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ABSTRACT

We consider the homogenization of the spectral problem for
a singularly perturbed diffusion equation in a periodic
medium. Denoting by " the period, the diffusion coefficients
are scaled as "2 and vary both on the macroscopic scale and
on the periodic microscopic scale. We make a structural
hypothesis on the first cell eigenvalue, which is assumed to
admit a unique minimum in the domain with non-degenerate
quadratic behavior. We then prove an exponential localiza-
tion phenomena at this minimum point. Namely, the k-th
original eigenfunction is shown to be asymptotically given
by the product of the first cell eigenfunction (at the " scale)
times the k-th eigenfunction of an homogenized problem (at
the

ffiffiffi
"

p
scale). The homogenized problem is a diffusion
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equation with quadratic potential in the whole space. We first
perform asymptotic expansions, and then prove convergence
by using a factorization strategy.

1. INTRODUCTION

We study the spectral asymptotics of a singularly perturbed second
order elliptic operator with locally periodic rapidly oscillating coefficients of
the form

A
"
¼ �"2

@

@xi

aij
�

x,
x

"

� @

@xj

� �
þ c

�
x,

x

"

�
, ð1Þ

defined in a bounded open set G of R
n. We assume that the coefficients

aij
ðx, zÞ and cðx, zÞ are real sufficiently smooth (at least of class C2) func-
tions defined on G � T

n where T
n is the unit torus. Equivalently, the

coefficients can be seen as periodic functions with respect to z with period
1 in all the coordinate directions. Furthermore, the matrix faij

ðx, zÞg is
symmetric, uniformly positive definite. We consider the following eigenvalue
problem

A
"p" ¼ �"p" in G, p" ¼ 0 on @G: ð2Þ

As is well known, for each fixed " > 0 this problem is self-adjoint in L2ðGÞ

and admits a discrete spectrum �"1 < �"2 � �"3 � . . ., where �"k ! 1 as
k ! 1, with corresponding eigenvector p"k, normalized by kp"kkL2ðGÞ ¼ 1.
Moreover, by the Krein-Rutman theorem, �"1 is of multiplicity one and
the corresponding eigenfunction p"1 can be chosen positive in G.

The ground state asymptotics (i.e., characterizing the limit of the first
eigenpair as " goes to 0) plays an important role when studying the long time
behaviour of solutions of the corresponding parabolic equation. Namely, the
first eigenvalue governs the rate of decay (or growth) of solutions while the
limit profile of the solutions can be determined in terms of the first eigen-
function. Other motivations for studying the limit of (2) are its link with
semi-classical analysis of Schrödinger-type equations, or the uniform con-
trollability of the wave equation (see e.g., (11)), or the modelling of the
so-called criticality problem for the one-group neutron diffusion equation
(which allows to compute the power distribution in a nuclear reactor core,
see e.g., (2)).

The general study of the homogenization of (2) is far from being
complete. When the coefficients are not rapidly oscillating, i.e., aij

ðx, zÞ ¼
aij
ðxÞ and cðx, zÞ ¼ cðxÞ, it is a problem of singular perturbation (without
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homogenization) which is quite well understood now although the asymp-
totic behaviour of p"1 is rather complex. For instance, if cðxÞ has a unique
global minimum point x0 2 G then p"1ðxÞ is exponentially small everywhere
except at x0, and the logarithmic asymptotics of p"1 is given by the following
formula

lim
"!0

" log p"1ðxÞ ¼ �distðcðx0Þ�cðxÞÞbij ðxÞðx,x0Þ,

where the distance is taken in the metric ½cðx0Þ � cðxÞ�bijðxÞ and fbijg ¼

faij
g
�1 (see (12) where more general nonself-adjoint operators have also

been studied). A similar logarithmic asymptotics of the ground state for
an operator with locally periodic coefficients of the type (1) was obtained
in (13). The limit of the entire spectrum of (2) was studied in (4), but with no
precise asymptotics of the eigenvectors.

When the coefficients are purely periodically oscillating functions, i.e.,
aij
ðx, zÞ ¼ aij

ðzÞ and cðx, zÞ ¼ cðzÞ, problem (2) is also quite well understood,
and more precise results are obtained. This problem, as well as similar ones
for nonself-adjoint operators or systems with periodic coefficients, were
studied in (2,6,9,10). These works rely on a factorization principle first
introduced in the earlier works (14) and (17). In the case of the scalar
self-adjoint problem (2), all these previous results boils down to the
following theorem.

Theorem 1.1. Assume that aij
ðx, zÞ ¼ aij

ðzÞ and cðx, zÞ ¼ cðzÞ. The kth eigen-
pair ð�"k, p

"
kÞ of (2) satisfies

p"kðxÞ ¼ u"
kðxÞp1

x

"

� �
and �"k ¼ �1 þ "2�k þ oð"2Þ,

where ð�1, p1ðzÞÞ is the first eigenpair of the cell eigenproblem (3) and, up to
a subsequence, the sequence u"k converges weakly in H10 ðGÞ to uk such that
ð�k, ukÞ is a kth eigenpair for the homogenized problem

�
@

@xi

aij
eff

@u

@xj

� �
¼ �u in G, u ¼ 0 on @G:

The homogenized coefficients are given by formula (22).

The presence of both ‘‘slow’’ and ‘‘rapid’’ arguments in the coefficients
drastically changes the asymptotic behavior of the eigenfunctions and eigen-
values of (2). In the present paper we formulate a simple sufficient condition
(see hypothesis H1 and H2 in Section 2) for asymptotic localization of p"k in
a

ffiffiffi
"

p
-neighbourhood of an interior point of the domain, and then construct
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the leading terms of the asymptotics of p"1 in this neighbourhood. This allows
to improve the logarithmic asymptotics mentioned above in the vicinity
of the localization point, and to approximate p"

1 in the metric of uniform
convergence. Our main results are Theorems 4.1 and 5.3. Remark that
they still hold true if the domain G were a compact manifold, or the
whole space R

n, under some localization condition for ground state in the
latter setting.

The case of non self-adjoint operators is much more complicated, and
its study is the focus of a next paper (5). The assumption of smooth coeffi-
cients is crucial since in the case of discontinuous coefficients completely
different results are obtained in 1-D (3). Finally, the content of the paper is
the following. In Section 2 we introduce notations and detail our main
assumptions. Section 3 is devoted to formal asymptotic expansions, while
Section 4 furnishes a rigorous proof of convergence. Lastly, Section 5 gives
an error estimate. Throughout this paper we use the Einstein summation
convention for repeated indices and C stands for a generic constant,
independent of ".

2. NOTATIONS AND ASSUMPTIONS

In order to formulate our conditions on the operator A" we introduce
an auxiliary eigenvalue problem (cell eigenproblem) in the space of periodic
functions (or equivalently on the unit torus T

n) as follows

AðxÞp � �
@

@zi

aij
ðx, zÞ

@p

@zj

� �
þ cðx, zÞp ¼ �p for z 2 T

n: ð3Þ

In the sequel, for any p 2 H1ðTn
Þ, we use the notation

AðxÞp, pð Þ ¼

Z
T

n
aij
ðx, zÞ

@p

@zj

@p

@zi

þ cðx, zÞp2
� �

dz:

In (3) the variable x 2 G is just a parameter. Recall that the matrix faij
ðx, zÞg

is symmetric and uniformly coercive. As is well-known, AðxÞ is a self-adjoint
operator in L2ðTn

Þ which admits a discrete spectrum �1ðxÞ < �2ðxÞ �
�3ðxÞ � . . . with corresponding eigenfunctions p1ðx, zÞ, p2ðx, zÞ, p3ðx, zÞ, . . . ,
normalized by kpkðx, �ÞkL2ðTnÞ ¼ 1. By the Krein-Rutman theorem, �1ðxÞ is of
multiplicity one and p1ðx, zÞ can be chosen positive in T

n. Combined with
the smoothness of the eigenfunctions, this implies that there exists a positive
constant C such that p1ðx, zÞ > C > 0 uniformly in z 2 T

n and x 2 �GG.
Another consequence of the simplicity of �1ðxÞ is that the first eigenvalue
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and normalized eigenfunction have the same differentiability property as the
coefficients with respect to x. Our main assumptions are

Hypothesis H1. The function �1ðxÞ has a unique global minimum point x0 in
the interior of G.

Hypothesis H2. The coefficients aij
ðx, zÞ and cðx, zÞ are of class C2 in �GG � T

n,
and the Taylor series for �1ðxÞ about x0 has non-degenerate (positive defi-
nite) quadratic form

�1ðxÞ ¼ �1ðx0Þ þ Dijðx � x0Þiðx � x0Þj þ oðjx � x0j
2
Þ, Dij�i�j � Cj�j2

ð4Þ

for any vector � 2 R
n, where Dij stands for ð1=2Þð@2�1ðx0ÞÞ=ð@xi@xjÞ and

C > 0.

Hypothesis H2
0
. The coefficients aij

ðx, zÞ and cðx, zÞ are of class C3 in �GG � T
n,

and the Taylor series for �1ðxÞ about x0 has non-degenerate (positive defi-
nite) quadratic form

�1ðxÞ ¼ �1ðx0Þ þ Dijðx � x0Þiðx � x0Þj þ Oðjx � x0j
3
Þ,

with the same positive definite matrix D ¼ fDijg as in H2.
Without loss of generality we shall assume in the sequel that x0 ¼ 0.

Remark 2.1. Hypothesis H1 ensures the concentration of p"1 in the neigh-
bourhood of x0 while Hypothesis H2 allows to characterize, in the vicinity
of x0, the asymptotic behaviour of its profile.

Assumption H2
0 is a little stronger than H2 and gives a more precise

remainder term in the Taylor series (4). The proof of Theorem 5.3 requires
C3-smoothness of the coefficients, while the convergence results of Theorem
4.1 remain valid for C2 coefficients.

3. FORMAL EXPANSION

In this section we construct the leading terms of a formal asymptotic
expansion of p"1ðxÞ in the vicinity of the point x0 ¼ 0. To this end we reduce
the locally periodic problem (2) to a series of ‘‘purely periodic’’ problems,
i.e., problems that do not depend on the slow variable x but merely on the
fast periodic variable z.
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First, using assumption H2
0, we write down Taylor series in the x

variable for the coefficients aij
ðx, zÞ and cðx, zÞ about 0; this gives

aij
ðx, zÞ ¼ aij

ð0, zÞ þ xk

@

@xk

aij
ð0, zÞ þ

1

2
xkxl

@

@xk

@

@xl

aij
ð0, zÞ þ Oðjxj3Þ

� aij
0 ðzÞ þ xkaij

1, kðzÞ þ xkxla
ij
2, klðzÞ þ Oðjxj3Þ,

cðx, zÞ ¼ cð0, zÞ þ xk

@

@xk

cð0, zÞ þ
1

2
xkxl

@

@xk

@

@xl

cð0, z þ Oðjxj3ÞÞ

� c0ðzÞ þ xkc1, kðzÞ þ xkxlc2, klðzÞ þ Oðjxj3Þ:

ð5Þ

Then we write the following ansatz for the first eigenfunction of (2)

p"1 ¼
q"1

kq"1kL2ðGÞ

þ r"

q"1 ¼ p0
x

"

� �
þxkp1,k

x

"

� �
þxkxlp2,kl

x

"

� �
þ "q0

x

"

� �h i
exp �

Mx �x

2"

� �
,

ð6Þ

where r" is (hopefully) a small remainder, p0ðzÞ, p1, kðzÞ, p2, klðzÞ, q0ðzÞ are
periodic functions andM ¼ fMijg is a positive definite matrix, that are to be
determined. Remark that, by symmetry, we have p2, kl ¼ p2, lk. The corre-
sponding asymptotics for the first eigenvalue in (2) is

�"1 ¼ �1ð0Þ þ "
1 þ oð"Þ, ð7Þ

where 
1 has also to be determined. Since M is positive definite, an easy
computation shows that, for any power 1 � � < þ1 and for any norm-
exponent 1 � m � þ1, we have

x� exp �
Mx � x

2"

� �				
				

LmðGÞ

exp �
Mx � x

2"

� �				
				

LmðGÞ

¼ Oð"�=2Þ: ð8Þ

Remark that (8) holds true also in the case m ¼ þ1, which means that
x� expð�Mx � x=2"Þ is uniformly of order "�=2 in G. Therefore, in the right
hand side of (6), if the first term is normalized to be of order 1, the second
term xkp1, kðx="Þ expð�Mx � x=2"Þ is of order

ffiffiffi
"

p
, the third term

xkxlp2, klðx="Þ expð�Mx � x=2"Þ is of order ", as well as the fourth one. In
the sequel we neglect any other higher-order terms.

Now we substitute (5)–(7) in (2) and we find a cascade of equations
according to the various powers of " and of x. This gives

0 ¼ ðA
"
� �"1Þp

"
1 ¼ ðA

"
� ð�1ð0Þ þ "
1ÞÞ

q"1
kq"1kL2ðGÞ

þ ~rr"
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where ~rr" ¼ ðA
"
� �"1Þr" þ ð�1ð0Þ þ "
1 � �"1Þq

"
1=kq"1kL2ðGÞ is hopefully small

and

ðA
"
� �1ð0Þ � "
1Þq

"
1

¼



� "2

@

@xi

h
aij
0

�x

"

�
þ xkaij

1, k

� x

"

�
þ xkxla

ij
2, kl

�x

"

�i @

@xi

� �

þ c0

�x

"

�
þ xkc1, k

� x

"

�
þ xkxlc2, kl

�x

"

�
� �1ð0Þ � "
1

� ��

�



p0

� x

"

�
þ xkp1, k

� x

"

�
þ xkxlp2, kl

� x

"

�h
þ"q0

� x

"

�i
exp

�
�

Mx � x

2"

��
þ r0"

where r0" stands for higher order terms which are small according to (8). For
brevity we introduce the notation

A
0
¼ �

@

@zi

aij
0 ðzÞ

@

@zj

� �
þ c0ðzÞ � �1ð0Þ

A
1
k ¼ �

@

@zi

aij
1, kðzÞ

@

@zj

� �
þ c1, kðzÞ

A
2
kl ¼ �

@

@zi

aij
2, klðzÞ

@

@zj

� �
þ c2, klðzÞ

B
0, k

¼ �aki
0 ðzÞ

@

@zi

�
@

@zi

aik
0 ðzÞ�

� �
B
1, k
l ¼ �aki

1, lðzÞ
@

@zi

�
@

@zi

aik
1, lðzÞ�

� �

Differentiating all terms, including the exponential, and replacing x=" by z,
we get

ðA
"
� �1ð0Þ � "
1Þq

"
1

¼



A
0p0ðzÞ þ xk A

0p1, kðzÞ þ A
1
kp0ðzÞ � MklB

0, lp0ðzÞ
h i

þ xkxl

h
A
0p2, klðzÞ þ A

1
kp1, lðzÞ þ A

2
klp0ðzÞ

� MkjB
0, jp1, lðzÞ � MkjB

1, j
l p0ðzÞ � Mkja

ij
0 ðzÞMilp0ðzÞ

i
þ "

h
A
0q0ðzÞ þ Mija

ij
0p0ðzÞ � aij

1, i

@

@zj

p0ðzÞ

þ B
0, jp1, jðzÞ � 
1p0ðzÞ

i�����
z¼x="

exp �
Mx � x

2"

� �
þ r00" ð9Þ

where r00" is another small remainder thanks to (8).
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Equating to zero the corresponding expressions on the r.h.s. of (9), we
derive the sequence of auxiliary problems which allow us to determine all
the unknown elements in the above expansion. The equation for the leading
term (or order 1) of the asymptotics reads

A
0p0ðzÞ ¼ 0: ð10Þ

This equation is solvable in the space of periodic functions L2ðTn
Þ and has a

unique (up to a multiplicative constant) solution p0ðzÞ ¼ p1ð0, zÞ. Since the
coefficients of the operator A

0 are smooth, the solution p0 belongs, at least,
to H2ðTn

Þ. For definiteness we impose the normalization condition

Z
Tn

p20ðzÞ dz ¼ 1:

At the next step, we collect all terms which are of order x and we
obtain n equations

A
0p1, kðzÞ ¼ �A

1
kp0ðzÞ þ MklB

0, lp0ðzÞ, k ¼ 1, 2, . . . , n:

Due to the presence of the coefficients Mkl here, it is natural to represent
p1, kðzÞ as the linear combination ~pp1, kðzÞ þ Mkl

~~pp~ppl
1ðzÞ, and to consider the

following two equations separately

A
0 ~pp1, kðzÞ ¼ �A

1
kp0ðzÞ, ð11Þ

and

A
0 ~~pp~ppl
1ðzÞ ¼ B

0, lp0ðzÞ: ð12Þ

According to the Fredholm alternative, these equations admit solutions if
and only if their right hand sides are orthogonal to the function p0 that
spans the kernel of A

0 (orthogonality with respect to the usual scalar
product in L2ðTn

Þ). Eq. (12) is evidently solvable since B
0, l is a skew-

symmetric operator. Indeed, it suffices to multiply the right hand side of
this equation by p0ðzÞ and integrate by parts. To show that the solvability
condition is satisfied in (11), we use the fact that x0 ¼ 0 is a minimum point
of �1ðxÞ. Recalling the definition of AðxÞ, p0ðzÞ and p1ðx, zÞ, we have

ðAðxÞp0, p0Þ � ðAðxÞp1ðx, �Þ, p1ðx, �ÞÞ ¼ �1ðxÞ

� �1ð0Þ ¼ ðAð0Þp1ð0, �Þ, p1ð0, �ÞÞ ¼ ðAð0Þp0, p0Þ,
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that is the function ðAðxÞp0, p0Þ assumes its minimum at the point x0 ¼ 0.
Taking the derivatives in x of the said function at x0 ¼ 0 givesZ

Tn

�
aij
1, k

@

@zi

p0ðzÞ
@

@zj

p0ðzÞ þ c1, kp20ðzÞ
�

dz ¼ ðA
1
kp0, p0ÞL2ðTnÞ ¼ 0

for any k ¼ 1, 2, . . . , n; this implies the desired solvability condition.
The next equation involves all the quadratic in x terms of (9). It reads

A
0p2,kl þA

1
kp1, l þA

2
klp0 � MkjB

0, jp1, l � MkjB
1, j
l p0 � Mkja

ij
0Milp0

¼ A
0p2,kl þA

1
k ~pp1, l þA

1
kMlm

~~pp~ppm
1 þA

2
klp0 � MkjB

0, j ~pp1, l

� MkjB
0, jMlm

~~pp~ppm
1 � MkjB

1, j
l p0 � Mkja

ij
0Milp0 ¼ 0,

k, l ¼ 1, 2, . . . , n: ð13Þ

In truth, Eq. (13) should be symmetrized with respect to k, l since p2, kl and
xkxl are symmetric. The solvability condition of this equation requires
special considerations. There are two unknowns in the equation, namely
the matrix-function f p2, klðzÞg and the constant matrix Mij. Our goal is to
choose Mij so that the above equation has a solution f p2, klðzÞg in the space
of periodic functions.

First of all let us show that the linear in Mij terms do not make any
difficulty. Indeed, by (11) and (12) we have

~~pp~ppm
1 ðzÞ ¼ A

0

 ��1

B
0,mp0ðzÞ and ~pp1, kðzÞ ¼ � A

0

 ��1

A
1
k p0ðzÞ:

Thus

Z
Tn

A
1
k
~~pp~ppm
1 ðzÞ � B

0,m ~pp1, kðzÞ
� �

p0ðzÞ dz

¼

Z
Tn

A
1
k A

0

 ��1

B
0,mp0ðzÞ þ B

0,m
A
0


 ��1
A
1
k p0ðzÞ

n o
p0ðzÞ dz ¼ 0

since A
1
k and ðA

0
Þ
�1 are symmetric operators while B

0,m is skew-symmetric.
Thus, the solvability condition in (13) is satisfied if and only if the

following relation holds for all k, l ¼ 1, 2, . . . , n

Z
Tn

n
p0ðzÞA

2
kl p0ðzÞ þ p0ðzÞA

1
k ~pp1, lðzÞ � p0ðzÞMkmB

0,m ~~pp~pp j
1 ðzÞMjl

� p20ðzÞMkia
ij
0 ðzÞMjl

o
dz ¼ 0: ð14Þ
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Introducing a matrix X defined by its entries

X ij ¼

Z
Tn

p0ðzÞB
0, i ~~pp~pp j

1 ðzÞ þ p20ðzÞa
ij
0 ðzÞ

n o
dz, ð15Þ

and a matrix Y defined by its entries

Ykl ¼

Z
Tn

ð p0ðzÞA
2
kl p0ðzÞ þ p0A

1
k ~pp1, lðzÞÞ dz, ð16Þ

Equation (14) is equivalent to

MXM ¼ Y:

Let us check that this equation determines the matrix M. If X and Y are
symmetric positive definite, it is a classical result that there exists a unique
positive solution M given by

M ¼ X
�1=2

X
1=2

YX
1=2
 �1=2

X
�1=2:

We first prove the positive definiteness of the matrix X .

Lemma 3.1. The matrix X defined by (15) is symmetric positive definite.
Furthermore, it coincides with the homogenized matrix for the periodic
coefficients p20ðzÞa

ij
0 ðzÞ.

Proof. By virtue of (12) and of the skew-symmetric character of B
0, i, the

matrix X is equivalently given by

X ij ¼

Z
Tn

�ðB
0, ip0ðzÞÞ ðA

0
Þ
�1

B
0, jp0ðzÞ þ p20ðzÞa

ij
0 ðzÞ

n o
dz,

which implies it is symmetric. Next for any smooth function ’, we have

p0ðzÞA
0 p0ðzÞ’ðzÞð Þ ¼ �

@

@zi

p20ðzÞa
ij
0 ðzÞ

@’

@zj

� �
: ð17Þ

The matrix p20ðzÞa
ij
0 ðzÞ is uniformly positive definite. Therefore, homogeniza-

tion theory applies to the operator @=@xið p20ðx="Þa
ij
0 ðx="Þ@=@xjÞ (see, for

instance, (8)) which admits the following effective matrix

aij
eff ¼

Z
Tn

p20ðzÞa
ik
0 ðzÞ 
kj þ

@

@zk

� j
ðzÞ

� �
dz
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where 
kj is the Kronecker symbol and �
j
ðzÞ is the solution in H1ðTn

Þ of the
following cell problem

�
@

@zi

p20ðzÞa
ij
0 ðzÞ

@

@zj

�k
ðzÞ

� �
¼

@

@zi

�
p20ðzÞa

ik
0 ðzÞ

�

or, equivalently, by (17)

p0A
0
ð p0�

k
Þ ¼ �

@

@zi

�
p20ðzÞa

ik
0 ðzÞ

�
� � p0

@

@zi

�
p0a

ik
0

�
þ p0a

ik
0

@

@zi

p0

� �
� p0B

0, kp0

This yields a new expression for �k since the solution of this equation is

� k
¼
1

p0
ðA
0
Þ
�1

B
0, kp0: ð18Þ

Finally, considering the above relations, we derive

Xkl ¼

Z
Tn

p20a
kl
0 þ p0B

0,k ~~pp~ppl
1

� �
dz ¼

Z
Tn

p20a
kl
0 þ p0B

0,k
ðA
0
Þ
�1

B
0, lp0

� �
dz

¼

Z
Tn

p20a
kl
0 þ p0B

0,k
ðp0�

l
Þ

� �
dz ¼

Z
Tn

p20a
kl
0 � �lp0B

0,kp0

� �
dz

¼

Z
Tn

p20a
kl
0 � �l @

@zi

ðp20a
ik
0 Þ

� �
dz ¼

Z
Tn

p20a
kl
0 þ p20a

ik
0

@

@zi

�l

� �
dz ¼ akl

eff ,

which is the desired result since the matrix akl
eff is known to be positive

definite. &

Our next aim is to prove the positive definiteness of the matrix Y.

Lemma 3.2. Under Hypothesis H1 the matrix Y is positive semidefinite. If, in
addition, Hypothesis H2 holds then Y ¼ D ¼ ð1=2Þð@2�1ð0Þ=@xi@xjÞ is positive
definite.

Proof. The three first terms of the Taylor series of p1ðx, zÞ in the x variable
around x0 ¼ 0 are

p1ðx, zÞ ¼ p1ð0, zÞ þ xk

@

@xk

p1ð0, zÞ þ
1

2
xkxl

@2

@xk@xl

p1ð0, zÞ

� p0ðzÞ þ xkp̂p1, kðzÞ þ xkxlp̂p2, klðzÞ:
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Inserting this, (5) and (4) in (3) and collecting powers of x we obtain

A
0p0 þ xkðA

0p̂p1, k þ A
1
kp0Þ þ xkxlðA

0p̂p2, kl þ A
1
kp̂p1, l þ A

2
klp0Þ

¼ Dklxkxlp0 þ Oðx3Þ:

Therefore,

p̂p1, k ¼ �ðA
0
Þ
�1

A
1
kp0 ¼ ~pp1, k

and

Dkl ¼

Z
Tn

p20Dkl dz ¼

Z
Tn

p0A
0p̂p2, kl þ p0A

1
kp̂p1, l þ p0A

2
klp0

� �
dz:

Integrating by parts and since A
0p0 ¼ 0, we get

Dkl ¼

Z
Tn

p0A
1
k ~pp1, l þ p0A

2
klp0

� �
dz ¼ Ykl ,

which is the desired result. &

Remark 3.3. As a byproduct of Lemma 3.2, we obtained that the derivative
@=@xkp1ð0, zÞ is equal to ~pp1, k and not to p1, k.

The last equation related to the ansatz (9) collects all terms of the first
order in ". It reads

A
0q0 ¼ �p0Mija

ij
0 � B

0, jp1, j þ aij
1, i

@

@zj

p0 þ 
1p0:

Writing down the solvability condition for this equation we find


1 ¼ Mij

Z
Tn

p20a
ij
0 dz þ

Z
Tn

p0B
0, jp1, j � p0a

ij
1, i

@

@zj

p0

� �
dz

This equation gives the value of the corrector 
1 in the asymptotic expan-
sion (7). Thus, we determined all the unknown elements in the asymptotic
expansions (6) and (7). This shows that our ansatz is viable and one can
safely hope to prove that it indeed holds true.

More precisely, collecting the above results and remarking that, by
virtue of (8), the remainder term in (9) is actually small, the conclusion of
this section is the following lemma.
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Lemma 3.4. The approximation q"1 of the first eigenfunction satisfies the
estimate

				ðA"
� ð�1ð0Þ þ "
1ÞÞ

q"1
kq"1k

				
L2ðGÞ

� c"3=2: ð19Þ

The proof of this bound is an immediate consequence of the fact that
the neglected terms are proportional to x3, "x or higher order terms.
Remark that a similar result holds true in any Lm

ðGÞ-norm. In the sequel,
it remains to prove that q"1=kq"1kL2ðGÞ is indeed close to the true first eigen-
function p"1. In theory we could continue the ansatz and compute further
correctors, but the algebra becomes soon formidable and anyway we are
able only to prove the correctness of the first term of the ansatz of q"1.

4. VARIATIONAL PROOF OF THE CONVERGENCE

In this section we develop the analysis of the bottom spectrum of
eigenproblem (1), which relies on a factorization principle in the neighbour-
hood of the concentration point of the ground state, and on homogenization
technique. In particular, this allows to justify the first two terms of the
asymptotics of the leading eigenvalues in (1) and to obtain a lower bound
for the spectral gap.

We first introduce the following homogenized problem in R
n

�
@

@yi

aij
eff

@u

@yj

� �
þ ceff þ Dijyiyj


 �
u ¼ 
u in R

n,

u 2 L2ðRn
Þ,

8<
: ð20Þ

where D ¼ fDijg is the Hessian matrix ð1=2Þrxrx�1ð0Þ. The homogenized
coefficients are given by

ceff ¼ �

Z
Tn

p1ð0, zÞ
@aij

@xi

@p1
@zj

þ aij @2p1
@zj@xi

þ
@

@zi

aij @p1
@xj

� � !
ð0, zÞ dz ð21Þ

and

aij
eff ¼

Z
Tn

p21ð0, zÞ aij
ð0, zÞ þ aki

ð0, zÞ
@� j

@zk

ðzÞ

� �
dz ð22Þ
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where the functions ð�k
Þ1�k�n are the solutions in H1ðTn

Þ of

�
@

@zi

p21ð0, zÞa
ij
ð0, zÞ

@�k

@zj

ðzÞ

 !
¼

@

@zi

p21ð0, zÞa
ik
ð0, zÞ

� �
ð23Þ

The homogenized eigenvalue problem is well-posed in H1ðRn
Þ \ L2ðRn; jyj2Þ

and defines a self-adjoint compact operator in L2ðRn
Þ.

Theorem 4.1. Let p1ðx, zÞ and �1ðxÞ be the first eigenvector and eigenvalue of
the cell problem (3) normalized by k p1ðx, �ÞkL2ðTnÞ ¼ 1. Assume that assump-
tions H1 and H2 hold true. For k � 1, let �"k and p"k be the kth eigenvalue and
normalized eigenvector of (1). Then,

p"kðxÞ ¼ u"k
xffiffiffi
"

p

� �
p1 x,

x

"

� �
, �"k ¼ �1ð0Þ þ "
k þ o "ð Þ, ð24Þ

where, up to a subsequence, the sequence u"kð yÞ=ku"kkL2ðRnÞ converges weakly in
H1ðRn

Þ, and strongly in L2ðRn
Þ, to ukðyÞ, and ð
k, ukÞ is the kth eigenvalue and

eigenvector of the homogenized problem (20).

Remark 4.2. In order to see the connection between Theorem 4.1 and the
results of the formal asymptotic expansion, we can rewrite the homogenized
coefficients with the notation of Section 3. Recall first that

p1ð0, zÞ � p0ðzÞ,
@p1
@xj

ð0, zÞ � ~pp1, jðzÞ,

aij
ð0, zÞ � aij

0 ðzÞ, and
@aij

@xi

ð0, zÞ � aij
1, iðzÞ:

Thus, we obtain aij
eff ¼ X ij and

ceff ¼

Z
Tn

�
p0B

0, j ~pp1, j � p0a
ij
1, i

@p0
@zj

�
dz:

The eigenvalues and eigenfunctions of the homogenized problem (20) can be
computed explicitely (see e.g., (15)). Therefore, we recover the result of the
formal asymptotic expansion. In particular, the first eigenpair of (20) is


1 ¼ ceff þ trðMXÞ, and u1ð yÞ ¼ exp
�
�

My � y

2

�
,

with M ¼ X
�1=2

ðX
1=2

YX
1=2

Þ
1=2

X
�1=2.
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Remark 4.3. Since the eigenfunction p"k is normalized in L2ðGÞ, the norm
ku"kkL2ðRnÞ is of the order of "

�n=4. Furthermore, the exponential character of
ukð yÞ implies that the factorization (24) can be localized around the origin.
In other words, as a corollary of Theorem 4.1 we have

lim
"!0

					 p"k � "�n=4p1

�
0,

x

"

�
uk

xffiffiffi
"

p

� �					
L2ðGÞ

¼ 0:

Proof. Let ð�", p"Þ be an eigenpair of

�"2
@

@xi

aij x,
x

"

� � @p"
@xj

� �
þ c x,

x

"

� �
p" ¼ �"p" in G,

p" ¼ 0 on @G:

8<
: ð25Þ

We perform the following change of unknown

v"ðxÞ ¼
p"ðxÞ

p1 x, x="ð Þ
, ð26Þ

which, according to Proposition 3.6 in (2), defines an invertible and bicon-
tinuous change of variables in H10 ðGÞ. We replace p" by v" in (25), and we
recall that p1ðx, zÞ is the first eigenfunction of (3). After a little algebra and
using the following identity (identical to (17))

p1
@

@xi

aij @ðp1v
"
Þ

@xj

� �
¼

@

@xi

p21a
ij @v

"

@xj

� �
þ p1v

" @

@xi

aij @p1
@xj

� �
,

we obtain that (25) is equivalent to

�"
@

@xi

p21a
ij @v

"

@xj

� �
þ �"

ðxÞ þ
�1ðxÞ � �ð0Þ

"
p21

� �
v" ¼ 
"p21v

" in G,

v" ¼ 0 on @G,

8<
:

ð27Þ

where the coefficients p21 and aij are evaluated at ðx, x="Þ, with 
"
¼

"�1ð�" � �1ð0ÞÞ and

�"
ðxÞ ¼ � p1

@

@zi

aij @p1
@xj

� �
þ

@

@xi

aij @p1
@zj

� �
þ "

@

@xi

aij @p1
@xj

� �� �
 �
x,

x

"

� �
:
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In order to eliminate the " scaling in front of the second-order operator in
(27), we rescale the space variable by introducing

y ¼
xffiffiffi
"

p 2 G"
¼ "�1=2G and u"ðyÞ ¼ v"ðxÞ:

This yields

�
@

@yi

~aaij
"
@u"

@yj

� �
þ ~��"

ðyÞ þ
�1ð

ffiffiffi
"

p
yÞ � �ð0Þ

"
~pp21,"

� �
u"

¼ 
" ~pp21,"u
" in G",

u" ¼ 0 on @G",

8<
:

ð28Þ

with

~aaij
" ð yÞ ¼ f p21a

ij
gð

ffiffiffi
"

p
y, y=

ffiffiffi
"

p
Þ, ~pp21, "ð yÞ ¼ p21ð

ffiffiffi
"

p
y, y=

ffiffiffi
"

p
Þ,

~��"
ð yÞ ¼ �"

ð
ffiffiffi
"

p
yÞ,

and

�1ð
ffiffiffi
"

p
yÞ � �ð0Þ

"
¼
1

2
rxrx�1ð0Þy � y þ oð1Þ:

Equation (28) is a combined problem of homogenization and singular
perturbations: the coefficients are oscillating with a period

ffiffiffi
"

p
, and they

concentrate to 0 with respect to their first macroscopic argument. Remark
also that the domain G" is converging to R

n. Therefore, we expect that the
limit problem of (28) is precisely the homogenized problem (20). To prove
this statement and study the spectral asymptotics of (28), we follow the
methodology of (2,4). We introduce the corresponding Green operator

S":L2ðG"
Þ ! L2ðG"

Þ

f ! U" ð29Þ

where U" is the unique solution in H10 ðG
"
Þ of

�
@

@yi

~aaij
"
@U"

@yj

� �
þ ~��"

ðyÞ þ
�1ð

ffiffiffi
"

p
yÞ � �ð0Þ

"
~pp21, "

� �
U"

¼ ~pp21, " f in G",

U"
¼ 0 on @G":

8<
:

ð30Þ

Remark that, under the assumed smoothness of the coefficients, the function
~��"
ð yÞ is uniformly bounded in R

n. Thus, adding to it C ~pp21, "ð yÞ, with C
positive and sufficiently large, will make it positive too and will have
the effect of simply shifting the entire spectrum by this constant C.
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Therefore, we shall assume without loss of generality that ~��"
ð yÞ is positive.

In the sequel we shall consider that S" is an operator defined in L2ðRn
Þ by

simply taking f as the restriction to G" of a function of L2ðRn
Þ and extending

by zero outside G" the solution U"
¼ S"f . The homogenization of (29) is

quite standard. We introduce the limit Green operator

S:L2ðRn
Þ ! L2ðRn

Þ

f ! U unique solution in H1ðRn
Þ of

�
@

@yi

aij
eff

@U

@yj

� �
þ ceff þ Dy � yð ÞU ¼ f in R

n,

which is a compact operator (see e.g., (15)) whose spectrum can be explicitly
computed. Then, we obtain the following convergence result which com-
pletes the proof.

Lemma 4.4. The sequence of operators S" compactly converges to the limit
operator S in the sense that (see e.g., (7))

(i ) for any f 2 L2ðRn
Þ, lim"!0 kS"

ð f Þ � Sð f ÞkL2ðRnÞ ¼ 0,
(ii ) the set fS"

ð f Þ : k f kL2ðRnÞ � 1, " � 0g is sequentially compact.

Proof. The proof is quite classical (see e.g., (2,4) for similar examples), so we
simply indicate the main ingredients. First, we multiply (30) by U" and
integrate by parts to obtain a priori estimates. Since by assumptions H1

and H2 there exists a positive constant C > 0 such that

�1ð
ffiffiffi
"

p
yÞ � �ð0Þ

"
� Cjyj2,

we get

krU"
kL2ðRnÞ þ kyU"

ð yÞkL2ðRnÞ � Ck f kL2ðRnÞ: ð32Þ

This implies that the sequence U" is not only pre-compact in H1ðRn
Þ-weak

but also pre-compact in L2ðRn
Þ-strong. Second, we pass to the limit in (30)

by using the two-scale convergence (1). We multiply (30) by a test function
’ðyÞ þ "’1ð y, y=

ffiffiffi
"

p
Þ where ’, ’1 are smooth functions with compact support

with respect to the first variable y and periodic with respect to the second
variable z ¼ y=

ffiffiffi
"

p
. Since this test function has compact support (fixed with

respect to "), the effect of the non-periodic modulation in the coefficients
is negligible. Indeed, on any fixed bounded domain, the values of the
coefficients, depending on ð

ffiffiffi
"

p
y, y=

ffiffiffi
"

p
Þ are uniformly close to their values

at ð0, y=
ffiffiffi
"

p
Þ. Now, this is a standard matter in the theory of two-scale
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convergence to deduce that any converging subsequence of U" converges
weakly in H1ðRn

Þ to U which is the unique solution of (31). The homoge-
nized coefficients in (31) are thus obtained by considering the cell problems
with the frozen macroscopic variable x ¼ 0 (remark that the weak limit of
~pp21, "ð yÞ is precisely

R
T

n p21ð0, zÞ dz which is equal to 1 by our normalization
condition). By uniqueness of the limit, the entire sequence U" converges.
Furthermore, estimate (32) shows that U" does also converge strongly in
L2ðRn

Þ. This proves statement ðiÞ of the lemma. To prove statement ðiiÞ we
simply remark that estimate (32) as well as the strong L2ðRn

Þ convergence of
U" is still valid if the right hand side f is replaced by a bounded sequence f" in
L2ðRn

Þ. This shows that S" compactly converges to S. &

To finish the proof of Theorem 4.1, it remains to check that the
operator convergence furnished by Lemma 4.4 yields the desired conver-
gence of the spectrum, as stated in Theorem 4.1. This is indeed true by a
classical result on the operator compact convergence (see (7)) that we recall.

Lemma 4.5. (7) If a sequence of compact self-adjoint operators S" compactly
converges to a limit compact self-adjoint operator S in L2ðRn

Þ, then the spec-
trum of S" converges to that of S in the sense that the kth eigenvalue of S"

converges to the kth one of S and, up to a subsequence, the kth normalized
eigenvector of S" converges strongly in L2ðRn

Þ to a kth eigenvector of S.

Remark 4.6. Lemma 4.5 would be obvious if the sequence S" were to
converge uniformly to S. However, this is not the case because the
right hand side coefficient ~pp21, "ð yÞ converges merely weakly to its
limit value

R
T

n p21ð0, zÞdz ¼ 1. Lemma 4.5 extends to the case of non self-
adjoint operators.

Corollary 4.7. In the statement of Theorem 4.1 the whole sequence u"1ðx=
ffiffiffi
"

p
Þ

associated to the ground state p"1ðxÞ, does converge, as " ! 0. Thus, the
asymptotics of the ground state is uniquely defined.

Proof. This is an immediate consequence of the fact that the principal
eigenvalue of the homogenized problem (20) is simple. &

5. ERROR ESTIMATE FOR THE

GROUND STATE ASYMPTOTICS

In this section we show that, under hypotheses H1–H2
0, the remain-

ders in (6) and (7) admit qualified upper bounds. To this end we combine the
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formal asymptotics built above with the estimates proved in the preceding
section.

The statement below is an obvious consequence of Theorem 4.1.

Lemma 5.1. Under hypotheses H1 and H2 there exists a positive constant
C > 0, independent of ", such that

�1ð0Þ � C" � �"1 < �"2 � �1ð0Þ þ C", ð33Þ

and

�"2 � �"1 � C": ð34Þ

Remark 5.2.We derive the statement of Lemma 5.1 as a consequence of the
homogenization results of Theorem 4.1. Another, direct way to prove this
statement would be to use the min–max principle and a properly chosen
ansatz of the form�

q0

� x

"

�
þ xiq1, i

� x

"

�
þ xixjq2, ij

� x

"

��
exp

�
�
jxj2

"

�
:

Combining the bounds of Lemmas 5.1 and 3.4 with (24), we obtain the
main estimates of this work. Let p"1 be the leading normalized eigenfunction
of problem (2) and �"1 the corresponding eigenvalue.

Theorem 5.3. Under Hypotheses H1 and H2
0 there exists a positive constant

C > 0, independent of ", such that

j�"1 � �1ð0Þ � "
1j � C"3=2			p"1 �
q"1
kq"1k

			
L2ðGÞ

� C"1=2:

Proof. We write down the Fourier series of the function ðq"1=kq"1kÞ with
respect to the eigenbasis f p"i g

1
i¼1

q"1
kq"1kL2ðGÞ

¼
X1
i¼1

�ip
"
i ,

X1
i¼1

�2i ¼ 1:

Substituting this series in (19) we get				ðA"
� ð�1ð0Þ þ "
1ÞÞ

q"1
kq"1k

				
2

L2ðGÞ

¼ �21ð�
"
1 � �1ð0Þ � "
1Þ

2
þ
X1
i¼2

�2i ð�
"
i � �1ð0Þ � "
1Þ

2
� C"3:
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By Theorem 4.1 or Lemma 5.1, we have for all i � 2

ð�"i � �1ð0Þ � "
1Þ
2
� C"2:

Therefore,

X1
i¼2

�2i � C"

and the second inequality of Theorem 5.3 follows. To justify the first one it
suffices to note that �1 tends to 1 as " goes to 0.
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