebraically simple.
Suppose the geometric multiplicity of ν0 is greater than 1, in other words, there exist two linearly

independent eigenfunctions u0
1 and u0

2 corresponding to the same ν0. Choosing C1 and C2 in such a
way that the function ũ0 = C1u0

1 + C2u0
2 satisfies the boundary conditions

ũ0(−1) = dũ0

dx1
(−1) = 0,

we see that, by the uniqueness result for ordinary differential equations, ũ0 = 0, that contradicts the
linear independence of u0

1 and u0
2. �

We turn back to constructing the asymptotic expansion. The specific form of the right-hand side
of (3.6) suggests the following representation for u2(x1, y):

u2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx2
1

+ N2,1(x1, y)
du0(x1)

dx1

+ ν0q2(x1, y)
du0(x1)

dx1
+ ν0N2,0(x1, y)u0(x1) + ν1N1,0u0

+ (
ν0)2

r2(x1, y)u0(x1) + N1,1(x1, y)
dv1(x1)

dx1

+ ν0N1,0(x1, y)v1(x1) + v2(x1), (4.14)

where N2,2, N2,1 and N2,0 are y1-periodic solutions of the problems
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⎧⎪⎨⎪⎩
A y N2,2(x1, y) = divy

(
a(x1, y)N1,1(x1, y)

)
+ a1 j(x1, y)

(
δ1 j + ∂y j N1,1(x1, y)

) − aeff(x1), y ∈ Y ,

B y N2,2(x1, y) = −(
a·1(x1, y),n

)
N1,1(x1, y), y ∈ ∂Y ,

(4.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A y N2,1(x1, y) = divy

(
a·1(x1, y)

∂

∂x1
N1,1(x1, y)

)
+ ∂

∂x1

[
a1 j(x1, y)

(
δ1 j + ∂y j N1,1(x1, y)

)] − daeff(x1)

dx1
, y ∈ Y ,

B y N2,1(x1, y) = −(
a·1(x1, y),n

) ∂

∂x1
N1,1(x1, y), y ∈ ∂Y ,

(4.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A y N2,0(x1, y) = divy

(
a·1(x1, y)

∂

∂x1
N1,0(x1, y)

)
+ ∂

∂x1

(
a1·(x1, y)∇y N1,0(x1, y)

)
− d

dx1

∫
∂Y

a1·(x1, y)∇y N1,0(x1, y)dy, y ∈ Y ,

B y N2,0(x1, y) = (
a·1(x1, y),n

) ∂

∂x1
N1,0(x1, y), y ∈ ∂Y .

(4.17)

The y1-periodic functions q2(x1, y) and r2(x1, y) solve the problems⎧⎪⎨⎪⎩
A yq2(x1, y) = divy

(
a·1(x1, y)N1,0(x1, y)

) + a1·(x1, y)∇y N1,0(x1, y)

+ ρ(x1, y)N1,1(x1, y), y ∈ Y ,

B yq2(x1, y) = −(
a·1(x1, y),n

)
N1,0(x1, y), y ∈ ∂Y ,

(4.18)

{
A yr2(x1, y) = ρ(x1, y)N1,0(x1, y) − C(x1), y ∈ Y ,

B yr2(x1, y) = 0, y ∈ ∂Y .
(4.19)

Bearing in mind (4.3) and (4.4), we see that the compatibility condition for (4.18) is satisfied. Similarly,
by (4.7), problem (4.19) is solvable.

Our next goal is to obtain an equation for v1(x1). To this end we substitute (4.1) into (2.1) and
collect terms of order ε1 in the equation and of order ε2 in the boundary condition. In this way we
get the problem for u3(x1, y),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A yu3(x1, y) = divy

(
a·1(x1, y)

∂u2

∂x1
(x1, y)

)
+ ∂

∂x1

(
a1·(x1, y)∇yu2(x1, y)

)
+ ∂

∂x1

(
a11(x1, y)

du1(x1)

dx1

)
+ ν1ρ(x1, y)u1(x1) + ν0ρ(x1, y)u2(x1), y ∈ Y ,

B yu3(x1, y) = −ai1(x1, y)ni
∂

∂x1
u2(x1, y), y ∈ ∂Y ,

3

(4.20)
u (x1, y) is 1-periodic in y1.
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The compatibility condition for the last problem reads

− d

dx1

(
aeff dv1

dx1

)
+ ν0Bv1 − (

ν0)2
Cv1 = F1 − ν1Bu0 + 2ν1ν0Cu0, (4.21)

where B(x1) and C(x1) are defined by (4.8) and (4.7), respectively, and

F1(x1) = d

dx1

∫
Y

a1·(x1, y)∇yũ2(x1, y)dy

+ d

dx1

∫
Y

a11(x1, y)
∂ ũ1

∂x1
(x1, y)dy

+ ν0
∫
Y

ρ(x1, y)ũ2(x1, y)dy. (4.22)

Here for brevity we denote

ũ1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ ν0N1,0(x1, y)u0(x1),

ũ2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx2
1

+ N2,1(x1, y)
du0(x1)

dx1

+ ν0q2(x1, y)
du0(x1)

dx1
+ ν0N2,0(x1, y)u0(x1)

+ (
ν0)2

r2(x1, y)u0(x1)

with the functions N2,2, N2,1, N2,0,q2, r2 defined in (3.7), (3.8), (3.9), (4.18), (4.19).
As in Section 3, determining the boundary conditions for v1(x1) requires constructing the bound-

ary layer correctors in the neighborhood of the points x = ±1.
Denote, as before, G− = (0,+∞) × Q and G+ = (−∞,0) × Q the semi-infinite cylinders with the

axis directed along y1 and lateral boundaries Σ− = (0,+∞)×∂ Q and Σ+ = (−∞,0)×∂ Q . Consider
the following boundary value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−divy
(
a
(±1, y1 + δ, y′)∇y w±) = 0, y ∈ G±,(

a
(±1, y1 + δ, y′)∇y w±,n

) = 0, y ∈ Σ±,

w±(
0, y′) = −N1,1(±1, δ, y′)du0

dx1
(±1) − ν0N1,0(±1, δ, y′)u0(±1),

(4.23)

with δ being the fractional part of ε−1, which is equal to zero in view of condition (2.2). There exists
a unique bounded solution w± ∈ C1,α(G±) of problem (4.23) stabilizing to some constant ŵ± , as
|y1| → +∞ (see [14]):

∣∣w±(
y1, y′) − ŵ±∣∣ � C0e−γ |y1|, C0, γ > 0,∥∥∇w+∥∥

L2((n,n+1)×Q )
� Ce−γ n, ∀n � 0,∥∥∇w−∥∥

2 � Ce−γ n, ∀n � 0, (4.24)
L ((−(n+1),−n)×Q )
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for some γ > 0. As a boundary condition for v1(x1) we choose the uniquely defined constants ŵ±:
v1(±1) = ŵ± . Thus, the problem for v1 takes the form{

Π
(
ν0)v1(x1) = F1 − ν1Bu0 + 2ν1ν0Cu0, x1 ∈ (−1,1),

v1(±1) = ŵ±.
(4.25)

Since Π(ν0)u0 = 0, problem (4.25) is solvable if the right-hand side is orthogonal to u0, that is

1∫
−1

F1u0dx1 = ν1

1∫
−1

B
(
u0)2

dx1 − 2ν0ν1

1∫
−1

C
(
u0)2

dx1 + F ,

where the constant F is given by

F =
(

aeff(1)
du0

dx1
(1)ŵ+ − aeff(−1)

du0

dx1
(−1)ŵ−

)
. (4.26)

It follows easily from (4.9) that

1∫
−1

B(x1)
(
u0(x1)

)2
dx1 − 2ν0

1∫
−1

C(x1)
(
u0(x1)

)2
dx1 �= 0.

Thus, ν1 can be defined in such a way that (4.25) possesses a solution. Namely,

ν1 =
{ 1∫

−1

F1u0dx1 − F

}{ 1∫
−1

[
B(x1) − 2ν0C(x1)

](
u0(x1)

)2
dx1

}−1

. (4.27)

We fix the choice of the function v1 by setting

1∫
−1

v1(x1)u0(x1)dx1 = 0.

Note that, in view of the regularity assumptions (H0), v1 ∈ C2,α[−1,1], α > 0. In this way the function

u0(x1) + εN1,1
(

x1,
x

ε

)
du0(x1)

dx1
+ εν0N1,0

(
x1,

x

ε

)
u0(x1) + εv1(x1) + εuε

bl(x),

with

uε
bl(x) = ũε

bl(y)|y=x/ε

=
(

w+
(

y1 − 1

ε
, y′

)
− ŵ+

)
+

(
w−

(
y1 + 1

ε
, y′

)
− ŵ−

)∣∣∣∣
y=x/ε

, (4.28)

satisfies the homogeneous Dirichlet boundary conditions at x1 = ±1.
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4.2. Justification procedure in the case 〈ρ(x1, ·)〉 = 0

Let ν0,±
j be the eigenvalues and u0,±

j the corresponding eigenfunctions of problem (4.9). For any
j ∈ N we denote

U ε,±
j (x) = u0,±

j (x1) + εN1,1
(

x1,
x

ε

)du0,±
j (x1)

dx1
+ εν0,±

j N1,0
(

x1,
x

ε

)
u0,±

j (x1)

+ εv1,±
j (x1) + εuε

bl(x), (4.29)

where u0,±
j , N1,1, N1,0 and v1,±

j solve problems (4.9), (4.3), (4.4) and (4.25), respectively (with u0 =
u0,±

j and ν0 = ν0,±
j ). The boundary layer corrector uε

bl is defined by (4.28) and (4.23).

Let us emphasize that, due to the presence of the boundary layer terms, the function U ε,±
j sat-

isfies the homogeneous Dirichlet boundary conditions on S±1, and, as a consequence, belong to the
space Hε .

We denote by ν1,±
j a constant defined by (4.27) with u0 = u0,±

j and ν0 = ν0,±
j . For the readers

convenience we recall its definition.

ν1,±
j =

{ 1∫
−1

F1u0,±
j dx1 − F

}{ 1∫
−1

[
B − 2ν0,±

j C
](

u0,±
j

)2
dx1

}−1

, (4.30)

where (ν0,±
j , u0,±

j ) are eigenpairs of problem (4.9), the functions B(x1),C(x1) are defined by (4.8)

and (4.7), respectively; the function F1(x1) and the constant F are given by (4.22) and (4.26) with

u0 = u0,±
j and ν0 = ν0,±

j .
The goal of this section is to prove the following result.

Theorem 4.3. Let conditions (H0)–(H3) be fulfilled, and suppose that 〈ρ(x1, y)〉 = 0 for any x1 ∈ [−1,1]. If
(λ

ε,±
j , uε,±

j ) are eigenpairs of problem (2.1), and (ν0,±
j , u0,±

j ) are eigenpairs of the operator pencil (4.9), then

(i) For any j, there exist ε j and C j > 0 such that

∣∣λε,±
j − (

ε−1ν0,±
j + ν1,±

j

)∣∣ � C jε, ∀ε ∈ (0, ε j].

Here ν1,±
j is defined in (4.30).

(ii) For any j,

∥∥uε,±
j − U ε,±

j

∥∥
H1(Gε)

� C jεε
d−1

2 ,

where U ε,±
j is defined by (4.29). Moreover, the “almost eigenfunctions” satisfy the almost orthogonality

and normalization condition∣∣∣∣ε−(d−1)

|Q |
(
aε∇U ε,±

i ,∇U ε,±
j

)
L2(Gε)

− δi j

∣∣∣∣ � C jε.

(iii) For any j ∈ N, λε,±
j are simple, for sufficiently small ε > 0.
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Proof of Theorem 3.2. As in Section 3, we make use of Lemma 3.2. Denote

U ε,±
j = ∥∥U ε,±

j

∥∥−1
Hε U ε,±

j .

Lemma 4.1. For any j ∈ N there is ε j > 0 such that

∥∥Kε U ε,±
j − (

ε−1ν0,±
j + ν1,±

j

)−1 U ε,±
j

∥∥
Hε � C jε

2, ε < ε j, (4.31)

where the constant C j depends only on j.

Proof. After straightforward rearrangements and integration by parts we have

Iε ≡ ∥∥Kε U ε,±
j − (

ε−1ν0,±
j + ν1,±

j

)−1 U ε,±
j

∥∥
Hε

= ‖U ε,±
j ‖−1

Hε

|ε−1ν0,±
j + ν1,±

j | sup
w∈Hε

‖w‖Hε =1

∣∣∣∣(AεU ε,±
j , w

)
L2(Gε)

− (
ε−1ν0,±

j + ν1,±
j

)(
ρεU ε,±

j , w
)

L2(Gε)

+
∫
Σε

(
aε∇U ε,±

j ,n
)

w dσ

∣∣∣∣.
It is convenient to use the notation

U ε,±
j (x) = u0,±

j (x1) + εu1,±
j (x1, y)|y=x/ε + εuε

bl(x).

Recall that u0,±
j (x1) ∈ C2,α[−1,1] and u1,±

j (x1, y) ∈ C1,α([−1,1] × Y ). In this way we obtain

Iε = ‖U ε,±
j ‖−1

Hε

|ε−1ν0,±
j + ν1,±

j | sup
w∈Hε

‖w‖Hε =1

∣∣∣∣ ∫
Gε

Aε

(
u0,±

j (x1) + εu1,±
j

(
x1,

x

ε

))
w(x)dx

− (
ε−1ν0,±

j + ν1,±
j

)∫
Gε

ρε(x)
(
u0,±

j (x1) + εu1,±
j (x1, y)

∣∣
y=x/ε

)
w(x)dx

+ ε

∫
Σε

(
aε
·1,n

)∂u1,±
j

∂x1
(x1, y)

∣∣
y=x/ε w dσ + ε

(
Aεuε

bl, w
)

L2(Gε)

− (
ν0,±

j + εν1,±
j

)(
ρεuε

bl, w
)

L2(Gε)
+

∫
Σε

(
aε
·1,n

)∇yũε
bl(y)

∣∣
y=x/ε w dσ

∣∣∣∣.
The last three terms containing uε

bl can be estimated exactly like in Lemma 3.1,

∣∣ε(
Aεuε

bl, w
)

L2(Gε)
+ ε

(
aε∇uε

bl w,n
)

L2(Σε)
− (

ν0,±
j + εν1,±

j

)(
ρεuε

bl, w
)

L2(Gε)

∣∣
� Cεε(d−1)/2‖w‖H1(G ), w ∈ Hε. (4.32)
ε
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Then ∫
Gε

Aε

(
u0,±

j (x1) + εu1,±
j

(
x1,

x

ε

))
w(x)dx

− (
ε−1ν0,±

j + ν1,±
j

) ∫
Gε

ρε(x)
(
u0,±

j (x1) + εu1,±
j (x1, y)

∣∣
y=x/ε

)
w(x)dx

+ ε

∫
Σε

(
aε
·1,n

)∂u1,±
j

∂x1
(x1, y)

∣∣
y=x/ε w dσ

= ε0(Iε0, w
)

L2(Gε)
+ ε1(Iε1, w

)
L2(Gε)

+ ε

∫
Σε

(
aε
·1,n

)∂u1,±
j

∂x1
(x1, y)

∣∣
y=x/ε w dσ ;

here

Iε0(x) = I0(x1, y)|y=x/ε

= − ∂

∂x1

(
a1·(x1, y)∇yu1,±

j (x1, y)
) − ∂

∂x1

(
a11(x1, y)

du0,±
j

dx1
(x1)

)
− ν1,±

j ρ(x1, y)u0,±
j (x1) − ν0,±

j u1,±
j (x1, y)ρ(x1, y)|y=x/ε,

Iε1(x) = −
{

divx +1

ε
divy

}(
a·1(x1, y)

∂u1,±
j

∂x1
(x1, y)

)
− ν1,±

j ρ(x1, y)u1,±
j (x1, y)|y=x/ε.

By (4.9), the average of I0(x1, y) ∈ C1,α([−1,1]; Cα(Y )) over Y is equal to zero, thus, by Lemma 3.4

∣∣(Iε0, w
)

L2(Gε)

∣∣ � Cεε
d−1

2 ‖w‖H1(Gε)
.

Integrating by parts and bearing in mind the regularity properties of u1,±
j and assumption (H0), one

can see that

∣∣∣∣(Iε1, w
)

L2(Gε)
+

∫
Σε

(
aε
·1,n

)∂u1,±
j

∂x1
(x1, y)

∣∣
y=x/ε w dσ

∣∣∣∣
=

∣∣∣∣ ∫
Gε

(
aε
·1(x),∇w

)∂u1,±
j

∂x1

∣∣∣∣
y=x/ε

dx − ν1,±
j

∫
Gε

ρε(x)u1,±
j

(
x1,

x

ε

)
w(x)dx

∣∣∣∣
� Cε

d−1
2 ‖w‖H1(Gε)

.

Thus,

Iε � C
‖U ε,±

j ‖−1
Hε

|ε−1ν0,± + ν1,±|εε
d−1

2 . (4.33)

j j
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Let us estimate ‖U ε,±
j ‖Hε . Rearranging the terms in the expression for (U ε,±

i , U ε,±
j )Hε yields

(
U ε,±

i , U ε,±
j

)
Hε = Jεxx + Jεxy + Jεyx + Jεyy,

where

Jεxx =
∫
Gε

aε
11

du0,±
i

dx1

du0,±
j

dx1
dx + ε

∫
Gε

aε
11

du0,±
i

dx1

∂u1,±
j

∂x1
(x1, y)dx

+ ε

∫
Gε

aε
11

du0,±
j

dx1

∂u1,±
i

∂x1
(x1, y)dx + ε2

∫
Gε

aε
11

∂u1,±
i

∂x1

∂u1,±
j

∂x1
(x1, y)dx,

Jεxy =
∫
Gε

(
aε
·1,∇y N1,1)∣∣

y=x/ε

du0,±
i

dx1

du0,±
j

dx1
dx +

∫
Gε

(
aε
·1,∇yũε

bl

)∣∣
y=x/ε

du0,±
i

dx1
dx

+ ν0,±
j

∫
Gε

(
aε
·1,∇y N1,0)∣∣

y=x/ε

du0,±
i

dx1
u0,±

j dx + ε

∫
Gε

(
aε
·1,∇yu1,±

j

)∣∣
y=x/ε

∂u1,±
i

∂x1
(x1, y)dx

+ ε

∫
Gε

(
aε
·1,∇yũε

bl

)∣∣
y=x/ε

∂u1,±
i

∂x1
(x1, y)dx,

Jεyx =
∫
Gε

(
aε
·1,∇y N1,1)∣∣

y=x/ε

du0,±
i

dx1

du0,±
j

dx1
dx +

∫
Gε

(
aε
·1, ũε

bl

)∣∣
y=x/ε

du0,±
j

dx1
dx

+ ν0,±
i

∫
Gε

(
aε
·1,∇y N1,0)∣∣

y=x/ε

du0,±
j

dx1
u0,±

i dx + +ε

∫
Gε

(
aε
·1,∇yu1,±

i

)∣∣
y=x/ε

∂u1,±
j

∂x1
(x1, y)dx

+ ε

∫
Gε

(
aε
·1,∇yũε

bl

)∣∣
y=x/ε

∂u1,±
j

∂x1
(x1, y)dx,

Jεyy =
∫
Gε

(
aε∇y N1,1,∇y N1,1)∣∣

y=x/ε

du0,±
i

dx1

du0,±
j

dx1
dx

+ ν0,±
i

∫
Gε

(
aε∇y N1,0,∇y N1,1)∣∣

y=x/εu0,±
i

du0,±
j

dx1
dx

+ ν0,±
j

∫
Gε

(
aε∇y N1,0,∇y N1,1)∣∣

y=x/εu0,±
j

du0,±
i

dx1
dx

+ ν0,±
i ν0,±

j

∫
G

(
aε∇y N1,0,∇y N1,0)∣∣

y=x/εu0,±
i u0,±

j dx.
ε
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There are several “typical” terms in the expressions for J εxx , Jεxy , Jεyx and Jεyy to be estimated. For

example, using the regularity properties of a(x1, y), u0,±
j and u1,±

j we get

∣∣∣∣ε ∫
Gε

aε
11

du0,±
i

dx1

∂u1,±
j

∂x1
(x1, y)dx

∣∣∣∣ � Cε|Gε| = Cεεd−1.

Then, taking into account the exponential decay of ũε
bl one can see that

∣∣∣∣ε ∫
Gε

(
a·1,∇yũε

bl

)∣∣
y=x/ε

du0,±
i

dx1
dx

∣∣∣∣ � Cεd

1/ε∫
−1/ε

dx1

∫
Q

∣∣∇yũε
bl

∣∣dy′ � Cεεd−1.

In view of boundedness of ∂u1,±
j /∂x1 and periodicity of N1,1, N1,0

∣∣∣∣ε ∫
Gε

(
a·1,∇yu1,±

j

)∣∣
y=x/ε

∂u1,±
i

∂x1
(x1, y)dx

∣∣∣∣
� Cε

∫
Gε

[∣∣∇y N1,1(x1, y)
∣∣ + ∣∣∇y N1,0(x1, y)

∣∣]∣∣
y=x/ε dx

� Cεd max
x1∈[−1,1]

[∫
Y

∣∣∇y N1,1(x1, y)
∣∣dy +

∫
Y

∣∣∇y N1,0(x1, y)
∣∣dy

]

� Cεεd−1.

Notice that

∫
Y

{(
a1·(x1, y),∇y N1,0(x1, y)

) + (
a1·(x1, y)∇y N1,0(x1, y),∇y N1,1(x1, y)

)}
dy = 0,

and, thus, by Lemma 3.4

∣∣∣∣ν0,±
i

∫
Gε

{(
a1·(x1, y),∇y N1,0(x1, y)

)

+ (
a1·(x1, y)∇y N1,0(x1, y),∇y N1,1(x1, y)

)}∣∣
y=x/εu0,±

i (x1)
du0,±

j

dx1
(x1)dx

∣∣∣∣
� Cεεd−1.
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Similarly, ∣∣∣∣ν0,±
j

∫
Gε

{(
a1·(x1, y),∇y N1,0(x1, y)

)

+ (
a1·(x1, y)∇y N1,0(x1, y),∇y N1,1(x1, y)

)}∣∣
y=x/εu0,±

j (x1)
du0,±

i

dx1
(x1)dx

∣∣∣∣
� Cεεd−1.

Consequently,

(
U ε,±

i , U ε,±
j

)
Hε =

∫
Gε

(
aε

11 + aε
·1∇y N1,1(x1, y)

)∣∣
y=x/ε

du0,±
i

dx1

du0,±
j

dx1
dx

+
∫
Gε

{(
aε

1·,∇y N1,1) + (
aε∇y N1,1,∇y N1,1)}∣∣

y=x/ε

du0,±
i

dx1

du0,±
j

dx1
dx

+ ν0,±
i ν0,±

j

∫
Gε

(
aε∇y N1,0,∇y N1,0)∣∣

y=x/εu0,±
i u0,±

j dx + Rε,

where |Rε| � Cεεd−1.
Recalling the definition of the effective coefficient aeff and of the function C(x1) (see (3.3) and

(4.7), respectively), by Lemma 3.4, we have

∣∣∣∣∣(U ε,±
i , U ε,±

j

)
Hε − εd−1|Q |

1∫
−1

aeff(x1)
du0,±

i

dx1

du0,±
j

dx1
dx1

− ν0,±
i ν0,±

j εd−1|Q |
1∫

−1

C(x1)u0,±
i u0,±

j dx1

∣∣∣∣∣
� Cεεd−1.

In view of the normalization condition (4.11),∣∣∣∣ε−(d−1)

|Q |
(
U ε,±

i , U ε,±
j

)
Hε − δi j

∣∣∣∣ � Cε. (4.34)

Estimate (4.34) implies the lower bound for the norm ‖U ε,±
i ‖Hε :

∥∥U ε,±
i

∥∥
Hε � |Q |1/2

2
ε

d−1
2 , ε < εi . (4.35)

Combining (4.33) and (4.35) yields the desired estimate (4.31). Lemma 4.1 is proved. �
We turn back to the proof of Theorem 4.3. By Lemma 3.2, in view of estimate (4.31), for any j

there exists an eigenvalue με,±
q of the operator Kε such that
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∣∣με,±
q − (

ε−1ν0,±
j + ν1,±

j

)−1∣∣ < C jε
2, ε < ε j .

Considering the relation λ
ε,±
j = (με,±

j )−1, we get

∣∣λε,±
q − (

ε−1ν0,±
j + ν1,±

j

)∣∣ < C jε, ε < ε j. (4.36)

Our next goal is to prove that, for any j, there is a unique λ
ε,±
j satisfying inequality (4.36). The

proof consists of three steps presented below. Lemma 4.2 gives the lower and upper bounds for λ
ε,±
j .

Lemma 4.3 claims that, up to a subsequence, ελ
ε,±
q converges to an eigenvalue of the operator pencil

(4.9). Then we show that there exists a unique eigenvalue λ
ε,±
j satisfying (4.36).

Lemma 4.2. For any j, the estimate holds true

0 < m � ε
∣∣λε,±

j

∣∣ � M j (4.37)

with some constants m and M j .

Proof. By the definition of the operator Kε ,

∥∥Kε
∥∥ = sup

(v,v)Hε =1

(
Kε v, v

)
Hε = sup

(v,v)Hε =1

(
ρε v, v

)
L2(Gε)

.

Arguments similar to those in Lemma 3.4 yield∣∣∣∣ ∫
Gε

ρε(v)2 dx

∣∣∣∣ � Cε‖v‖2
H1(Gε)

.

Thus,

∥∥Kε
∥∥ � Cε,

∣∣με,±
j

∣∣ � Cε, ∀ j.

Considering the equality λ
ε,±
j = (με,±

j )−1, we obtain the lower bound in (4.37). The upper bound in
(4.37) follows easily from estimate (4.36). Lemma 4.2 is proved. �
Lemma 4.3. For any j, up to a subsequence, ελ

ε,±
j converges to an eigenvalue ν∗ of problem (4.9).

Proof. In view of Lemma 4.2, ελ
ε,±
j converges to some ν∗ ∈ R \ {0}. Let us show that ν∗ is an eigen-

value of the operator pencil (4.9). The weak formulation of problem (2.1) has the form

(
Aεuε,±

i − λ
ε,±
i ρεuε,±

i , w
)

L2(Gε)
= 0, w ∈ Hε.

Integrating by parts leads to the equality

(
uε,±

i , Aε w − λ
ε,±
i ρε w

)
L2(Gε)

+
∫
ε

(
aε∇w,n

)
uε,±

i dσ = 0, w ∈ Hε. (4.38)
Σ
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By the normalization condition (2.6), uε,±
i (x) ∈ L2(Kd,με) converges strongly in the variable space

L2(Kd,με) to a function u∗(x1) ∈ L2(Kd,μ∗), Kd = [−1,1]d (see Lemma 3.6 for the details). Thus,
showing that Aε w − λ

ε,±
i ρε w converges weakly in L2(Kd,με) will allow us to pass to the limit in

(4.38). For this purpose we construct a test function

V ε(x) = v(x1) + εN1,1
(

x1,
x

ε

)
dv(x1)

dx1
+ ε2λ

ε,±
i N1,0

(
x1,

x

ε

)
v(x1), v ∈ C∞

0 [−1,1].

We would like to emphasize that, in contrast with ansatz (4.29), we do not add the boundary layer
corrector here. The reason is that v(x1) is equal to zero at points ±1 together with all its derivatives,
that yields V ε(±1, x′) = 0.

Simple transformations yield

Aε V ε − λ
ε,±
i ρε V ε = Jε1(x1, y) + Jε2(x1, y)|y=x/ε,

where

Jε1(x1, y) = − ∂

∂x1

(
a1·(x1, y)∇y N1,1(x1, y)

dv(x1)

dx1

)
− ∂

∂x1

(
a11(x1, y)

dv(x1)

dx1

)
− ελ

ε,±
i

∂

∂x1

(
a1·(x1, y)∇y N1,0(x1, y)v(x1)

)
− ελ

ε,±
i ρ(x1, y)N1,1(x1, y)

dv(x1)

dx1

− (
ελ

ε,±
i

)2
ρ(x1, y)N1,0(x1, y)v(x1),

Jε2(x1, y) = −ε

{
divx +1

ε
divy

}[
a·1(x1, y)

∂

∂x1

(
N1,1(x1, y)

dv(x1)

dx1

)]
− ε2λ

ε,±
i

{
divx +1

ε
divy

}[
a·1(x1, y)

∂

∂x1

(
N1,0(x1, y)v(x1)

)]
.

In view of (3.3), (4.8) and (4.7),∫
Y

Jε1(x1, y)dy = − ∂

∂x1

(
aeff(x1)

dv(x1)

dx1

)
+ ελ

ε,±
i B(x1)v(x1) − (

ελ
ε,±
i

)2
C(x1)v(x1).

Using Lemma 3.4 and normalization condition (2.6), we obtain∣∣∣∣ ∫
Gε

Jε1(x1, y)
∣∣

y=x/εuε,±
i (x)dx −

∫
Gε

∫
Y

Jε1(x1, y)uε,±
i (x)dy dx

∣∣∣∣
� Cεε

(d−1)
2

∥∥uε,±
i

∥∥
H1(Gε)

� Cεεd−1.



I. Pankratova, A. Piatnitski / J. Differential Equations 250 (2011) 3088–3134 3127
Then, integrating by parts one gets∫
Gε

Jε2(x1, y)
∣∣

y=x/εuε,±
i (x)dx +

∫
Σε

(
aε∇V ε,n

)
uε,±

i dσ

= ε

∫
Gε

a·1(x1, y)
∂

∂x1

(
N1,1(x1, y)

dv(x1)

dx1

)∣∣∣∣
y=x/ε

∇uε,±
i (x)dx

+ ε2λ
ε,±
i

∫
Gε

a·1(x1, y)
∂

∂x1

(
N1,0(x1, y)v(x1)

)∣∣
y=x/ε∇uε,±

i (x)dx.

Estimating the terms on the right-hand side of the last equality yields∣∣∣∣ ∫
Gε

Jε2(x1, y)
∣∣

y=x/εuε,±
i (x)dx +

∫
Σε

(
aε∇V ε,n

)
uε,±

i dσ

∣∣∣∣
� Cε|Gε|1/2

∥∥∇uε,±
i

∥∥
L2(Gε)

� Cεεd−1.

Consequently,

0 = (
uε,±

i , Aε w − λ
ε,±
i ρε w

)
L2(Gε)

+
∫

Σε

(
aε∇w,n

)
uε,±

i dσ

= (
uε,±

i ,Π
(
ελ

ε,±
i

)
v
)

L2(Gε)
+ rε,

∣∣rε
∣∣ � Cεεd−1.

By definition of the measure με (see Section 3)∫
Kd

uε,±
i (x)Π

(
ελ

ε,±
i

)
v(x1)dμε + rε

εd−1|Q | = 0.

Passing to the limit in the last equality, taking into account the strong convergence of uε,±
i in

L2(Kd,με), yields ∫
Kd

u∗(x1)Π(ν∗)v(x1)dμ∗(x) = 0.

Integration by parts gives∫
Kd

v(x1)Π(ν∗)u∗(x1)dμ∗(x) = 0, v ∈ C∞
0 [−1,1].

Thus, u∗ satisfies the equation

Π(ν∗)u∗(x1) = − d

dx

(
aeff du∗

dx

)
+ ν∗Bu∗ − (ν∗)2Cu∗ = 0. (4.39)
1 1
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By the definition of uε,±
i and λ

ε,±
i we have

∥∥uε,±
i

∥∥2
Hε = λ

ε,±
i

(
ρεuε,±

i , uε,±
i

)
L2(Gε)

.

Since 〈ρ(x1, ·)〉 = 0, then∣∣∣∣ ∫
Gε

ρε
(
uε,±

i

)2
dx

∣∣∣∣ � Cε
∥∥uε,±

i

∥∥
L2(Gε)

∥∥uε,±
i

∥∥
H1(Gε)

,

and, consequently, ∥∥uε,±
i

∥∥2
Hε � Cελ

ε,±
i

∥∥uε,±
i

∥∥
L2(Gε)

∥∥uε,±
i

∥∥
H1(Gε)

.

Taking into account estimate (4.37) and the definition of the measure με , we have∥∥uε,±
i

∥∥
L2(Kd,με)

� c > 0.

Considering the strong convergence of uε,±
i in L2(Kd,με) leads to the inequality

‖u∗‖L2(−1,1) � c > 0,

which means, together with (4.39), that (ν∗, u∗) is an eigenpair of the operator pencil (4.9).
Lemma 4.3 is proved. �

Assume that

ελ
ε,±
i → ν0,±

j , ε → 0,

ελ
ε,±
k → ν0,±

j , ε → 0.

Then necessarily i = k. Indeed, by Lemma 4.3 the eigenfunctions uε,±
i and uε,±

k converge to the eigen-

functions u∗,±
1 and u∗,±

2 of (4.9) corresponding to ν0,±
j , and, as was proved above, u∗,±

1 �= 0 and

u∗,±
2 �= 0. Since the eigenvalue ν0,±

j is simple, we have

u∗,±
1 + c1u∗,±

2 = 0,

for some c1 �= 0. Assume that i �= k, and consider the expression

T ε = 1

ε

(
ρε

(
uε,±

i + c1uε,±
k

)
,
(
uε,±

i + c1uε,±
k

))
L2(Kd,με)

.

Considering (2.6), (4.37) and (3.26), we obtain

T ε = 1

ελ
ε,±
i

(uε,±
i , uε,±

i )Hε

εd−1|Q | + c2
1

ελ
ε,±
k

(uε,±
k , uε,±

k )Hε

εd−1|Q |

= 1

ελ
ε,±
i

+ c2
1

ελ
ε,± −→ 1

ν0,± + c2
1

ν0,± = 1 + c2
1

ν0,± �= 0. (4.40)

k j j j
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It was shown in the proof of Lemma 3.6 that uε,±
i and uε,±

k converges strongly in L2(Kd,μ
ε),

therefore,

∥∥uε,±
i + c1uε,±

k

∥∥
L2(Kd,με)

→ 0,

as ε → 0. Denote by S(x, y) a solution to the following problem⎧⎨⎩
−�y S(x1, y) = ρ(x1, y), y ∈ G±,

∇y S(x1, y) · n(y) = 0, y ∈ Σ±,

S(x1, y) is 1-periodic in y1.

Since 〈ρ(x1, ·)〉 = 0, this problem is solvable. Setting R(x1, y) = ∇y S(x1, y) we have

1

ε
ρ

(
x1,

x

ε

)
= div R

(
x1,

x

ε

)
− ∂

∂x1
R(x1, y)

∣∣
y=x/ε.

Denoting Rε
1(x) = ∂

∂x1
R(x1, y)|y=x/ε and Rε(x) = R(x1,

x
ε ), we rewrite T ε as follows

T ε = (
div Rε

(
uε,±

i + c1uε,±
k

)
,
(
uε,±

i + c1uε,±
k

))
L2(Kd,με)

− (
Rε

1

(
uε,±

i + c1uε,±
k

)
,
(
uε,±

i + c1uε,±
k

))
L2(Kd,με)

.

Clearly, Rε
1 is uniformly in ε bounded. Therefore, the second term on the right-hand side tends to

zero, as ε → 0. Integration by parts in the first term yields

(
div Rε

(
uε,±

i + c1uε,±
k

)
,
(
uε,±

i + c1uε,±
k

))
L2(Kd,με)

= −2
(

Rε
(
uε,±

i + c1uε,±
k

)
,∇(

uε,±
i + c1uε,±

k

))
L2(Kd,με)

.

Since ‖∇uε,±
i ‖L2(Kd,με) and ‖∇uε,±

i ‖L2(Kd,με) are uniformly in ε bounded, the first term also tends to
zero, as ε → 0, which implies that limε→0 T ε = 0. This contradicts (4.40). We conclude that i = k.

Finally, we conclude that for any j there is only one λ
ε,±
j satisfying inequality (4.36), and thus,

it is simple for sufficiently small ε. In view of the geometric simplicity of ν0,±
j and Lemma 3.2, the

corresponding eigenfunction uε,±
j can be approximated by the “almost eigenfunction” U ε,±

j :

∥∥uε,±
j − U ε,±

j

∥∥
Hε � c jε, ε < ε j .

The proof of Theorem 4.3 is complete. �
5. The case of sign-changing 〈ρ(x1, ·)〉

In the case of sign-changing 〈ρ(x1, ·)〉 the limit spectral problem takes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
A0u0(x1) ≡ − d

dx1

(
aeff(x1)

du0(x1)

dx1

)
= λ0〈ρ(x1, ·)

〉
u0(x1), x1 ∈ (−1,1),

0

(5.1)
u (±1) = 0.
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Here the effective coefficient aeff is defined by (3.3). By Lemma 3.1 the coefficient aeff(·) is a
C1,α[−1,1] function such that aeff(x1) > 0 for all x1 ∈ [−1,1].

Since 〈ρ(x1, ·)〉 changes sign, one can see in the same way as in Theorem 2.1 that the spectrum of
problem (5.1) is discrete and consists of two infinite sequences

0 < λ
0,+
1 < λ

0,+
2 < · · · < λ

0,+
j · · · → +∞,

0 > λ
0,−
1 > λ

0,−
2 > · · · > λ

0,−
j · · · → −∞.

Moreover, since problem (5.1) is one-dimensional, all the eigenvalues λ
0,±
j are simple. The correspond-

ing eigenfunctions u0,±
i ∈ C2,α[−1,1] of problem (5.1) can be normalized by

1∫
−1

aeff(x1)
du0,±

i

dx1

du0,±
j

dx1
dx1 = δi j. (5.2)

For any j ∈ N we denote

U ε,±
j (x) = u0,±

j (x1) + εN1,1(x1, y)
du0,±

j (x1)

dx1

∣∣∣∣
y=x/ε

+ εv1,±
j (x1) + ε

(
uε,+

bl (x) + uε,−
bl (x)

)
, (5.3)

where u0,±
j , N1,1 and v1,±

j solve problems (5.1), (3.2) and (3.15), respectively, with u0 = u0,±
j and

λ0 = λ
0,±
j . The boundary layer functions uε,±

bl are defined by (3.17) and (3.13) with u0 = u0,±
j .

Theorem 5.1. Let conditions (H0)–(H3) be fulfilled, and suppose that 〈ρ(x1, ·)〉 changes its sign on [−1,1].
If (λ

ε,±
j , uε,±

j ) are eigenpairs of problem (2.1), and (λ
0,±
j , u0,±

j ) are those of problem (5.1), then the following
statements hold:

(i) For any j ∈ N, there exist ε j and C j > 0 such that

∣∣λε,±
j − λ

0,±
j

∣∣ � C jε, ∀ε ∈ (0, ε j].

(ii) For any j ∈ N,

∥∥uε,±
j − U ε,±

j

∥∥
H1(Gε)

� C jεε
d−1

2

where U ε,±
j is defined by (5.3). Moreover, the “almost eigenfunctions” satisfy the almost orthogonality

and normalization condition∣∣∣∣ε−(d−1)

|Q |
(
aε∇U ε,±

i ,∇U ε,±
j

)
L2(Gε)

− δi j

∣∣∣∣ � C jε.

(iii) For j ∈ N, λε,±
j are simple, for sufficiently small ε > 0.
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Proof. Since the proof of Theorem 5.1 is similar to that of Theorem 3.2, we give here just a sketch of
this proof.

First, we construct a formal asymptotic expansion for a solution (λε, uε) of problem (2.1). In the
case under consideration it takes the same form as in the case 〈ρ(x1, ·)〉 > 0 (see (3.1)). Namely,

uε(x) = u0(x1) + εu1(x1, y) + ε2u2(x1, y) + ε3u3(x1, y) + · · · ,
λε = λ0 + ελ1 + · · · , y = x

ε
, (5.4)

where unknown functions uk(x1, y) are 1-periodic in y1. We substitute these ansatz for uε and λε in
(2.1), collect power-like terms, and repeat the computations of Section 3.1. At the first step we obtain
that

u1(x1, y) = N1,1(x1, y)
du0(x1)

dx1
+ v1(x1)

with N1,1 defined in (3.2). At the second step this yields problem (3.4), that is the pair (λ0, u0) solves
problem (5.1).

Notice that, since 0 does not belong to the spectrum of (5.1), for each u0 �= 0 we have

λ0 �= 0,

1∫
−1

〈
ρ(x1, ·)

〉(
u0(x1)

)2
dx1 �= 0. (5.5)

In order to determine the function v1(x1) we set, like in (3.6),

u2(x1, y) = N2,2(x1, y)
d2u0(x1)

dx2
1

+ N2,1(x1, y)
du0(x1)

dx1
+ N2,0(x1, y)u0(x1)

+ N1,1(x1, y)
dv1(x1)

dx1
+ v2(x1),

where N2,2, N2,1 and N2,0 are y1-periodic functions defined in (3.7)–(3.9). Recalling the definition
of the boundary layer functions w±(y1, y′) (see (3.13)) and the corresponding constants ŵ± , and
repeating once again the computations of Section 3.1, we arrive at problem (3.15) that reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

− d

dx1

(
aeff(x1)

dv1

dx1

)
− λ0〈ρ(x1, ·)

〉
v1(x1)

= F (x1) + λ1〈ρ(x1, ·)
〉
u0, x1 ∈ (−1,1),

v1(±1) = ŵ±

(5.6)

with F (x1) defined by (3.11).
In view of (5.5), normalization condition (5.2), and by the Fredholm theorem, the solvability con-

dition of the last problem reads

λ1 = −λ0

1∫
−1

F (x1)u0(x1)dx1 + λ0
(

aeff(1)
du0

dx1
(1)ŵ+ − aeff(−1)

du0

dx1
(−1)ŵ−

)
. (5.7)

Imposing the normalization condition
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1∫
−1

v1(x1)u0(x1)dx1 = 0

and letting

uε,±
bl (x) = w±

(
x1 ∓ 1

ε
,

x′

ε

)
− ŵ±, (5.8)

we finally obtain a formal asymptotic expansion of uε:

U ε(x) = u0(x1) + εN1,1
(

x1,
x′

ε

)
du0(x1)

dx1
+ εv1(x1) + ε

(
uε,+

bl (x) + uε,−
bl (x)

)
. (5.9)

Let λ
0,+
j (λ0,−

j ) be the jth positive (negative) eigenvalue of problem (3.4). We substitute the corre-

sponding eigenfunction u0,+
j (u0,−

j ) for u0 in (5.9) and denote

U ε,±
j (x) = u0,±

j (x1) + εN1,1(x1, y)
du0,±

j (x1)

dx1

∣∣∣∣
y=x/ε

+ εv1,±
j (x1)

+ ε
(
uε,+

bl (x) + uε,−
bl (x)

)
, (5.10)

where u0,±
j , N1,1 and v1,±

j solve problems (5.1), (3.2) and (5.6), respectively, with u0 = u0,±
j and

λ0 = λ
0,±
j . The boundary layer functions uε,±

bl are defined by (3.17) and (3.13) again with u0 = u0,±
j .

Notice that by construction the function U ε,±
j are elements of the space Hε .

Consider the normalized ansatz (5.10)

U ε,±
j = (∥∥U ε,±

j

∥∥
Hε

)−1
U ε,±

j

and the numbers (λ
0,±
j + ελ

1,±
j )−1 with λ

1,±
j defined by formula (5.7) with u0 = u0,±

j and λ0 = λ
0,±
j .

The statement of Lemma 3.3 remains valid in the case under consideration both for positive and
negative parts of the spectrum.

Lemma 5.1. For any j ∈ N there are ε j > 0 and C j > 0 that only depend on j, such that

∥∥Kε U ε,±
j − (

λ
0,±
j + ελ

1,±
j

)−1 U ε,±
j

∥∥
Hε � C jε for all ε < ε j . (5.11)

Proof. As in the proof of Lemma 3.3 we set

Iε,±
j ≡ ∥∥Kε U ε,±

j − (
λ

0,±
j + ελ

1,±
j

)−1 U ε,±
j

∥∥
Hε ,

and after straightforward rearrangements get

Iε,±
j = sup

w∈Hε

‖w‖ ε =1

∣∣(Kε U ε,±
j − (

λ
0,±
j + ελ

1,±
j

)−1 U ε,±
j , w

)
Hε

∣∣

H
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= ‖U ε,±
j ‖−1

Hε

|λ0,±
j + ελ

1,±
j | sup

w∈Hε

‖w‖Hε =1

∣∣((λ0,±
j + ελ

1,±
j

)
KεU ε,±

j − U ε,±
j , w

)
Hε

∣∣
= ‖U ε,±

j ‖−1
Hε

|λ0,±
j + ελ

1,±
j | sup

w∈Hε

‖w‖Hε =1

∣∣(λ0,±
j + ελ

1,±
j

)(
ρεU ε,±

j , w
)

L2(Gε)
− (

aε∇U ε,±
j ,∇w

)
L2(Gε)

∣∣.
Estimate (4.35) justified in the proof of Lemma 3.3 did not rely on the positiveness of 〈ρ(x1, ·)〉. Thus
it also holds in the case of sign-changing 〈ρ(x1, ·)〉. Namely, for all sufficiently small ε > 0 we have

∥∥U ε,±
i

∥∥
Hε � |Q |1/2

2
ε

(d−1)
2 . (5.12)

Analogously, in the same way as in the proof of Lemma 3.3, we obtain

sup
w∈Hε

‖w‖Hε =1

∣∣(λ0,±
j + ελ

1,±
j

)(
ρεU ε,±

j , w
)

L2(Gε)
− (

aε∇U ε,±
j ,∇w

)
L2(Gε)

∣∣ � Cεε
(d−1)

2 . (5.13)

Since λ
0,±
j �= 0, then for sufficiently small ε > 0 we have |λ0,±

j + ελ
1,±
j | � C with some C > 0. Com-

bining this estimate with (5.12) and (5.13) yields (5.11). �
From Lemma 5.1 and Lemma 3.2 it follows that for any j ∈ N there are ε j > 0 and q± such that

∣∣λε,±
q± − λ

0,±
j

∣∣ � c jε, ε < ε j. (5.14)

By the same arguments as in Lemmata 3.5 and 3.6 it is easy to deduce that for any q ∈ N,

0 < m �
∣∣λε,±

q

∣∣ � Mq,

and that any limit point λ∗ of a sequence {λε,+
j } or {λε,−

j } is an eigenvalue of problem (5.1).
In the same way as in the proof of Theorem 3.2 this readily implies all the statements of Theo-

rem 5.1.
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