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HOMOGENIZATION OF RANDOM PARABOLIC OPERATORS

M. KLEPTSYNA AND A. PIATNITSKI

Abstract: The homogenization problem for a random parabolic operator of the following

type
0 0

g x 0

= %aza(;vﬁﬁy)%—j

is studied; here € is a small parameter, o > 0 and &; is a diffusion process in R% possessing
an invariant measure with density p(y). The matrix a;;(2,y) is supposed to be periodic
in z and uniformly elliptic. It is shown that under some additional assumptions on &,
the operators A° G-converge as ¢ — 0 to specific parabolic operator A with constant
coefficients. It should be noted that the averaging procedure depends crucially on whether
a>2 a=2or a< 2 Inparticular, for « = 2 the homogenized matrix {@;;} can be
found in terms of joint distribution of the process £; and the process ruled by the operator

5 P
32, %i5(2,Y) 755 -

1. Introduction.

The paper is devoted to homogenization of parabolic operators with rapidly oscillating
coefficients which are random in the time variable. In contrast to the standard approach
where the coefficients of random operators arc the realizations of a transformation group
preserving some probability measure, we consider parabolic operators whose coefficients
depend on time through some (certain) rapidly oscillating stochastic process. Such equa-
tions arise, for example, when studying the effect of random forces on microinhomogeneous
medium. Here we study the simplest case when all the coefficients are periodic in spatial
variables and the stochastic process is of diffusion type. The corresponding operator takes
the form

0 0 z 0

A = 2 gay (;,5_5_%) e (1.1)

where a;;(z,y) are periodic in z € R", &, is a diffusion process with values in R? (or in a
compact Riemannian manifold), o > 0 and € is a small positive parameter.

Our main goal is to prove homogenizaton results for the operators (1.1) and to find
the coefficients of the limiting operators (so called effective diffusion matrix). It is shown
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that under natural conditions on the coefficients a;j(x,y) and the process £ the operators
A® converge to a non random operator with constant coefficients. The structure of the
averaged operator depends crucially on whether o« =2, & < 2 or o > 2.

In order to prove the convergence results we construct the family of suitable approxi-
mate solutions of the equations studied in such a way that their difference with the exact
solutions (so called correctors) vanishes as ¢ — 0. This idea has already been used in clas-
sical homogenization theory [1,2] and in stochastic differential equations [3,4], but there
different correctors are used.

In the first section we start with the description of the process ¢, and then prove a
number of auxiliary results. The following sections are devoted to the cases o = 2, o < 2
and o > 2 respectively.

2. Setting of a problem and auxiliary results.
We study the behaviour of solution of the following initial-boundary problem

0 0 0 z 0

—uf — 66:_6_—1”_,—’5-—520, G7 StSTv

at" ke ot 8:152»(1](5 = )8xju ve 0 (2.1)
UE(ZatﬂaG = 0) uslt:() = f(l'),

as small positive parameter € goes to zero; here G C R™ is a smooth bounded domain, &
is a diffusion process with values in R%, defined on a probability space (2, F, P), whose
infinitesimal generator has a form

0 0 0

L= Qij(y)a—%a—y; + bi(y)éE;

the coefficients a;;(z,y) are periodic in the first variable 2. Below the following conditions
on the coefficients of A° and L are supposed to hold:

C1. All the coefficients a;;(z,v), ¢;;(y) and b;(y) are uniformly bounded as well as their
first order derivatives in all variables:

|asj(2,9)| + V2055 (2, 9)| + [Vyas;(2,9)] < e,

i (¥)| + | Vyai5(v)] <,
here V. and V, mean the gradients in 2 and y respectively.
C2. Both A® and L are uniformly elliptic:

c2lC? < aij(2,9)G¢ < csl¢?, ¢ € R™, ¢ >0,

e2lC)? < 45 (9)GG < esl¢)?, ¢ e RY.

C3. There exist R > 0 and ¢4 > 0 such that

b(y) - y/lyl < —ca
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Under above conditions C1-C3 the process & has unique invariant probability measure

(see [5]). This measure possess a smooth positive density p(y) that forms the kernel of
formal adjoint operator L* of L:

L'p = 50500 06) = 54 (1)p(0) =

Later on we assume that the distribution of & coincides with the invariant measure.
The next condition concerns the behaviour of p(y).

C4. There exist R > 0 and ¢ > 0 such that
1 Yi 0
T 1 a_ \Qij\y)p <—-c<0

for all y, |y| > R.

It is also convenient to introduce the diffusion process (7, &;) with values in T x R¢,
whose infinitesimal generator is equal to

0

Z

9 ) o 8
A+L—6—ziaij(z,y)a—zj+q”( )(9 oy +b(y)

here T™ is the torus of periodicity of a;;(z,y). The invariant density p(z,y) of this process
does not depend on z and the equality p(z,y) = p(y) holds so we use the same notation
p(y) for both densities.

Denote by LZ(TY x R?) a weighted space with a norm

1915 = [ [ #evmt)dsdy,

T™ Rd

by L2 its subspace {f € LZ| [y pa F(2,y)p(y)dzdy = 0} and by HX(TV x R%) the space
{f e E;’ |V.f| +|Vyf| € L2}. The following statement is systematically used below.

Lemma 2.1 Let f(z,y) € LZ(T™ x R%) and let

If(z )] < e+ y)k, k>0

Then the equation (A+ L)u(z,y) = f(2,y) does have unique solution u(z,y) € H, and an
estimate

lu(z, )| < er(1+ |y|)**, k>0

holds; moreover, the constant ¢; depends only on ¢ and k.
If, in addition,

1020) f(z, )] <c(L+y)*, k>0, |Bl+]<N
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for some N > 0 then

Iafagu(z,y)] <ei(1+ |y, k>0.

Proof: The existence an the uniqueness of u € I-_I; (T™ x R%) as well as the uniform
estimate

llullzy < clflp (2.2)

can be obtained in exactly the same way as in [3]. Denote B = {y € R%: |y| < R} where
R is taken from C3. Considering (2.2) and positiveness of p(y) and applying standard
elliptic estimates [6] we find

max [u(z,y)| < c/flp (2.3)

TnxBgr

It is then clear that in the domain 7™ x (R%\ Bgr) the function u(z,y) coincides with the
solution of the following boundary problem

(A+Lw(zy) = f(zy), (zy)€T" x (R*\Br),

V|y=r = uly=r

Under hypothesis C1-C3 its solution v(z,y) has the following probabilistic representation

U(Z’y) = _E/f(ﬂs»fs)ds + Eu(nTvéT)a
0

here (n;, &) starts from the point (z,7y) and 7 is the exit time from the domain T™ x (R%\
Bgr). To estimate v(z,y) we construct a barrier function. To this end let us consider an
auxiliary problem

C'8,0/ () - (cﬁJr%)y-v«/(y) = co (C(k+1)k(1+|y)* " = C" (k+ 1)L +y)*) — e,

V'|lyj=r = LS9 lv(z, )|
(% R

and take the constants C’, C”, ¢y, c1 to make the following relations hold:

1. {g;(y)} > C'{6;;} for each y; :

2. g11(y)/R + b(y) - y/|ly| < —C" for each y (we assume here that the constant R is
sufficiently large); '

3. 1£(2,9)| < —(co (C'(k + 1)k(1+ [y = C"(k + 1)(1 + [y)*) ~ cv).

The solution v’(y) can be found explicitly:

V'(y) = co(L+ [y + ea(1 + |y)/C" + ca.
This function evidently satisfies the estimate

0 <v'(y) < cs(1+Jy)**. (2.4)
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It then follows from 1.-3. that

(A+ L)' (y) —v(z9) <0, V®)ly=r = v(2,9)|jy/=r;

and by probabilistic representation

u(z,y) =v(z,y) < V'(y).
Similarly, u(z,y) > —v'(y). Together with (2.4) this implies the first statement of the

lemma. The second one follows from the Schauder estimates. O

The following statement allows us to pass to the limit when integrating rapidly oscillating
functions. With the help of the following statement we will pass to the limit in the integrals
of rapidly oscillating functions.

Lemma 2.2 Let h(z,y, z) be a smooth, periodic in z and compactly supported in x function
such that

h(z,y,2)| + [Voh(z,y,2)| + | Vyh(z, 9, 2)| + [Veh(z,y,2)] < c(1+ |y])* (2.5)
for some k > 0. Then for any T > 0
. 2

lim E sup //(h(g,ﬁﬁr,z) — h(z))uf(z,s)dzds | = 0,
Rd

e=0 o<
0

where

W@ = [ [ by o)y
Tn Rd

Proof: First of all let us show that it suffices to prove the following limiting relation

i B sup / (h(% fﬁwn:)‘ﬁ(ng))ds)z =0, (26)

’
e—0 OStST E

where nf = €1+ 1s a process corresponding to the operator A°. Indeed, according to [7,

th. 8.1 and 8.7] the function u®(z,t) is a density of conditional distribution of 7 with
respect to o-field Ff = 0{&,, 0 < s < t/e*}. Therefore,

]/(h(g,fﬁy,w)—E(x))ue(a:,s)dmds :jE([h(n—g £.5,15) — Alo)] ‘.7—') ds. (2.7)

6,
0 Rn 0

Then, by (7, th. 8.1]

t t
J B (I ) = Rt ) ds = ([ (W )~ ) as| 75
0 0
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)
is a continuous martingale so by the Doob and Jensen inequalities

fi})2 <

Now, let us note that the process

Ni=E| sup | / %o 6 4 ,75) — BE)) ds|

0<v<T

t

E sup {/ ,5—57775) h(n3))ds

0<t<T
0
2
v nE ~ 2
B (B{ s | [ (L enm)-Ro)as|7) )| = B s 00)7 <
0<t<T osv<r!) E 0<t<T

) -

0<t<T

w(vs) < cB(B{ s ( / (h(%:,sﬁ;,n:)—mnz))ds)z
0

0<t<T

t i 5
& sup ([ ((Z,ea0) - itr)as )
0

Together with (2.6) and (2.7) this implies the statement of the lemma.
To prove (2.6) we consider the cases & = 2, & > 2 and a < 2 independently. For a = 2
define a function g(z,y,z) as a solution of the following problem:

(A+L)g(zy,2) = h(z,y,2) ~ h(z), g€ LH(T" x RY) (28)
By Lemma 2.1 g(z,y, z) does exist and satisfies an estimate
19(2,9, )| +|V29(2, 9, )| +|Vyg(2, 4, )| + |Vag(2,y,2)| < c(1+ [y)**

Applying Ito’s formula to g(ﬂei, §o.mf ) we obtain
& £ 1 . a E (4
n n n -
9(Z€40) *9(?0,50,770 = 2/8_ S,Ej,ﬂi)ﬂij(f,ﬁﬁ)dw{(s) L
0

ta .
/awg(
0

i
Ur UF j 1 a g j
=€ m0)oi (€ )dwi(s) + E/9ij(§j)5£9(?,£g,,77§)dw%(s) =+
0

t
62 77: . 77; 2 82 ne ne
1SS "'_’sd -y _s,s,s 5 (— s )d
/Gmiaxjg( e S M)au by )ds + 2 8zi8xjg( e S ma)an (L Eg)ds +
0 0
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t
s 0 - 1 5 B
(T’ 75—57775) al](n gs )dS R _2_/(A+L)g(’rl_7£—‘})ns)ds7
0z; € g’ 7.

0

(9.’L‘i

™| =
o\”

here '045(2,y) = /{2ai;(2,9)}, 655 (y {2¢:;(y)}; wi(s) and wsy(s) are independent
Wlner processes with values on T and R? respectively. Multiplying the last equality by
e? and taking into account (2. 8) we have

t
/ ,ET,ns)— h(E))ds = e?g(Tt 767,7&)—6 9( °,§o,n8) -
0

75—2'7773)0.1] ?z

/=

t
5/021 6?5; 8_% 75—5,775)‘1“)2( t € /31‘181‘ g( aé—;:"s)aw( 95 )dS +
0

t
o o ex)aults) - & [ g (%, 5)dui(s) -
0

(2.9)

(T 9 .1s
,5—57773)3 ]aZJ( e ,§§2.)d8

t
82 ,,76
26/8218.’15 75—57773)‘1‘7,]( g dS + /
0 0

Let us estimate all the terms on the right hand side. These estimates are based on the
following

Proposition 2.3 For any fized T >0, k>0 and 3> 0

lim E sup 5’6|£t *=0
=0 o<e<T 2

Proof: Consider an auxiliary operator I = (c3A —cy7h o - V) with the constants cs and ¢4

taken from the hypothesis C2-C3. Denote by §t and &/ the diffusion processes starting
from the point y, whose infinitesimal generators are equal to L and L respectively, and by
7¥(r, R) and 7Y¥(r, R) their exit times from the spherical layer B = {y: R < |y| < r}.

It follows from the maximum principle and the definition of L that for any 7 > R and
y € BE

P{Ig% iyl =7} S P& )l =7} < c(R)exp(—c(r—yl)), ¢>0;  (2.10)

the explicit formula for P{ |£ v(r,r)l = T} Was also used here. Using the technique developed
in [8], it is easy to derive from (2.10) that uniformly in 7 > 0 and y € B

r+1
Y

P{r¥(

T c
j= 5} SceXp(~6—3), co > 0;
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here 7¥(r) is the exit time of &/ from B, and v is a positive number that will be fixed
later. Due to the strong Markov property of & this implies

r+m

P{rY( e

T mco
) < 5_2} Scmexp(—?), ’I’Tl’—"l,2,3..., (211)
for any y € Bz Finally, (2.11) yields

E sup eﬂ]§t|k <
0<t<%

Eﬁzz(w)kp({ﬂgl@gm+1}m{m+lS sup |§t|§Ll+1}> =

ey &Y Y e Y OStSE% Y
00 oo k g
s m m+1 m+1+1 . . 5 5 C .
€ }:OP{67 < €| < = }lzg = c exp(—leo/e”) < € Tt
m= =

here we also use the strong Markov property of & and the fact that the density p(y) of &
decays exponentially as |y| — oco. To complete the proof it suffices to put v = -:% m

By Proposition 2.3

: g 2 : 4 2k+2
lim E su 64( = €., 5) < ImE sup &%c(l+|£2 =0
L 9(€4m) I (1 +1€50)

Then, by the Doob inequality

[0 it .
. n n '
1 E s s, BN s’ s )d J <
e ozltlgT 6o/ azig( b ") € Sglanife | =

T
. 2 s [)2k+2 —
gl_r%élcs /E(l +1€5 )" ds = 0
0
Other terms on the right hand side of (2.9) can be estimated in the same way. Thus, (2.6)
holds and for o = 2 the statement of the lemma is proved.
In the case a > 2 define a function ¢1(z,y, z) as follows

Loy = h(z1,2) — ha(2,2),  Fu(zz) = / h(z,y, 2)p(y)dy.
Rd
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The solvability conditions are obviously satisfied so by Lemma 2.1 the function 91(2, 9, 1)
does exist and an estimate

191(2, 9, 2)| + V201 (2,5, 2)| + [Vyg1(2, 9, )| + [Vzg1(2, 9, 7)] < c(1+ [y])*+!

holds. We have

// €.5,2) — h(z))u(z, s)dx =/t/(h(g,ﬁﬁy,x)—ﬁl(g,z))ue(m,s)dm+

0 Rn R™

/t/(Bl(;‘”)—E(I))ue(x,s)dx'

0 R™

As was already proved (see the case @ = 2) the second term on the right hand side goes
to zero as € — 0. The proof of the fact that the first one goes to zero is quite similar to
those given for oo = 2.

If o < 2 we define a function g(z,y, ) as a solution of the following problem

Aga(2,1,) = h(2,9,7) — Fa(r3),  Faly,3) = / REga e

The function g2(z,y, z) does obviously exist and satisfies an estimate

l92(2,y, )| + [V292(2, 4, 2)| + |Vyg2(2,y, T)| + |Veg2(2, ¥, 2)| < (1 + |y])*+?

We have
/ / £.40,2) — R(z))u / / — Falt g 2 (2, 5)do +
0 Rn 0 Rn

/ / FalE g,z h(w)) (z,5)da

0 R~

As was proved above the second term on the right hand side goes to zero. Indeed, it

suffices to introduce new small parameter ¢’ = €*/2, As to the first term it goes to zero

too by the same arguments as for & = 2. The lemma is completely proved. a
Also, we are interested in the limiting behaviour of the following martingale

ME = // e(m s)dzdwi(s).

0 Rm
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Lemma 2.4 Let h(z,y,z) be a smooth, periodic in z and compactly supported in z vector-
function such that
|h(2,y,2)| + |Vah(z,y,2)| < (1+ [y])*

and

/h(z, y,x)dz=0 (2.12)
T’n,
for each y and x. Then,

limE sup |M:|=0.
e—0 0<t<T

Proof: According to the Doob inequality it suffices to show that
lim E < M® >p=0,
e—0

where < M® >, is a quadratic characteristic of M¢. Due to assumption (2.12) there exists
periodic in z matrix-function H(z,y,z) such that

gHij(Zvy,iE) = h;(2,9,z);
moreover, H(z,y,z) can be chosen to satisfy an estimate
|H(z,y,2)| + Vo H(z,y,2)| < (1 + [y])*. (2.13)
Then, in view of the obvious equality
0 x 10 0
a*xiHij(E’yax) = (Egz—iHij(Z,y,w) =+ E;Hij(z’yam))lzzf

(2
we can rewrite M3 in the following form
¢

o 9 . (% € I(s) =
M; _//a_zin (gvg:sz’x)u (x,s)da:dwz(S) -

0 R™

t
2 0 ;
_5//Hij (;,é'f,,w) 3miu5(x,s)dwdw%(8)—

0 Rm

0 . 4 E E
_5// <6_:L'1H‘L] (Zag?sfyx) z:%)u (w,s)dmdw%(s) :M‘il +Mt2

By (2.13)

z 0 ;
E<M¥>;=E 5//Hij (—,gﬁ,x) 6%ius(ac,s)dﬂcdwg(s) =

0 Rm
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T

Eez// (H (g,ﬁﬁ,a:) VIuE(m,s))2dxds <

0 Rm

T
E( sup 62(1+|£_:§|)2k//|Vzu5(x,s)|2dxds> < CE sup 52(1+|§_:§|)2k;

0<t<T - 0<t<T
here the uniform estimate
lullL20,1m1(G)) < €
was also used. Finally, by Proposition 2.3

lim E < M >7p=0.

e—0

The martingale M?2¢ can be estimated in the same way. The lemma is proved. O

3. Homogenization of self-similar operators.

In this section we investigate the problem (2.1) in the automodelling case o = 2. Denote
by V the space L2 (0,T; H}(G)) N C(0,T; L% (G)), where symbol w means that the corre-
sponding space is endowed with its weak topology; the space C(0,T; L% (G)) is endowed
with the topology of uniform convergence. Let B be Borel o-field on V. As was shown in
[9] V is a Lusin and completely regular space and the Prokhorov criterion of weak com-
pactness for a family of probability measures on V is valid. The main result of the section
is the following

Theorem 3.1 Let oo = 2. Then, under assumptions C1-C4 the solution u®(z,t) of (2.1)
converges in probability in the space V' to the solution of a problem

9 9 -
BEUO(.'L', t) = azja—mta—z]UO(l‘,t) = 0 (31)
uloc =0,  uol=0 = f(z)

with the coefficients a;; given by the following formula

aij z//(aij(z,y)+auc(z,y)_;z;xj(z,y))p(y)dzdy;

T™ Rd

here x(z,y) € FI; (T™ x R%) is the solution of the equation (A+ L)x;(z,y) = —aizjaij(z,y).

Remark 3.2 The convergence of u®(z,t) in V implies the strong convergence in
L*(0,T; HY(G)), therefore, u®(x,t) converges in probability to u°(x,t) in the norm of
L%(0,T; HY(@)).

Proof: Let us consider a family of Radon probability measures {Q°} on (V, B) where Q°
is the law of u®(z,t), 0 <t < T. Using standard estimates for parabolic equations [6] it is
easy to show that the family {Q*} is relatively compact (see, for example, [3], [9] where
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a number of similar results are proved). We will demonstrate that any limiting point Q
of this family is concentrated on the set of weak solutions to the problem (3.1). This will
imply the statement of the theorem due to uniqueness of weak solution.

So we fix arbitrary o(z,t) € C*°(0,T; Cs°(Q)) and study the limiting behaviour of the
following expression

0
8(1,‘1' (P)’

(us, ) +¢(

0 x e /T
2wy o) = (59 - elwnld gy)
here and in what follows (-,-) means inner product in L?(G). By the Ito’s formula

(1 (2, 1), 0(a, 1) — (0@, (2, E ), poola, ) = (02, 0)+

(1

t ¢
(fxl( b 88 o(z,0)) = / (A%uf(z, s), p(x, s) ds+/ (z,s), s <p(:v s))ds—
0 0

(A%u(z, s), xi(

g -p(x,8))ds — 6/(u€($,S)Xi(

X
i (>
0

t
0 a 0
E5) 5. ,ffg)amiaw(%s))“—

™
o\ﬂ

0 1 0 o 0
(u®(z, 3)—8;%0(1', s), s_z[bj(g?i—)a_y;Xi(ng;%) + ij(ffg)ayj oy, (5 ) ds—

8

™

™
o —__
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here the equation %us = A®uf was also used. Collecting the terms of the same order of €

and taking into account the choice of X(z, y) we obtain after simple transformation

<P)d3 =

u®, ;.
]8 i 0z

(W (, ), (2, 1)) — (f, 0(z,0) — /u,aso /
0 0

e (@162 ) 03 0) + 00 2 o) 0,0+

t
0 02
Jos e E e )+ g lonE e (S g o b 5 m0(E ) -00) g
0

Considering the fact that the operator L commutes with the operator of taking the mean
value in z it is easy to show that the function Vyx(z,y,z) satisfies condition (2.12). By
Lemma 2.2 and 2.4 and Proposition 2.3 all the terms on the right hand side go to zero
(here the function ((z,t) depends on ¢ but it is quite easy to show that all the mentioned
statements hold true in this case). Thus,

t t

21_1%E0i1t1£T‘(u (z,t), p(z,t)) — /u ' 51 /u a”6 BZL‘J )ds‘
0 0
(3.2)
Now, define on V the following functionals
t ¢
0 0
B, (u) = sup |(u(z,1),¢(z,t)) - (f,¢(x,0) =T ——)ds|
0<t<T / Zj
and
= _ ®p(u), i Pu(u) <1
B (u) = { 1, otherwise
By (3.2)
lin(l) E®,(u®) =0
or, in terms of Q°,
lim EQ° &, (u) = 0 (3.3)

e—0
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The functional &, (u) is bounded and continuous. Therefore, passing to the limit in (3.3)
we deduce

E®®,(u) =0

for any limiting point Q of Q° and for any ¢ € C*°(0,T; C§°(G)). In view of non negativity
of @, (u) the last equality implies

Q{u € VIS, (u) = 0} = 1
for any ¢. This, in turn, leads to the relation
Q{u e V|®,(u) =0 for any p € C*°(0,T;C$°(G))} =1
Thus, @ is concentrated on the weak solution of (3.1). The theorem is proved. O

Corollary 3.3 The sequence of operators (% - AE) G-converges in probability to the
operator & — A.

Remark 3.4 The statements of the theorem and of the corollary remain unchanged if
instead of assumption a;;(z,y) € C}(T™ x R%) in C1 we suppose that a;;(z,y) are mea-
surable and uniformly bounded. Indeed, it suffices to approximate the matrix a;;(z,y) by
the sequence of smooth matrices.

4. Homogenization of non self-similar operators.

In the section we formulate the homogenization results for non automodel operators i.e.
for o # 2. We start with the case a < 2. In this case the oscillation in spatial variables
is in some sense faster then the oscillation in time. Denote by a;;(y) the coefficients of
a homogenized (with respect to £) operator of the family %aij(f,y)%, here y is a
parameter.

Theorem 4.1 Let 0 < a < 2. Then under assumptions C1-C4 the solution u® of (2.1)
converges in probability in the space V' to the solution of the problem (3.1) with the coeffi-
cients a;; equal to the mean value of a;;(y):

By = / ai;(y)p(y)dy

R4

In the case a > 2 denote by a;;(z) the mean value of a;;(z,y) in y:

aij(2) = / aij (2, y)p(y)dy
Rd
Here the following assertion takes place

Theorem 4.2 Let o > 2. Then under assumptions C1-C4 the solution u® of (2.1)
converges in probability in the space V' to the solution of the problem (3.1) where the
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coefficients @;; coincide with the coefficients of the homogenized operator of the family
a =~ el

32, %45 () 3 -

The proofs of Theorems 4.1 and 4.2 are based on the same ideas as the proof of Theorem

3.1.
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