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Abstract In this work, we undertake a numerical study
of the effective coefficients arising in the upscaling of
a system of partial differential equations describing
transport of a dilute N-component electrolyte in a
Newtonian solvent through a rigid porous medium. The
motion is governed by a small static electric field and a
small hydrodynamic force, around a nonlinear Poisson–
Boltzmann equilibrium with given surface charges of
arbitrary size. This approach allows us to calculate the
linear response regime in a way initially proposed by
O’Brien. The O’Brien linearization requires a fast and
accurate solution of the underlying Poisson–Boltzmann
equation. We present an analysis of it, with the discus-
sion of the boundary layer appearing as the Debye–
Hückel parameter becomes large. Next, we briefly
discuss the corresponding two-scale asymptotic expan-
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sion and reduce the obtained two-scale equations to a
coarse scale model. Our previous rigorous study proves
that the homogenized coefficients satisfy Onsager prop-
erties, namely they are symmetric positive definite ten-
sors. We illustrate with numerical simulations several
characteristic situations and discuss the behavior of the
effective coefficients when the Debye–Hückel parame-
ter is large. Simulated qualitative behavior differs sig-
nificantly from the situation when the surface potential
is given (instead of the surface charges). In particular,
we observe the Donnan effect (exclusion of co-ions for
small pores).
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1 Introduction

The quasi-static transport of an electrolyte solution
through an electrically charged porous medium is
an important and well-known multi-scale problem in
geosciences and porous materials modeling. An N-
component electrolyte solution is a dilute solution of
N species of charged particles, or ions, in a fluid which
saturates a rigid porous medium. In such a case, the
general solution is not simple because of the coupling
between the electric field (created either by the internal
charges or an external generator), the Stokes flow, and
the convection–diffusion transport phenomena [27].

In fact, clays, and more generally numerous porous
media are multi-scale materials. Thus, the descrip-
tion of the dynamics of such systems can be made
at different scales. Hydrated smectite clays, such as
montmorillonite, are lamellar mineral crystals com-
posed of charged layers separated by an aqueous so-
lution. They exhibit special features towards hydra-
tion and ion fixation [21]. Clay lamellae form thin
platelet-shaped particles of diameter close to several
hundreds of Angströms. But this lamellar geometry
is valid only at small length scales. At larger scales,
the structure is more complex and it leads to multi-
porosities. Different modeling strategies are applied,
depending on the size of the porosities. Ab initio mole-
cular dynamics (see e.g., [6, 50]) provides information
about the electronic degrees of freedom but, because
of its computational cost, it is restricted to the smallest
time and length scales. Classical Monte Carlo [48] or
molecular dynamics simulations [15, 28] are able to
describe larger systems. For example, the mechanism
of crystalline swelling at low hydration is well repro-
duced by these techniques where the various atoms
and ions are considered explicitly. Nevertheless, very
large systems (e.g., for high hydration, or for macrop-
orosities between different platelets particles) cannot
be treated by this technique. The use of alternative
methods based on continuous methods (e.g., Poisson–
Boltzmann [49] descriptions or hydrodynamics [23, 44])
is inescapable. They are especially relevant for the
derivation of the macroscopic law (such as Darcy’s law)
and for the calculation of the various electrokinetic
phenomena.

These electrokinetic phenomena, such as the elec-
troosmotic mechanism can facilitate or slow down fluid
flowing through porous media. They are due to the
electric double layer (EDL) which is formed as a result
of the interaction of the ionized solution with static
charges on the pore solid–liquid interface [19]. A part
of the solute ions of opposite charge have a complex
attraction with the surface and requires a specific treat-

ment, forming the Stern layer. Its typical thickness is
of one molecular diameter because of the molecular
nature of the interface. After the Stern layer, the elec-
trostatic diffuse layer or Debye’s layer is formed, where
the ion density varies smoothly, so that continuous
models may be applied. The EDL is the union of Stern
and diffuse layers. The thickness of the EDL is typically
given by the Debye length λD, defined in the Debye–
Hückel approach as the distance from the solid charged
interface for which the solid charge is screened by
the counterions. λD is typically a nanometric distance.
Outside Debye’s layer, in the remaining bulk fluid, the
solvent can be considered as locally electrically neutral,
because of the electrostatic screening. In the case of
montmorillonite clays, the comparison with molecular
dynamics simulations [13, 30] indicate that the Stern
layer is globally negligible if the pore size is typically
more than 1–2 nm. This is a consequence of the origin
of the charge in these geological materials: clays are
charged because of isomorphic substitutions so that the
global charge is inside the volume of the solid phase and
not at the surface. Thus, the surface Stern layer is less
important.

The ion distribution in the EDL is characterized
using the electrostatic potential �. Its boundary value
at the edge of Stern’s layer characterizes the magnitude
of the surface charge of the system. When measured
by electrokinetic methods, for which the hydrodynamic
no-slip surface is identified to the solid/fluid interface,
it is known as the zeta potential ζ . This parameter is
the one commonly used for the definition of the EDL.
Yet it is an effective parameter, which depends on nu-
merous parameters, such as the pH, the nature and the
concentration of the electrolyte, and it is not defined
rigorously for complex systems as clays for which the
electric potential is not constant at the interface. In
many situations, it is rather the surface charge density
�, proportional to the normal derivative of �, instead
of ζ , which is relevant, because it corresponds to the
chemistry of the system. In the case of montmorillonite
clays, which is the case practically studied in this article,
isomorphic substitutions give a bulk charge in the solid
part, which can be modeled by a surface charge � [31]
close to 1.61/2 e.nm−2.

Under the presence of an external electric field E,
the charged fluid may acquire a plug flow velocity
which is proportional to Eζ and given by the so-called
Smoluchowski’s formula. A more detailed, mathemat-
ically oriented, presentation of the fundamental con-
cepts of electroosmotic flow in nanochannels can be
found in the book [22] by Karniadakis et al., pages
447–470, from which we borrow the notations and
definitions in this introduction.
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In the case of porous media with large pores, the
electroosmotic effects are modeled by introducing an
effective slip velocity at the solid–liquid interfaces,
which comes from the Smoluchowski formula. In this
setting, the effective behavior of the charge transport
through spatially periodic porous media was studied by
Edwards in [14], using the volume averaging method.

On the other hand, in the case of clays, the charac-
teristic pore size is also of the order of a few hundreds
of nanometers or even less. Therefore, Debye’s layer
fills largely the pores, and its effect cannot anymore be
modeled by an effective slip boundary condition at the
liquid–solid interface. Furthermore, it was confirmed
experimentally (see e.g., [9]) that the bulk Navier–
Stokes equations still hold for pores larger than 1 nm.
Therefore, in the present paper, we consider continuum
equations at the microscopic level and, more precisely,
we couple the incompressible Stokes equations for the
fluid with the electrokinetic model made of a global
electrostatic equation and one convection–diffusion
equation for each type of ions.

The microscopic electrochemical interactions in an
N-component electrolyte in a dilute Newtonian solvent
are now well understood and in SI units we have in the
stationary state the following mass conservation laws

div
(
ji + uni

) = 0 in �p, i = 1, . . . , N, (1)

where �p is the pore space of the porous medium �.
i denotes the solute species, u is the hydrodynamic ve-
locity of solution, and ni is the ith species concentration.
Thus, uni is the convective flux for the species i while ji

is the migration-diffusion flux.
The hydrodynamic velocity is given by the Stokes

equations, including the incompressibility condition,

η�u = f + ∇ p + e
N∑

j=1

z jn j∇� in �p, (2)

div u = 0 in �p, (3)

u = 0 on ∂�p \ ∂�, (4)

where η is the shear viscosity, f is the external body
force, p is the pressure, e is the elementary charge,
zi is the charge number of the species i, and � is the
electrostatic potential. The pore boundary ∂�p can be
decomposed as the union of the fluid/solid boundaries
∂�p \ ∂�, where we assume a no-slip boundary condi-
tion (4) and of the outer boundary ∂� of the porous
medium �. In the case of clays [13, 30], this approach is
valid even for nanometric porosities, because of the rel-
atively low charge of the system. In fact, a slip boundary

condition (with a slip length equal to a few Angströms)
should be taken into account, but this microscopic slip
will be neglected here (although it causes no special
difficulties).

The migration–diffusion fluxes ji are given by the
following linear relationship

ji =
N∑

j=1

Lijn j
( − ∇μ j + z jeE

)
, i = 1, . . . , N; E = −∇�,

(5)

where μ j is the chemical potential of the species j given
by

μ j = μ0
j + kBT ln n j, j = 1, . . . , N, (6)

where kB is the Boltzmann constant, μ0
j is the standard

chemical potential expressed at infinite dilution, and T
is the absolute temperature. In Eq. 5, Lij are the linear
Onsager coefficients between the species j and i given,
in this ideal model, by

Lij = D0
i

kBT
δij, (7)

with δij the Kronecker symbol. Furthermore, on the
fluid/solid interfaces

ji · ν = 0 on ∂�p \ ∂�, i = 1, . . . , N. (8)

Our model is valid at infinite dilution, when the solu-
tion can be considered ideal, and D0

i is the diffusion
coefficient of species i at infinite dilution. At finite
concentration [12] these expressions, which correspond
to the Poisson–Nernst–Planck equations, are not valid
anymore. Here, we suppose that we are in the ideal
case. Nonideal effects modify the ion transport and they
will be studied in a forthcoming publication (Allaire
et al., in preparation).

The electrostatic potential is calculated from the
Poisson equation

E�� = −e
N∑

j=1

z jn j in �p, (9)

where E = E0Er is the dielectric constant of the solvent.
The corresponding boundary conditions is of Neumann
type

E∇� · ν = −� on ∂�p \ ∂�, (10)

where � is a given surface charge and ν is the unit
exterior normal to �p. We recall that Eq. 9 links the
electrokinetic potential � with the electric charge den-

sity ρe = e
N∑

j=1

z jn j. In the momentum Eq. 2, the elec-
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Table 1 Data description

Quantity Values

e Electron charge 1.6e−19 C (Coulomb)
D0

i Diffusivity of the D0
i ∈ (1.79, 9.31)e−09 m2/s

ith species
kB Boltzmann constant 1.38e−23 J/K
ni ith concentration Number of particles/m3

T Temperature 293 K (Kelvin)
E Dielectric constant 6.93e−10 C/(mV)

η Dynamic viscosity 1e−3 kg/(m s)
 Pore size 5e−9 m

λD Debye’s length
√
EkBT/(e2nc) ∈ (3, 300) nm

z j jth electrolyte valence Given integer
� Surface charge density 0.129C/m2 (clays)
f Given applied force N/m3

�c Electrokinetic potential 0.02527 V (Volt)

trokinetic force per unit volume fEK = ρe∇� is taken
into account. The boundary condition 8 means that the
normal component of the ith species ionic flux, given
by Eq. 5, vanishes at the pore boundaries. The vari-
ous parameters appearing in Eqs. 1–10 are defined in
Table 1.

For simplicity, we assume that � = (0, L)d (d = 2, 3
is the space dimension) with L > 0. It remains to define
the boundary conditions at the outer boundary ∂�.
Introducing an applied exterior potential �ext(x), we
impose periodic boundary conditions, in the sense that

� + �ext(x) , ni , u and P are (0, L)d − periodic. (11)

Due to the complexity of the geometry and of the
equations, it is necessary for engineering applications to
upscale the system (Eqs. 1–11) and to replace the flow
equations with a Darcy type law, including electroos-
motic effects.

It is a common practice to assume that the porous
medium is statistically homogeneous. A representative
case is that of a periodic microstructure. Under such
hypotheses, formal two-scale asymptotic expansion of
the solutions of system (Eqs. 1–11) has been under-
taken in many papers. Most of these works rely on
a preliminary linearization of the problem which is
first due to O’Brien et al. [37]. The earliest reference
known to us, considering only one ionic species, is [4].
Detailed formal two-scale asymptotic expansion of the
system (Eqs. 1–11), linearized in O’Brien’s sense is due
to Looker and Carnie in [26]. They obtained Onsager
tensor but proved only its symmetry. The rigorous
homogenization result is due to the authors in [3],
where the positive definiteness of the Onsager tensor
was proved too. Other contributions are due to Adler
and his co-workers: [10] with a numerical study of the

effective coefficients corresponding to the linearized
equilibrium state, [29] with detailed calculations for
the planar and circular Poiseuille pore flows, [1] with
formulas for the effective coefficients in the random
setting, [17] with a study of the behavior of the model
in clay with small pores, [18] with the calculations of the
effective coefficients for dense ball packing, and [43]
where one find application to 1D clay sample.

Homogenization has also been studied for the fully
nonlinear problem. Moyne and Murad considered the
case of electroosmosis in deformable periodic porous
media without linearization in the series of articles [32–
36]. We mention in the same direction the work of
Dormieux et al. [11]. More recent works on this topic
are [40–42, 46] and [47].

The goal of the present paper is to numerically
study the upscaling of a suitably scaled version of the
above Eqs. 1–11, describing the transport of a dilute
N-component electrolyte in a rigid periodic porous
medium. We first briefly recall the effective equations
obtained by rigorous homogenization in [3] (identi-
cal to those in [26]), as well as some asymptotics of
the Poisson–Boltzmann equation for small and large
pores, proved in [2]. Then, we compute the resulting
effective tensors through the solutions of cell problems.
In particular, we study their dependence on various
parameters such as porosity and concentration.

In Section 2, we present the adimensionalization of
the equations, followed by their partial linearization, in
the spirit of the seminal work of O’Brien et al. [37].
This allows us to write the microscopic ε-problem in
a periodic geometry. We further describe some quali-
tative properties of the nonlinear Poisson–Boltzmann
equation at the equilibrium state when the pore size is
small or large compared to the Debye length. In Section
3, we present the results of the two-scale asymptotic
expansion method, allowing to homogenize or upscale
the microscopic ε-problem. We discuss the linear re-
lation linking the ionic current, filtration velocity, and
ionic fluxes with gradients of the electrical potential,
pressure, and ionic concentrations. More precisely, in
Proposition 5, we recall that the so-called Onsager
relations [16] are satisfied, namely the full homogenized
tensor is symmetric positive definite. Finally, in Section
4, we present a numerical study of the obtained homog-
enized coefficients, including their sensitivities to vari-
ous physical parameters. Since, for simplicity reasons,
we content ourselves with 2-d numerical simulations,
we cannot use realistic microstructures, corresponding
to montmorillonite clays. We therefore perform our
computations on artificial plane microgeometries which
are easily parameterized to take into account varying
porosities or pore size.
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2 Nondimensional form and linearization

2.1 The nondimensional form

Before any asymptotic analysis, we need a dimension-
less form of the Eqs. 1–3, 5, 6, 9, and 10. We first
note that the known data are the characteristic pore
size , the surface charge density �(x) (having the
characteristic value �c), the static electrical potential
�ext, and the applied fluid force f. The small parameter

is ε = 

L
<< 1; the ratio between the pore size and the

dimension of the porous medium.
We proceed differently than in [22] and [26].

We are interested in characteristic concentrations
nc taking values in the range (10−2, 1) mol/l, i.e.,
(6.022e24, 6.022e26) m−3. Using the definition of De-
bye’s length from Table 1

λD =
√
EkBT
e2nc

,

we find out that λD ∈ (0.042, 0.42) nm.
Next, following the nondimensionalization from [22],

we introduce the characteristic potential ζ = kBT/e
and the parameter β related to the Debye–Hückel
parameter κ = 1/λD, as follows

β =
(



λD

)2

. (12)

The parameter β is the fundamental physical charac-
teristics which drives the transport properties of an
electrolyte solution in a porous media. For large β the
electrical potential is concentrated in a diffuse layer
next to the liquid/solid interface. Co-ions, for which the
charge is the same as the one of the solid phase are able
to go everywhere in the porosities because the repelling
electrostatic force of the solid phase is screened by the
counterions. The electrostatic phenomena are mainly
surficial, and the interfaces are globally independent.
For small β, co-ions do not have access to the very small
porosities (Donnan effect). The local electroneutrality
condition is not valid anymore and the electric fields of
the solid interfaces are coupled.

Next, we rescale the space variable by setting �ε =
�p/L and x′ = x

L (we shall drop the primes for sim-
plicity in the sequel). We introduce other characteristic
quantities

pc = nckBT, uc = ε2 kBTncL
η

,

adimensionalized forcing terms

�ext,∗ = e�ext

kBT
, f ∗ = fL

pc
, �∗ = �

�c
, Nσ = e�c

EkBT
,

and adimensionalized unknowns

pε = p
pc

, uε = u
uc

, �ε = e�
kBT

, nε
j = n j

nc
.

Remark that Nσ = /LG, where LG is the Gouy length.
With our numerical values we find out that Nσ ≈ 36.83.
The assumption Nσ = O(1) is classical in the literature
[26] and [32]. Concerning the transport term, we easily
find out that the global Peclet number for the jth
species Pe j is

Pe j = ucL

D0
j

= 2kBTnc

ηD0
j

∈ (0.01085, 1.085).

We are now in a situation to write the dimensionless
equations for hydrodynamic and electrostatic parts:

ε2�uε − ∇ pε = f ∗ +
N∑

j=1

z jnε
j(x)∇�ε in �ε, (13)

uε = 0 on ∂�ε \ ∂�, div uε = 0 in �ε, (14)

−ε2��ε = β

N∑

j=1

z jnε
j(x) in �ε; (15)

ε∇�ε · ν = −Nσ�∗ on ∂�ε \ ∂�, (16)

div
(
nε

j∇ ln(nε
je

�εz j) − Pe jnε
ju

ε
) = 0 in �ε, (17)

∇ ln(nε
je

�εz j) · ν = 0 on ∂�ε \ ∂�, (18)

nε
j, (�ε + �ext,∗), uε and pε are 1 − periodic in x.

(19)

For simplicity, in the sequel, we denote by E∗ the
imposed electric field corresponding to the exterior
potential �ext,∗, i.e., E∗(x) = ∇�ext,∗(x).

2.2 Linearization

The applied source terms in system (Eqs. 13–19) are
the static electric potential �ext,∗(x), the surface charge
density Nσ�∗(x) on the pore walls, and the applied
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fluid force f∗(x). The fields f∗ and �ext,∗ are assumed to
be sufficiently small to allow the partial linearization of
the ionic transport (electrokinetic) equations. No small-
ness condition is imposed on Nσ�∗, and the Poisson–
Boltzmann equation remains nonlinear.

Following the calculations by O’Brien et al. from
the seminal paper [37], we write the electrokinetic un-
knowns as

nε
i (x) = n0,ε

i (x) + δnε
i (x), �ε(x) = �0,ε(x) + δ�ε(x),

uε(x) = u0,ε(x) + δuε(x), pε(x) = p0,ε(x) + δpε(x),

where n0,ε
i , �0,ε, u0,ε, andp0,ε are the equilibrium quan-

tities, corresponding to f∗ = 0 and �ext,∗ = 0. The δ

prefix indicates a perturbation.
In the case f∗ = 0 and �ext,∗ = 0, one can find a

special solution of Eqs. 13–19 by assuming that the fluid
is at rest and the flux in Eq. 17 is zero everywhere. It is
given by

u0,ε = 0 , p0,ε =
N∑

j=1

nc
j exp{−z j�

0,ε} ,

n0,ε
j (x) = nc

j exp{−z j�
0,ε(x)} , (20)

where �0,ε is a solution of the Poisson–Boltzmann
equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ε2��0,ε = β

N∑

j=1

z jnc
je

−z j�
0,ε

in �ε,

ε∇�0,ε · ν = −Nσ�∗ on Sε = ∂�ε \ ∂�,

�0,ε is 1 − periodic.

(21)

The constants nc
j > 0 are called the infinite dilution

concentrations. We note that problem 21 is equivalent
to the following minimization problem:

inf
ϕ∈Vε

Jε(ϕ), (22)

with Vε = {ϕ ∈ H1(�ε), ϕ is 1 − periodic} and

Jε(ϕ) = ε2

2

∫

�ε

|∇ϕ|2 dx

+β

N∑

j=1

∫

�ε

nc
je

−z jϕ dx + εNσ

∫

Sε

�∗ϕ dS.

The functional Jε is strictly convex, which gives the
uniqueness of the minimizer. Nevertheless, for arbi-
trary nonnegative β, nc

j and Nσ , Jε may be not coer-
cive on Vε if all z j’s have the same sign (take ϕ to
be constant, of the same sign as the z j’s and going

to infinity). Therefore, we must put a condition on
the z j so that the minimization problem 22 admits a
solution. Following the literature, we impose the bulk
electroneutrality condition

N∑

j=1

z j nc
j = 0, (23)

which guarantees that for �∗ = 0, the unique solution
is �0,ε = 0. Under Eq. 23, it is easy to see that Jε is
coercive on Vε.

Remark 1 The bulk electroneutrality condition 23 is
not a restriction. Actually, all our results hold under
the much weaker assumption that all valences z j do not
have the same sign. Indeed, if Eq. 23 is not satisfied,
we can make a change of variables in the Poisson–
Boltzmann Eq. 21, defining a new potential �̃0,ε =
�0,ε + �C, where �C is a constant reference potential.
Since the function

�C → −
N∑

j=1

z jnc
je

−z j�
C

is continuous, increasing, and admits the limits ±∞
as �C goes to ±∞, there exists a unique root �C of
this function. This change of variables for the potential
leaves (Eq. 21) invariant if we change the constants nc

j

in new constants ñc
j = nc

je
−z j�

C
. These new constants

satisfy the bulk electroneutrality condition 23.

Lemma 2 [25] Assume that the electroneutrality condi-
tion 23 holds true and �∗ be a smooth bounded function.
Then problem 22 has a unique solution �0,ε ∈ Vε.

Motivated by the form of the Boltzmann equilibrium
distribution and the calculation of n0,ε

i , we follow the
lead of [37] and introduce the so-called ionic potential
�ε

i which is defined in terms of nε
i by

nε
i = nc

i exp{−zi(�
ε + �ε

i + �ext,∗)}. (24)

After linearization, Eq. 24 leads to

δnε
i (x) = −zin

0,ε
i (x)(δ�ε(x) + �ε

i (x) + �ext,∗(x)). (25)

Introducing Eq. 25 into Eqs. 13–17 and linearizing
yields the following equations

ε2�uε − ∇ Pε = f∗ −
N∑

j=1

z jn
0,ε
j (x)(∇�ε

j + E∗) in �ε,

(26)
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div uε = 0 in �ε, uε = 0 on ∂�ε \ ∂�, (27)

div
(

n0,ε
j (x)

(
∇�ε

j + E∗ + Pe j

z j
uε

))
= 0 in �ε, (28)

(∇�ε
j + E∗) · ν = 0 on ∂�ε \ ∂�, (29)

uε , Pε , �ε
j are 1 − periodic, (30)

where the perturbed velocity is actually equal to the
overall velocity and, for convenience, we introduced a
global pressure Pε

δuε = uε , Pε = δpε +
N∑

j=1

z jn
0,ε
j

(
δ�ε + �ε

j + �ext,∗
)

.

(31)

It is important to remark that, after the global pressure
Pε has been introduced, δ�ε does not enter Eqs. 26–
30 and thus is decoupled from the main unknowns uε,
Pε and �ε

i . The system (Eqs. 20, 21, 26–30) is the same
microscopic linearized system for the ionic transport as
in the papers by Adler et al. [1, 10, 17, 29, 43] and in the
work of Looker and Carnie [26].

2.3 Poisson–Boltzmann equation in the periodicity cell

It is now time to make precise the geometrical struc-
ture of the porous medium. From now on, we assume
that �ε is an ε-periodic open subset of R

d. It is built
from (0, 1)d by removing a periodic distributions of
solid obstacles which, after rescaling, are all similar to
the unit obstacle YS. More precisely, we consider a
smooth partition of the unit periodicity cell Y = YS ∪
YF , where YS is the solid part and YF is the fluid
part. The liquid/solid interface is S = ∂YS \ ∂Y. The
fluid part is assumed to be a smooth connected open
subset (no assumption is made on the solid part). We
define Y j

ε = ε(YF + j), S j
ε = ε(S + j), �ε = ⋃

j∈Zd

Y j
ε ∩ �,

and Sε ≡ ∂�ε \ ∂� = ⋃

j∈Zd

S j
ε ∩ �.

We also assume a periodic distribution of charges
�∗ ≡ �∗(x/ε). Then, by periodicity of �ε and by
uniqueness of the solution �0,ε of the Poisson–
Boltzmann Eq. 21, we have

�0,ε(x) = �0
( x

ε

)
, n0,ε

j (x) = n0
j

( x
ε

)
, (32)

where

n0
j(y) = nc

j exp{−z j�
0(y)} (33)

and �0(y) is the periodic solution for the cell Poisson–
Boltzmann equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−��0 = β

N∑

j=1

z jnc
je

−z j�
0

in YF,

∇�0 · ν = −Nσ�∗ on S,

�0 is 1 − periodic.

(34)

Solvability of Eq. 34 is again a consequence of Lemma
2 and of the electroneutrality condition 23.

We now briefly describe the asymptotic behavior of
the solution �0(y) of Eq. 34 for large and small β. A
rigorous and more complete analysis is done in our
other paper [2]. Similar asymptotic analysis have been
performed in [5, 38]. Note that, in Eq. 34, the parameter
β is a multiplier of the infinite dilution concentrations
nc

j. Therefore, studying large or small values of β is
equivalent to study large or small common values of the
nc

j’s. In view of its definition (Eq. 12), a large value of
β corresponds either to a large pore size or to a small
Debye length.

When β goes to +∞, simple asymptotic analysis ar-
gument, using an outer two-scale expansion, guarantees
that �0(y) behaves as a constant which is the root of
the nonlinearity in the Poisson–Boltzmann equation.
By the electroneutrality condition 23, this unique root
is zero. Hence, we deduce

�0(y) = O
(

1

β

)
in YF , away from the boundary S.

(35)

The behavior of �0 in the vicinity of the boundary S
is given by a boundary layer which is exponentially
decaying away from S as exp{−d(y)/β} where d(y) is
the distance function to S (a precise description is given
in [2]).

When β goes to 0 (very small pores), the asymptotic
analysis is less trivial and reveals the so-called Donnan
effect (co-ions do not have access to the very small
porosities). The variational formulation of Eq. 34 is

∫

YF

∇�0 · ∇ϕ dy − β

∫

YF

N∑

j=1

z jnc
je

−z j�
0
ϕ dy

+
∫

S
Nσ�∗ϕ dS = 0, (36)

for any smooth 1-periodic test function ϕ. If we choose
ϕ = 1 in Eq. 36, then we get

∫

YF

N∑

j=1

z jnc
je

−z j�
0

dy = β−1
∫

S
Nσ�∗ dS. (37)
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Thus,
∫

S �∗ dS �= 0 implies that the left hand side of
Eq. 37 blows up as β goes to zero, which means that
the function �0 cannot stay bounded. Nevertheless,

it turns out that the function �0 − 1

|YF |
∫

YF

�0 dy re-

mains bounded. We have three cases.

Case 1:
∫

S �∗ < 0. In this case, it is the nega-
tive valence with maximum value, z− =
max j(−z j) > 0, which matters. We obtain

�0(y) = 1

z− log

(
1

β

)
+ ϕ0(y) + O(β1/z−

),

(38)

and ϕ0 is the solution to the boundary value
problem

⎧
⎨

⎩

−�ϕ0(y) + z−nc
−ez−ϕ0(y) = 0 in YF,

∇ϕ0 · ν = −Nσ�∗ on S,

ϕ0 is 1 − periodic,
(39)

with nc− = nc
j for j such that z− = −z j. All

other species are negligible, nc
j << nc− for j

such that z− �= −z j, and in particular the con-
centration of co-ions (of the same valence
than the surface charge) is asymptotically van-
ishing (Donnan effect). We note that Eq. 39 is
solvable only for

∫
S �∗ < 0.

Case 2:
∫

S �∗ > 0. In this case, it is the positive va-
lence with maximum value, z+ = max j z j > 0,
which matters (here again, all other species
are negligible). We obtain

�β(y) = − 1

z+ log

(
1

β

)
+ ξ0(y) + O(β1/z+

),

(40)

where ξ0 is the solution to the boundary value
problem

⎧
⎨

⎩

−�ξ0(y) − z+nc
+e−z+ξ0(y) = 0 in YF,

∇ξ0 · ν = −Nσ�∗ on S,

ξ0 is 1 − periodic.
(41)

Again, Eq. 41 is solvable only for
∫

S �∗ > 0.

Case 3:
∫

S �∗ = 0. In this case, things are much sim-
pler. Let �N0 be the unique solution, such that∫

YF

∑N
j=1 z jnc

je
−z j�N0 dy = 0, of

⎧
⎨

⎩

−��N0(y) = 0 in YF,

∇�N0 · ν = −Nσ�∗ on S,

�N0 is 1 − periodic.
(42)

Then we have

�0(y) = �N0(y) + O(β). (43)

Note that the solutions of Eq. 42 are defined up to an
additive constant which is determined, in the present
case, by the additional average condition.

3 Homogenization

After solving the nonlinear Poisson–Boltzmann equa-
tion, which yields the equilibrium concentrations
n0,ε

j (x), the problem to homogenize is the system of

linearized Eqs. 26–30, where n0,ε
j (x) are ε-periodic

coefficients defined by Eqs. 20 and 32.
The formal two-scale asymptotic expansion method

[7, 20, 45] was applied to system 26–30 in [26]. It is also
a special case of more general expansions in [32–34, 36].
Introducing the fast variable y = x/ε, it is assumed that
the solution of Eqs. 26–30 is given by

⎧
⎪⎪⎨

⎪⎪⎩

uε(x) = u0(x, y) + εu1(x, y) + . . . ,

Pε(x) = p0(x) + εp1(x, y) + . . . ,

�ε(x) = �0(x, y) + ε�1(x, y) + . . . ,

�ε
j(x) = �0

j(x) + ε�1
j(x, y) + . . . .

After some calculations [26], we obtain the following
two-scale homogenized problem.

Theorem 3 (u0, p0, p1, {�0
j, �

1
j}) is the unique solution

of the two-scale homogenized problem

− �yu0(x, y) + ∇y p1(x, y) = −∇x p0(x) − f∗(x)

+
N∑

j=1

z jn0
j(y)(∇x�

0
j(x) +∇y�

1
j(x, y) +E∗(x)) in �×YF,

(44)

divy u0(x, y) = 0 in � × YF, u0(x, y) = 0 on � × S,

(45)
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divx

(∫

YF

u0 dy
)

= 0 in �, (46)

− divy

(
n0

j(y)

(
∇y�

1
j(x, y)+∇x�

0
j(x)+E∗(x)+ Pe j

z j
u0

))

= 0 in � × YF, (47)

(∇y�
1
j + ∇x�

0
j + E∗) · ν(y) = 0 on � × S, (48)

− divx

(∫

YF

n0
j

(
∇y�

1
j + ∇x�

0
j + E∗(x) + Pe j

z j
u0

)
dy

)

= 0 in �, (49)

�0
j ,

∫

YF

u0 dy and p0 being 1-periodic in x, (50)

with periodic boundary conditions on the unit cell YF

for all functions depending on y.

The limit problem introduced in Theorem 3 is called
the two-scale and two-pressure homogenized problem,
following the terminology of [20, 24]. It is well posed [3]
because the two incompressibility constraints 45 and 46
are exactly dual to the two pressures p0(x) and p1(x, y)

which are their corresponding Lagrange multipliers.
Of course, one should extract from Eqs. 44–50 the

macroscopic homogenized problem, which requires to
separate the fast and slow scale, if possible. This was
undertaken by Looker and Carnie in [26] introducing
three different types of cell problems. In [3], we sim-
plified their analysis by proposing only two types of
cell problems. Our approach was also more systematic
because it allowed us to establish Onsager properties
for the effective coefficients. We repeat the scale sep-
aration results in order to be able to establish further
qualitative properties of the effective coefficients and
to state the convergence result.

The main idea is to recognize in the two-scale ho-
mogenized problem (Eqs. 44–50) that there are two
different macroscopic fluxes, namely (∇x p0(x) + f∗(x))

and {∇x�
0
j(x) + E∗(x)}1≤ j≤N . Therefore, we introduce

two family of cell problems, indexed by k ∈ {1, ..., d}
for each component of these fluxes. We denote by
{ek}1≤k≤d the canonical basis of R

d.

The first cell problem, corresponding to the macro-
scopic pressure gradient, is

−�yv0,k(y)+∇yπ
0,k(y)

= ek+
N∑

j=1

z jn0
j(y)∇yθ

0,k
j (y) in YF (51)

divy v0,k(y) = 0 in YF, v0,k(y) = 0 on S, (52)

− divy

(
n0

j(y)

(
∇yθ

0,k
j (y) + Pe j

z j
v0,k(y)

))
= 0 in YF

(53)

∇yθ
0,k
j (y) · ν = 0 on S. (54)

The second cell problem, corresponding to the
macroscopic diffusive flux, is for each species i ∈
{1, ..., N}
−�yvi,k(y)+∇yπ

i,k(y)

=
N∑

j=1

z jn0
j(y)(δijek+∇yθ

i,k
j (y)) in YF (55)

divy vi,k(y) = 0 in YF, vi,k(y) = 0 on S, (56)

− divy

(
n0

j(y)

(
δijek + ∇yθ

i,k
j (y) + Pe j

z j
vi,k(y)

))

= 0 in YF (57)

(
δijek + ∇yθ

i,k
j (y)

) · ν = 0 on S, (58)

where δij is the Kronecker symbol. As usual, the cell
problems are complemented with periodic boundary
conditions.

Remark 4 For β going to +∞, we know from Eq. 35
that the potential �0(y) ≡ 0 and thus, from Eq. 33,
we deduce that n0

j(y) ≡ nc
j are constant in the cell YF .

Obviously, it implies that the solution θ
0,k
j (y) of Eqs.

53 and 54 is a constant too and the solution (π0,k, v0,k)

of Eqs. 51 and 52 is identical to the solution of the
classic permeability problem [20, 45]. Similarly, upon
defining a new pressure π i,k − ∑N

j=1 z jnc
jθ

i,k
j , the solu-

tion (π i,k, vi,k) of Eqs. 55 and 56 is identical to the
solution of the classic permeability problem in the limit
β → +∞, while the solution θ

i,k
j (y) of Eqs. 57 and
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58 coincides with the cell solution for the Neumann
problem in a perforated domain [45].

As already explained in Section 2.3, as far as the
behavior of the Poisson–Boltzmann equation is con-
cerned, the limit β going to +∞ is equivalent to the
limit of a common value of all infinite dilution concen-
trations nc

j going to +∞. The same is true for the above
cell problems upon redefining the pressure (which may
be unbounded as nc

j grows), except for the velocity vi,k,
solution of Eqs. 55 and 56, which grows linearly with nc

j

and is such that vi,k/nc
j converges to the usual velocity

for a classic permeability problem.

Then, we can decompose the solution of Eqs. 44–50
as

u0(x, y) =
d∑

k=1

(

− v0,k(y)

(
∂p0

∂xk
+ f ∗

k

)
(x)

+
N∑

i=1

vi,k(y)

(
E∗

k + ∂�0
i

∂xk

)
(x)

)

(59)

p1(x, y) =
d∑

k=1

(

− π0,k(y)

(
∂p0

∂xk
+ f ∗

k

)
(x)

+
N∑

i=1

π i,k(y)

(
E∗

k + ∂�0
i

∂xk

)
(x)

)

(60)

�1
j(x, y) =

d∑

k=1

(

− θ
0,k
j (y)

(
∂p0

∂xk
+ f ∗

k

)
(x)

+
N∑

i=1

θ
i,k
j (y)

(
E∗

k + ∂�0
i

∂xk

)
(x)

)

. (61)

We average Eqs. 59–61 in order to get a purely
macroscopic homogenized problem. We introduce the
nondimensional perturbation of the electrochemical
potential

δμε
j = −z j(�

ε
j + �ext,∗)

and the ionic flux of the jth species

jεj = z j

Pe j
nε

j

(
∇�ε

j + E∗ + Pe j

z j
uε

)
.

We define the homogenized quantities

μ j(x) = −z j(�
0
j(x) + �ext,∗(x)),

j j(x) = z j

Pe j|YF |
∫

YF

n0
j(y)(∇x�

0
j(x) + E∗

+∇y�
1
j(x, y) + Pe j

z j
u0(x, y))dy,

u(x) = 1

|YF |
∫

YF

u0(x, y) dy.

From Eqs. 59–61, we deduce the homogenized or up-
scaled equations for the above effective fields.

Proposition 5 [3] Introducing the f lux J (x) =
(u, {j j}1≤ j≤N) and the gradient F(x) = (∇x p0,

{∇xμ j}1≤ j≤N), the macroscopic equations are

divx J = 0 in �, (62)

J = −MF − M(f∗, {0}) (63)

with a symmetric positive def inite M, def ined by

M =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

K
J1

z1
. . .

JN

zN

L1
D11

z1
· · · D1N

zN
...

...
. . .

...

LN
DN1

z1
· · · DNN

zN

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

, (64)

and complemented with periodic boundary conditions
for p0 and {�0

j}1≤ j≤N. The matrices Ji, K, D ji and L j are
def ined by their entries

{Ji}lk = 1

|YF |
∫

YF

vi,k(y) · el dy,

{K}lk = 1

|YF |
∫

YF

v0,k(y) · el dy,

{D ji}lk = 1

|YF |
∫

YF

n0
j(y)

(
vi,k(y)+ z j

Pe j

(
δijek+∇yθ

i,k
j (y)

))

·el dy,

{L j}lk = 1

|YF |
∫

YF

n0
j(y)

(
v0,k(y) + z j

Pe j
∇yθ

0,k
j (y)

)
· el dy.

Remark 6 The tensor K is called permeability tensor,
D ji are the electrodiffusion tensors. The symmetry of
the tensor M is equivalent to the famous Onsager’s
reciprocal relations. It was already proved in [26]. How-
ever, the positive definiteness of M was proved in [3]. It
is essential in order to state that Eqs. 62–63 is an elliptic
system which admits a unique solution.
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The closeness of the solution to the homogenized
problem, to the solution of the original problem is given
by the following result.

Theorem 7 [3] Let (p0, {�0
j}1≤ j≤N) be def ined by Eqs.

62 and 63. Let u0 be given by Eq. 59 and {�1
j}1≤ j≤N by

Eq. 61. Then in the limit ε → 0 we have

∫

�ε

(∣
∣
∣uε(x) − u0

(
x,

x
ε

)∣
∣
∣
2 + |Pε(x) − p0(x)|2

)
dx → 0

(65)

and
∫

�ε

∣
∣
∣∇

(
�ε

j(x) − �0
j(x) − ε�1

j

(
x,

x
ε

))∣
∣
∣
2

dx → 0. (66)

4 Numerical study of the effective tensor

We now present some numerical tests in the two-
dimensional case obtained with the FreeFem++ pack-
age [39]. The linearization of the ionic transport equa-
tions allows us to decouple the computation of the
electrostatic potential from those of the cell problems.
First, we compute �0, solution of Eq. 34, from which
we infer the concentrations n0

j(y) = nc
j exp{−z j�

0(y)}.
Second, knowing the n0

j ’s which are coefficients for
the cell problems 51–53 and 55–58, we compute their
solutions. Finally, we evaluate the various entries of the
effective tensor (Eq. 64) according to the formula from
Proposition 5. In all figures, we plot the adimensional-
ized entries of the effective tensors (Eq. 64). However,
when the concentrations are involved, we plot them
in their physical units, namely we use the dimensional
quantity

n0
j(∞) = nc nc

j. (67)

For solving the highly nonlinear Poisson–Boltzmann
equation, we use Lagrange P2 finite elements and a
Newton–Raphson algorithm. We also rely on a special
feature of mesh adaptivity available in FreeFem++ for
automatic mesh refinement in order to achieve a good
numerical precision. Since in most cases, the electrosta-
tic potential is varying as a boundary layer close to the
solid boundaries, our meshes are much refined close
to those boundaries (see e.g., Fig. 1). More precisely,
the mesh is adapted for the initialization of the Newton
algorithm which amounts to solve the linear Debye–
Hückel model. Once the mesh has been refined during
this initialization step, it stays the same for all further
Newton iterations (the same mesh is also used for
solving the cell problems). The total number of degrees

Fig. 1 Mesh for a periodicity cell with ellipsoidal inclusions

of freedom is around 10,000 (depending on the infinite
dilution concentration nc

j).
All the following computations are conducted for an

aqueous solution of NaCl at 298 K (Kelvin), where
species j = 1 is the cation Na+ (z1 = 1) with diffusiv-
ity D0

1 = 13.33e−10 m2/s and species j = 2 the anion
Cl− (z2 = −1) with D0

2 = 20.32e−10 m2/s. The infinite
dilution concentrations of the species are considered
equal, nc

1 = nc
2, and the characteristic concentration

is nc = 0.1mol/l. The dynamic viscosity η is equal to
0.89e−3 kg/(m sec). Instead of using the formula of
Table 1 for defining the Debye length, we use the
following definition

λD =
√

EkBT

e2
∑N

j=1 n jz2
j

which differs by a factor of
√

2 in the present case of two
monovalent ions. Other physical values are to be found
in Table 1. Two model geometries are considered in this
section. The first one features ellipsoid solid inclusions
(see Fig. 1) which allows us to perform variations of
concentrations from 10−3 to 1mol/l and variations of
the pore size (3 ≤  ≤ 50 nm). Even if the model rep-
resents an idealized geological porous media, it is not
far from real montmorillonite clays made of ellipsoidal
tactoids whose dimension is between 35 and 400 nm
long [8]. The second one is a rectangular model (see
Fig. 2) which allows us to perform porosity variation.
The goal of this section is to study the variations of the
effective tensor according to these parameters (concen-
tration, pore size, and porosity).
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Fig. 2 Meshes for three different porosities (0.19, 0.51, and 0.75) of a periodic cell with rectangular inclusions

4.1 Variation of the concentration

For the geometry with ellipsoidal inclusions, we vary
the infinite dilution concentrations nc

j in the range
(10−2, 10) or, equivalently through Eq. 67, the dimen-
sional infinite dilution concentrations n0

j(∞) varies
from 10−3 to 1 mol/l. The pore size is  = 50 nm.
Varying proportionally all values of nc

j is equivalent to
varying the parameter β in the Poisson–Boltzmann Eq.
34. Therefore, low values of nc

j correspond to the limit
problem 39 for the electrostatic potential �0, while
large values of nc

j correspond to the asymptotic limit
behavior (Eq. 35) (for which the concentrations n0

j(y)

are constant, at electroneutral equilibrium, away from
the boundary). As can be checked on Fig. 3, vary-
ing nc

j is equivalent to varying the cell-average of the
concentrations |YF |−1

∫
YF

n j(y) dy (at least away from
very small concentrations) since our numerical results
show that they depend almost linearly on each other.
However, in full mathematical rigor, the concentration
n j(y) does not depend linearly on nc

j. Indeed, formula
33 states that n0

j(y) = nc
j exp{−z j�

0(y)} and �0 depends
on nc

j too, through the Poisson–Boltzmann Eq. 34.
As explained in Remark 4, when β is large, or

equivalently when the infinite dilution concentrations
nc

j are large, the cell problems 51–52 and 55–56 become
identical to the usual Stokes cell problems which give
the formula for the usual permeability tensor [20, 45].
Therefore, it makes sense to divide all entries of the
permeability tensor K by the corresponding ones for
a pure filtration problem (this renormalization avoids
any spurious dependence on the pore size ). The re-
sulting relative permeability coefficients are plotted on
Fig. 4: the smaller the infinite dilution concentration,
the smaller the permeability. We clearly see an asymp-
totic limit of the relative permeability tensor not only

for high concentrations (i.e., Debye length smaller than
the pore size β → ∞) but also for low concentrations
(i.e., Debye length larger than the pore size β → 0). In

Fig. 3 Averaged cell concentration Nj_mean =
|YF |−1

∫
YF

n j(y) dy as a function of the dimensional (in

mole per liter) infinite dilution concentrations n0
j(∞): normal

scale (top) and semi-log scale (bottom)
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Fig. 4 Diagonal entries of the relative permeability tensor, K11
and K22, as functions of the dimensional (in mole per liter)
infinite dilution concentrations n0

j(∞)

the latter regime, the hydrodynamic flux is reduced: the
electrostatic attraction of the counterions with respects
to the surface slows down the fluid motion. This effect
is not negligible because the Debye layer is important.

On Fig. 5, we plot the entries of the electrodiffusion
tensor D11 for the cation. A similar behavior is obtained
for the other tensor D22 for the anion. As expected, the
flux increases with the infinite dilution concentration
nc

j. It is not a linear law because even at low concentra-
tion, there are still counterions; they do not appear to
be very mobile, though. The cross-diffusion tensor D12

is displayed on Fig. 6: for large concentrations, it is of
the same order of magnitude than the species diffusion
tensors D11 and D22, because of the strong electrostatic
interactions between the ions. A mathematical asymp-
totic analysis (similar to that in Remark 4) shows that
the electrodiffusion tensors D ji behaves quadratically

Fig. 5 Entries of the electrodiffusion tensor D11 for the cation, as
functions of the dimensional (in mole per liter) infinite dilution
concentrations n0

j(∞)

Fig. 6 Diagonal entries of the cross-diffusion tensor D12, as
functions of the dimensional (in mole per liter) infinite dilution
concentrations n0

j(∞)

as a function of nc
j when nc

j becomes very large. This
asymptotic behavior is clearly seen on Fig. 7 where the
slope of the curve is approximately 2.

The coupling tensors L1 and L2 are plotted on Fig. 8.
The coupling is, of course, maximal for large concentra-
tions but the coupling tensor L1 for the cation does not
vanish for very small infinite dilution concentrations
since the cell-average of the cation concentration has
a nonzero limit (required to compensate the negative
surface charge) as can be checked on Fig. 3.

4.2 Variation of pore size

We now vary the pore size  for the same geome-
try with ellipsoidal inclusions. Varying  is equivalent
to vary the parameter β, defined by Eq. 12, in the
Poisson–Boltzmann Eq. 34. It thus changes the values

Fig. 7 Diagonal entries of the electrodiffusion tensor D11 as
functions of the dimensional (in mole per liter) infinite dilution
concentrations n0

j(∞) (log-log plot)



492 Comput Geosci (2013) 17:479–495

Fig. 8 Diagonal entries of the coupling tensors L1 and L2, as
functions of the dimensional (in mole per liter) infinite dilution
concentrations n0

j(∞) (log-log plot)

of the local concentrations n0
j(y) in the definition of

the cell problems (51–54) and (55–58): this is the only
modification which is brought into the cell problems.
On Fig. 9, we plot the electrostatic potential �0, solu-
tion of the Poisson–Boltzmann Eq. 34, for small and
large values of β. As predicted by the asymptotic analy-
sis of Section 2.3, for large β, the potential �0 behaves
like a boundary layer and is almost constant, equal to
zero, away from the pore walls.

On Fig. 10, we plot the relative permeability
coefficients with respect to the ones of the Stokes
problem. Surprisingly, the variation is not monotone
and there seems to be a minimum for a pore size of
20 nm. This is the signature of a transition from a bulk
diffusion regime for small pores to a surface diffusion

Fig. 10 Relative permeability coefficients K11 and K22 versus
pore size  (in nanometer)

regime (caused by the charged boundaries) at large
pores. Globally, the counterions reduce the hydrody-
namic flow because of the attraction with the surface,
but this relaxation effect is less important at very large
or very small pore size l. More precisely, if the pore
size becomes very large, the electrostatic screening is
important, as already mentioned. Thus the domain of
attraction becomes very small and the lowering of the
hydrodynamic flow is reduced: the permeability is in-
creased. On the other hand, for very small pores, the
counterion profile becomes more and more uniform.
Consequently, there is no screening, but the hydrody-
namic flow does not modify a lot the counterion dis-
tribution, since it is globally uniform and the resulting
electrostatic slowdown becomes less important.

Fig. 9 Electrostatic potential �0, solution of the Poisson–Boltzmann Eq. 34, for a pore size  = 3 nm (left) and  = 50 nm (right)
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Fig. 11 Permeability tensor K versus porosity (n0
j(∞) =

0.1 mol/l)

4.3 Variation of the porosity

Eventually, we investigate the influence of the porosity
on the effective tensors. To this end, we rely on the
rectangular geometry where we vary the size of the in-
clusions (see Fig. 2). The infinite dilution concentration
is fixed at nc

j = 1, or n0
j(∞) = 0.1mol/ l. The porosity

is defined as |YF |/|Y| and takes the successive values
of 0.19, 0.36, 0.51, 0.64, and 0.75 in our computations.
On Fig. 11, we check that the permeability tensor is in-
creasing with porosity, as expected. The same happens
for the electrodiffusion tensor D22 for the anion on Fig.
12. More surprising is the behavior of the electrodiffu-
sion tensor D11 for the cation on Fig. 13: again there is a
minimum value attained for a 0.35 value of the porosity.
This may be explained again by a transition from a
bulk diffusion regime for large porosities to a surface
diffusion regime (caused by the charged boundaries)
for small porosities.

Fig. 12 Electrodiffusion tensor D22 for the anion versus porosity
(n0

j(∞) = 0.1 mol/l)

Fig. 13 Electrodiffusion tensor D11 for the cation versus porosity
(n0

j(∞) = 0.1 mol/l)

5 Conclusion

In this article, we presented a homogenization method
for upscaling the electrokinetic equations. We obtained
the homogenized system (62–63) which can be rewrit-
ten in dimension form, for the effective unknowns
pef f = pc p0 and �

ef f
i = kBT

e �0
i , and for 1 ≤ j ≤ N, as

divx

{
K2

η
(∇x pef f + f) +

N∑

i=1

Ji
2nce
η

×(∇x�
ef f
i + E)

}

= 0 in �, (68)

divx

{
L j

2

η
(∇x pef f + f) +

N∑

i=1

D ji
2nce
η

×(∇x�
ef f
i + E)

}

= 0 in �. (69)

We computed the homogenized or effective tensors for
several geometric configurations and a large range of
physical parameters.

Some conclusions come out naturally from our ana-
lytical and numerical results:

• Relative permeability is maximal for very small
pores. It first decreases and then increases as the
pore size is increasing (see Fig. 10).

• Permeability is, of course, increasing as a function
of porosity (see Fig. 11).

• Permeability is increasing as a function of the
infinite dilution concentration (see Fig. 4). The
qualitative analysis from Section 2.3 is confirmed by
our numerical simulations.
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• The diagonal entries of the electrodiffusion tensor
are monotone increasing with respect to all para-
meters, except possibly porosity.

Our asymptotic analysis of the Poisson–Boltzmann
equation for small/large concentrations and small/large
pores seems to be new in the case of Neumann condi-
tions (given surface charges). Although previous results
were obtained for Dirichlet conditions (given surface
potential) [17], the limits for Neumann or Dirichlet
boundary conditions are not the same. In our case, in
the limit β → 0, only one type of ion matters in the
charge density.

The proposed homogenized model contributes to the
understanding of effective electrokinetic flows through
Onsager’s relations. We give a systematic method of
calculating the permeability and the electrodiffusion
tensor, which can be used not only for periodic media
but also for random statistically homogeneous porous
media.
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