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Abstract. We study a model describing immiscible, compressible two-phase
flow, such as water-gas, through heterogeneous porous media taking into ac-

count capillary and gravity effects. We will consider a domain made up of

several zones with different characteristics: porosity, absolute permeability,
relative permeabilities and capillary pressure curves. This process can be for-

mulated as a coupled system of partial differential equations which includes

a nonlinear parabolic pressure equation and a nonlinear degenerate diffusion-
convection saturation equation. Moreover the transmission conditions are non-
linear and the saturation is discontinuous at interfaces separating different me-
dia. There are two kinds of degeneracy in the studied system: the first one
is the degeneracy of the capillary diffusion term in the saturation equation,

and the second one appears in the evolution term of the pressure equation.
Under some realistic assumptions on the data, we show the existence of weak

solutions with the help of an appropriate regularization and a time discretiza-
tion. We use suitable test functions to obtain a priori estimates. We prove a
new compactness result in order to pass to the limit in nonlinear terms. This
passage to the limit is nontrivial due to the degeneracy of the system.

2010 Mathematics Subject Classification. Primary: 76S05, 76T10; Secondary: 35D30, 35K65,

35Q35.
Key words and phrases. Immiscible compressible, nonlinear degenerate system, two-phase flow,

porous media, nuclear waste, water-gas.
The research was supported by FP7 EURATOM Fund 230357, the FORGE project & MoMaS.

1217

http://dx.doi.org/10.3934/dcdsb.2013.18.1217


1218 BRAHIM AMAZIANE, LEONID PANKRATOV AND ANDREY PIATNITSKI

1. Introduction. Two-phase flow in porous media is important to many practi-
cal problems, including those in petroleum reservoir engineering, unsaturated zone
hydrology, and soil sciences. More recently, modeling multiphase flow received an
increasing attention in connection with the disposal of radioactive waste and se-
questration of CO2. The modeling and numerical simulation of two-phase flow in
porous media represents an important tool in the design of cost-efficient and safe
methods of studying the mentioned practical problems. It can reduce the number
of laboratory and field experiments, help to identify the significant mechanisms,
optimize existing strategies and give indications of possible risks.

This paper focuses on the modeling of immiscible compressible two-phase flow in
heterogeneous porous media, in the framework of the geological disposal of radioac-
tive waste. As a matter of fact, one of the solutions envisaged for managing waste
produced by nuclear industry is to dispose it in deep geological formations chosen
for their ability to prevent and attenuate possible releases of radionuclides in the
geosphere. In the frame of designing nuclear waste geological repositories appears
a problem of possible two-phase flow of water and gas mainly hydrogen, for more
details see for instance [10, 33].

The mathematical analysis of two-phase flow in porous media has been a problem
of interest for many years and many methods have been developed. There is an
extensive literature on this subject. We will not attempt a literature review here,
but merely mention a few references. Here we restrict ourselves to two-phase flow in
porous media. We refer for instance to [1, 11, 12, 14, 15, 16, 19, 20, 21, 31, 37, 38]
for more information on the analysis, especially on the existence of solutions, of
immiscible incompressible two-phase flow in porous media, and to [7, 8, 9, 18, 22]
for miscible compressible flow in porous media.

However, as reported in [6], the situation is quite different for immiscible com-
pressible two-phase flow in porous media, where, only recently few results have been
obtained. In the case of immiscible two-phase flows with one (or more) compress-
ible fluids without any exchange between the phases, some approximate models
were studied in [23, 24, 25]. Namely, in [23] certain terms related to the compress-
ibility are neglected, and in [24, 25] the mass densities are assumed to depend not
on the physical pressure, but on Chavent’s global pressure. As shown in [5] the
models based on the mass density approximation can be suitable in oil reservoir
simulations but are inadequate in many underground gas and water flows where
the difference between the phase pressures and the global pressure can be signifi-
cant. In the articles [26, 29], a more general immiscible compressible two-phase flow
model in porous media is considered for fields with a single rock type, which is too
restrictive for some realistic problems, such as gas migration through engineered
and geological barriers for a deep repository for radioactive waste. The immiscible
compressible two-phase flows models studied in [23, 24, 25, 26, 29, 30] are based on
phase formulations, i.e. the main unknowns are the phase pressures and the satu-
ration of one phase, and the feature of the global pressure as introduced in [11, 15]
for incompressible immiscible flows is used to establish a priori estimates.

Let us also mention that, recently, a new global pressure concept was introduced
in [4, 5] for modeling immiscible, compressible two-phase flow in porous media with-
out any simplifying assumptions. The resulting equations are written in a fractional
flow formulation and lead to a coupled system which consists of a nonlinear para-
bolic equation (the global pressure equation) and a nonlinear diffusion-convection
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one (the saturation equation). This new formulation is fully equivalent to the orig-
inal phase equations formulation, i.e. where the phase pressures and the phase
saturations are primary unknowns. The fractional flow approach treats the two-
phase flow problem as a total fluid flow of a single mixed fluid, and then describes
the individual phases as fractions of the total flow. For this model, an existence
result, under realistic assumptions on the data, is obtained in [6].

In the case of immiscible two-phase flows with one (or more) compressible fluids
with exchange between the phases, i.e. a multicomponent model, existence of weak
solutions to these equations under some assumptions on the compressibility of the
fluids has been recently established in [32, 35, 36].

The paper is concerned with a nonlinear degenerate system of diffusion-convection
equations modeling the flow and transport of immiscible compressible fluids through
heterogeneous porous media, capillary and gravity effects being taken into account.
We will consider a domain made up of several zones with different characteristics:
porosity, absolute permeability, relative permeabilities and capillary pressure curves.
In the literature, this may be rephrased by saying that we consider a field contain-
ing several types of rocks. We restrict our attention to water (incompressible) and
gas such as hydrogen (compressible) in the context of gas migration through engi-
neered and geological barriers for a deep repository for radioactive waste. For more
details on the formulation of such problems see, e.g., the Couplex-Gas benchmark
[10] which was proposed by ANDRA and MoMaS to improve the modeling of the
migration of hydrogen produced by the corrosion of nuclear waste packages in an
underground storage. This is a system of two-phase (water–hydrogen) flow in a
porous medium.

For notational convenience we only consider a field which contains two different
rock types. But it is easy to see that all the results are valid in a domain with
several rock types. We will restrict our attention to water (incompressible) and gas
such a hydrogen (compressible), however the methodology and the analysis can be
extended to problems where both fluids are assumed to be compressible. The model
to be presented herein is formulated in terms of the wetting (water) saturation phase
and the non-wetting (gas) pressure phase. The governing equations are derived from
the mass conservation laws of both fluids, along with constitutive relations relating
the velocities to the pressures gradients and gravitational effects. Traditionally, the
standard Muskat-Darcy law provides this relationship. This formulation leads to
a coupled system consisting of a nonlinear parabolic equation for the gas pressure
and a nonlinear degenerate parabolic diffusion-convection equation for the water
saturation, subject to appropriate transmission, boundary and initial conditions.

There are two kinds of degeneracy in the studied system. The first one is the
classical degeneracy of the diffusion operator. This degeneracy is due to the capillary
effects, it can be observed even in the case of incompressible immiscible two-phase
flow. The second one represents the evolution term degeneracy. It occurs in the
region where the gas saturation vanishes: the gas density cannot be determined by
its evolution and has no physical meaning since the gas phase is missing. In both
cases the presence of degeneracy weakens the energy estimates and makes a proof
of compactness results more involved. Our aim is to establish existence of weak
solutions for this system of equations under realistic assumptions. Let us mention
that the main difficulties related to the mathematical analysis of such equations
are the coupling, the degeneracy of the diffusion term in the saturation equation
and the degeneracy of the temporal term in the pressure equation. Moreover the
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transmission conditions are nonlinear and the saturation is discontinuous at the
interface separating the two media. In contrast to the case of a single rock-type
model, the transmission conditions lead to additional difficulties in the proof of the
existence result for the system under consideration, see Remark 3 and Section 7
below. Although we follow the strategy used in [29], that is we first regularize our
model and then using the discretization in time, apply the fixed point arguments,
still the presence of discontinuity at the interface brings additional difficulties in
obtaining a priori estimates and passage to the limit, and makes the proof essentially
more involved. Our approach also relies on the compactness result proved in our
previous work [3]. Thus we extend the results of [29] in the case of porous media with
different rock types. This study was intended as a first step to the homogenization
of immiscible compressible two-phase flow through heterogeneous reservoirs with
several rock types.

The rest of the paper is organized as follows. In the next Section, we give a short
description of the mathematical and physical model used in this study. Following
[15], we introduce a global pressure and give some useful relations. Then we provide
the detailed assumptions on data and formulate the main result of the paper on the
existence of a weak solution of the studied problem. Note that the existence result
is proved with the help of regularization, time discretization, a priori estimates and
compactness arguments. Section 3 deals with some properties of the solutions and
with two compactness results which play a crucial rule in studying our degenerate
system. It should be mentioned that the compactness result used for studying single
rock type models (see [29] and the references therein) fails to apply to several rock
types models. Therefore, we prove a new compactness result adapted to the problem
under consideration. In Section 4 we present a short description of the scheme of
proving the main result of the paper. In section 5 we introduce the regularized
problem with a regularization parameter η > 0, and its time discretization with
a small parameter h > 0, and, using the Leray-Shauder fixed point theorem, we
establish, as in [29], the existence of a weak solution of this problem. Section 6 is
devoted to the study of the non degenerate system. We use suitable test functions
introduced in [26] to get uniform estimates with respect to h. These estimates allow
us to pass to the limit, as h tends to zero, and to justify the existence of a weak
solution of the regularized problem with continuous time. In Section 7 we complete
the proof of the main result. To this end, we perform the limit as η tends to zero
and obtain a solution of the non-regularized system. This part of the proof relies on
the compactness results established in Section 3. Lastly, some concluding remarks
are forwarded.

2. Mathematical model and the main result. For notational convenience we
only consider a field which contains two different types of rock. We consider a
reservoir Ω ⊂ Rd (d = 2, 3) which is a bounded Lipschitz domain. We suppose that
Ω is made of two parts Ω1 and Ω2 with Ω2 ⊂ Ω and such that

Ω = Ω1 ∪ Γ1,2 ∪ Ω2, (1)

where Γ1,2 is the interface between the subdomains Ω1,Ω2 which is assumed to
be sufficiently smooth, say Lipschitz continuous. We also introduce the following
notation:

ΩT
def
= Ω×]0, T [, Ω`,T

def
= Ω`×]0, T [, ΣT

def
= Γ1,2×]0, T [, (2)
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where T > 0 is fixed; here and in what follows ` = 1, 2, the subscript ` refers to the
`th type of rock.

We consider an immiscible compressible two-phase flow process in porous media.
We focus on the phases water and gas, but the consideration below is also valid
for a general wetting phase and a non-wetting phase, each phase consisting of a
component.

The water–gas flow in porous reservoirs can be described in terms of the following
characteristics:

- Φ = Φ(x) is the porosity of the medium Ω;
- K = K(x) is the absolute permeability tensor of Ω;
- %w, %g are the densities of water and gas, respectively.
- S`,w = S`,w(x, t), S`,g = S`,g(x, t) are the saturations of water and gas in Ω`,

respectively;

- k
(`)
r,w = k

(`)
r,w(S`,w), k

(`)
r,g = k

(`)
r,g(S`,g) are the relative permeabilities of water and

gas in the medium Ω`, respectively;
- p`,w = p`,w(x, t), p`,g = p`,g(x, t) are the pressures of water and gas in Ω`,

respectively.

The conservation of mass in each phase can be written as (see, e.g., [13, 15, 17,
28]): 

Φ(x)
∂

∂t
(S`,w %w(p`,w)) + div (%w(p`,w) ~q`,w) = Q`,w(x, t) in Ω`,T ;

Φ(x)
∂

∂t
(S`,g %g(p`,g)) + div (%g(p`,g) ~q`,g) = Q`,g(x, t) in Ω`,T ,

(3)

where the velocities of the water and gas ~q`,w, ~q`,g are defined by the Darcy-Muskat’s
law:

~q`,w = −K(x)λ`,w(S`,w) (∇p`,w − %w(p`,w)~g) , with λ`,w(S`,w) =
k

(`)
r,w

µw
(S`,w); (4)

~q`,g = −K(x)λ`,g(S`,g) (∇p`,g − %g(p`,g)~g) , with λ`,g(S`,g) =
k

(`)
r,g

µg
(S`,g). (5)

Here ~g, µw, µg are the gravity vector and the viscosities of the water and gas,
respectively. The source terms Q`,w, Q`,g are given by:

Q`,w
def
= %w(p`,w)SI`,wfI(x, t)− %w(p`,w)S`,wfP (x, t); (6)

Q`,g
def
= %g(p`,g)S

I
`,gfI(x, t)− %g(p`,g)S`,gfP (x, t), (7)

where the functions fI ≥ 0 and fP ≥ 0 are injection and productions terms, re-
spectively, and SI`,w, S

I
`,g are known injection saturations. In the proof of the main

result of the paper no additional complications arise from the source terms with
respect to other nonlinear terms in system (3). Therefore, for the sake of brevity,
and without loss of generality, we assume that

fI = fP ≡ 0, (8)

i.e., we assume no source/sink terms.
From now on we assume that the density of the water is constant, which for the

sake of simplicity will be taken equal to one, i.e. %w(p`,w) = Const = 1, and the gas
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density %g is a smooth monotone function such that

%g(p) = %min for p ≤ pmin; %g(p) = %max for p ≥ pmax;

%min < %g(p) < %max for pmin < p < pmax.
(9)

Here the pairs of constants %min, %max and pmin, pmax satisfy the bounds:

0 < %min < %max < +∞ and 0 < pmin < pmax < +∞. (10)

In what follows we make use of the following notation:

%`,g = %g(p`,g). (11)

The model is completed as follows. By the definition of saturations, one has

S`,w + S`,g = 1 with S`,w, S`,g ≥ 0. (12)

We set:

S`
def
= S`,w. (13)

Then the curvature of the contact surface between the two fluids links the jump of
pressure of two phases to the saturation by the capillary pressure law:

P`,c(S`) = p`,g − p`,w with P ′`,c(s) < 0 for all s ∈ [0, 1] and P`,c(1) = 0, (14)

where P ′`,c(s) denotes the derivative of the function P`,c(s).

Now due to (8), (11), (13) and the assumption on the density of the water phase,
we rewrite the system (3) as follows:

Φ
∂S

∂t
− div (K(x)λw(x, S) (∇pw − ~g)) = 0 in ΩT ;

Φ
∂Θ

∂t
− div (K(x)λg(x,S)%g(pg) (∇pg − %g(pg)~g)) = 0 in ΩT ;

Pc (x, S) = pg − pw in ΩT ,

(15)

where

S
def
= S1 I1 + S2 I2; pg

def
= p1,g I1 + p2,g I2, pw

def
= p1,w I1 + p2,w I2; (16)

Θ
def
= %g(pg)(1− S) = Θ1 I1 + Θ2 I2; with Θ`

def
= %`,g[1− S`]; (17)

Pc (x,S)
def
= P1,c (S`) I1 + P2,c (S`) I2; (18)

λw(x,S)
def
= λ1,w(S1) I1 + λ2,w(S2) I2,

λg(x, S)
def
= λ1,g(S1) I1 + λ2,g(S2) I2,

(19)

and I` = I`(x) is the characteristic function of the subdomain Ω`.
The continuity of the physical quantities at the interface Γ1,2, i.e. the phase fluxes

and the pressures of the water and gas, gives the following transmission conditions:{
~q1,w · ~ν = ~q2,w · ~ν and ~q1,g · ~ν = ~q2,g · ~ν on ΣT ;

p1,w = p2,w and p1,g = p2,g on ΣT ,
(20)

where ΣT is defined in (2), ~ν is the unit outer normal on Γ1,2, and the velocities
~q`,w, ~q`,g, in the notation (11), (13) are given by:

~q`,w = −K(x)λ`,w(S`) (∇p`,w − ~g) and ~q`,g = −K(x)λ`,g(S`) (∇p`,g − %`,g~g) .
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Remark 1. It is important to notice that in contrast to the functions pg, pw, the
saturation S may have a jump at the interface Γ1,2. Namely, it is easy to see from
the transmission conditions (20) for the phase pressures that P1,c(S1) = P2,c(S2)
on ΣT which gives the discontinuity of the saturation at the interface.

Now we specify the boundary and initial conditions. We suppose that the bound-
ary ∂Ω consists of two parts Γinj and Γimp such that Γinj∩Γimp = ∅, ∂Ω = Γinj∪Γimp.
The boundary conditions are given by:{

p1,g(x, t) = p1,w(x, t) = 0 on Γinj×]0, T [;

~q1,w · ~ν = ~q1,g · ~ν = 0 on Γimp×]0, T [.
(21)

Remark 2. Without loss of generality, we restrict the presentation to the case
where the subdomain Ω2 ⊂ Ω, but it is easy to see that all results also hold in the
case ∂Ω2 ∩ ∂Ω 6= ∅. This study was intended as a first step to the homogeniza-
tion of immiscible compressible two-phase flow through heterogeneous reservoirs
with several rock types where this assumption is essential to apply the extension
technique.

Finally, the initial conditions read:

pw(x, 0) = p0w(x) and pg(x, 0) = p0g(x) in Ω. (22)

2.1. Global pressure and useful relations. In what follows we will make use of
the so called global pressure introduced in [11, 15], see also [17]. It plays a crucial
mathematical role, in particular, for compactness results. For compressible fluids
the global pressure was used in [24, 26, 29, 30]. However, in contrast with the
models studied in these papers, due to the presence of two types of rock in the
model studied here, the saturation and global pressure may be discontinuous. The
idea of the introduction of the global pressure is as follows, see [11, 15]. We want
to replace the water–gas flow by a flow of a fictive fluid obeying the Darcy law with
a non–degenerating coefficient. Namely, we are looking for a pressure P` and the
coefficient γ`(S`) such that γ`(S`) > 0 for all S` ∈ [0, 1] and

λ`,w(S`)∇p`,w + λ`,g(S`)∇p`,g = γ`(S`)∇P`. (23)

Then, for each subdomain Ω`, the global pressure, P`, is defined by:

p`,w
def
= P` + G`,w(S`) and p`,g

def
= P` + G`,g(S`); (24)

the functions G`,w(s) and G`,g(s) will be introduced later on, see (27), (28).
Now it is easy to see that

λ`,w(S`)∇p`,w + λ`,g(S`)∇p`,g = λ`(S`)∇P`+

+ {λ`,g(S`)∇G`,g(S`) + λ`,w(S`)∇G`,w(S`)} ,

where

λ`(s)
def
= λ`,w(s) + λ`,g(s) (25)

We set:

λ`,g(S`)∇G`,g(S`) + λ`,w(S`)∇G`,w(S`) = 0. (26)

Then γ`(S`) = λ`(S`). The standard assumption on the function λ`(S`) is that
λ`(S`) > 0 for all S` ∈ [0, 1] (see the condition (A.5) below). Thus the relation
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(23) is established. Now we specify the functions G`,w, G`,g. We define G`,g as
follows:

G`,g(S`)
def
= G`,g(0) +

S`∫
0

λ`,w(s)

λ`(s)
P ′`,c(s) ds. (27)

The functions G`,w are then defined by

G`,w(S`)
def
= G`,g(S`)− P`,c (S`) with ∇G`,w(S`) = −λ`,g(S`)

λ`(S`)
P ′`,c(S`)∇S`. (28)

Notice that from (27), (28) we get:

λ`,w(s)∇G`,w(s) = α`(s)∇s and λ`,g(s)∇G`,g(s) = −α`(s)∇s, (29)

where

α`(s)
def
=

λ`,g(s)λ`,w(s)

λ`(s)

∣∣P ′`,c(s)∣∣ . (30)

Now we link the capillary pressure and the mobilities in the following way. We
define two scalar functions A`,g,A`,w as follows:√

λ`,g(s) G′`,g(s) = A′`,g(s) and
√
λ`,w(s) G′`,w(s) = A′`,w(s). (31)

Then, following the lines of [26, 29], due to (24), (26), (25), and (31) we have the
following identity:

λ`,g(S`)|∇p`,g|2 + λ`,w(S`)|∇p`,w|2 = λ`(S`)|∇P`|2 + |∇b`(S`)|2 , (32)

where

b`(S`)
def
=

s∫
0

a`(ξ) dξ with a`(s)
def
=

√
λ`,g(s)λ`,w(s)

λ`(s)

∣∣P ′`,c(s)∣∣ . (33)

To make the assumptions on the data of our problem, we introduce the function
β`,

β`(s)
def
=

s∫
0

α`(ξ) dξ, (34)

where the function α` is defined in (30). Notice that by the definition of the global
pressure, (33), (34), and by the boundedness of λ`,w, λ`,g (see the condition (A.5)
below) the following relations holds:

|∇β`(S`)|2 ≤ C |∇b`(S`)|2 , (35)

λ`,w(s)∇p`,w = λ`,w(s)∇P` +∇β`(s),

λ`,g(s)∇p`,g = λ`,g(s)∇P` −∇β`(s).
(36)

2.2. Main assumptions. The main assumptions on the data are as follows:

(A.1) The porosity Φ ∈ L∞(Ω), and there are positive constants φ−, φ
+ such that

0 < φ− < φ+ and

0 < φ− ≤ Φ(x) ≤ φ+ < 1 a. e. in Ω. (37)

(A.2) The tensor K ∈ (L∞(Ω))d×d and there exist constants K−,K
+ such that

0 < K− < K+ and

K−|ξ|2 ≤ (K(x)ξ, ξ) ≤ K+|ξ|2 for all ξ ∈ Rd, a.e. in Ω. (38)
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(A.3) The function %g = %g(p) given by (9) is a monotone C1–function in R.
(A.4) The capillary pressure function P`,c(s) ∈ C1([0, 1];R+). Moreover, P ′`,c(s) <

0 in [0, 1] and the following two relations hold: P`,c(S` = 1) = 0 and P1,c(S` =
0) = P2,c(S` = 0).

(A.5) The functions λ`,w, λ`,g belong to the space C([0, 1];R+) and satisfy the
following properties:
(i) 0 ≤ λ`,w, λ`,g ≤ 1 in [0, 1]; (ii) λ`,w(0) = 0 and λ`,g(1) = 0; (iii) there is a
positive constant L0 such that λ`(s) = λ`,w(s) + λ`,g(s) ≥ L0 > 0 in [0, 1].

(A.6) The function α` ∈ C1([0, 1];R+). Moreover, α`(0) = α`(1) = 0 and α` > 0
in ]0, 1[.

(A.7) The function β−1
` , inverse of β` defined in (34) is a Hölder function of order

θ with θ ∈ (0, 1) on the interval [0, β`(1)]. Namely, there exists a positive
constant Cβ such that for all s1, s2 ∈ [0, β(1)] the following inequality holds:∣∣β−1

` (s1)− β−1
` (s2)

∣∣ ≤ Cβ |s1 − s2|θ.

(A.8) The initial data for the pressures are such that p0g , p
0
w ∈ L2(Ω).

(A.9) The initial data for the saturation is such that S0 ∈ L∞(Ω) and 0 ≤ S0 ≤ 1
a.e.in Ω.

The assumptions (A.1)–(A.9) are classical for two-phase flow in porous media.

2.3. Formulation of the main result. In order to formulate the main result of
the paper, we introduce the following Sobolev space:

H1
Γinj

(Ω)
def
=
{
u ∈ H1(Ω) : u = 0 on Γinj

}
.

The space H1
Γinj

(Ω) is a Hilbert space. The norm in this space is given by

‖u‖H1
Γinj

(Ω) = ‖∇u‖(L2(Ω))d .

The main result of the paper is as follows.

Theorem 2.1. Let assumptions (A.1)–(A.9) be fulfilled. Then there exist the
triple of functions 〈pg, pw,S〉 such that:

(I): The functions pg, pw,S have the following regularity properties:

pw, pg ∈ L2(0, T ;L2(Ω)),√
λw(x, S)∇pw,

√
λg(x, S)∇pg ∈ L2(0, T ;L2(Ω));

(39)

β`(S`) ∈ L2(0, T ;H1(Ω`)) and P` ∈ L2(0, T ;H1(Ω`)); (40)

Φ
∂S`
∂t
∈ L2(0, T ;H−1(Ω`)) and Φ

∂Θ`

∂t
∈ L2(0, T ;H−1(Ω`)); (41)

where the function Θ` is given in (17).
(II): the maximum principle holds:

0 ≤ S ≤ 1 a.e. in ΩT . (42)

(III): For any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying

ϕw = ϕg = 0 on Γinj×]0, T [, and ϕw(x, T ) = ϕg(x, T ) = 0,
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we have:

−
∫

ΩT

Φ(x)S
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx+∫
ΩT

K(x)λw(x, S)∇pw · ∇ϕw dx dt−
∫

ΩT

K(x)λw(x, S)~g · ∇ϕw dx dt = 0,
(43)

−
∫

ΩT

Φ(x)Θ
∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ(x, 0)ϕg(x, 0) dx+

+

∫
ΩT

K(x)λg(x, S)%g(pg)∇pg · ∇ϕw dx dt

−
∫

ΩT

K(x)λg(x, S) [%g(pg)]
2
~g · ∇ϕw dx dt = 0

(44)

with Θ defined in (17), and

P`,c(S`) = p`,g − p`,w.

(IV): The initial conditions are satisfied in a weak sense as follows:

∀ψ ∈ H1
Γinj

(Ω),

∫
Ω

Φ(x)S(x, t)ψ(x) dx,

∫
Ω

Φ(x)Θ(x, t)ψ(x) dx ∈ C ([0, T ]) . (45)

Furthermore, we have∫
Ω

Φ(x)Sψ dx

 (0) =

∫
Ω

Φ(x)S0 ψ dx (46)

and ∫
Ω

Φ(x)Θψ dx

 (0) =

∫
Ω

Φ(x)Θ0 ψ dx with Θ0 def
= Θ(x, 0). (47)

The proof of Theorem 2.1 will be done in several steps. The scheme of the proof
is given below in Section 4. The next section is devoted to the proof of the regularity
and compactness properties of the solutions to problem (15) under the assumption
that there exists at least one weak solution of (15). The maximum principle (42)
will be discussed below in Lemma 5.5.

3. Properties of the solutions to system (15)–(22). The outline of the section
is as follows. First, we establish a priori estimates for solution of (15)–(22). These
estimates explain clearly the origins of the requirements (39)–(41). The derivation
of the a priori estimates is essentially based on the energy equality. Notice that
this equality was introduced for the first time in the case of a homogeneous porous
medium in [26]. In Section 3.1 we generalize the energy equality to the case of a
porous media made of two types of rock. In Section 3.2 we will show that the
weak formulation of the problem (43)–(44) contains an interpretation of the initial
conditions. Finally, in Section 3.3 we establish some compactness results which will
be used in the proof of the main result of the paper.
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3.1. Regularity properties (39)–(41). First, we obtain the energy equality. To
this end, following [26], we introduce the functions:

R`,w(p`,w)
def
=

p`,w∫
0

dξ = p`,w and R`,g(p`,g)
def
=

p`,g∫
0

dξ

%g(ξ)
. (48)

It is clear that

∇R`,w(p`,w) = ∇p`,w and ∇R`,g(p`,g) =
1

%`,g
∇p`,g, where %`,g = %g(p`,g).

Then following the lines of [26, 3], one can prove the following lemma.

Lemma 3.1 (Energy equality). Let 〈pg, pw〉 be a solution to (15)–(22). Then

d

d t

∫
Ω

Φ(x)E(x, t) dx+

∫
Ω

K(x)λw(x,S)∇pw · (∇pw − ~g) dx

+

∫
Ω

K(x)λg(x, S)%g(pg)∇pg · (∇pg − %g(pg)~g) dx = 0
(49)

in the sense of distributions. Here E
def
= E1 I1 + E2 I2 with

E`
def
= (1− S`)R`(p`,g)−z(S`), where z`(s)

def
=

s∫
0

P`,c(ξ) dξ (50)

and

R`(p)
def
= %g(p)R`,g(p)− p. (51)

Moreover, for all p ∈ R, R`(p) ≥ 0.

Let us prove that the function E` is bounded from below. The boundedness of
E` is a consequence of Lemma 3.1 and condition (A.4). Namely, we have

E` = (1− S`)R`(p`,g)−z(S`) ≥ −z(1) ≥ − max
S`∈[0,1]

P`,c(S`). (52)

Now a priori estimates for the solutions to (15)–(22) are a simple corollary of
Lemma 3.1 and (52). Namely, we have:

Corollary 1. Let 〈pg, pw〉 be a solution to (15)–(22) and and let P` and β` be the
functions defined in (24) and (34), respectively. Then∫

ΩT

{
λw(x, S)|∇pw|2 + λg(x,S)|∇pg|2

}
dx < +∞; (53)

∫
Ω`,T

{
|∇P`|2 + |∇β`(S`)|2

}
dx < +∞; (54)

‖∂t(ΦΘ`)‖L2(0,T ;H−1(Ω`))
+ ‖∂t(ΦS`)‖L2(0,T ;H−1(Ω`))

< +∞. (55)
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3.2. Interpretation of the initial conditions. In this section we show that the
weak formulation (43)–(44) contains the interpretation of the initial conditions (45)–
(47).

Let ϕw = χ(t)ω(x), where χ ∈ D]0, T [ and ω ∈ H1
Γinj

(Ω). Then, from (43) we
get:

d

d t

∫
Ω

Φ(x)S(x, t)ω(x) dx+

∫
Ω

K(x)λw(x, S)(∇pw − ~g) · ∇ω dx = 0 (56)

in the sense of distributions. From the regularity properties of the solutions, we
deduce that∫

Ω

Φ(x)S(x, t)ω(x) dx ∈ L1(]0, T [),
d

dt

∫
Ω

Φ(x)S(x, t)ω(x) dx ∈ L1(]0, T [). (57)

This means that the function
∫

Ω
Φ(x)S(x, t)ω(x) dx ∈W 1,1(]0, T [) and consequently

this function is continuous.
Now, we multiply (56) by χ ∈ C∞([0, T ]) such that χ(0) = 1 and χ(T ) = 0.

Then, integrating by parts we get:

−

∫
Ω

Φ(x)Sω(x) dx

 (0) = −
∫

ΩT

K(x)λw(x, S)(∇pw − ~g) · ∇ϕw dx dt

+

∫
ΩT

Φ(x)Sω(x)
dχ

d t
dx dt.

Comparing now this equation and (43), where ϕw(x, t) = χ(t)ω(x), we observe that∫
Ω

Φ(x)Sω(x) dx

 (0) =

∫
Ω

Φ(x)S0(x)ω(x) dx (58)

which makes the initial condition at t = 0 well defined.
In a similar way we show the relation (47).

3.3. Compactness results. In this section we obtain two compactness results that
will be used in the proof of the main existence theorem. Notice that the previous
results obtained in [24] and [29, 30] are not sufficient for our purposes. In these
papers the method proposed earlier in [15] for the constant porosity function is
generalized to the case of the porosity function belonging to the class W 1,∞. The
proof is essentially based on Simon’s embedding theorem for the spaces of functions
depending on the space and time variables (see [34]). However, the assumption that
the porosity function is from the space W 1,∞ is not admissible for the homogeniza-
tion of the water–gas flow in porous media made of different types of rock. Below
we propose our own approach to this problem. This approach was developed for the
first time in [3] in the context of the homogenization of a single rock type model.
Namely, we have the following compactness lemma.

Lemma 3.2 (Compactness lemma). Let the function Φ = Φ(x), Φ ∈ L∞(Ω), and
there are positive constants φ1, φ2 such that 0 < φ1 ≤ Φ(x) ≤ φ2 < 1 a.e. in Ω and
let {vε}ε>0 ⊂ L2(ΩT ) be a family of functions satisfying the properties:

1. the function vε is uniformly bounded in the space L∞(ΩT ), i.e.,

0 ≤ vε ≤ C; (59)
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2. there exists a function $ such that $(ξ) → 0 as ξ → 0 and the following
inequality holds true:∫

ΩT

|vε(x+ ∆x, τ)− vε(x, τ)|2 dx dτ ≤ C $(|∆x|); (60)

3. the function vε is such that

‖∂t(Φvε)‖L2(0,T ;H−1(Ω)) ≤ C. (61)

Then the family {vε}ε>0 is a compact set in L2(ΩT ).

This compactness result is particular case of the Lemma 4.2 which was proved
in [3]. We apply Lemma 3.2 in order to obtain the compactness results for the
sequences {Θε

`}ε>0, {Sε` }ε>0. The first compactness result reads.

Proposition 1 (First compactness result). Let {Θε
`}ε>0 ⊂ L2(Ω`,T ) be defined by

Θε
`

def
= %g(p

ε
`,g)(1− Sε` ),

where ε is a small positive parameter which goes to zero. Suppose that∥∥∥√λ`,w(Sε` )∇pε`,w
∥∥∥
L2(Ω`,T )

+
∥∥∥√λ`,g(Sε` )∇pε`,g

∥∥∥
L2(Ω`,T )

+ ‖∂t(ΦΘε
`)‖L2(0,T ;H−1(Ω`))

≤ C,
(62)

where C is a constant that does not depend on ε. Then {Θε
`}ε>0 is a compact set

in the space L2(Ω`,T ).

Proof. The idea of the proof is to apply the Compactness lemma 3.2. Namely,
we check the conditions of the lemma. First, it follows from the definition of the
function %g and condition (A.1) that

0 ≤ Θε
` = %g(P

ε
` + Gg(S

ε
` )) (1− Sε` ) ≤ %max <∞. (63)

Now we exploit (62) and (32). As in Corollary 1 we get:∫
Ω`,T

{
|∇Pε` |2 + |∇β`(Sε` )|2

}
dx ≤ C, (64)

where C is a constant that does not depend on ε. Then from (64) and the condition
(A.7) we have:∫

Ω`,T

|Θε
`(x+ y, τ)−Θε

`(x, τ)|2 dx dτ ≤ ω1(y) with ω1(ξ)→ 0 as ξ → 0. (65)

Finally, we observe that condition 3 of the Compactness lemma is fulfilled due
to (62) which concludes the proof of Proposition 1.

As a consequence of the L2–compactness and the uniform L∞–bound for Θε
` we

have the following result:

Corollary 2. The family {Θε
`}ε>0 is a compact set in the space Lq(Ω`,T ) for all

q ∈ [1,+∞[.

By similar arguments we prove the second compactness result.
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Proposition 2 (Second compactness result). Let {Sε` }ε>0 ⊂ L2(Ω`,T ), where ε is
small positive parameter which goes to zero. Assume that∥∥∥√λ`,w(Sε` )∇p`,w

∥∥∥
L2(Ω`,T )

+
∥∥∥√λ`,g(Sε` )∇p`,g

∥∥∥
L2(Ω`,T )

+ ‖∂t(ΦSε` )‖L2(0,T ;H−1(Ω`))
≤ C,

(66)

where C is a constant that does not depend on ε. Then, for all q ∈ [1,+∞[, {Sε` }ε>0

is a compact set in the space Lq(Ω`,T ).

4. Scheme of the proof of Theorem 2.1. The goal of this section is to give a
short scheme of the proof of Theorem 2.1. It will be done in two main steps. First,
we consider the following non–degenerate system:

Φ
∂Sη

∂t
− div

(
Kλw(x, Sη) (∇pηw − ~g) + η∇(pηw − pηg)

)
= 0 in ΩT ;

Φ
∂Θη

∂t
− div

(
Kλg(x, S

η)%g(p
η
g)
(
∇pηg − %g(pηg)~g

)
+ η %g(p

η
g)∇(pηg − pηw)

)
= 0 in ΩT ;

Pc (x, Sη) = pηg − pηw in ΩT ,

(67)

where η is a small positive parameter; for the sake of brevity we do not write down
again the initial and boundary conditions.
Notational convention. In what follows the upper index corresponds to the pa-
rameter for which we study the limit behavior of the corresponding functions.

The existence result for system (67) will be formulated and proved in Section
6. The proof of this result is based on the existence result for a system with a
time discretization. Namely, we will consider the following non–degenerate elliptic
problem:

Φ∆hS
h
η − div

(
Kλw(x, Shη)

(
∇phw,η − ~g

)
+ η∇

(
phw,η − phg,η

))
= 0;

Φ∆hΘh
η − div

(
Kλg(x, S

h
η)%hg,η

(
∇phg,η − %hg,η~g

)
+ η%hg,η∇

(
phg,η − phw,η

))
= 0;

Pc(x, S
h
η) = phg,η − phw,η,

(68)
where

%hg,η = %g(p
h
g,η), ∆hS

h
η

def
=

Shη − S?η
h

, ∆hΘh
η

def
=

Θh
η −Θ?

η

h
(69)

and where S?η,Θ
?
η are given functions.

Remark 3 (On the interface and boundary conditions). In the case of fields with
different rock-types, when deriving the limit problem, we have to take care of the
continuity of the phase pressures at the interface Γ1,2 and of the Dirichlet boundary
condition on Γinj. If the gradients of the phase pressures are uniformly bounded
with respect to the corresponding small parameter, the continuity of the pressures
and the boundary condition on Γinj are evident (see, e.g., the proof of Theorem
5.1). However, this uniform boundedness is violated when we pass to the limit as
η → 0. In this case we obtain the desired continuity of the phase pressures and the
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boundary condition on Γinj using the notion of the global pressure and the equality
(32). For more details see Section 7.2.

The rest of the paper is organized as follows. In Section 5 we are dealing with
the time discrete model. The existence result is proved in two main steps. In the

first step we consider system (68) with non–degenerate mobilities λεw
def
= λw + ε,

λεg
def
= λg + ε with ε > 0 and then apply the Leray–Schauder fixed point theorem.

In the second step we pass to the limit as ε→ 0. In Section 6 we pass to the limit
as h→ 0. This proves the existence result for non–degenerate system (67). Finally,
in Section 7 we pass to the limit as η → 0 to prove the main result of the paper.

5. Existence result for system (68). In this section we deal with the time
discrete non–degenerate model (68), where the dependence on the parameter η is
not indicated explicitly for the sake of brevity:

Φ∆hS
h − div

(
Kλw(x,Sh)

(
∇phw − ~g

)
+ η∇

(
phw − phg

))
= 0;

Φ∆hΘh − div

(
Kλg(x, S

h)%hg
(
∇phg − %hg~g

)
+ η%hg∇

(
phg − phw

))
= 0;

Pc(x, S
h) = phg − phw.

(70)

As before, we impose the following interface conditions on Γ1,2:{
~q h1,w · ~ν = ~q h2,w · ~ν and ~q h1,g · ~ν = ~q h2,g · ~ν on ΣT ;

ph1,w = ph2,w and ph1,g = ph2,g on ΣT ,
(71)

where

~q h`,w
def
= −K(x)λ`,w(Sh` )

(
∇ph`,w − ~g

)
− η∇(ph`,w − ph`,g);

~q h`,g,η
def
= −K(x)λ`,g(S

h
` )%h`,g

(
∇p`,g,η − %h`,g~g

)
− η%h`,g∇(ph`,g − ph`,w).

Also, we equip this system with the following boundary conditions:{
ph1,g = ph1,w = 0 on Γinj;

~q h1,w · ~ν = ~q h1,g · ~ν = 0 on Γimp.
(72)

The main result of the section is given by the following theorem.

Theorem 5.1. Let assumptions (A.1)–(A.9) be fulfilled and let η be a fixed positive
parameter. Then for all h > 0, there exists a pair of functions 〈phg , phw〉 such that

(I): The functions phg , p
h
w, and Sh` have the following regularity properties:

phw, p
h
g ∈ H1

Γinj
(Ω) and Sh` ∈ H1(Ω`). (73)

(II): The maximum principle holds:

0 ≤ Sh ≤ 1 a. e. in Ω. (74)

(III): For any ϕw, ϕg ∈ H1
Γinj

(Ω),∫
Ω

{
Φ(x)∆hS

h ϕw +K(x)λw(x, Sh)
(
∇phw − ~g

)
· ∇ϕw

}
dx

+

∫
Ω

η∇
(
phw − phg

)
· ∇ϕw dx = 0;
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Ω

{
Φ(x)∆hΘh ϕg +K(x)λg(x, S

h)
(
∇phg − %hg~g

)
%hg · ∇ϕg

}
dx

−
∫
Ω

η%hg∇
(
phw − phg

)
· ∇ϕg dx = 0.

5.1. Proof of Theorem 5.1. First, we shortly describe the scheme of the proof of
Theorem 5.1. We follow the steps developed in [29] for the single rock type model.
Taking into account this fact, for the sake of brevity, we will omit the proofs of
several propositions and lemmata given below. Before establishing Theorem 5.1
which is the main goal of this section, we consider a regularized problem. Namely,
we consider the system (70)–(72) with non–degenerate mobilities λε`,w, λ

ε
`,g given

by:

λε`,w
def
= λ`,w + ε and λε`,g

def
= λ`,g + ε, (75)

with ε > 0. In addition, we replace the regularization terms in (70) with their
projections on finite-dimensional subspaces defined in terms of the eigenbasis of the
Laplace operator in Ω with Dirichlet boundary conditions. This further regulariza-
tion allows us to truncate high frequencies in the additional terms containing the
parameter η, and makes it possible to apply Leray–Schauder fixed point theorem.

The passage to the non–degenerate mobilities leads to the loss of the maximum
principle for the saturation Sh` . In this connection, the functions λε`,w, λ

ε
`,g are

extended on (−∞, 0] and [1,+∞) by constants in such a way that the extended
functions are continuous. It is clear that they are bounded in R. For the same
reason we introduce the extension of the functions Sh` . Namely,

Z`(S
h
` )

def
=


0 for Sh` ≤ 0;

Sh` for Sh` ∈ [0, 1];

1 for Sh` ≥ 1

and Z(Sh)
def
= Z1(Sh1 ) I1 + Z2(Sh2 ) I2. (76)

Similarly, in order to write the saturations Sh` as functions of the principle unknowns
ph`,w and ph`,g, we extend the capillary pressure function P`,c on the complement to

the interval [0, 1] as follows:

P `,c(s)
def
=


P`,c(0)− s for s ≤ 0;

P`,c(s) for s ∈ [0, 1];

−(s− 1) for s ≥ 1.

(77)

This is possible due to the condition (A.4). Finally, we note that

Sh` = P
−1

`,c

(
ph`,g − ph`,w

)
.

The existence of solution to (70)–(72) is proved in three steps. At the first
step assuming that the parameters ε,N, h, η > 0 are fixed we study the following
regularized elliptic system (the dependence on the parameters h, η > 0 is omitted
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for brevity):∫
Ω

Φ(x)∆hS
ε,N ϕw dx+

∫
Ω

K(x)λεw(x, Sε,N )∇pε,Nw · ∇ϕw dx

−
∫
Ω

K(x)λw(x, Sε,N )~g · ∇ϕw dx

+η

∫
Ω

∇
(
PN

[
pε,Nw

]
− PN

[
pε,Ng

])
· ∇ϕw dx = 0;

(78)

∫
Ω

Φ(x)∆hΘε,N ϕg dx+

∫
Ω

K(x)λεg(x,S
ε,N )%g(p

ε,N
g )∇pε,Ng · ∇ϕg dx

−
∫
Ω

K(x)λg(x,S
ε,N )

[
%g(p

ε,N
g )

]2
~g · ∇ϕg dx

+η

∫
Ω

%g(p
ε,N
g )∇

(
PN

[
pε,Ng

]
− PN

[
pε,Nw

])
· ∇ϕg dx = 0

(79)

for all ϕw, ϕg ∈ H1
Γinj

(Ω). Here PN is the orthogonal projector of L2(Ω) on the first

N eigenvectors of the operator u → −∆u with homogeneous Dirichlet boundary
conditions;

∆hS
ε,N def

=
Z(Sε,N )− S?

h
and ∆hΘε,N def

=
Θε,N −Θ?

h

with

Θε,N = %g(p
ε,N
g )(1− Z(Sε,N )); λεw(x, Sε,N )

def
= λε1,w(Sε,N)I1+ λε2,w(Sε,N )I2;

λεg(x,S
ε,N )

def
= λε1,g(S

ε,N )I1+ λε2,g(S
ε,N )I2; Sε,N =

2∑
`=1

P
−1

`,c

(
pε,Ng − pε,Nw

)
I`.

(80)
The second step is concerned with the passage to the limit in (78)–(80) as

N →∞, while the third step with the passage to the limit as ε goes to zero.

5.1.1. Step 1: Application of a fixed point theorem. In this section, for fixed N > 0
and ε > 0, we prove the existence of solutions to system (78)–(79). For the sake of
brevity we omit here the dependence of the solutions on the parameters N, ε.

We apply the following version of the Leray–Schauder fixed point theorem (see,
e.g. [27]).

Theorem 5.2 (Leray–Schauder’s fixed point theorem.). Let M be a continuous and
compact map of a Banach space B into itself. Suppose that the set of x ∈ B such
that x = σMx for some σ ∈ [0, 1], is bounded. Then the map M has a fixed point.

The main result of Section 5.1.1 is the following proposition.

Proposition 3. Assume that S?,Θ? ∈ L2(Ω) and S?,Θ? ≥ 0 in Ω. Then there
exists a pair of functions 〈pw, pg〉 ∈ H1

Γinj
(Ω)×H1

Γinj
(Ω), solution to (78)–(80).
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5.1.2. Step 2: Passage to the limit as N → +∞. In this Section we pass to the limit
as N → +∞. For the sake of simplicity we omit the dependence on the parameter ε
in the functions depending on N . It follows from the previous Section that the pair
of functions

〈
pNw , p

N
g

〉
∈ H1

Γinj
(Ω)×H1

Γinj
(Ω) is the solution of the following system

of equations: ∫
Ω

Φ(x)∆hS
N ϕw dx+

∫
Ω

K(x)λεw(x, SN )∇pNw · ∇ϕw dx

−
∫
Ω

K(x)λw(x,SN )~g · ∇ϕw dx+ η

∫
Ω

∇
(
PN

[
pNw
]
− PN

[
pNg
])
· ∇ϕw dx = 0;

(81)∫
Ω

Φ(x)∆hΘN ϕg dx+

∫
Ω

K(x)λεg(x, S
N )%g(p

N
g )∇pNg · ∇ϕg dx

−
∫
Ω

K(x)λg(x, S
N )
[
%g(p

N
g )
]2
~g · ∇ϕg dx

+η

∫
Ω

∇
(
PN [pg]− PN [pw]

)
· ∇ϕg dx = 0

(82)

for all ϕw, ϕg ∈ H1
Γinj

(Ω).

Choosing

ϕw = Rw(pw) = pw and ϕg = Rg(pg) =

pg∫
0

dξ

%g(ξ)
,

as test functions, then we get the following estimate:

ε

∫
Ω

{
|∇pNw |2 + |∇pNg |2

}
dx+ η

∫
Ω

|∇ (PN [pw]− PN [pg])|2 dx ≤ C, (83)

where C is a constant which does not depend on N . Then (up to subsequences) we
obtain the following convergence results:

pNw −→ pεw weakly in H1
Γinj

(Ω), strongly in L2(Ω), and a.e. in Ω; (84)

pNg −→ pεg weakly in H1
Γinj

(Ω), strongly in L2(Ω), and a.e. in Ω. (85)

Taking into account that S` = P
−1

`,c (p`,g − p`,w), we also have:

SN −→ Sε strongly in L2(Ω) and a.e. in Ω. (86)

Now we pass to the limit in (81)–(82) as N → +∞ using the convergence results
(84)– (86). The corresponding system of equations is as follows:∫

Ω

Φ(x)∆h S
εϕw dx+

∫
Ω

K(x)λεw(x, Sε)∇pεw · ∇ϕw dx−

−
∫
Ω

K(x)λw(x, Sε)~g · ∇ϕw dx+ η

∫
Ω

∇
(
pεw − pεg

)
· ∇ϕw dx = 0; (87)

∫
Ω

Φ(x)∆hΘε ϕg dx+

∫
Ω

K(x)λεg(x, Sε)%g(p
ε
g)∇pεg · ∇ϕg dx−
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−
∫
Ω

K(x)λg(x, Sε)
[
%g(p

ε
g)
]2
~g ·∇ϕg dx−η

∫
Ω

%g(p
ε
g)∇

(
pεw − pεg

)
·∇ϕg dx = 0 (88)

for all ϕw, ϕg ∈ H1
Γinj

(Ω).

Notice that the continuity of the phase pressures on Γ1,2 and the Dirichlet bound-
ary condition on Γinj are a consequence of the following relations:

‖pεw‖H1(Ω) ≤ lim
N→+∞

‖pNw ‖H1(Ω) < +∞ and ‖pεg‖H1(Ω) ≤ lim
N→+∞

‖pNg ‖H1(Ω) < +∞

along with the continuity of the pressures pNw , p
N
g on Γ1,2.

5.1.3. Step 3: Passage to the limit as ε→ 0. First, we notice that as in the previous
sections we omit the dependence of the corresponding functions on η, h and keep
the dependence on the small parameter ε, only.

It follows from the results of Section 5.1.2 that for any ε > 0, there is
〈
pεw, p

ε
g

〉
∈

H1
Γinj

(Ω) × H1
Γinj

(Ω) which is the solution of (87)–(88). First, we obtain uniform

estimates (with respect to ε) for the solutions in order to pass to the limit in (87)–
(88) as ε→ 0. These estimates are given by the following Lemma whose proof use
the same arguments as in [3].

Lemma 5.3. Let
〈
pεw, p

ε
g

〉
be a solution to (87)–(88) and let Pε` be the global pressure

defined in (24). Then we have:

{Pε`}ε>0 is uniformly bounded in H1(Ω`); (89)

{β`(Sε`)}ε>0 is uniformly bounded in H1(Ω`); (90)

{∇P `,c(Sε`)}ε>0 is uniformly bounded in L2(Ω`); (91)

{pεw}ε>0 is uniformly bounded in H1
Γinj

(Ω); (92)

{pεg}ε>0 is uniformly bounded in H1
Γinj

(Ω). (93)

The uniform estimates established in the previous lemma imply the following
convergence results.

Lemma 5.4. Let {Sε`}ε>0 and {pεw}ε>0, {pεg}ε>0 be the sequences of saturation and
the phase pressures, respectively. Then we have:

β`(S
ε
`) −→ β`(S`) weakly in H1(Ω`) and a.e. in Ω` ; (94)

Sε` −→ S` strongly in L2(Ω`) and a.e. in Ω` ; (95)

pεw −→ pw weakly in H1(Ω`) and a.e. in Ω` ; (96)

pεg −→ pg weakly in H1(Ω`) and a.e. in Ω` . (97)

5.1.4. End of the proof of Theorem 5.1. Now we are in position to complete the
proof of Theorem 5.1. To this end we have to passe to the limit in (87)–(88) as
ε→ 0 and then prove the maximum principle for the saturations.

The passage to the limit as ε → 0 yields the existence of a pair of functions
〈phw, phg 〉 ∈ H1

Γinj
(Ω)×H1

Γinj
(Ω) such that, for any ϕw, ϕg ∈ H1

Γinj
(Ω), we have:∫

Ω

{
Φ(x)∆hS

h ϕw dx+
[
K(x)λw(x,Sh)

(
∇phw − ~g

)
+ η∇

(
phw − phg

)]
· ∇ϕw

}
dx = 0;

(98)∫
Ω

{
Φ(x)∆hΘh ϕg +

[
K(x)λg(x,Sh)

(
∇phg − %hg~g

)
%hg − η%hg∇

(
phw − phg

)]
· ∇ϕg

}
dx = 0.

(99)
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Now we prove the maximum principle for the system (98)–(99). The following
result holds.

Lemma 5.5 (Maximum principle). Let S?,Θ? ≥ 0. Then under the conditions
of Theorem 5.1 we have:

0 ≤ Sh ≤ 1 a.e. in Ω. (100)

Proof of Lemma 5.5. First, let us show that Sh ≥ 0 a.e. in Ω. In contrast to
the case considered in [29] we cannot use Sh as a test function in (98) because Sh

might have a jump at the interface Γ1,2. Instead we let

Sh,−`
def
= min{Sh` , 0} (101)

and define the test function ϕw(x) as follows:

ϕw(x)
def
=

{
P 1,c(S

h,−
1 (x))− P1,c(0) in Ω1;

P 2,c(S
h,−
2 (x))− P2,c(0) in Ω2.

(102)

Due to the definition of the capillary pressure, we have ϕw ∈ H1(Ω), and ϕw ≥ 0
in Ω. Moreover, by the definitions of Z` and the mobility extension, we have:

Z`(S
h
` )ϕw ≡ 0 and λ`,w(Sh` )ϕw ≡ 0. (103)

Now we plug the function ϕw in (98). Then it follows from the definitions of the

functions ϕw, Sh,−` , the definition of the extension of the capillary pressure function
(77), and (103) that

1

h

∫
Ω

Φ(x)S∗ϕw(x) dx+ η

2∑
`=1

∫
Ω`

∇P `,c(Sh` )∇P `,c(Sh,−` ) dx = 0.

Since the first integral here is positive this yields

2∑
`=1

∫
Ω`

∇P `,c(Sh` )∇P `,c(Sh,−` ) dx ≤ 0.

Notice that for x ∈ {x ∈ Ω : Sh` ≥ 0} we have Sh,−` = 0, and thus ∇P `,c(Sh,−` ) = 0.
Therefore,

2∑
`=1

∫
Ω`

∇P `,c(Sh,−` )∇P `,c(Sh,−` ) dx,≤ 0.

and consequently

P `,c(S
h,−
` ) = const in Ω.

Combining this relation with the boundary condition on Γinj we obtain P `,c(S
h,−
` ) =

P`,c(0) and Sh,−` = 0. This inequality implies that Sh` ≥ 0 a.e. in Ω`, and conse-

quently Sh ≥ 0 a.e. in Ω.
In a similar way we can prove that Sh ≤ 1 a.e. in Ω and Lemma 5.5 is proved.
As in Section 5.1.2 the continuity of the phase pressures on Γ1,2 and the Dirichlet

boundary condition on Γinj are the consequence of the following relations:

‖phw‖H1(Ω) ≤ lim
N→+∞

‖pεw‖H1(Ω) < +∞ and ‖phg‖H1(Ω) ≤ lim
N→+∞

‖pεg‖H1(Ω) < +∞

along with the continuity of the pressures pεw, p
ε
g on Γ1,2. This completes the proof

of Theorem 5.1
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6. Proof of the existence result for the non–degenerate system (67). In
this section we prove the existence result for the non–degenerate system:

Φ
∂Sη

∂t
− div

(
K(x)λw(x, Sη) (∇pηw − ~g) + η∇(pηw − pηg)

)
= 0 in ΩT ;

Φ
∂Θη

∂t
− div

(
K(x)λg(x, S

η)
(
∇pηg − %ηg~g

)
%ηg + η %ηg∇(pηg − pηw)

)
= 0 in ΩT ;

Pc (x, Sη) = pηg − pηw in ΩT ,
(104)

where %ηg
def
= %g(p

η
g). The interface, initial, and boundary conditions for the system

(104) read: {
~q η1,w · ~ν = ~q η2,w · ~ν and ~q η1,g · ~ν = ~q η2,g · ~ν on ΣT ;

pη1,w = pη2,w and pη1,g = pη2,g on ΣT ,
(105)

where

~q η`,w
def
= −K(x)λ`,w(Sη` )

(
∇pη`,w − ~g

)
− η∇(pη`,w − p

η
`,g);

~q η`,g
def
= −K(x)λ`,g(S

η
` )%η`,g

(
∇pη`,g − %

η
`,g~g
)
− η%η`,g∇(pη`,g − p

η
`,w);

pηw(x, 0) = p0w,η(x) and pηg(x, 0) = p0g,η(x) in Ω; (106){
pη1,g = pη1,w = 0 on Γinj × (0, T );

~q η1,w · ~ν = ~q η1,g · ~ν = 0 on Γimp × (0, T ).
(107)

The main result of this section is the following theorem.

Theorem 6.1. Let assumptions (A.1)–(A.9) be fulfilled. Then there exists 〈pηg , pηw〉
such that:

(I): The functions pηg , p
η
w, S

η
` have the following regularity properties:

pηg ∈ L2(0, T ;H1
Γinj

(Ω)) and pηw ∈ L2(0, T ;H1
Γinj

(Ω)); (108)

Sη` ∈ L
2(0, T ;H1(Ω`)); (109)

Φ
∂Sη`
∂t
∈ L2(0, T ;H−1(Ω`)) and Φ

∂Θη
`

∂t
∈ L2(0, T ;H−1(Ω`)). (110)

(II): The maximum principle holds:

0 ≤ Sη` ≤ 1 a. e. in Ω`,T . (111)

(III): For any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying ϕw = ϕg = 0 on Γinj ×
(0, T ) and ϕw(x, T ) = ϕg(x, T ) = 0, we have:

−
∫

ΩT

Φ(x)Sη
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx

+

∫
ΩT

K(x)λw(x,Sη)∇pηw · ∇ϕw dx dt

−
∫

ΩT

K(x)λw(x,Sη)~g · ∇ϕw dx dt+ η

∫
ΩT

∇(pηw − pηg) · ∇ϕw dx dt = 0;

(112)



1238 BRAHIM AMAZIANE, LEONID PANKRATOV AND ANDREY PIATNITSKI

−
∫

ΩT

Φ(x)Θη ∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ0(x)ϕg(x, 0) dx

+

∫
ΩT

K(x)λg(x, S
η)%g(p

η
g)∇pηg · ∇ϕg dx dt

−
∫

ΩT

K(x)λg(x, S
η)
[
%g(p

η
g)
]2
~g · ∇ϕg dx dt

+η

∫
ΩT

%g(p
η
g)∇(pηg − pηw) · ∇ϕg dx dt = 0.

(113)

6.1. Proof of Theorem 6.1. The outline of the proof is as follows. First, in
Section 6.1.1 we establish the uniform estimates for the solutions to the system
(98)–(99) and obtain the corresponding compactness results with respect to the
parameter h. Then in Section 6.1.2 we complete the proof of Theorem 6.1.

6.1.1. Uniform estimates and compactness results. The proof is based on a semi–
discretization method in the time variable proposed in [2] and then applied in the
study of water–gas flows in [23, 24, 26, 29]. Let T > 0, N ∈ N and h = T/N . For
all n ∈ [0, N − 1], we define the sequences:

p0w,h = p0w and p0g,h = p0g a.e. in Ω. (114)

Consider the pair of functions 〈pnw,h, png,h〉 ∈ L2(Ω) × L2(Ω) with Sn`,h ≥ 0 and

%g(p
n
`,g,h)(1−Sn`,h) ≥ 0 and then define 〈pn+1

w,h , p
n+1
g,h 〉 as the solution of the following

system of equations:

Φ∆n
h S

n+1
`,h − div

(
Kλ`,w(Sn+1

`,h )
(
∇pn+1

`,w,h − ~g
)

+ η∇
(
pn+1
`,w,h − p

n+1
`,g,h

))
= 0; (115)

Φ∆n
h Θn+1

`,h − div

(
K%n+1

`,g,hλ`,g(S
n+1
`,h )

(
∇pn+1

`,w,h − %
n+1
`,g,h~g

))
−div

(
η%n+1
`,g,h∇

(
pn+1
`,w,h − p

n+1
`,g,h

))
= 0,

(116)

where

∆n
h S

n+1
`,h

def
=

Sn+1
`,h − Sn`,h

h
, ∆n

h Θn+1
`,h

def
=

%n+1
`,g,h(1− Sn+1

`,h )− %n`,g,h(1− Sn`,h)

h

with %n`,g,h
def
= %g(p

n
`,g,h).

The system (115)–(116) is completed with the following interface and boundary
conditions: ~q

(n+1)
1,w,h · ~ν = ~q

(n+1)
2,w,h · ~ν and ~q

(n+1)
1,g,h · ~ν = ~q

(n+1)
2,g,h · ~ν on Γ1,2;

pn+1
1,g,h = pn+1

2,g,h and pn+1
1,w,h = pn+1

2,w,h on Γ1,2;
(117)

{
pn+1

1,g,h = pn+1
1,g,h = 0 on Γinj;

~q
(n+1)

1,w,h · ~ν = ~q
(n+1)

1,g,h · ~ν = 0 on Γimp,
(118)

where

~q
(n+1)
`,w,h

def
= −K(x)λ`,w(Sn+1

`,h )
(
∇pn+1

`,w,h − ~g
)
− η∇

(
pn+1
`,w,h − p

n+1
`,g,h

)
;



COMPRESSIBLE TWO-PHASE FLOW IN POROUS MEDIA 1239

~q
(n+1)
`,g,h

def
= −K(x)λ`,g(S

n+1
`,h )%n+1

`,g,h

(
∇pn+1

`,g,h − %
n+1
`,g,h~g

)
− η%n+1

`,g,h∇
(
pn+1
`,g,h − p

n+1
`,w,h

)
.

The sequence 〈pn+1
w,h , p

n+1
g,h 〉 is well defined for all n ∈ [0, N−1] due to Theorem 5.1.

Thus, for given Sn`,h, %g(p
n
`,g,h)(1−Sn`,h) ≥ 0 and Sn`,h, %g(p

n
`,g,h)(1−Sn`,h) ∈ L2(Ω`),

we construct 〈pn+1
w,h , p

n+1
g,h 〉 ∈ H1

inj(Ω)×H1
inj(Ω) so that Sn+1

`,h ∈ [0, 1].
In the following Lemma, we obtain uniform with respect to h estimates for

〈pn+1
w,h , p

n+1
g,h 〉. For the sake of brevity, in this Lemma we omit the dependence on

the parameter h.

Lemma 6.2. The solutions of (115)–(118) satisfy the bound:

1

h

∫
Ω

Φ(x)
{
R(pn+1

g )(1− Sn+1)− R(png )(1− Sn)
}
dx

− 1

h

2∑
`=1

∫
Ω`

Φ(x)
{
z`(Sn+1

`,w )−z`(Sn`,w)
}
dx

+η

∫
Ω

∣∣∇ (pn+1
g − pn+1

w

)∣∣2 dx
+

∫
Ω

{
λw(x, Sn+1)

∣∣∇pn+1
w

∣∣2 + λg(x, S
n+1)

∣∣∇pn+1
g

∣∣2} dx ≤ C,
(119)

where C is a constant that does not depend on h, and R(pg)
def
= R1(p1,g) I1 +

R2(p2,g) I2.

The proof of Lemma 6.2 is similar to the proof of Lemma 3.1 in [29].
Now, for a given sequence {unh}n, we define the following functions:

uh(t)
def
=

N−1∑
n=0

un+1
h I]nh,(n+1)h](t) ∀t ∈]0, T [ with uh(0) = uh0 , (120)

where I(nh,(n+1)h](t) denotes the characteristic function of the interval ]nh, (n+1)h];

ũh(t)
def
=

N−1∑
n=0

[(
1 + n− t

h

)
unh +

(
t

h
− n

)
un+1
h

]
I[nh,(n+1)h](t) (121)

for all t ∈ [0, T ]. Then

∂ũh

∂t
=

1

h

N−1∑
n=0

(
un+1
h − unh

)
I(nh,(n+1)h)(t) ∀t ∈ [0, T ] \

{
∪Nn=0 nh

}
. (122)

The following uniform estimates hold true.

Lemma 6.3. Let phw, p
h
g , S

h
` ,Θ

h
` be the functions defined in terms of pnw,h, png,h,

Sn`,h, Θn
`,h as in (120), and let S̃h` and Θ̃h

` be the function defined in terms of Sn`,h
and Θn

`,h as in (121). Then

{Sh` }h>0 is uniformly bounded in L2(0, T ;H1(Ω`)); (123)

{phw}h>0 is uniformly bounded in L2(0, T ;H1
inj(Ω)); (124)

{phg}h>0 is uniformly bounded in L2(0, T ;H1
inj(Ω)); (125)
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{Θh
` }h>0 is uniformly bounded in L2(0, T ;H1(Ω`)); (126)

{Φ ∂t Θ̃h
` }h>0 is uniformly bounded in L2(0, T ;H−1(Ω`)); (127)

{Φ ∂t S̃
h
` }h>0 is uniformly bounded in L2(0, T ;H−1(Ω`)). (128)

Proof. First, it is easy to calculate that∫
ΩT

λw(x, Sh)
∣∣∇phw∣∣2 dx dt = h

N−1∑
n=0

∫
Ω

λw(x, Sn+1
h ) |∇pn+1

w,h |
2 dx; (129)

∫
ΩT

λg(x,S
h)
∣∣∇phg ∣∣2 dx dt = h

N−1∑
n=0

∫
Ω

λg(x, S
n+1
h )

∣∣∣∇pn+1
g,h

∣∣∣2 dx; (130)

∫
Ω`,T

|∇P`,c(Sh` )|2 dx dt = h
N−1∑
n=0

∫
Ω`

|∇P`,c(Sn+1
`,h )|2 dx. (131)

Then from the inequality (119) we get:∫
Ω

Φ(x)R(phg (T ))(1− Sh(T )) dx

+

∫
ΩT

{
λw(x, Sh)

∣∣∇phw∣∣2 + λg(x, S
h)
∣∣∇phg ∣∣2} dx dt

+ η

2∑
`=1

∫
Ω`,T

|∇P`,c(Sh` )|2dxdt

≤ C +

∫
Ω

Φ(x)R(phg (0))Sh(0)dx+

2∑
`=1

∫
Ω`

∣∣z`(Sh` (0))−z`(Sh` (T ))
∣∣ dx,

(132)

where C is a constant that does not depend on h. It follows from Lemma 3.1 that
R` ≥ 0. Then the first term in this inequality is positive and we obtain the following
uniform estimate:∫

ΩT

{
λw(x,Sh)

∣∣∇phw∣∣2 + λg(x,S
h)
∣∣∇phg ∣∣2} dx dt

+η

2∑
`=1

∫
Ω`,T

|∇P`,c(Sh` )|2 dx dt ≤ C,
(133)

where C is a constant that does not depend on h. Taking into account the equality
(32), from (133) we get:

2∑
`=1

∫
Ω`,T

λ`(S
h
` )|Ph` |2 dx dt+ η

2∑
`=1

∫
Ω`,T

|∇P`,c(Sh` )|2 dx dt ≤ C, (134)

where C is a constant that does not depend on h.
Now we derive the uniform estimates (123) for the saturation Sh` . Since the

gradient of the capillary pressure is uniformly bounded in h, then it follows from
the condition (A.4) that ∫

Ω`,T

|∇Sh` |2 dx dt ≤ C, (135)
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where C = C(η) is a constant that does not depend on h. Thus the uniform
boundedness of the sequence {Sh` }h>0 in the space L2(0, T ;H1(Ω`)) is established.

Remark 4. We also notice that the sequence {Sh1,g}h>0 is uniformly bounded in

L2(0, T ;H1
inj(Ω1)), where Sh1,g = 1− Sh1 . In fact,

ph1,g(x, t)− ph1,w(x, t) = P1,c(S
h
1 ) = 0 on Γinj × (0, T ).

Then from the condition (A.4) we obtain that Sh1,g = 0 on Γinj× (0, T ). Along with

(135) this gives the uniform boundedness of the sequence {Sh1,g}h>0 in the space

L2(0, T ;H1
inj(Ω1)).

Let us prove now the uniform bounds (124), (125). To this end we recall that

∇ph`,w = ∇Ph` −
λ`,g(S

h
` )

λ`(Sh` )
∇P`,c(Sh` ) and ∇ph`,g = ∇Ph` +

λ`,w(Sh` )

λ`(Sh` )
∇P`,c(Sh` ).

Then (124), (125) are the consequence of (134) and the condition (A.5) on λ`,w,
λ`,g, λ`.

Consider (126). The gradient of the function Θh
` reads:

∇Θh
` =

N−1∑
n=0

[
%′g(p

n+1
`,g,h) (1−Sn+1

`,h )∇pn+1
`,g,h−%g(p

n+1
`,g,h)∇Sn+1

`,h

]
I[nh,(n+1)h](t). (136)

Then the uniform bound (126) is a consequence of the previous uniform estimates
(123), (125) since %g is a C1–function in R.

Finally, the uniform estimates (127), (128) follow directly from the weak formu-
lation of the problem and the previous uniform estimates. Lemma 6.3 is proved.

Our goal is to construct a solution to the evolution problem (104)–(107) by
passing to the limit, as h→ 0, in the above elliptic problem.

Lemma 6.4 (Convergence results with respect to h). Up to a subsequence, the
following convergence results hold as h→ 0:

‖Sh` − S̃h` ‖2L2(Ω`,T ) −→ 0; (137)

‖Θh
` − Θ̃h

` ‖2L2(Ω`,T ) −→ 0; (138)

phw −→ pηw weakly in L2(0, T ;H1
inj(Ω)); (139)

phg −→ pηg weakly in L2(0, T ;H1
inj(Ω)); (140)

Sh` −→ Sη` weakly in L2(0, T ;H1(Ω`)) and a.e. in Ω`,T ; (141)

Θh
` −→ Θη

` strongly in L2(Ω`,T ) with Θη
` = %g(p

η
`,g) (1− Sη` ) a.e. in Ω`,T ; (142)(

%g(p
h
`,g)
)k
λ`,g(S

h
` ) −→

(
%g(p

η
`,g)
)k
λ`,g(S

η
` ) a.e. in ΩT (k = 1, 2); (143)

∂t(Φ Θ̃h
` ) −→ ∂t(Φ Θη

` ) weakly in L2(0, T ;H−1(Ω`)); (144)

∂t(Φ S̃h` ) −→ ∂t(ΦSη` ) weakly in L2(0, T ;H−1(Ω`)). (145)

Moreover,

0 ≤ Sη ≤ 1 a.e. in ΩT . (146)
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Proof. Let us prove the convergence result (137). To this end, consider the equation
(115), i.e.,

Φ(x)∆n
h S

n+1
`,h − div

(
K(x)λ`,w(Sn+1

`,h )
(
∇pn+1

`,w,h − ~g
))

+div

(
η∇
(
pn+1
`,w,h − p

n+1
`,g,h

))
= 0 in Ω`.

(147)

Let x ∈ Ω` and let dist (x, ∂Ω`) denote the distance between x and the boundary of
the domain Ω` which is denoted by ∂Ω`. Then we introduce a sufficiently smooth
cut–off function ζ` defined by:

ζ`(x)
def
=

{
1 if dist (x, ∂Ω`) ≥ 2h1/4;

0 if dist (x, ∂Ω`) ≤ h1/4.
(148)

Notice that it follows from the definition of the function ζ` that 0 ≤ ζ` ≤ 1 and
|∇ζ`| ≤ C h−1/4. Now multiplying the equation (147) by Zn+1

`,h ,

Zn+1
`,h

def
=
(
Sn+1
`,h − Sn`,h

)
ζ` with∇Zn+1

`,h

= ∇
(
Sn+1
`,h − Sn`,h

)
ζ` +

(
Sn+1
`,h − Sn`,h

)
∇ζ`,

(149)

we get:

1

h

∫
Ω`

Φ(x) ζ`(x)
∣∣Sn+1
`,h − Sn`,h

∣∣2 dx
=

∫
Ω`

K(x)λ`,w(Sn+1
`,h )∇pn+1

`,w,h · ∇Z
n+1
`,h dx

−
∫
Ω`

K(x)λ`,w(Sn+1
`,h )~g · ∇Zn+1

`,h dx

+η

∫
Ω`

∇
(
pn+1
`,w,h − p

n+1
`,g,h

)
· ∇Zn+1

`,h dx.

(150)

Now taking into account (149) we obtain:

1

h

∫
Ω`

ζ`(x)
∣∣∣Sn+1
`,h − S

n
`,h

∣∣∣2 dx ≤ C(η)

(
‖∇pn+1

`,w,h‖
2
L2(Ω`)

+‖∇pn+1
`,g,h‖

2
L2(Ω`)

+ ‖∇Sn+1
`,h ‖

2
L2(Ω`)

+ ‖∇Sn`,h‖2L2(Ω`)
+ ‖∇ζ`‖2L2(Ω`)

)
.

(151)

The inequality (151) implies the following bound:

N−1∑
n=0

∥∥∥√ζ` (Sn+1
`,h − S

n
`,h)
∥∥∥2

L2(Ω`)
≤ C1(η)

(
‖∇ph`,w‖2L2(Ω`,T )

+‖∇ph`,g‖2L2(Ω`,T ) + ‖∇Sh` ‖2L2(Ω`,T )

)
+ C2(η)h−1/2.

(152)
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Now it follows from the definitions of the functions Sh` , S̃
h
` that

‖
√
ζ` (Sh` −S̃h` )‖2L2(Ω`,T )

=

N−1∑
n=0

(n+1)h∫
nh

∥∥∥√ζ` (1 + n− t

h

)
(Sn+1
`,h − S

n
`,h)
∥∥∥2

L2(Ω`)
dt

=
h

3

N−1∑
n=0

∥∥∥√ζ` (Sn+1
`,h − S

n
`,h)
∥∥∥2

L2(Ω`)
.

(153)

Taking into account the boundedness of the functions Sh` , S̃
h
` and the definition of

the cut–off function ζ`, it is easy to see that inequalities (152), (153) imply (137).
In a similar way we get the convergence result (138).

The convergence results (139)–(140) immediately follow from (123)–(125).

Consider now the sequences {S̃h` }h>0, {Θ̃h
` }h>0. Following the lines of the proof

of Propositions 1, 2 we observe that

S̃h` −→ Ŝ` strongly in Ω`,T ; (154)

Θ̃h
` −→ Θ̂` strongly in Ω`,T ; (155)

The identification of the limit function Ŝ` relies on the previous convergence results.

The identification of the limit function Θ̂` relies on the standard monotonicity

arguments and the convergence results (140)–(141). Thus, we have that Ŝ` = Sη`
and Θ̂` = Θη

` = %g(p
η
`,g) (1− Sη` ).

Now we turn to (143). It is clear that when Sh` → 1(
%g(p

h
`,g)
)k
λ`,g(S

h
` ) −→ 0 =

(
%g(p

η
`,g)
)k
λ`,g(S

η
` ) a.e. in Ω`,T .

If Sh` → Sη` 6= 1 then from (155) we have:(
%g(p

h
`,g)
)k −→ (

%g(p
η
`,g)
)k

a.e. in Ω`,T .

Now taking into account the regularity properties of the function %g, we obtain
(143).

The convergence results (144), (145) follow from the uniform estimates (127),
(128).

Finally, we remark that the maximum principle is conserved through the limit
process and (146) is established. This completes the proof of Lemma 6.4.

6.1.2. End of the proof of Theorem 6.1. Now we are in position to complete the
proof of Theorem 6.1. First, we observe that in view of definitions the functions

Sh, phw, phg , S̃h, and Θ̃h, from system (115)–(116) we obtain the following system of
equations:

Φ
∂S̃h`
∂t − div

(
Kλ`,w(Sh` )

(
∇ph`,w − ~g

)
+ η∇(ph`,w − ph`,g)

)
= 0;

Φ
∂Θ̃h`
∂t − div

(
Kλ`,g(S

h
` )%η`,g

(
∇ph`,g − %h`,g~g

)
+ η %h`,g∇(ph`,g − ph`,w)

)
= 0,

(156)
Now considering the weak formulation of the system (156) and taking into account
Lemma 6.4, we pass to the limit as h→ 0 and obtain (104)–(107). The fulfillment
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of the interface and boundary conditions on Γinj can be checked as in the previous
sections. This ends the proof of Theorem 6.1.

7. Proof of the main result: The degenerate system. The goal of this section
is to prove the main result of this work, i.e., Theorem 2.1. The proof is based on
Theorem 6.1 established in the previous section and the compactness results from
Propositions 1, 2.

The outline of the proof is as follows. First, in Section 7.1 we establish the
uniform estimates for the solutions to system (104)–(107) and obtain the corre-
sponding compactness results with respect to the parameter η. Then in Section 7.2
we complete the proof of Theorem 2.1.

7.1. Uniform estimates and compactness results. The a priori estimates for
the solutions of problem (104)–(107) are given by the following lemma.

Lemma 7.1. The sequences {Sη` }η>0, {pηw}η>0, {pηg}η>0, {Pη` }η>0 are such that

0 ≤ Sη` ≤ 1 a. e. in Ω`,T ; (157)

{Pη1}η>0 is uniformly bounded in L2(0, T ;H1
Γinj

(Ω1)); (158)

{Pη2}η>0 is uniformly bounded in L2(0, T ;H1(Ω2)); (159)

{√η ∇P`,c(Sη` )}η>0 is uniformly bounded in L2(Ω`,T ); (160){√
λw(x, Sη)∇pηw

}
η>0

is uniformly bounded in L2(ΩT ); (161){√
λg(x, Sη)∇pηg

}
η>0

is uniformly bounded in L2(ΩT ); (162)

{β`(Sη` )}
η>0

is uniformly bounded in L2(0, T ;H1(Ω`)); (163)

{b`(Sη` )}
η>0

is uniformly bounded in L2(0, T ;H1(Ω`)); (164)

{(ΦΘη
` )t}η>0

is uniformly bounded in L2(0, T ;H−1(Ω`)); (165)

{(ΦSη` )t}η>0
is uniformly bounded in L2(0, T ;H−1(Ω`)). (166)

Here the function b` is defined in (33).

The proof of Lemma 7.1 is done by arguments similar to ones used in the proof of
Lemma 3.1–Corollary 1. The only result that have to be discussed is the bounded-
ness of the sequence {Pη2}η>0 in the space L2(0, T ;H1(Ω2)). By arguments similar to
those used in the proof of Corollary 1 we prove that ∇Pη2 is uniformly bounded with
respect to η in L2(Ω2,T ). In contrast to the function Pη1 we cannot use Friedrichs’
inequality for Pη2 . Therefore, we proceed in another way. The global pressure Pη2 is
defined in (24), (27) up to an additive constant. Then we choose this constant in
such a way that the mean value of Pη2 equals zero in Ω2. Now applying Poincaré–
Wirtinger’s inequality we obtain the desired boundedness of Pη2 in L2(Ω2,T ). Lemma
7.1 is proved.

Now from Lemma 7.1 and Propositions 1, 2 we deduce all the convergence results
required for the passage to the limit as η → 0 in (104)–(107).
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Lemma 7.2. The sequences {Sη` }η>0, {pηw}η>0, {pηg}η>0, {Pη` }η>0 are such that
up to a subsequence,

Sη` −→ S` strongly in L2(Ω`,T ) and a.e. in Ω`,T ; (167)

0 ≤ S` ≤ 1 a.e. in Ω`,T ; (168)

Pη1 −→ P1 weakly in L2(0, T ;H1
Γinj

(Ω1)); (169)

Pη2 −→ P2 weakly in L2(0, T ;H1(Ω2)); (170)

β`(S
η
` ) −→ β`(S`) weakly in L2(0, T ;H1(Ω`)). (171)(

%g(p
η
`,g)
)k
λ`,g(S

η
` ) −→ (%g(p`,g))

k
λ`,g(S`) a.e. in ΩT (k = 1, 2); (172)

Θη
` −→ Θ` strongly in L2(Ω`,T ) and a.e. in Ω`,T

with Θ` = %g(p`,g) (1− S`);
(173)

∂t(ΦΘη
` ) −→ ∂t(ΦΘ`) weakly in L2(0, T ;H−1(Ω`)); (174)

∂t(ΦS
η
` ) −→ ∂t(ΦS`) weakly in L2(0, T ;H−1(Ω`)). (175)

The proof of Lemma 7.2 can be done by arguments similar to ones used in the
proof of Lemma 6.4 from the previous section.

Now we are in position to complete the proof of Theorem 2.1.

7.2. End of the proof of Theorem 2.1. We have to pass to the limit, as η → 0,
in the weak formulation of problem (104)–(107):

−
∫

ΩT

Φ(x)Sη
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx

+

∫
ΩT

K(x)λw(x, Sη)∇pηw · ∇ϕw dx dt

−
∫

ΩT

K(x)λw(x,Sη)~g · ∇ϕw dx dt+ η

∫
ΩT

∇(pηw − pηg) · ∇ϕw dx dt = 0;

(176)

−
∫

ΩT

Φ(x)Θη ∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ0(x)ϕg(x, 0) dx

+

∫
ΩT

K(x)λg(x, S
η)%g(p

η
g)∇pηg · ∇ϕg dx dt

−
∫

ΩT

K(x)λg(x, S
η)
[
%g(p

η
g)
]2
~g · ∇ϕg dx dt

+η

∫
ΩT

%g(p
η
g)∇(pηg − pηw) · ∇ϕg dx dt = 0.

(177)

Consider the equation (176). The first term converges to the desired limit due to
(167). To study the convergence of the third term on the left-hand side of (176),
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we use the relation (36) to rewrite it in terms of the global pressure. We have:∫
ΩT

K(x)λw(x, Sη)∇pηw · ∇ϕw dx dt

=

2∑
`=1

∫
Ω`,T

K(x) {λ`,w(Sη` )∇Pη` +∇β`(Sη` )} · ∇ϕw dx dt.
(178)

Taking into account the almost everywhere convergence of the sequence {Sη` }η>0

we have that

λ`,w(Sη` )∇ϕw −→ λ`,w(S`)∇ϕw strongly in
(
L2(Ω`,T )

)d
. (179)

Then we exploit the weak convergence results for the global pressure, the function
β`, and (179). Passing to the limit in the third term in the left-hand side of (176)
and taking into account the definition of the global pressure, we get:

lim
η→0

∫
ΩT

K(x)λw(x, Sη)∇pηw · ∇ϕw dx dt

=

2∑
`=1

∫
Ω`,T

K(x) {λ`,w(S`)∇P` +∇β`(S`)} · ∇ϕw dx dt.

The lower order terms in (176) converge due to (179).
In a similar way taking into account the convergence result (172) we pass to the

limit in the third and fourth terms of equation (177).
Finally, consider the last term in the left–hand side of (176). We rewrite it as

follows:

η

∫
ΩT

∇(pηw − pηg) · ∇ϕw dx dt =
√
η

2∑
`=1

∫
Ω`,T

(
√
η ∇P`,c(Sη` ))∇ϕw dx dt.

Then from Cauchy’s inequality and the uniform estimate (160) we obtain that this
term goes to zero as η → 0. The convergence of the last term on the right–hand
side of (177) is studied in a similar way.

This yields the existence of 〈P`, S`〉 such that for any ϕw, ϕg ∈ C1([0, T ];H1(Ω))
satisfying ϕw = ϕg = 0 on Γinj × (0, T ) and ϕw(x, T ) = ϕg(x, T ) = 0, we have:

−
∫

ΩT

Φ(x)S
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(0, x) dx

+

2∑
`=1

∫
Ω`,T

K(x)λ`,w(S)∇P` · ∇ϕw dx dt

+

2∑
`=1

∫
Ω`,T

K(x)∇β`(S`) · ∇ϕw dx dt

−
2∑
`=1

∫
Ω`,T

K(x)λ`,w(S)~g · ∇ϕw dx dt = 0;

(180)
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−
∫

ΩT

Φ(x) Θ
∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ(x, 0)ϕg(0, x) dx

+

2∑
`=1

∫
Ω`,T

K(x)λ`,g(S)%̃`,g∇P` · ∇ϕg dx dt

−
2∑
`=1

∫
Ω`,T

K(x) %̃`,g∇β`(S`) · ∇ϕg dx dt

−
2∑
`=1

∫
Ω`,T

K(x)λ`,g(S) [%̃`,g]
2
~g · ∇ϕg dx dt = 0,

(181)

where %̃`,g
def
= %g(P` + G`,g(S`)).

Now taking into account the lower semi–continuity of the norm, by Lemma 7.1,
we obtain: ∫

Ω`,T

|∇P`|2 dx dt ≤ lim
η→0

∫
Ω`,T

|∇Pη` |
2
dx dt ≤ C; (182)

∫
Ω`,T

|∇β`(S`)|2 dx dt ≤ lim
η→0

∫
Ω`,T

|∇β`(Sη` )|2 dx dt ≤ C; (183)

∫
Ω`,T

|∇b`(S`)|2 dx dt ≤ lim
η→0

∫
Ω`,T

|∇b`(Sη` )|2 dx dt ≤ C. (184)

Now we set:

p`,w
def
= P` + G`,w(S`) and p`,g

def
= P` + G`,g(S`). (185)

We also recall the relation (32):

λ`,g(S`)|∇p`,g|2 + λ`,w(S`)|∇p`,w|2 = λ`(S`)|∇P`|2 + |∇b`(S`)|2 .

Then, taking into account (182), (184), and (32) we obtain that the functions
p`,w, p`,g defined in (185) are such that∫

Ω`,T

{
λ`,w(S`) |∇p`,w|2 + λ`,w(S`) |∇p`,w|2

}
dx dt < +∞. (186)

Now we rewrite the system (180), (181) in terms of the functions p`,w, p`,g. We have
that, for any ϕw, ϕg ∈ C1([0, T ];H1(Ω)) satisfying ϕw = ϕg = 0 on Γinj × (0, T )
and ϕw(x, T ) = ϕg(x, T ) = 0,

−
∫

ΩT

Φ(x)S
∂ϕw
∂t

dx dt−
∫
Ω

Φ(x)S0(x)ϕw(x, 0) dx

+

2∑
`=1

∫
Ω`,T

K(x)λ`,w(S`)∇p`,w · ∇ϕw dx dt

−
2∑
`=1

∫
Ω`,T

K(x)λ`,w(S`)~g · ∇ϕw dx dt = 0;

(187)
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−
∫

ΩT

Φ(x)Θ
∂ϕg
∂t

dx dt−
∫
Ω

Φ(x)Θ(x, 0)ϕg(x, 0) dx

+

2∑
`=1

∫
Ω`,T

λ`,g(S`)%`,g∇p`,g · ∇ϕw dx dt

−
2∑
`=1

∫
Ω`,T

λ`,g(S`) [%`,g]
2
~g · ∇ϕw dx dt = 0.

(188)

In order to complete the proof of Theorem 2.1 we have to obtain the continuity
of the phase pressures at the interface ΣT as well as the boundary conditions on
Γinj. We start by obtaining of the phase pressures. The following result holds.

Lemma 7.3. Let 〈p`,w, p`,g〉 be a solution to (187)–(188). Then

p1,w = p2,w and p1,g = p2,g on ΣT . (189)

Proof. The proof of the lemma is based on the definition (185) and the regularity
properties of the functions P`, β`. Let ~ν be a unit exterior (with respect to the
subdomain Ω2) vector on ΣT . Denote:

ΣδT
def
= δ~ν + ΣT (δ > 0).

The regularity properties of the functions P`, β` assure the existence of their traces
on ΣT . Moreover, it follows from (182), (183) that

P`

∣∣∣∣
ΣδT

−→ P`

∣∣∣∣
ΣT

strongly in L2(ΣδT ); (190)

β`(S`)

∣∣∣∣
ΣδT

−→ β`(S`)

∣∣∣∣
ΣT

strongly in L2(ΣδT ); (191)

The last convergence result along with the condition (A.4) imply that

S`

∣∣∣∣
ΣδT

−→ S`

∣∣∣∣
ΣT

strongly in L2(ΣδT ). (192)

The convergence result (192) and the boundedness of the functions G`,w(S`),G`,g(S`)
(see the definitions of these functions in Section 2.1) imply the existence of the traces
for G`,w(S`),G`,g(S`). Therefore, the traces of the functions p`,w, p`,g are well de-
fined.

Now taking into account that∫
Ω`,T

{
|∇Pη` |

2
+ |∇β`(Sη` )|2

}
dx dt ≤ C,

where C is a constant that does not depend on η, and considering the fact that

pη1,w = pη2,w and pη1,g = pη2,g on ΣT ,

the definition (185), and (190), (192), we obtain the desired continuity of the phase
pressures (189). Lemma 7.3 is proved.

The Dirichlet condition on the corresponding part of the boundary, i.e.,

p1,w = p1,g = 0 on Γinj

can be proved by similar arguments.
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Thus we can rewrite the system (187)–(188) in the whole domain Ω and obtain
first two equations in (15). Passage to the limit in the last equation in (104) does
not make any difficulty. This completes the proof of Theorem 2.1.

8. Concluding remarks. We have presented a week formulation and an exis-
tence result for a degenerate system modeling immiscible compressible two-phase
flow through a porous medium made of several types of rocks. We have assumed
that the porosity, the absolute permeability, the capillary and relative permeabil-
ities curves are different in each type of porous media. This leads to nonlinear
transmission conditions representing the continuity of some physical characteristics
such as water and gas pressures, at the interfaces that separate different media.
Then the saturation and some other characteristics are getting discontinuous at
the interfaces. The study still needs to be improved in several areas such as the
cases of unbounded capillary pressure and vanishing %min. These more complicated
cases appear in the applications. This study was intended as a first step to the
homogenization of immiscible compressible two-phase flow through heterogeneous
reservoirs with several rock types. Further work on these important issues is in
progress.
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