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SPECTRAL ANALYSIS IN A THIN DOMAIN WITH PERIODICALLY
OSCILLATING CHARACTERISTICS
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Abstract. The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic
coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the
spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ
are of the same order (δ ≈ ε), or ε is much less than δ (δ = ετ , τ < 1), or ε is much greater than
δ (δ = ετ , τ > 1). We consider all three cases.

Mathematics Subject Classification. 35P20, 49R05, 47A75, 35B27, 81Q10.

Received July 27, 2010.
Published online June 22, 2011.

1. Introduction and main results

When considering stationary Schrödinger’s equation, the wave function ψ associated to a particle in a three-
dimensional space is given by:

− �

2m
Δψ + V ψ = Eψ,

where � := h/2π, h being Plank’s constant, m is the mass of the particle, Δ is the Laplace operator, V is the
potential energy and E is the energy of the system with wave function ψ.

We consider the particle confined to a certain domain Ω ⊂ R
3, but otherwise free; then the potential function

takes the form V (x) := 0 for x ∈ Ω, and V (x) := +∞ for x �∈ Ω, and the problem of finding the spatial wave
function ψ and the energy levels E reduces to solving the following eigenvalue problem for the Laplace operator:{−Δv = λv, in Ω,

v = 0, on ∂Ω,

where we identified ψ ≡ v and λ ≡ 2m
�
E. The goal of this paper is to address the above eigenvalue problem under

the assumption that the domain has a very small thickness δ and the medium presents very small ε-periodic
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Ωδ

Figure 1. Thin and periodically oscillating media.

heterogeneities (see Fig. 1). We prove that the asymptotic behavior of the energy levels depend strongly on the
ratio between small parameters δ and ε.

Under this motivation we consider an elliptic operator with ε-periodic coefficients and the corresponding
Dirichlet spectral problem in a 3D bounded domain of small thickness δ. We study the asymptotic behavior
of spectrum of this problem as both positive parameters ε and δ tend to zero. In the cases ε ≈ δ (δ = ε) and
ε � δ (δ = ετ , τ < 1), the corresponding results have been announced in [8]. In the present paper we provide
detailed proofs of the statements formulated in [8], and also study the case ε	 δ (δ = ετ , τ > 1).

More precisely, let ω be a bounded domain in R
2 and let δ be a positive parameter. Consider the thin domain

Ωδ := ω× δI, where I := (−1/2, 1/2). In what follows the Greek characters α and β take their values in the set
{1, 2} and we will often write x̄ instead of (x1, x2). Given a function f : R

d → R, d ∈ {2, 3}, ∇̄f stands for the
vector (∂f/∂x1, ∂f/∂x2), while ∇3f and Δ3f stand for ∂f/∂x3 and ∂2f/∂x2

3, respectively. If Q = Πd
i=1(0, li)

is an interval in R
d, we say that f is Q-periodic if for all κ ∈ Z and for a.e. x ∈ R

d one has f(x+ κliei) = f(x),
where {ei}i=1,...,d is the canonical basis of R

d. A matrix is said to be Q-periodic if each of its components is
a Q-periodic function.

Let Y := (0, 1)2 and let A = (aij)1�i,j�3 ∈ [L∞(R2)]3×3 be a real, symmetric and Y -periodic matrix, for
which there exist ζ, η ∈ R

+ such that for all ξ ∈ R
3 and for a.e. ȳ ∈ Y ,

ζ‖ξ‖2 ≤ (A(ȳ)ξ|ξ) ≤ η‖ξ‖2. (1.1)

In order to simplify the notations, we will often write Aξξ in place of (Aξ|ξ). For each ε > 0 define aε
ij(x̄) :=

aij

(
x̄
ε

)
and Aε := (aε

ij)1�i,j�3. Notice that, by construction, Aε is also a real, symmetric and εY -periodic matrix,
satisfying (1.1). Our goal is to characterize the asymptotic behavior, as ε→ 0+ and δ → 0+, of the eigenvalues
λδ

ε associated with the spectral problem{
−div(Aε∇ṽδ

ε) = λδ
ε ṽ

δ
ε , a.e. in Ωδ,

ṽδ
ε ∈ H1

0 (Ωδ).
(1.2)

We also assume that aα3 = 0 a.e. in R
2, thus we admit that the planar flux associated to the wave function

depends exclusively on the behavior of this function in the cross-section ω. This hypothesis enables us to
decouple the limit problem, simplifying a lot our computations. We denote by Ā and Āε the 2 × 2 matrices
Ā := (aαβ) and Āε := (aε

αβ), respectively.
It should be noted that instead of three-dimensional thin domain one can consider problem (1.2) in a thin

domain in dimension d+1 with d ≥ 1. In this case Ωδ = ω× δI with ω ⊂ R
d. The results obtained in the paper

for d = 2 can be adapted for d ≥ 1. We leave the details to the reader.
Since Ωδ is bounded, the spectrum σδ

ε of problem (1.2) is discrete and can be written as σδ
ε := {λδ

ε,i ∈ R
+ :

i ∈ N}, where 0 < λδ
ε,1 ≤ λδ

ε,2 ≤ · · · ≤ λδ
ε,i ≤ · · · −→

i→∞
+∞. As the thickness of the domain goes to zero

(δ → 0+), all the eigenvalues go to infinity. A detailed characterization of the asymptotic behavior of σδ
ε is
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given in Theorem 1.1 for the case ε ≈ δ, in Theorem 1.2 for the case ε � δ, and in Theorems 1.4 and 1.8 for
the case ε	 δ.

Our analysis relies on Γ-convergence and asymptotic expansions techniques for spectral problems. Some of
our arguments are based on the Vishik-Lusternik lemma (see [18]). For the definition and main properties of
Γ-convergence we refer to [7] and to the references therein; concerning the method of asymptotic expansions in
spectral problems we refer to [4,5,18].

The homogenization of spectral problems, supported by a large bibliography, was first treated in [11,12,17].
The methods of analysis of spectral problems in terms of operator convergence have been elaborated in [3,16].
Other homogenization approaches in spectral problems and related topics have been studied in [1,2]. The
homogenization of singularly perturbed operators have been considered in [13,14] and some other works.

Consider the quadratic energy Ẽδ
ε : L2(ω × δI) → [0,+∞] associated with the self-adjoint operator

− div(Aε∇·) from L2(ω × δI) into itself,

Ẽδ
ε (ṽ) :=

⎧⎨⎩
∫

ω×δI

Aε(x̄δ)∇ṽ(xδ)∇ṽ(xδ) dxδ, if ṽ ∈ H1
0 (ω × δI),

+∞, otherwise.
(1.3)

As it is usual in the dimension reduction framework, the first step is to perform a rescaling and a change of
variables in order to transform problem (1.2) into an equivalent one defined in the fixed domain ω × I. To
each point xδ = (x̄δ, xδ

3) ∈ ω × δI we associate the point x = (x̄, x3) = (x̄δ, δ−1xδ
3) ∈ ω × I, and we define

v ∈ H1
0 (ω × I) by v(x) := ṽ(xδ) whenever ṽ ∈ H1

0 (ω × δI). Accordingly, we rescale the energy in (1.3) by
dividing it by δ so that the new energy becomes Eδ

ε : L2(ω × I) → [0,+∞],

Eδ
ε (v) :=

⎧⎨⎩
∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
δ2

|∇3v(x)|2 dx, if v ∈ H1
0 (ω × I),

+∞, otherwise.
(1.4)

The rescaled spectral problem reads⎧⎨⎩− divx̄(Āε∇̄vδ
ε) − aε

33

δ2
Δ3v

δ
ε = λδ

ε v
δ
ε , a.e. in ω × I,

vδ
ε ∈ H1

0 (ω × I).
(1.5)

We stress that problems (1.2) and (1.5) are equivalent.
Before stating our main results, we will introduce some notation. Since we are interested in the cases ε ≈ δ,

ε � δ and ε 	 δ, we consider δ = ετ for each τ ∈ (0,+∞), and we introduce the L2(Y )-normalized first
eigenpair (μτ

ε,0, φ
τ
ε,0) for the bidimensional periodic spectral problem{−ε2(τ−1) div(Ā∇̄φτ

ε ) + a33π
2φτ

ε = μτ
εφ

τ
ε , a.e. in Y,

φτ
ε ∈ H1

#(Y ). (1.6)

We recall that C∞
# (Y ) (resp. C#(Y )) represents the subspace of C∞(R2) (resp. C(R2)) of Y -periodic functions

and H1
#(Y ) the closure of C∞

# (Y ) with respect to the H1(Y )-norm. Furthermore, the eigenvalue μτ
ε,0 is real,

positive and simple, and the associated L2(Y )-normalized eigenfunction φτ
ε,0 belongs to H1

#(Y ) ∩ C0,s
# (Y ), for

some 0 < s < 1, and may be chosen to be a strictly positive function (see [9]).
We will distinguish three cases: τ = 1, τ < 1 and τ > 1. Notice that if τ = 1 then problem (1.6) does not

depend on ε, and for that reason we simply write (μ0, φ0) to denote its L2(Y )-normalized first eigenpair.
Let us also introduce the following unidimensional spectral problem on the interval I:{−θ′′ = ςθ, a.e. in I,

θ ∈ H1
0 (I), (1.7)
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whose nth L2(I)-normalized eigenpair is represented by
(
ςn, θn), with

(
ς1, θ1) = (π2,

√
2 cos(πx3)

)
, x3 ∈ I. The

following statement characterizes the behavior of σδ
ε in the case δ ≈ ε.

Theorem 1.1 (ε ≈ δ). Under the above hypotheses, let
(
λε,k, vε,k

)
be a kth eigenpair associated with prob-

lem (1.5) for δ = ε, and let (νk, ϕk) be a kth eigenpair associated with the bidimensional homogenized spectral
problem on the cross section ω {− div(B̄h∇̄ϕ) = νϕ, a.e. in ω,

ϕ ∈ H1
0 (ω),

where the 2 × 2 constant matrix B̄h is the homogenized limit of the family of εY -periodic matrices {B̄ε}ε>0,
B̄ε := (bεαβ) with

bεαβ(x̄) :=
[
φ0

( x̄
ε

)]2
aαβ

( x̄
ε

)
·

Then, there exists a self-adjoint operator Aε : Hε → Hε, where Hε coincides algebraically with L2(ω × I)
endowed with the scalar product ( · | · )ε defined by

(u|v)ε :=
∫

ω×I

[
φ0

( x̄
ε

)]2
u(x)v(x) dx, u, v ∈ L2(ω × I),

such that D(Aε) = H1
0 (ω × I) and

λε,k =
μ0

ε2
+ νε,k, vε,k(x̄, x3) = φ0

( x̄
ε

)
uε,k(x̄, x3), a.e. (x̄, x3) ∈ ω × I, (1.8)

where (νε,k, uε,k) is a kth eigenpair of Aε, that is,

uε,k ∈ H1
0 (ω × I), Aεuε,k = νε,kuε,k, νε,1 ≤ νε,2 ≤ · · · ≤ νε,k ≤ · · · , (uε,k|uε,l)ε = δkl.

Furthermore, νε,k → νk as ε → 0+ and, up to a subsequence that we do not relabel, uε,k ⇀ uk weakly in
H1

0 (ω × I) as ε → 0+, where uk is the product of an eigenfunction associated with νk and θ1. Conversely,
any product of eigenfunctions uk = ϕkθ1 is the weak limit of a particular sequence of eigenfunctions associated
with νε,k.

We next provide the characterization of σδ
ε when ε� δ. For j ∈ N0 := N ∪ {0}, define

�j := π2

∫
Y

a33(ȳ)ψj(ȳ) dȳ, (1.9)

where ψ0 ≡ 1 in Y and, for j ≥ 1, ψj are the solutions of the recurrence problems in H1
#(Y )

− div(Ā(ȳ)∇̄ψj) = −a33(ȳ)π2ψj−1 +
j−1∑
�=0

��ψj−1−�,

∫
Y

ψj(ȳ) dȳ = 0. (1.10)

Theorem 1.2 (ε � δ). Suppose that the above hypotheses are fulfilled and that in addition aαβ are uniformly
Lipschitz continuous in Y . Let

(
λε,k, vε,k

)
be a kth eigenpair associated to problem (1.5) for δ = ετ with

some τ ∈ (0, 1), and let (μτ
ε,0, φ

τ
ε,0) be the L2(ω)-normalized first eigenpair of (1.6). Let i ∈ N be such that

i−1
i < τ ≤ i

i+1 , and let (νk, ϕk) be a kth eigenpair associated with the bidimensional homogenized spectral
problem on the cross section ω {− div(Āh∇̄ϕ) = νϕ, a.e. in ω,

ϕ ∈ H1
0 (ω), (1.11)
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where the 2 × 2 constant matrix Āh is the homogenized limit of the sequence {Āε}ε>0. Then, μτ
ε,0 →

π2
∫

Y
a33(ȳ) dȳ = �0 as ε → 0+, φτ

ε,0(x̄/ε) → 1 = ψ0 uniformly in ω as ε → 0+, and there exists a self-
adjoint operator Aε : Hε → Hε, where Hε coincides algebraically with L2(ω×I) endowed with the scalar product
( · | · )ε defined by

(u|v)ε :=
∫

ω×I

[
φτ

ε,0

( x̄
ε

)]2
u(x)v(x) dx, u, v ∈ L2(ω × I),

such that D(Aε) = H1
0 (ω × I) and

λε,k =
i∑

j=0

�j

ετ(2j+2)−2j
+ ρτ

ε + νε,k, vε,k(x̄, x3) = φτ
ε,0

( x̄
ε

)
uε,k(x̄, x3), a.e. (x̄, x3) ∈ ω × I, (1.12)

where (νε,k, uε,k) is a kth eigenpair of Aε, that is,

uε,k ∈ H1
0 (ω × I), Aεuε,k = νε,kuε,k, νε,1 ≤ νε,2 ≤ · · · ≤ νε,k ≤ · · · , (uε,k|uε,l)ε = δkl.

Furthermore, ρτ
ε → 0 as ε → 0+, νε,k → νk as ε → 0+, and, up to a subsequence that we will not relabel,

uε,k ⇀ uk weakly in H1
0 (ω × I) as ε → 0+, where uk is the product between an eigenfunction associated with

νk and θ1. Conversely, any product of eigenfunctions uk = ϕkθ1 is the weak limit of a particular sequence of
eigenfunctions associated with νε,k.

Remark 1.3. If the series
∑

j � 0 ‖ψj‖L2(Y ) converges, the same happens with
∑

j � 0 |�j | and we obtain∑
j � 0 �j = μ0,

∑
j � 0 ψj = ψ, where ψ = φ0/

∫
Y
φ0 dȳ and (μ0, φ0) is the L2(Y )-normalized first eigenpair

of (1.6) for τ = 1. Moreover, since i−1
i < τ ≤ i

i+1 , it can be checked that the convergence of
∑

j � 0 |�j | implies
that, for fixed ε > 0 and as τ → 1−,

i∑
j=0

�j

ετ(2j+2)−2j
→ μ0

ε2
·

This convergence shows that, as τ approaches 1, development (1.12) approaches development (1.8) (see Appendix
for the proofs).

The case ε	 δ, say δ = ετ with τ ∈ (1,+∞), seems a lot more difficult to handle due to the degeneracy of the
corresponding problem (1.6). Indeed, in the case τ > 1 the asymptotic behavior of μτ

ε,0 depends strongly on the
behavior of the potential a33 (see, for instance, [13,14]). An interesting case is when the potential a33 oscillates
between two different values, as it is the case of a two media mixture. In that direction we introduce new
hypotheses on a33. In Theorem 1.4 we identify the asymptotic expansion of the first eigenvalue. In Theorem 1.8
we provide a characterization of the limit spectrum in the sense of Kuratowsky.

Theorem 1.4 (ε 	 δ). Under the general hypotheses stated above, assume in addition that aαβ are smooth
functions and that there exists an open and smooth subdomain Q of Y , Q ⊂⊂ Y , such that a33 coincides with
its minimum, amin, on Q and is a smooth function strictly greater than amin on Y \Q. Let (ν0, q0) be the
L2(Q)-normalized first eigenpair for the bidimensional spectral problem on Q{

− div(Ā∇̄q) = νq, a.e. in Q,

q ∈ H1
0 (Q).

(1.13)

Let σε := {λε,i ∈ R
+ : i ∈ N} be the spectrum of problem (1.5) for δ = ετ for some τ ∈ (1,+∞). Let k ∈ N

be such that k ≥ 2
τ−1 , and let (μτ

ε,0, φ
τ
ε,0) be the L2(Y )-normalized first eigenpair of (1.6). Then μτ

ε,0 → aminπ
2,

φτ
ε,0 ⇀ q0 weakly in H1

#(Y ) as ε→ 0+, where we identify q0 with its extension by zero to the whole Y , and

λε,1 =
aminπ

2

ε2τ
+
ν0
ε2

+ ετ−3μ1 + · · · + εk(τ−1)−2μk + ρτ
ε + ντ

ε,1,
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where μi, i ∈ {1, . . . , k}, are well determined constants, |ρτ
ε | ≤ Cε(k+ 1

2 )τ−(k+ 5
2 ) → 0 as ε → 0+, for some

constant C independent of ε, and

ντ
ε,1 := inf

ψ∈H1
0 (ω)

‖φτε,0( ·
ε )ψ‖L2(ω)

=1

{∫
ω

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2Āε∇̄ψ∇̄ψ dx̄
}

vanishes as ε→ 0+.

Remark 1.5. Theorem 1.4 is valid under weaker regularity hypotheses on the coefficients. In fact, as it will
become clear within the proof, instead of smoothness it suffices to assume that aαβ are Ck+2 functions and that
on Y \Q a33 is also a Ck+2 function, where k is the smallest natural number satisfying k ≥ 2

τ−1 . In particular,
the smaller τ − 1 > 0 is, the more regularity of the coefficients is required.

Remark 1.6. Hypotheses of Theorem 1.4 cover the important case where a33 oscillates between two different
values, but rule out the case where a33 is constant. Nevertheless, it is easy to see that under the general
hypotheses stated at the beginning of Section 1, if a33 is constant, then for any τ ∈ (0,+∞), μτ

ε,0 ≡ a33π
2 and

φτ
ε,0 ≡ 1. Moreover, as it will become clear from our arguments, if

(
λε,k, vε,k

)
is a kth eigenpair associated with

problem (1.5) for δ = ετ , then

λε,k =
a33π

2

ε2τ
+ νε,k,

where νε,k → νk and, up to a subsequence that we do not relabel, vε,k ⇀ vk = ϕkθ1 weakly in H1
0 (ω × I) as

ε→ 0+, being (νk, ϕk) a kth eigenpair associated with (1.11).

Remark 1.7. It is important to mention that the cases where a33 is constant in Q, continuous in Y (no jump
on ∂Q) and has linear or quadratic growth in the vicinity of ∂Q are very similar to the case presented here:
constant in Q with positive jump on ∂Q and continuous on Y \Q (see Rem. 5.3). However, the case of an
isolated minimum of a33 is rather different and more serious modifications are required.

Finally, under quite more general hypotheses than those of Theorem 1.4, the next theorem characterizes the
limit spectrum in the sense of Kuratowsky.

Theorem 1.8 (ε 	 δ). Assume the general hypotheses stated at the beginning of Section 1 and, in addition,
assume that a33 attains a minimum value, amin, at some ȳ0 ∈ R

2 such that aαβ and a33 are continuous on some
neighborhood of ȳ0. Then,

lim
ε→0+

(
ε2τσε

)
=
[
aminπ

2,+∞] , (1.14)

where the limit in (1.14) is to be understood in the sense of Kuratowsky, that is,
[
aminπ

2,+∞] is the set of all
cluster points of sequences {λε}ε>0, λε ∈ ε2τσε.

The paper is organized as follows. In Section 2 we prove some auxiliary results. Section 3 is devoted to the
proof of Theorem 1.1, while Section 4 to the proof of Theorem 1.2. Finally, in Section 5 we prove Theorems 1.4
and 1.8.

2. Preliminary results

In this section we present preliminary results that play an important role on the subsequent sections. The
first result concerns the convergence of eigenpairs associated with a sequence of densely defined self-adjoint
operators, whose proof can be found in [6], Theorem 3.1.
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Proposition 2.1. Let Aε : Hε → Hε be a sequence of densely defined self-adjoint operators, where Hε coincides
algebraically with a fixed Hilbert space H endowed with a scalar product ( · | · )ε such that

c1‖u‖2 ≤ (u|u)ε ≤ c2‖u‖2, for suitable positive constants c1, c2, (2.1)

lim
ε→0+

(uε|vε)ε = (u|v) whenever uε → u and vε → v in H as ε→ 0+, (2.2)

where ( · | · ) stands for the scalar product in H and ‖ · ‖ the correspondent norm. Let Gε : H → (−∞,+∞]
be defined by Gε(u) := (Aεu|u)ε, if u ∈ D(Aε), and Gε(u) := +∞, otherwise. Assume further that the three
following conditions hold:

(i) Gε(u) ≥ −c0‖u‖2, for a suitable constant c0 ≥ 0 independent of ε;
(ii) If sup

ε>0
Gε(uε) < +∞ and sup

ε>0
‖uε‖ < +∞, then the sequence {uε}ε>0 is strongly relatively compact in H;

(iii) {Gε}ε>0 Γ-converges to a certain functional G.

Then, the limit functional G determines a unique closed linear operator A0 : H → H with compact resolvent
such that G(u) = (A0u|u), for all u ∈ D(A0). Furthermore, the spectral problems associated with Aε converge
in the following sense: let {(νε,k, uε,k)}k∈N and {(νk, uk)}k∈N be such that

uε,k ∈ D(Aε), Aεuε,k = νε,kuε,k, νε,1 ≤ νε,2 ≤ · · · ≤ νε,k ≤ · · · , (uε,k|uε,l)ε = δkl,
uk ∈ D(A0), A0uk = νkuk, ν1 ≤ ν2 ≤ · · · ≤ νk ≤ · · · , (uk|ul) = δkl,

where δkl denotes the Kronecker symbol. Then νε,k → νk as ε→ 0+. Moreover, up to a subsequence that we will
not relabel, {uε,k}ε>0 converges as ε→ 0+ to an eigenfunction associated to νk. Conversely, any eigenfunction
uk is the strong limit of a particular sequence of eigenfunctions of Aε associated with νε,k.

Remark 2.2. We recall that condition (iii) in Proposition 2.1 is equivalent to saying that the following two
conditions are satisfied:

a) If uε, u ∈ H are such that uε → u in H as ε→ 0+, then G(u) ≤ lim inf
ε→0+

Gε(uε);

b) Given u ∈ H , there exists {uε}ε>0 ⊂ H such that uε → u in H as ε→ 0+, and G(u) = lim
ε→0+

Gε(uε).

The next proposition regards a classical change of unknowns (cf. [17]; see also [2]). In the cases ε ≈ δ and
ε� δ it will allow us to transform the energies (1.4) into functionals for which Proposition 2.1 applies.

Proposition 2.3. For fixed τ, ε > 0, consider the functions u and v related by

v(x) = φτ
ε,0

( x̄
ε

)
u(x), for a.e. x = (x̄, x3) ∈ ω × I. (2.3)

Then v ∈ H1
0 (ω × I) if and only if u ∈ H1

0 (ω × I). Moreover, if v ∈ H1
0 (ω × I), then

∫
ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2τ

π2|v(x)|2 − μτ
ε,0

ε2τ
|v(x)|2 dx =

∫
ω×I

[
φτ

ε,0

( x̄
ε

)]2
Āε(x̄)∇̄u(x)∇̄u(x) dx. (2.4)
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Proof. We proceed in two steps.

Step 1. We begin by proving that equality (2.4) holds for every u ∈ H1
0 (ω × I) ∩ L∞(ω × I).

Since φτ
ε,0 ∈ H1

#(Y ) ∩ C0,s
# (Y ), for some 0 < s < 1, then for any u ∈ H1

0 (ω × I) ∩ L∞(ω × I) the function v
defined by (2.3) also belongs to H1

0 (ω × I) ∩ L∞(ω × I). For u ∈ C∞
0 (ω × I) we have∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2τ

π2|v(x)|2 − μτ
ε,0

ε2τ
|v(x)|2 dx

=
∫

ω×I

−φτ
ε,0

( x̄
ε

)
u(x)divx̄

{
Āε(x̄)∇̄

[
φτ

ε,0

( x̄
ε

)
u(x)
]}

+
∣∣∣φτ

ε,0

( x̄
ε

) ∣∣∣2|u(x)|2 a
ε
33(x̄)π2−μτ

ε,0

ε2τ
dx, (2.5)

where divx̄ stands for the divergence in the variables x1, x2. Considering the definition of φτ
ε,0

( ·
ε

)
, it can be

checked (see also [10]) that

− φτ
ε,0

( x̄
ε

)
divx̄

{
Āε(x̄)∇̄

[
φτ

ε,0

( x̄
ε

)
u(x)
]}

+
∣∣∣φτ

ε,0

( x̄
ε

) ∣∣∣2 aε
33(x̄)π2 − μτ

ε,0

ε2τ
u(x)

= −divx̄

{∣∣∣φτ
ε,0

( x̄
ε

) ∣∣∣2Āε(x̄)∇̄u(x)
}
.

Combining this relation with (2.5) and integrating by parts in ω yields (2.4) for all u ∈ C∞
0 (ω× I). In order to

show that (2.4) also holds true for all u ∈ H1
0 (ω × I) ∩ L∞(ω × I), it suffices to approximate such a function u

by a sequence of C∞
0 (ω × I) functions and to pass to the limit in (2.4).

Step 2. In this step we prove that if v ∈ H1
0 (ω × I), then the function u given by (2.3) belongs to H1

0 (ω × I)
and∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2τ

π2|v(x)|2 − μτ
ε,0

ε2τ
|v(x)|2 dx ≥

∫
ω×I

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2Āε(x̄)∇̄u(x)∇̄u(x) dx. (2.6)

Let v ∈ H1
0 (ω × I) be an arbitrary function. Since φτ

ε,0 ∈ H1
#(Y ) ∩ C0,s

# (Y ) is strictly positive, the function

u(x) :=
v(x)

φτ
ε,0

(
x̄
ε

) , a.e. x = (x̄, x3) ∈ ω × I,

is well defined and belongs to L2(ω × I). Moreover, ∇3u ∈ L2(ω × I).
Let {vn}n∈N be a sequence in C∞

0 (ω×I) such that vn → v in H1
0 (ω×I) as n→ ∞. Setting un := vn/φ

τ
ε,0, we

have un → u and ∇3un → ∇3u in L2(ω×I) as n→ ∞. Furthermore, for all n ∈ N, un ∈ H1
0 (ω×I)∩L∞(ω×I),

and so, by Step 1,

∫
ω×I

Āε(x̄)∇̄vn(x)∇̄vn(x) +
aε
33(x̄)
ε2τ

π2|vn(x)|2 − μτ
ε,0

ε2τ
|vn(x)|2 dx =

∫
ω×I

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2Āε(x̄)∇̄un(x)∇̄un(x) dx.

(2.7)
The convergence vn −→

n→∞ v in H1
0 (ω × I) yields

lim
n→∞

∫
ω×I

Āε(x̄)∇̄vn(x)∇̄vn(x) +
aε
33(x̄)
ε2τ

π2|vn(x)|2 − μτ
ε,0

ε2τ
|vn(x)|2 dx

=
∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2τ

π2|v(x)|2 − μτ
ε,0

ε2τ
|v(x)|2 dx, (2.8)
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which, together with (2.7), implies that

sup
n∈N

{∫
ω×I

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2 Āε(x̄)∇̄un(x)∇̄un(x) dx
}
< +∞.

Consequently, since there is a constant cε > 0 such that φτ
ε,0(·/ε) > cε, from (1.1) we get supn ‖∇̄un‖L2(ω×I;R2) <

+∞. Therefore, u ∈ H1
0 (ω × I) and un ⇀ u weakly in H1

0 (ω × I) as n→ ∞.
Using the sequential lower semicontinuity with respect to the weak topology of L2(ω × I; R2) of the convex

functional F : L2(ω × I; R2) → R defined by

F (w) :=
∫

ω×I

∣∣∣φτ
ε,0

( x̄
ε

) ∣∣∣2Āε(x̄)w(x)w(x) dx, w ∈ L2(ω × I; R2),

we conclude that

lim inf
n→∞

∫
ω×I

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2Āε(x̄)∇̄un(x)∇̄un(x) dx ≥
∫

ω×I

∣∣∣φτ
ε,0

( x̄
ε

)∣∣∣2Āε(x̄)∇̄u(x)∇̄u(x) dx. (2.9)

From (2.7)–(2.9) we deduce (2.6).
Changing the roles of u and v we conclude that if u ∈ H1

0 (ω × I) then v also belongs to H1
0 (ω × I), and the

converse of (2.6) holds true. �

We now recall a classic result of homogenization (see [7], Thm. 13.12), which will be particularly useful in
the cases ε ≈ δ and ε� δ; namely, to prove that a convenient sequence of functionals satisfies condition (iii) of
Proposition 2.1.

Proposition 2.4. Let B ∈ [L∞(R2)]2×2 be a 2×2 real, symmetric and Y -periodic matrix satisfying bounds (1.1)
with 0 < ζ < η. For each ε > 0, define Bε(·) := B

( ·
ε

)
. Then, there exists a 2 × 2 constant matrix Bh such that

the sequence of functionals {Jε}ε>0, where Jε : H1
0 (ω) → R is given by

Jε(ϕ) :=
∫

ω

Bε(x̄)∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄,

Γ-converges as ε→ 0+, with respect to the weak topology of H1
0 (ω), to the functional J : H1

0 (ω) → R defined by

J(ϕ) :=
∫

ω

Bh∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄.

The matrix Bh is called the homogenized limit of the sequence {Bε}ε>0.

Unfortunately, the lack of a positive uniform lower bound for {φτ
ε,0}ε>0 when τ > 1 will prevent us from

using Proposition 2.4, and consequently Proposition 2.1, in the case ε	 δ. To treat this last case we will make
use of an alternative result that shows that the spectrum σδ

ε associated with the tridimensional problem (1.5)
equals a countable union of spectra associated with certain bidimensional problems.

Proposition 2.5. Let B ∈ [L∞(R2)]2×2 be a 2×2 real, symmetric and Y -periodic matrix satisfying bounds (1.1)
with 0 < ζ < η. Let b ∈ L∞(R2) be a Y -periodic function such that ζ ≤ b(ȳ) ≤ η for a.e. ȳ ∈ Y . Given n ∈ N,
let λ(n)

k be the kth eigenvalue for the bidimensional spectral problem{− div(B(x̄)∇̄ϕn) + b(x̄)ςnϕn = λnϕn, a.e. x̄ ∈ ω,

ϕn ∈ H1
0 (ω),

(2.10)
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where, we recall, (ςn, θn) is the nth eigenpair for problem (1.7). Then
{
λ

(n)
k

}
k,n∈N

can be written as a nonde-

creasing sequence {λ̃m}m∈N, where eigenvalues are repeated according to their multiplicity, which coincides with
the spectral sequence of the tridimensional spectral problem{− div(B(x̄)∇̄v) − b(x̄)Δ3v = λv, a.e. (x̄, x3) ∈ ω × I,

v ∈ H1
0 (ω × I). (2.11)

In particular, λ1 = λ̃1 = λ
(1)
1 .

Proof. Denote by (λ(n)
k , ϕ

(n)
k ) a L2(ω)-normalized kth eigenpair for problem (2.10). Then, it can be checked

that:

(1) The family of functions {v(n)
k = ϕ

(n)
k (x̄)θn(x3), n = 1, 2, . . . , k = 1, 2, . . .} is an orthonormal basis in

L2(ω × I);
(2) (λ(n)

k , v
(n)
k ), k, n ∈ N, are eigenpairs of (2.11).

Since the operator (− div(B(x̄)∇̄)− b(x̄)Δ3), whose domain is a linear subset of H1
0 (ω× I) dense in L2(ω× I),

is a coercive self-adjoint operator in L2(ω × I) with a compact resolvent, in view of (1) and (2) and using the
Fredholm Theorem, we conclude that all its eigenvalues belong to

{
λ

(n)
k

}
k,n∈N

. This completes the proof. �

3. Proof of Theorem 1.1 (ε ≈ δ)

In this section we prove Theorem 1.1. Let us recall that (μ0, φ0) is the first L2(Y )-normalized eigenpair
for problem (1.6) with τ = 1, while (ς1, θ1) = (π2,

√
2 cos(πx3)) is the first L2(I)-normalized eigenpair for

problem (1.7). Since we are expecting the asymptotic behavior mentioned in (1.8) for the shifted spectrum
σε − μ0

ε2 , instead of the energy defined in (1.4) for δ = ε, we consider the functional Iε : L2(ω × I) → [0,+∞],
defined by

Iε(v) :=

⎧⎨⎩
∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2

|∇3v(x)|2 − μ0

ε2
|v(x)|2 dx, if v ∈ H1

0 (ω × I),

+∞, otherwise.
(3.1)

Using Proposition 2.3 with τ = 1, we conclude that Iε(v) = Gε(u), where Gε : L2(ω × I) → [0,+∞] is the
functional given by

Gε(u) :=

⎧⎨⎩
∫

ω×I

B̄ε(x̄)∇̄u(x)∇̄u(x) +
bε33(x̄)
ε2

(
|∇3u(x)|2 − π2|u(x)|2

)
dx, ifu ∈ H1

0 (ω × I),

+∞, otherwise,
(3.2)

where, a.e. x̄ ∈ ω,

B̄ε(x̄) :=
(
bεαβ(x̄)

) ∈ M
2×2, bεαβ(x̄) :=

[
φ0

( x̄
ε

)]2
aαβ

( x̄
ε

)
, bε33(x̄) :=

[
φ0

( x̄
ε

)]2
a33

( x̄
ε

)
·

Remark 3.1. Notice that since φ0 ∈ H1
#(Y ) ∩ C0,s

# (Y ), for some 0 < s < 1, is strictly positive, we have that
Bε := (φ0( ·

ε ))2Aε is a 3 × 3 real, symmetric and εY -periodic matrix, satisfying a condition of the type (1.1).

In order to prove Theorem 1.1, we must check that the sequence {Gε}ε>0 satisfies the hypotheses of
Proposition 2.1.
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Proposition 3.2. Let Gε be the functional in (3.2). Then the sequence {Gε}ε>0 Γ-converges, with respect to
the strong topology of L2(ω × I), to the functional G : L2(ω × I) → [0,+∞] defined by

G(u) :=

⎧⎨⎩
∫

ω

B̄h∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄, ifu(x̄, x3) = ϕ(x̄) θ1(x3), ϕ ∈ H1
0 (ω),

+∞, otherwise,

where the constant matrix B̄h is the homogenized limit of the sequence {B̄ε}ε>0. Moreover, Gε also satisfies
conditions (i) and (ii) in Proposition 2.1.

Proof. We will proceed in two steps.

Step 1. We prove that if uε, u ∈ L2(ω × I) are such that uε → u in L2(ω × I) as ε → 0+, then G(u) ≤
lim inf
ε→0+

Gε(uε). Furthermore, conditions (i) and (ii) in Proposition 2.1 are satisfied.

We start by observing that if w ∈ H1
0 (ω × I), then for a.e. x̄ ∈ ω, w(x̄, · ) ∈ H1

0 (I). Thus, since ς1 = π2 is
the first eigenvalue associated with problem (1.7), we have, a.e. x̄ ∈ ω,∫

I

(|∇3w|2 − π2|w|2) dx3 ≥ 0. (3.3)

The uniform ellipticity of Bε (see Rem. 3.1) and (3.3) ensure that Gε ≥ 0 in L2(ω× I). Hence, condition (i) in
Proposition 2.1 is satisfied.

Let uε, u ∈ L2(ω × I) be as in the statement of Step 1. Up to a subsequence (which we will not relabel), we
may assume without loss of generality that

lim inf
ε→0+

Gε(uε) = lim
ε→0+

Gε(uε) < +∞.

Then {uε}ε>0 ⊂ H1
0 (ω × I) and supε Gε(uε) < +∞. Using (3.3), the uniform ellipticity of Bε and the uniform

bound of {uε}ε>0 in L2(ω × I), we get∫
ω×I

|∇̄uε|2 dx ≤ C,

∫
ω×I

|∇3uε|2 dx ≤ C ε2 + π2

∫
ω×I

|uε|2 dx ≤ C, (3.4)

where C and C are constants independent of ε. Consequently, supε ‖uε‖H1
0 (ω×I) < +∞ and uε ⇀ u weakly in

H1
0 (ω × I). The sequential lower semicontinuity of the L2-norm with respect to the weak topology and (3.4)

yield ∫
ω×I

(|∇3u|2 − π2|u|2) dx ≤ 0.

Hence, taking into account (3.3),
∫

I(|∇3u|2 − π2|u|2) dx3 = 0, a.e. x̄ ∈ ω, from which we deduce that there is
a function ϕ ∈ H1

0 (ω) such that u(x̄, x3) = ϕ(x̄) θ1(x3), a.e. (x̄, x3) ∈ ω × I.
Using Fubini’s theorem, Fatou’s Lemma, Proposition 2.4 (see also Rem. 3.1) and the condition ‖θ1‖L2(I) = 1,

we obtain

lim inf
ε→0+

Gε(uε) ≥ lim inf
ε→0+

∫
ω×I

B̄ε(x̄)∇̄uε(x)∇̄uε(x) dx ≥
∫

I

[∫
ω

B̄h∇̄u(x)∇̄u(x) dx̄
]
dx3 = G(u).

Finally, to conclude Step 1, we observe that if supε Gε(uε) < +∞ and supε ‖uε‖L2(ω×I) < +∞, then (3.4) holds.
Consequently, condition (ii) in Proposition 2.1 is also satisfied.

Step 2. We prove that for any u ∈ L2(ω × I), there exists a sequence {uε}ε>0 ⊂ L2(ω × I) satisfying uε → u
in L2(ω × I) as ε→ 0+, and G(u) = lim

ε→0+
Gε(uε).
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Given u ∈ L2(ω × I), the only nontrivial case is when u(x̄, x3) = ϕ(x̄) θ1(x3), with ϕ ∈ H1
0 (ω), otherwise,

considering Step 1, it’s enough to take uε ≡ u.
By Proposition 2.4, there exists a sequence {ϕε}ε>0 ⊂ H1

0 (ω) converging in L2(ω) to ϕ and such that

lim
ε→0+

∫
ω

B̄ε(x̄)∇̄ϕε(x̄)∇̄ϕε(x̄) dx̄ =
∫

ω

B̄h∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄.

Recalling that
∫

I

(|θ′1|2−π2|θ1|2) dx3 = 0, in order to obtain the intended equality it suffices to define uε(x̄, x3) :=
ϕε(x̄) θ1(x3). This concludes Step 2 as well as the proof of Proposition 3.2. �

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let Hε be the Hilbert space H := L2(ω × I) endowed with the scalar product ( · | · )ε,
where

(u|v)ε :=
∫

ω×I

[
φ0

( x̄
ε

)]2
u(x)v(x) dx, u, v ∈ L2(ω × I).

Since φ0 ∈ H1
#(Y ) ∩ C0,s

# (Y ) is a strictly positive function, there exist 0 < c1 < c2 such that for all ȳ ∈ Y ,
c1 < φ0(ȳ) < c2. Moreover, by Riemann-Lebesgue’s Lemma,[

φ0

( ·
ε

)]2 	
⇀

∫
Y

∣∣φ0(ȳ)
∣∣2 dȳ = 1 as ε→ 0+, weakly-� in L∞(R2).

Hence conditions (2.1) and (2.2) hold. On the other hand, for each ε > 0, Gε defined in (3.2) is a nonnegative
lower semicontinuous quadratic form in L2(ω × I). Consequently, the associated operator, Aε, is a self-adjoint
operator in Hε (see [7], Thm. 12.13). Let {(νε,k, uε,k)}k∈N and {(νk, ϕk)}k∈N be such that

uε,k ∈ H1
0 (ω × I), Aεuε,k = νε,kuε,k, νε,1 ≤ νε,2 ≤ · · · ≤ νε,k ≤ · · · , (uε,k|uε,l)ε = δkl,

ϕk ∈ H1
0 (ω), − divx̄(B̄h∇̄ϕk) = νkϕk, ν1 ≤ ν2 ≤ · · · ≤ νk ≤ · · · , (ϕk|ϕl) = δkl,

where (·|·) represents the standard scalar product in L2(ω).
By Propositions 2.1 and 3.2, νε,k → νk as ε → 0+. Moreover, up to a subsequence that we do not relabel,

uε,k ⇀ uk weakly in H1
0 (ω × I) as ε → 0+, where uk is the product between an eigenfunction associated with

νk and θ1. Conversely, any eigenfunction uk = ϕkθ1 is the weak limit of a particular sequence of eigenfunctions
associated with νε,k.

To finish the proof of Theorem 1.1 we are left to show that (1.8) holds. Considering for each k ∈ N, μk ∈ R

and functions wk and w̃k such that

wk(x) = φ0

( x̄
ε

)
w̃k(x), a.e. x = (x̄, x3) ∈ ω × I,

Proposition 2.3 implies that wk belongs to H1
0 (ω × I) if, and only if, w̃k belongs to H1

0 (ω × I), and also that
the equalities

Gε(w̃k) = (Aεw̃k|w̃k)ε = μk(w̃k|w̃k)ε, (w̃k|w̃l)ε = δkl

hold true if, and only if, the equalities

Iε(wk) =
(
− divx̄(Āε∇̄wk) − aε

33

ε2
Δ3wk − μ0

ε2
wk

∣∣∣wk

)
= μk(wk|wk), (wk|wl)ε = δkl

are satisfied, where (·|·) represents the standard scalar product in L2(ω × I) and Iε is the functional in (3.1).
Replacing μk by νε,k, wk by vε,k and w̃k by uε,k, we conclude the proof of (1.8). �
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4. Proof of Theorem 1.2 (ε � δ)

This section is devoted to the proof of Theorem 1.2. The arguments are similar to those of Theorem 1.1,
however, in this case problem (1.6) does depend on ε, this compels us to study the asymptotic behavior of its
first L2(Y )-normalized eigenpair (μτ

ε,0, φ
τ
ε,0) as ε → 0+. Throughout this section we assume that τ ∈ (0, 1) is

fixed, and that δ = ετ .

Proposition 4.1. Assume that, in addition to the hypotheses made in the beginning of Section 1, aαβ are
uniformly Lipschitz continuous in Y . Let {(�j , ψj)}j∈N0 be given by (1.9)–(1.10), and let i ∈ N be such that
i−1

i < τ ≤ i
i+1 . Then φτ

ε,0(·/ε) → 1 ≡ ψ0 uniformly in ω, and μτ
ε,0 behaves as follows:

μτ
ε,0 = �0 + ε2(1−τ)�1 + · · · + ε2i(1−τ)�i + o

(
ε2i(1−τ)

)
. (4.1)

Proof. Let us start by proving that μτ
ε,0 → �0 = π2

∫
Y
a33(ȳ) dȳ > 0, and that all the others eigenvalues of

problem (1.6) tend to +∞ as ε→ 0+. By Rayleigh’s formula for μτ
ε,0,

μτ
ε,0 = min

φ∈H1
#(Y )

‖φ‖
L2(Y )=1

{∫
Y

1
ε2(1−τ)

Ā(ȳ)∇̄φ(ȳ)∇̄φ(ȳ) + a33(ȳ)π2|φ(ȳ)|2 dȳ
}
. (4.2)

Using (1.1) and φ ≡ 1 as a test function in (4.2), we conclude that ζπ2 ≤ μτ
ε,0 ≤ �0. In particular,

lim supε→0+ μτ
ε,0 ≤ �0. Since φτ

ε,0 is a minimizer for μτ
ε,0, using again (1.1) we deduce that ‖∇̄φτ

ε,0‖L2(Y ) → 0.
Consequently, φτ

ε,0 → 1 inH1
#(Y ). In turn, this implies lim infε→0+ μτ

ε,0 ≥ lim infε→0+

∫
Y a33(ȳ)π2|φτ

ε,0(ȳ)|2 dȳ =
�0. Therefore, μτ

ε,0 → �0 as ε→ 0+.
Similarly, using Rayleigh’s formula for με,1 and admitting that the latter is bounded, we are led to a contra-

diction, since we would conclude that any minimizing sequence of eigenfunctions must converge on the one hand
to the constant function ψ0 ≡ 1 and on the other hand to a function having zero mean (by the orthogonality
condition). So, except for the first, all the eigenvalues of problem (1.6) tend to +∞ as ε→ 0+.

We now prove the statement on the asymptotic behavior of φτ
ε,0. If, in addition, we suppose that aαβ are

uniformly Lipschitz continuous in Y , then (see, [9], Thm. 8.8) {φτ
ε,0}ε>0 is uniformly bounded in H2(Y ). Due

to the compact injection of H2(Y ) in C0(Y ), we conclude that φτ
ε,0(ȳ) → 1 uniformly in Y as ε→ 0+. Finally,

the Y -periodicity of φτ
ε,0 ensures that φτ

ε,0(·/ε) → 1 uniformly in ω as ε→ 0+.
We are left to establish (4.1). It is based on the Vishik-Lyusternik Lemma (see [16,18]): Let L : H → H be

a linear compact self-adjoint operator in a Hilbert space H , and suppose that λ > 0 and f ∈ H are such that
‖Lf−λf‖H ≤ γ, for some constant γ ∈ R

+. Then there exists an eigenvalue λ̄ of L such that |λ̄−λ| ≤ γ‖f‖−1
H .

For the sake of simplicity we will present the proof only for i = 1, the argument being easily generalized
for i > 1. Considering H = L2

#(Y ), and setting ε := ε2(1−τ), με := μτ
ε,0 b(ȳ) := π2a33(ȳ) and Aεϕ :=

− 1
ε div(Ā(ȳ)∇̄ϕ) + b(ȳ)ϕ, ϕ ∈ H1

#(Y ), we apply the above result to Lε : L2
#(Y ) → L2

#(Y ) such that Lεg = ϕ,
solution of Aεϕ = g, to fε := Aεψε, ψε := ψ0 + εψ1 + ε2ψ2, and to λε = (�0 + ε�1)−1.

Since Lεfε − λεfε = ψε − λεAεψε =: wε, using (1.9)–(1.10) we conclude that

wε =
(
ε2
(
(b− �0)ψ2 − �1ψ1

)− ε3�1ψ2

)
(�0 + ε�1)−1.

In view of the condition �0 > 0, we deduce that for all ε > 0 small enough and for a constant c independent
of ε, ‖wε‖H ≤ ε2c. Consequently, there exists an eigenvalue λ̄ε satisfying |λ̄ε − (�0 + ε�1)−1| ≤ ε2c, for some
other constant c independent of ε, where we used the fact that ‖Aεψε‖H → �0 > 0. Since all the eigenvalues
of Lε tend to zero, except for the first, which converges to �−1

0 > 0, we conclude that for all ε small enough,
λ̄ε = μ−1

ε . Hence, |με − (�0 + ε�1)| ≤ ε2c, for some other constant c independent of ε. This concludes the proof
for i = 1. �
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As it was already mentioned, the main ideas of the proof of Theorem 1.2 are those of Theorem 1.1. We are
expecting the asymptotic behavior referred in (1.12) for the shifted spectrum σε − μτε,0

ε2τ (see also (4.1)), and so
instead of the energy defined in (1.4) for δ = ετ , we consider the functional Iτ

ε : L2(ω×I) → [0,+∞], defined by

Iτ
ε (v) :=

⎧⎨⎩
∫

ω×I

Āε(x̄)∇̄v(x)∇̄v(x) +
aε
33(x̄)
ε2τ

|∇3v(x)|2 −
μτ

ε,0

ε2τ
|v(x)|2 dx, if v ∈ H1

0 (ω × I),

+∞, otherwise.

By Proposition 2.3, we have that Iτ
ε (v) = Gτ

ε (u), where Gτ
ε : L2(ω × I) → [0,+∞] is the functional given by

Gτ
ε (u) :=

⎧⎨⎩
∫

ω×I

B̄τ
ε (x̄)∇̄u(x)∇̄u(x) +

bτ,ε
33 (x̄)
ε2

(
|∇3u(x)|2 − π2|u(x)|2

)
dx, if u ∈ H1

0 (ω × I),

+∞, otherwise,
(4.3)

and, a.e. x̄ ∈ ω,

B̄τ
ε (x̄) :=

(
bτ,ε
αβ(x̄)

)
∈ M

2×2, bτ,ε
αβ(x̄) :=

[
φτ

ε,0

( x̄
ε

)]2
aαβ

( x̄
ε

)
, bτ,ε

33 (x̄) :=
[
φτ

ε,0

( x̄
ε

)]2
a33

( x̄
ε

)
·

The analogue to Proposition 3.2 reads as follows.

Proposition 4.2. Let Gτ
ε be the functional in (4.3). Then the sequence {Gτ

ε}ε>0 Γ-converges, with respect to
the strong topology of L2(ω × I), to the functional Gτ : L2(ω × I) → [0,+∞] defined by

Gτ (u) :=

⎧⎨⎩
∫

ω

Āh∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄, ifu(x̄, x3) = ϕ(x̄) θ1(x3), ϕ ∈ H1
0 (ω),

+∞, otherwise,

where Āh is the homogenized limit of the sequence {Āε}ε>0. Moreover, Gτ
ε also satisfies conditions (i) and (ii)

in Proposition 2.1.

Proof. The proof is very similar to that of Proposition 3.2, however we outline the main differences.

Step 1. We prove that if uε, u ∈ L2(ω × I) are such that uε → u in L2(ω × I) as ε → 0+, then Gτ (u) ≤
lim inf
ε→0+

Gτ
ε (uε). Furthermore, conditions (i) and (ii) in Proposition 2.1 are satisfied.

Without loss of generality we may assume that lim infε→0+ Gτ
ε (uε) = limε→0+ Gτ

ε(uε) < +∞. Then, us-
ing (1.1) and the uniform convergence φτ

ε,0(·/ε) → 1 in ω (see Prop. 4.1), we conclude that (3.4) holds. Con-
sequently, uε ⇀ u weakly in H1

0 (ω × I) as ε → 0+, where u(x̄, x3) = ϕ(x̄)θ1(x3) for some ϕ ∈ H1
0 (ω), a.e.

(x̄, x3) ∈ ω × I.
Fix 0 < γ < 1. Then for all ε sufficiently small,

[
φτ

ε,0(·/ε)
]2 ≥ 1 − γ. Therefore, Fubini’s Theorem, (1.1),

Fatou’s Lemma, Proposition 2.4 and the condition ‖θ1‖L2(I) = 1 ensure that

lim inf
ε→0+

Gτ
ε (uε) ≥ lim inf

ε→0+

∫
ω×I

B̄τ
ε (x̄)∇̄uε(x)∇̄uε(x) dx

≥ (1 − γ)
∫

I

[
lim inf
ε→0+

∫
ω

Āε(x̄)∇̄uε(x)∇̄uε(x) dx̄
]
dx3 ≥ (1 − γ)Gτ (u),

from which we conclude that Gτ (u) ≤ lim inf
ε→0+

Gτ
ε(uε) by letting γ → 0+.

To prove that Gτ
ε satisfies conditions (i) and (ii) in Proposition 2.1 it suffices to repeat the correspondent

arguments in Step 1 of Proposition 3.2. This concludes Step 1.
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Step 2. We prove that for any u ∈ L2(ω × I), there exists a sequence {uε}ε>0 ⊂ L2(ω × I) satisfying uε → u
in L2(ω × I) as ε→ 0+, and Gτ (u) = lim

ε→0+
Gτ

ε (uε).

Given u ∈ L2(ω × I), the only nontrivial case is when u(x̄, x3) = ϕ(x̄) θ1(x3), with ϕ ∈ H1
0 (ω), otherwise,

considering Step 1, it’s enough to take uε ≡ u.
By Proposition 2.4, there exists a sequence {ϕε}ε>0 ⊂ H1

0 (ω) converging in L2(ω) to ϕ and such that

lim
ε→0+

∫
ω

Āε(x̄)∇̄ϕε(x̄)∇̄ϕε(x̄) dx̄ =
∫

ω

Āh∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄. (4.4)

Fix γ > 0. Let ε0 > 0 be such that for all 0 < ε ≤ ε0,
[
φτ

ε,0(·/ε)
]2 ≤ 1 + γ. Define uε(x̄, x3) := ϕε(x̄) θ1(x3).

Recalling that
∫

I

(|θ′1|2 − π2|θ1|2) dx3 = 0, from (4.4) and (1.1) we conclude that

lim sup
ε→0+

Gτ
ε (uε) = lim sup

ε→0+

∫
ω

B̄τ
ε (x̄)∇̄ϕε(x)∇̄ϕε(x) dx

≤ (1 + γ)
∫

ω

Āh∇̄ϕ(x̄)∇̄ϕ(x̄) dx̄ = (1 + γ)Gτ (u).

Letting γ → 0+ and using Step 1, we conclude Step 2 as well as the proof of Proposition 4.2. �

Proof of Theorem 1.2. Replacing Gε by Gτ
ε , (μ0, φ0) by (μτ

ε,0, ψ
τ
ε,0), and recalling Propositions 4.1 and 4.2, the

proof of Theorem 1.2 is analogous to that of Theorem 1.1. �

5. Proof of Theorems 1.4 and 1.8 (ε 	 δ)

Throughout this section we assume that τ ∈ (1,+∞) is fixed, and that δ = ετ . As we mentioned before,
the lack of a positive uniform lower bound for {φτ

ε,0}ε>0 will prevent us from using Proposition 2.1. So, in
order to prove Theorems 1.4 and 1.8, we will take advantage essentially of Propositions 2.3 and 2.5, and of the
asymptotic behavior of the eigenpair (μτ

ε,0, φ
τ
ε,0) introduced in (1.6), which is the aim of the following lemmas.

To simplify the statements and the proof of the lemmas, we introduce some notations: b := (a33 − amin)π2,

ε := ετ−1, με :=
μτε,0−aminπ2

ε2(τ−1) , φε := φτ
ε,0. Problem (1.6) then reads

− div(Ā∇̄φε) +
b

ε2
φε = μεφε, φε ∈ H1

#(Y ), ‖φε‖L2(Y ) = 1. (5.1)

The asymptotic behavior of (με, φε) depends strongly on the behavior of the potential b. As we referred in the
Introduction, an interesting case is when b oscillates between two different values and this justifies the present
hypotheses on the coefficients.

Lemma 5.1. Under the hypotheses of Theorem 1.4 and using the above notations, let (ν0, q0) represent the
L2(Q)-normalized first eigenpair for problem (1.13), and consider q0 extended by zero to the whole Y . Let also
με,1 represent the second eigenvalue for problem (5.1) and ν1 the second eigenvalue for problem (1.13). Then
{φε}ε>0 converges in norm to q0 in L2(Y ) and weakly in H1(Y ). Moreover,

με → ν0, με,1 → ν1 as ε→ 0+. (5.2)

Proof. We will only prove the first convergence in (5.2), since the second one is analogous having in mind that
the orthogonality condition

∫
Y φq0dȳ = 0 reads

∫
Q φq0dȳ = 0.
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Step 1. We prove that με ≤ ν0.
Noticing that b vanishes in Q, the eigenvalue με is given by the Rayleigh’s formula

με = inf
φ∈H1

#(Y )

‖φ‖
L2(Y )=1

{∫
Y

Ā∇̄φ∇̄φdȳ +
1
ε2

∫
Y \Q

b|φ|2 dȳ
}
. (5.3)

Using in (5.3) test functions q ∈ H1
0 (Q), with ‖q‖L2(Q) = 1, extended by zero to the whole Y , we obtain

με ≤ inf
q∈H1

0 (Q)
‖q‖

L2(Q)=1

{∫
Q

Ā∇̄q∇̄q dȳ
}

= ν0, (5.4)

which concludes Step 1.

Step 2. We establish the convergence of {φε}ε>0.
In the previous step we proved that

με =
∫

Y

Ā∇̄φε∇̄φε dȳ +
1
ε2

∫
Y \Q

b|φε|2 dȳ ≤ ν0 =
∫

Q

Ā∇̄q0∇̄q0 dȳ. (5.5)

Consequently, ∫
Y

Ā∇̄φε∇̄φε dȳ ≤
∫

Q

Ā∇̄q0∇̄q0 dȳ,
∫

Y \Q

b|φε|2 dȳ ≤ ε2ν0. (5.6)

Using (1.1), from the first estimate in (5.6) we conclude that ‖∇φε‖L2(Y ) is bounded independently of ε. Hence,
up to a subsequence, {φε}ε>0 converges to some φ0 ∈ H1

#(Y ) weakly in H1(Y ) and strongly in L2(Y ). A lower
semicontinuity argument then yields∫

Q

Ā∇̄φ0∇̄φ0 dȳ ≤
∫

Y

Ā∇̄φ0∇̄φ0 dȳ ≤ lim inf
ε→0+

∫
Y

Ā∇̄φε∇̄φε dȳ ≤
∫

Q

Ā∇̄q0∇̄q0 dȳ. (5.7)

Fix c > 0 such that b(·) ≥ c on Y \Q. Then, in view of the second estimate in (5.6),

‖φε‖2
L2(Y \Q)

=
∫

Y \Q

|φε|2 dȳ ≤ ε2

c
ν0 −→

ε→0+
0.

Thus φ0 = 0 a.e. in Y \Q. Consequently, φ0 ∈ H1
0 (Q) and ‖φ0‖L2(Q) = 1. Finally, from (5.7) and since φ0

is admissible in the variational definition of ν0, we obtain φ0 ≡ q0, as well as the convergence of the whole
sequence {φε}ε>0.

Step 3. We prove that με → ν0 as ε→ 0+.
By (5.5), we have

με =
∫

Y

Ā∇̄φε∇̄φε dȳ +
1
ε2

∫
Y \Q

b|φε|2 dȳ ≥
∫

Y

Ā∇̄φε∇̄φε dȳ,

and so, in view of (5.7) and since φ0 ≡ q0,

lim inf
ε→0+

με ≥
∫

Q

Ā∇̄q0∇̄q0 dȳ = ν0,

which, together with (5.4), concludes Step 3. �
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Lemma 5.2. Under the hypotheses of Theorem 1.4 and using the previous notations, the L2(Y )-normalized
first eigenpair (με, φε) for problem (5.1) has the following asymptotic behavior for any integer n ∈ N:

με = ν0 + εμ1 + ε2μ2 + · · · + εnμn + ρn,ε,

where μi, i ∈ {1, . . . , n}, are well determined constants and |ρn,ε| ≤ cnε
n+ 1

2 , for some positive constant cn
independent of ε, and

φε = q0 + εφ1,ε + ε2φ2,ε + · · · + εnφn,ε + rn,ε,

where φi,ε, i ∈ {1, . . . , n}, are well-defined functions in L2(Y ) and ‖rn,ε‖L2(Y ) ≤ c̄nε
n+ 1

2 for a certain positive
constant c̄n independent of ε.

Proof. The proof is based on the asymptotic expansion technique. We will detail the proof for n = 1, being
clear how to extend it for the higher orders.

For γ > 0 we define Qγ := {ȳ ∈ Y : dist(ȳ, Q) < γ}. Let γ0 > 0 be such that the outward normals to ∂Q
of length 2γ0 do not intersect. Consider a system of local coordinates (s, θ) on Q2γ0\Q, where θ represents the
local coordinate on ∂Q and s ∈ [0, 2γ0) stands for the distance to ∂Q in the outward normal direction. In this
local coordinates, equation (5.1) in Q2γ0\Q reads

− div(Ā	∇̄ϕε) + b	 · ∇̄ϕε +
b

ε2
ϕε = μεϕε, (5.8)

for a certain uniformly elliptic matrix Ā	 = (a	
αβ) with smooth coefficients as functions of s and θ, and for

a certain vector b	 = (b	1, b
	
2), where b	1, b

	
2 are also smooth functions of s and θ.

In the sequel we will deal with different coordinates on different sides of ∂Q. For the sake of simplicity we
will abusively identify f(ȳ) with f(ȳ(s, θ)) or, conversely, g(s, θ) with g(s(ȳ), θ(ȳ)).

For small ε > 0 we search for φε and με with the following development

με = ν0 + εμ1 + ε2μ2 + · · · , (5.9)
φε = q0 + εφ1,ε + ε2φ2,ε + · · · , (5.10)

where, we recall, (ν0, q0) is the L2(Q)-normalized first eigenpair for problem (1.13), and φi,ε, i ≥ 1, have the
form

φi,ε(ȳ) :=

⎧⎪⎨⎪⎩
φ−i (ȳ), in Q,
φ+

i

(s
ε
, θ
)
, in Q2γ0\Q,

0, in Y \Q2γ0.

(5.11)

In view of the regularity assumptions on the coefficients aαβ and b and on the domain Q, the following Taylor
expansions for θ fixed hold true

a	
αβ(s, θ) = a	

αβ(0, θ) +
∂a	

αβ

∂s
(0, θ)s+

∂2a	
αβ

∂s2
(0, θ)

s2

2
+
∂3a	

αβ

∂s3
(ξ(s), θ)

s3

3!
, (5.12)

b(s, θ) = b(0, θ) +
∂b

∂s
(0, θ)s+

∂2b

∂s2
(0, θ)

s2

2
+
∂3b

∂s3
(η(s), θ)

s3

3!
· (5.13)

Setting τ = s/ε, τ ∈ [0, 2γ0/ε), substituting (5.9) and (5.10)–(5.11) in (5.8), using expressions (5.12)–(5.13) and
collecting like powers of ε, we obtain in Q2γ0\Q, for the power ε−1, that φ+

1 must satisfy

−a	
11(0, θ)

∂2φ+
1

∂τ2
+ b(0, θ)φ+

1 = 0,

where θ is a parameter.
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Denote by ψ+
1 the solution, for fixed θ, of⎧⎪⎪⎨⎪⎪⎩

−a	
11(0, θ)

∂2ψ+
1

∂τ2
+ b(0, θ)ψ+

1 = 0,

lim
τ→∞ψ+

1 (τ, θ) = 0,
∂ψ+

1

∂τ
(0, θ) = − 1

a	
11(0, θ)

·
Then

ψ+
1 (τ, θ) =

1√
a	
11(0, θ)b(0, θ)

e
−
√

b(0,θ)
a�11(0,θ) τ

,

and we define
φ+

1 (τ, θ) := −[(Ā∇̄q0nQ)(ȳ(0, θ))
]
ψ+

1 (τ, θ),
where nQ represents the outward normal to ∂Q at ȳ(0, θ), so that we may have(

a	
11

∂φ+
1

∂τ

)
(0, θ) =

(
Ā∇̄q0nQ

)
(ȳ(0, θ)).

Also, φ−1 must satisfy {− div(Ā∇̄φ−1 ) = ν0φ
−
1 + μ1q0, a.e. in Q,

φ−1 |∂Q(ȳ(0, θ)) = φ+
1 (0, θ),

(5.14)

and, from the compatibility condition∫
∂Q

(Ā∇̄q0nQ

)
φ+

1 dσ = μ1

∫
Q

|q0|2 dȳ,

we obtain
μ1 =

∫
∂Q

(Ā∇̄q0nQ

)
φ+

1 dσ = −
∫

∂Q

|Ā∇̄q0nQ

∣∣2ψ+
1 dσ < 0. (5.15)

So, φ−1 is uniquely defined as the solution of (5.14) with μ1 given by (5.15), and satisfying∫
Q

q0φ
−
1 dȳ = 0. (5.16)

Collecting the terms of order ε0 we obtain in Q2γ0\Q that φ+
2 must satisfy

−a	
11(0, θ)

∂2φ+
2

∂τ2
+ b(0, θ)φ+

2 = R(τ, θ)

where R(τ, θ) is a finite sum of functions of the type f(θ)τe−c(θ)τ with f and c > 0 being bounded functions
of θ. Therefore, problem⎧⎪⎨⎪⎩

−a	
11(0, θ)

∂2φ+
2

∂τ2
+ b(0, θ)ϕ = R(τ, θ),

lim
τ→∞φ+

2 (τ, θ) = 0, a	
11(0, θ)

∂φ+
2

∂τ
(0, θ) = (Ā∇̄φ−1 nQ)(ȳ(0, θ)),

has a unique solution φ+
2 , which is smooth in (τ, θ) and decays exponentially as τ → ∞.

We now define φ−2 in Q as the solution in Q of{− div(Ā∇̄φ−2 ) = ν0φ
−
2 + μ1φ

−
1 + μ2q0, a.e. in Q,

φ−2 |∂Q(ȳ(0, θ)) = φ+
2 (0, θ),
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with

μ2 :=
∫

∂Q

(Ā∇̄q0nQ

)
φ+

2 dσ

so that the compatibility condition is satisfied.
Now, in order to make the function φε and its derivatives continuous at ∂Q, we introduce a smooth function

ψ−
2 , defined on Q, such that ψ−

2 |∂Q = 0, Ā∇̄ψ−
2 nQ = −Ā∇̄φ−2 nQ. Consider also a cut-off function φγ0 ∈

C∞(R; [0, 1]) such that φγ0(s) = 1, if s ≤ γ0, and φγ0(s) = 0, if s ≥ 2γ0.
Finally, we set

wε(ȳ) :=

⎧⎪⎪⎨⎪⎪⎩
q0(ȳ) + εφ−1 (ȳ) + ε2φ−2 (ȳ) + ε2 ψ−

2 (ȳ), if ȳ ∈ Q,(
εφ+

1

(
s(ȳ)
ε
, θ(ȳ)

)
+ ε2φ+

2

(
s(ȳ)
ε
, θ(ȳ)

))
φ2γ0(s(ȳ)), if ȳ ∈ Q2γ0\Q,

0, if ȳ ∈ Y \Q2γ0 ,

(5.17)

and
Λε := ν0 + εμ1 + ε2μ2. (5.18)

Then, it can be checked that for suitable constants c0 and c1 independent of ε, the following estimates hold true

‖wε‖L2(Y ) ≤ 1 + c0ε
2, (5.19)∥∥∥∥− div(Ā∇̄wε) +

1
ε2
bwε − Λεwε

∥∥∥∥
L2(Y )

≤ c1ε
3/2. (5.20)

Indeed, from (5.16) and the fact that q0 vanishes outside Q it follows that φ1,ε is orthogonal to q0. Thus,
considering the normalization ‖q0‖L2(Y ) = 1, we obtain

‖q0 + εφ1,ε‖2
L2(Y ) = 1 + ε2‖φ1,ε‖2

L2(Y ). (5.21)

This implies in particular that ‖q0 + εφ1,ε‖L2(Y ) ≥ 1 and ‖q0 + εφ1,ε‖L2(Y ) ≤ ‖q0 + εφ1,ε‖2
L2(Y ). Therefore, (5.19)

is a consequence of (5.21).
To justify (5.20), we use (5.17) and (5.18) and the definitions of all functions q0, φ±1 , φ±2 , ψ−

2 and φγ0 . After
straightforward rearrangements we obtain

− div(Ā∇̄wε) +
1
ε2
bwε − Λεwε =

⎧⎪⎪⎨⎪⎪⎩
ε2r−ε (ȳ), ȳ ∈ Q,

εr+ε

(
s(ȳ), θ(ȳ),

s(ȳ)
ε

)
, if ȳ ∈ Q2γ0\Q,

0, if ȳ ∈ Y \Q2γ0 ,

(5.22)

where
‖r−ε ‖L2(Q) ≤ c2 and |r+ε (s, θ, τ)| ≤ c3τ

je−c4τ (5.23)
with positive constants c2, c3, c4, and j ∈ N, independents of ε. It follows from the second upper bound in (5.23)
that for some positive constant c5,

‖r+ε ‖2
L2(Y \Q) ≤ c5ε. (5.24)

Then, in view of the first upper bound in (5.23) and thanks to (5.24) and (5.22), we obtain estimate (5.20).
In order to obtain the announced estimates we notice that, by Lemma 5.1, we can find ε0 > 0 such that for all

ε < ε0 the ground state με and the second eigenvalue με,1 of problem (5.1) satisfy the inequality με−με,1 ≥ c̄ > 0.
So, using Vishik-Lyusternik Lemma (see [16,18]), from (5.19) and (5.20) we get

|Λε − με| ≤ c6ε
3/2, ‖wε − φε‖L2(Y ) ≤ c7ε

3/2, (5.25)
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for some positive constants c6, c7 independent of ε. Considering the definitions of wε and Λε we conclude,
from (5.25), that

|με − (ν0 + εμ1)| ≤ c8ε
3/2, ‖φε − (q0 + εφ1,ε)‖L2(Y ) ≤ c9ε

3/2,

for some constants c8 > 0 and c9 > 0. This completes the proof for n = 1. �

Remark 5.3. If the potential b is constant in Q, continuous in Y and has linear or quadratic growth in the
vicinity of ∂Q, i.e. b(ȳ) = α(ȳ)d(ȳ) or b(ȳ) = α(ȳ)d2(ȳ), for ȳ ∈ Qγ0\Q, where α(·) > 0 and d(·) = dist(·, ∂Q),
the techniques are similar to the case treated in Lemma 5.2. In the linear growth case we obtain, for n = 1,
με = ν0 + ε2/3μ1, and in the case of quadratic growth, also for n = 1, με = ν0 + ε1/2μ1.

We now prove Theorems 1.4 and 1.8.

Proof of Theorem 1.4. By Proposition 2.5, the first eigenvalue λε,1 of the tridimensional problem (1.5) coincides
with the first eigenvalue, λ(1)

ε,1, of the bidimensional problem in H1
0 (ω),

− div
(
Āε(x̄)∇̄ϕ(1)

ε

)
+
aε
33(x̄)
ε2τ

π2ϕ(1)
ε = λ(1)

ε ϕ(1)
ε , a.e. x̄ ∈ ω.

Also, the correspondent L2-normalized eigenfunctions vε,1 and ϕ(1)
ε,1 satisfy the following relation

vε,1(x) = ϕ
(1)
ε,1(x̄)θ1(x3), a.e. x = (x̄, x3) ∈ ω × I,

where θ1 is the first L2(I)-normalized eigenfunction of problem (1.7).
On the other hand, recalling the proof of Proposition 2.3, relation (2.4) holds true if we restrict (2.3) to v

and u only depending on x̄. Using (2.4), for ϕ, ψ ∈ H1
0 (ω) satisfying

ϕ(x̄) = φτ
ε,0

( x̄
ε

)
ψ(x̄), a.e. x̄ ∈ ω,

we obtain

λε,1 = λ
(1)
ε,1 = inf

ϕ∈H1
0 (ω)

ϕ�≡0

∫
ω

Āε(x̄)∇̄ϕ(x̄)∇̄ϕ(x̄) +
aε
33(x̄)
ε2τ

π2|ϕ(x̄)|2 dx̄∫
ω

|ϕ(x̄)|2 dx̄
, (5.26)

=
μτ

ε,0

ε2τ
+ inf

ψ∈H1
0 (ω)

ψ �≡0

∫
ω

[
φτ

ε,0

( x̄
ε

)]2
Āε(x̄)∇̄ψ(x̄)∇̄ψ(x̄) dx̄∫

ω

[
φτ

ε,0

( x̄
ε

)]2
|ψ(x̄)|2 dx̄

=
μτ

ε,0

ε2τ
+ ντ

ε,1.

Using Lemma 5.1 and recalling the notations introduced at the beginning of this section, we get μτ
ε,0 → ν0 and

φτ
ε,0 ⇀ q0 weakly in H1

#(Y ) as ε→ 0+, and

λε,1 =
aminπ

2

ε2τ
+
ν0
ε2

+ ετ−3μ1 + · · · + εk(τ−1)−2μk + ρτ
ε + ντ

ε,1,

where |ρτ
ε | ≤ Cε(k+ 1

2 )τ−(k+ 5
2 ) → 0 as ε→ 0+.
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To conclude the proof of Theorem 1.4 we are left to prove that ντ
ε,1 → 0 as ε → 0+. Construct a sequence

{ψε}ε>0 in H1
0 (ω) as follows: for each ε > 0 let Kε := {κ ∈ Z

2 : ε(κ+ Y ) ⊂ ω}, and define

Tε := int

( ⋃
κ∈Kε

ε(κi + Y )

)
.

Consider the cut-off function φγ0 introduced in Lemma 5.2 in the definition of wε (see (5.17)). Extend φγ0 to
the whole R

2 by Y -periodicity, and define ψε by ψε(x̄) := φγ0

(
x̄
ε

)
, if x̄ ∈ Tε, and ψε(x̄) := 0, if x̄ ∈ ω\Tε.

Using the definition of ντ
ε,1, taking ψε as test function, using the uniform bounds in (1.1), the usual change

of scales ȳ = ε−1x̄, together with the Y -periodicity of φγ0 and φτ
ε,0, and since we have ‖∇̄φγ0‖L∞(Y ) ≤ c/γ0, we

obtain

0 ≤ ντ
ε,1 ≤ η

ε2

∫
Tε

[
φτ

ε,0

( x̄
ε

)]2 ∣∣∣(∇̄φγ0)
( x̄
ε

) ∣∣∣2 dx̄∫
Tε

[
φτ

ε,0

( x̄
ε

)]2 ∣∣∣φγ0

( x̄
ε

) ∣∣∣2 dx̄
≤ ηc2

ε2γ2
0

∫
Q2γ0\Qγ0

∣∣φτ
ε,0(ȳ)

∣∣2 dȳ∫
Q

∣∣φτ
ε,0(ȳ)

∣∣2 dȳ
· (5.27)

Using Lemma 5.2 with k = n and recalling the definitions and the estimates therein, we obtain, for ȳ = ȳ(s, θ) ∈
Q2γ0\Q,

φτ
ε,0(ȳ(s, θ)) = ετ−1P (s, θ) + rk,ε (5.28)

where, since τ ≥ (k + 2)/k,
‖rk,ε‖L2(Y \Q) ≤ c̄kε

(τ−1)(k+ 1
2 ) ≤ c̄kε

2+ 1
k , (5.29)

and P satisfies the following pointwise estimate

|P (s, θ)|2 ≤
k∑

m=1

am

(s
ε

)jm
e−bm

s
ε (5.30)

for some positive constants am, bm and for some jm ∈ N, independents of ε.
Consequently, putting together (5.28), (5.29) and (5.30), and in view of (5.27), we conclude that

0 ≤ ντ
ε,1 ≤ c̄

ε2

(∫
Q

∣∣φτ
ε,0(ȳ)

∣∣2 dȳ
)−1 k∑

m=1

amε
τ−1−jme−bm

γ0
ε

∫
Q2γ0\Qγ0

sjm ds

+
c̄

ε2

(∫
Q

∣∣φτ
ε,0(ȳ)

∣∣2 dȳ
)−1

ε2(2+
1
k ), (5.31)

for some constant c̄ independent of ε. Having in mind that, from Lemma 5.1,
∫

Q

∣∣φτ
ε,0(ȳ)

∣∣2 dȳ → 1 as ε → 0+,
we may pass in (5.31) to the limit as ε→ 0+ to conclude the proof of Theorem 1.4. �

Proof of Theorem 1.8. We start by observing that we may assume without loss of generality that 0 ∈ ω.
In view of the definition of λε,1 (see (5.26)), we deduce that

λε,1 ≥ amin

ε2τ
π2,

and so
lim

ε→0+

(
ε2τσε

) ⊂ [aminπ
2,+∞]. (5.32)

To prove the opposite inclusion we fix ε > 0 and recall the notations of Proposition 2.5 with B, b and λ
(n)
k

replaced by Āε,
aε33
ε2τ and λ(n)

ε,k , respectively. Let also σ(n)
ε :=

{
λ

(n)
ε,k : n ∈ N

}
.
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For fixed ε > 0 we have that ε2τλ
(1)
ε,k → +∞ as k → ∞. Using a diagonal argument we can find a sequence

{λε}ε>0 ⊂ σε such that λε → +∞ as ε→ 0+. Thus,

+ ∞ ∈ lim
ε→0+

(
ε2τσε

)
. (5.33)

Moreover, by Proposition 2.5 one has
σε =

⋃
n∈N

σ(n)
ε .

We claim that
lim

ε→0+

(
ε2τσ(1)

ε

) ⊃ [aminπ
2,+∞). (5.34)

Assume that (5.34) holds. Then the inclusion σε ⊃ σ
(1)
ε yields

lim
ε→0+

(
ε2τσε

) ⊃ lim
ε→0+

(
ε2τσ(1)

ε

) ⊃ [aminπ
2,+∞),

which, together with (5.32) and (5.33), establishes (1.14).
In order to show (5.34) we first perform a change of variables that will transform problem{

− div
(
Āε(x̄)∇̄ϕ(1)

ε

)
+ aε33(x̄)

ε2τ π2ϕ
(1)
ε = λ

(1)
ε ϕ

(1)
ε , a.e. x̄ ∈ ω,

ϕε ∈ H1
0 (ω),

(5.35)

into an equivalent one allowing us to pass to the limit as ε → 0+. Recall that problem (5.35) corresponds
to (2.10) for n = 1, with B replaced by Āε and b replaced by aε33

ε2τ .
Let ωε := ω

ετ − ȳ0
ετ−1 , where ȳ0 is a point of minimum of a33. Notice that if B ⊂ R

2 is a bounded set, then
for all ε > 0 small enough, B ⊂ ωε, since 0 ∈ ω and τ > 1. Associating to each function ϕ ∈ H1

0 (ω) the
function ψ ∈ H1

0 (ωε) defined by ψ(z̄) := ϕ(ετ z̄ + εȳ0) and using the change of variables z̄ := ε−τ x̄ − ε1−τ ȳ0,
(5.35) becomes {

− div(D̄ε(z̄)∇̄ψ(1)
ε ) + dε(z̄)ψ

(1)
ε = ρ

(1)
ε ψ

(1)
ε , a.e. z̄ ∈ ωε,

ψ
(1)
ε ∈ H1

0 (ωε),
(5.36)

where ρ(1)
ε := ε2τλ

(1)
ε , while D̄ε and dε are defined by

D̄ε(z̄) := Ā(ετ−1z̄ + ȳ0), dε(z̄) := a33(ετ−1z̄ + ȳ0)π2, z̄ ∈ R
2, (5.37)

respectively. In view of (1.1), for all ξ ∈ R
2 and for a.e. z̄ ∈ R

2 one has

ζ‖ξ‖2 ≤ (D̄ε(z̄)ξ|ξ) ≤ η‖ξ‖2, ζ ≤ dε(z̄) ≤ η. (5.38)

Hence, up to a subsequence that we do not relabel, the sequence {D̄ε}ε>0 G-converges to some matrix D̄0

(see [7,15]) and the sequence {dε}ε>0 weakly-� converges in L∞(R2) to some d0 ∈ L∞(R2). On the other
hand, since aαβ and a33 are continuous in a neighborhood of ȳ0, D̄ε → Ā(ȳ0) and dε → a33(ȳ0)π2 uniformly
on each compact subset of R

2 as ε → 0+. Thus, by definition of H-limit, we conclude that D̄0 ≡ Ā(ȳ0) and
d0 ≡ a33(ȳ0)π2 = aminπ

2. In particular, the whole sequences {D̄ε}ε>0 and {dε}ε>0 converge.
Let Sε represent the self-adjoint operator − div(D̄ε∇̄·) + dε· from L2(ωε) into itself. Then its spectrum is

σ(Sε) = ε2τσ
(1)
ε . Therefore, proving (5.34) is equivalent to proving

lim
ε→0+

σ(Sε) ⊃ [d0,+∞). (5.39)
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Consider now the inverse operator, S−1
ε , of Sε, i.e. the compact self-adjoint operator from L2(ωε) into itself

that associates to each fε ∈ L2(ωε), S−1
ε fε := ψε, where ψε ∈ H1

0 (ωε) is the solution of{
− div(D̄ε∇̄ψε) + dεψε = fε, a.e. in ωε,

ψε ∈ H1
0 (ωε).

(5.40)

For the sake of simplicity we will not distinguish a function in H1
0 (ωε) from its zero extension to the whole R

2.
Let us also introduce the self-adjoint operators from L2(R2) into itself, S := − div(D̄0∇̄·)+d0· and its inverse

operator S−1, that associates to each f ∈ L2(R2), S−1f := ψ, where ψ ∈ H1(R2) is the solution of{− div(D̄0∇̄ψ) + d0ψ = f, a.e. in R
2,

ψ ∈ H1(R2). (5.41)

Since D̄0 is a positive definite constant matrix and d0 > 0, σ(S) = [d0,+∞). Hence, if we prove that

lim
ε→0+

σ
(S−1

ε

) ⊃ σ
(S−1

)
, (5.42)

it follows that limε→0+ σ(Sε

) ⊃ σ(S) = [d0,+∞), which is precisely (5.39). In order to show (5.42), we start by
proving that S−1

ε converges strongly to S−1 as ε → 0+; more precisely, if f ∈ L2(R2), then S−1
ε fχωε → S−1f

in L2(R2) as ε→ 0+.
Let f ∈ L2(R2), and define fε := fχωε ∈ L2(ωε). Let ψε := S−1

ε fε (extended by zero outside ωε) and
ψ := S−1f . Thanks to (5.38), we have, up to a subsequence that we do not relabel, ψε ⇀ ϕ weakly in H1(R2)
as ε→ 0+, for some ϕ ∈ H1(R2). Moreover, since ψε is the solution of (5.40), if ϑ ∈ C∞

c (R2) then we have, for
all ε > 0 small enough, suppϑ ⊂ ωε and∫

R2
D̄ε∇̄ψε∇̄ϑ dz̄ +

∫
R2
dεψεϑ dz̄ =

∫
R2
fϑ dz̄. (5.43)

Letting ε→ 0+ we obtain ∫
R2
D̄0∇̄ϕ∇̄ϑ dz̄ +

∫
R2
d0ϕϑ dz̄ =

∫
R2
fϑ dz̄. (5.44)

Since ϑ ∈ C∞
c (R2) was arbitrary, we deduce that ϕ = ψ a.e. in R

2. Thus, ψε ⇀ ψ weakly in H1(R2) as ε→ 0+

and so, to establish the strong convergence in L2(R2) it suffices to prove that

lim
ε→0+

∫
R2

|ψε|2 dz̄ =
∫

R2
|ψ|2 dz̄.

Let L := lim infε→0+

∫
R2 |ψε|2 dz̄. Without loss of generality we may assume that the inferior limit defining L is

actually a limit, otherwise we would extract a subsequence. By the sequential lower semicontinuity of the norm
with respect to the weak topology of L2(R2), L ≥ ∫

R2 |ψ|2 dz̄.
To prove the converse inequality, we start by observing that in view of [7], Theorem 13.12, if c ∈ R is such

that infε dε > c > 0, then the sequence of functionals {Fε}ε>0, where Fε : H1(R2) → [0,+∞] is defined by

Fε(υ) :=

⎧⎨⎩
∫

ωε

D̄ε(z̄)∇̄υ(z̄)∇̄υ(z̄) + (dε(z̄) − c)|υ(z̄)|2dz̄, if υ ∈ H1
0 (ωε),

+∞, otherwise,

Γ-converges as ε→ 0+, with respect to the weak topology of H1(R2), to the functional F0 : H1(R2) → [0,+∞]
given by

F0(υ) :=
∫

R2
D̄0∇̄υ(z̄)∇̄υ(z̄) + (d0 − c)|υ(z̄)|2dz̄.
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Thus, since ψε ⇀ ψ in H1(R2) as ε→ 0+,

lim inf
ε→0+

∫
ωε

D̄ε∇̄ψε∇̄ψε + (dε − ζ̄)|ψε|2 dz̄ ≥
∫

R2
D̄0∇̄ψ∇̄ψ + (d0 − ζ̄)|ψ|2 dz̄, (5.45)

for any 0 < ζ̄ < ζ. Furthermore, using, in addition, the strong convergence fε → f in L2(R2) as ε → 0+, and
the fact that (5.43) holds for all ϑ ∈ H1

0 (ωε) and (5.44) holds for all ϑ ∈ H1(R2), we deduce that∫
ωε

D̄ε∇̄ψε∇̄ψε + dε|ψε|2 dz̄ =
∫

ωε

f ψε dz̄ −→
ε→0+

∫
R2
f ψ dz̄ =

∫
R2
D̄0∇̄ψ∇̄ψ + d0|ψ|2 dz̄.

Consequently,

lim inf
ε→0+

∫
ωε

D̄ε∇̄ψε∇̄ψε + (dε − ζ̄)|ψε|2 dz̄ = lim
ε→0+

(∫
ωε

D̄ε∇̄ψε∇̄ψε + dε|ψε|2 dz̄
)
− ζ̄L

=
∫

R2
D̄0∇̄ψ∇̄ψ + d0|ψ|2 dz̄ − ζ̄L, (5.46)

where we also used the definition of L. From (5.45) and (5.46) we deduce that L ≤ ∫
R2 |ψ|2 dz̄. Hence,

L =
∫

R2 |ψ|2 dz̄ and S−1
ε fε = ψε → ψ = S−1f in L2(R2) as ε→ 0+.

Finally, we prove (5.42). Assume by contradiction that there is γ ∈ σ(S−1) which is not a cluster point of
σ(S−1

ε ). Then there exist c > 0 and ε0 > 0 such that for all γε ∈ σ(S−1
ε ) with 0 < ε < ε0 one has

|γε − γ| > c.

Let f ∈ L2(R2), and set fε := fχωε ∈ L2(ωε). If γε ∈ σ(S−1
ε ) with 0 < ε < ε0, then

‖S−1
ε fε − γfε‖L2(R2) = ‖S−1

ε fε − γfε‖L2(ωε) ≥ |γε − γ|‖fε‖L2(ωε) ≥ c‖fε‖L2(R2). (5.47)

Using the strong convergence of S−1
ε established above together with the strong convergence fε → f in L2(R2)

as ε→ 0+, and letting ε→ 0+ in (5.47), we get

‖S−1f − γf‖L2(R2) ≥ c‖f‖L2(R2),

which contradicts the fact that γ ∈ σ(S−1) since f ∈ L2(R2) was taken arbitrarily. Thus (5.42) holds, and this
finishes the proof of Theorem 1.8.

�

A. Appendix

We prove the results announced in Remark 1.3. From (1.9) we obtain that |ρj | ≤ C‖ψj‖L2(Y ), where C is
a constant independent of j. On the other hand, the sum on the right hand side of (1.10) is the general term
of the Cauchy convolution of the series ψ :=

∑
j � 0 ψj and ρ :=

∑
j � 0 ρj . Summing (1.10) in j ≥ 0 and passing

to the limit, we get ⎧⎪⎨⎪⎩
− div(Ā∇̄ψ) + a33 π

2 ψ = ρψ, a.e. in Y,

ψ ∈ H1
#(Y ),

∫
Y

ψ dȳ = 1,

which implies ψ = φ0/
∫

Y
φ0 dȳ and ρ = μ0 (see (1.6) for τ = 1). Finally, in order to obtain the convergence

as τ → 1−, we fix ε > 0 and consider, for an arbitrary δ > 0, j0 ∈ N such that
∑

j>j0
|ρj | < δ. As τ
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is of order i
i+1 , to obtain the desired convergence it is enough to prove that

lim
i→+∞

i∑
j=0

ε
2(j+1)
i+1 ρj = ρ = μ0. (A.1)

Since
i∑

j=0

ε
2(j+1)
i+1 ρj =

j0∑
j=0

ε
2(j+1)
i+1 ρj +

i∑
j=j0+1

ε
2(j+1)
i+1 ρj ,

∣∣∣∣∣∣
i∑

j=j0+1

ε
2(j+1)
i+1 ρj

∣∣∣∣∣∣ ≤
∑
j>j0

|ρj | ≤ δ and lim
i→+∞

j0∑
j=0

ε
2(j+1)
i+1 ρj =

j0∑
j=0

ρj , the arbitrariness of δ yields (A.1). �
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