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Abstract: The ground state of a singularly perturbed nonselfadjoint elliptic operator
1PV )V + pbl (2)V; + v(z)

defined on a smooth compact Riemannian manifold with meffie) = (a¥/(z)) 1, is
studied. We investigate the limiting behaviour of the first eigenvalue of this operator as
goes to zero, and find the logarithmic asymptotics of the first eigenfunction everywhere
on the manifold. The results are formulated in terms of auxiliary variational problems
on the manifold. This approach also allows to study the general singularly perturbed
second order elliptic operator on a bounded domaiR'n

0. Introduction

Let M be am-dimensional smooth compact Riemannian manifold endowed with metric
a;;(x). Consider the following eigenvalue problem

Aty = TpPlal)] M2 0 @) ) M2 pla) + b () 5l + o )pla)

= —Ap(x) ©.1)

on M, wherep > 0 is a small parametera{ (z)) = (ai;(2)) 7%, |a(x)| = det{a;;(x)}
and|a(z)| V%52 a" (x)|a(z)|? 5% is the Laplace—Beltrami operator dd (see [1],
[8] for the relevant definitions). The coefficient¥ (), b*(x), v(x) are supposed to be
continuously differentiable real functions and the madtixx) is uniformly positive:

aij(r)&&; > cl¢)?, €€ R™c>0.

Thus, we deal with singularly perturbed uniformly elliptic operator.
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It is well known (see, for example, [15]) that for any fixad> O the operatord*
has a discrete spectrufig, Ay, ...}, R\, — +oc ask — oo. According to [6], the first
eigenvalue (i.e., the eigenvalue with the smallest real party simple and real, and
the first eigenfunctiomg(z) is also real and does not change sign. It then follows from
the maximum principle thatp(x) can be chosen positive (see [4]). We assume, without
loss of generality, the following normalizing conditions to be satisfied:

/‘ po(x)m(dx) = 1, /M m(dx) = 1, mJ\/E[iX'u(x) =0, (0.2
M

wherem(dz) = |a(z)|*?dx*...dz™ in local coordinates. This paper is aimed at an in-
vestigation of the asymptotic behaviouryf andpo(z) asy — O.

One of the most important applications of the results obtained here is a study of
the large-time behaviour of solutions to the Cauchy problem for singularly perturbed
parabolic equations. The growth or decay rate of the solutions, as well as their limiting
shape can be described in terms of the corresponding ground state.

Moreover, in the case of a torus, these asymptotics play a significant role in homog-
enization theory (see [5], [12], [14]). Indeed, as demonstrated in [4], [7], the homoge-
nization problem ford* can be reduced to the homogenization problem for a certain
operator involving no zero-order term. Then, the standard homogenization technique
can be applied. The coefficients of the latter operator depend on the ground stéte of
and, therefore, in order to investigate the limit behaviour of the effective coefficients of
A* for small i, one should know the asymptotics of the ground state.

If the operatord* is selfadjoint, i.e. ib(x) = 0, one can use the variational technique
in order to find the limit ofAq. In contrast with selfadjoint operators, in the case under
consideration the standard variational approach cannot be applied so even the study of
the first eigenvalue becomes nontrivial. Both the behavioutyaind the asymptotics
of po(x) are described here in terms of auxiliary variational problems on the manifold
M. In particular, we give a simple necessary and sufficient condition for convergence
of \g to zero (recall that it is always so in the selfadjoint case). We also show that under
certain conditiongg(x) decays exponentially at almost all points/af, and give the
corresponding asymptotics in a logarithmic scale.

Previously, closely related eigenvalue problems in a smooth bounded dondin in
for a singularly perturbed operator of special form

0 0 i 0
Oxt OxI H@) ozt
were considered in [9]-[11], where only the asymptotics of the first eigenvalue were
analyzed, but the first eigenfunction was not considered. Note that this operator is, in
fact, a special case of (0.1). Indeed, it suffices to divide (0.1) bynd set(x) = 0. It
turns out that the limit behaviour ofy(1) in this special case depends crucially on the
geometry of the integral curves of the equation b(x), especially near the boundary of
the domain. If, for instanceé(z) - v > 0 at the boundary, wheteis the inner normal, i.e.
if all the trajectories starting in the domain never leave it, then, as shown in [10], [11],
Mo() decays exponentially as— 0 and, under additional assumptions, its logarithmic
asymptotics can be calculated with the help of the rate functional for the corresponding
diffusion process. On the other hand, if there is a smo@th such thab(x) - Vo(z) > 0
in the entire domain then, according to [9h(x) > ¢ for somec > 0 (note that our
normalization differs from [9]).

pa’ () (0.3)
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Although in some special cases, the methods developed in the cited papers yield
precise asymptotics of the first eigenvalue, they only work for operatorsudh= 0,
and for domains with non-empty boundary. Then, even in those cases, the asymptotic
upper and lower bounds for the lowest eigenvalue need not coincide. Moreover, there
are no results on the corresponding eigenfunction.

In the present paper we use another approach which combines various variational
methods with the large deviation technique. This approach can also be applied to op-
erators defined in a bounded domain. In particular, the rough asymptotig§Qfcan
be found for the Dirichlet problem for an arbitrary elliptic operator of the form (0.1) or
(0.3).

In Sect. 1 we introduce auxiliary variational functionals and study their properties.
The basic result here is the existence of the following limit

T
3= Jim inf 2 [ ()G PO — V) - o) d

0

where the infimum is taken over all smooth curves on the manifold.
In Sect. 2 we prove the convergence of the first eigenvalye as 0. The main
assertion here, Theorem 1, states that

lim Ao(x) = A.
p—0

Section 3 is devoted to the investigationpgfz). Under an additional condition on
the operator (see the definition of recursive operator below), the logarithmic asymptotics
of po(z), uniform over the manifold, is constructed. This condition concerns the set of
accumulating points of trajectories satisfying the relation

T
sup / (ai; @A) — B (@G — Y @(@) — v(a(®) df — AT < oc.
0

Namely, the intersection of all such sets is assumed to be nonempty.
Section 4 is of special interest. Here we consider the operators with “potential” first
order terms:
bi(x):ai-j(x)iU(x), 1=12,...,n,
oxI
for a smooth functior/ (z) on M, i.e.b(z) is the gradient ot/ (x) in the metrica;; ().
Then, the problem of findiné takes the following algebraic form:

0
ox

Moreover, an operator with potential first order terms is recursive iff the minimum point
of the above expression is unique; therefore, in this case, the recursiveness condition is
that of a general position.

Section 5 contains results about selfadjoint operatdtg & 0). These results have
been proved in [12] by other methods and are included in this paper for the sake of
completeness. It should be noted that in case of selfadjoint operators the logarithmic
asymptotics opo(x) admits a simple geometric interpretation:

A= min (a"(z) iU(x)%U(x) —o(z)).
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/!LITO# In pO(I) = 7diSt|v|aij (I, x0)7

wherezxg is the unique maximum point af(x), v(xo) = 0, and the distance is taken in
the metriclv(z)|a;;(z).

1. Auxiliary Variational Problems

For absolutely continuous curvegt) = (z(t), ..., z™(t)), 0 < t < T, on M, we define
the functionall (z(-), T') as follows:

T

I(x(:),T) = / (aij(@@)@" — b (ONE — b (1)) — v(=@)) dt;

0

herea;;(z) is the inverse matrix ta*’ (x); recall that, ; is the metric onV/. Let us extend
I(x(-),T) to the space&”’(0,T'; M) of continuous functions by setting(z(-),T) = oo
for all otherz(-). It is easy to see that for every fixdd > 0 the functionall (z(-), T)
mapsC(0, T; M) into (0, +00). In what follows, we also use the functionals

S([L‘,y,T) = I(l’(),T),

inf
z(+), (0)=x, z(T)=y

m(T) = ergM S(z,y,T), M(T) = zingw S(x,z,T),
T
Io(e().T) = I(2(), T) + / o)t
0

T
= / (aij(@@)@E" — b (@@ — b (@(2)))) dt.
0

Taking the curver(-) = const as a trial function in the definitions e (1) and M (T')
we obtain

m(t) < M(T) < T (1.1)
with a constantg > 0. Hence,

lim sup@ <lim sup@ < ¢p. (1.2)

T—o0 T—o0

In fact, the Iimits( lim #) and (Tlim %) exist and coincide.
— 00

T—o0

Lemma 1. The functionsn(T)/T and M(T)/T converge to the same limit > 0 as
T — oo. The inequality

m(T) < AT < M(T) (1.3)
holds for allT' > 0, and there exists a sequerge— oo such tha’gvlim |M(tk)—5\tk\ =
0.
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Proof. The main idea of the proof is to use sub- and super-additivity. @ and M (t),
respectively, in combination with the upper bound|fof(t) — m(t)| obtained in Propo-
sition 2 below. Propositions 1 and 3 provide relevant technical estimates and Proposition
4 states that the functio$i(z, y, t) is Lipschitz continuous in all the variables.

The following relations

M(kt) < kM(t), m(kt) > km(t) (1.4)
hold for anyt > 0 and any integek > 0. To prove the first one, let us rewrite the
definition of M (t) in the form M (t) = |r(1f) I(x(-),t) and note that the infimum in

2(0)=(t)

the last relation can be replaced by the minimum, i.e. #ét) assumes its minimum.
Indeed, in view of the positive definiteness@f(x) and the compactness 8f, any
minimizing sequencéxy(-)} for M (t) is uniformly bounded and, therefore, weakly
compact in the functional spadé*(0, ) endowed with the norm

t
2|2 = / (22(t) + i2(D)dt.
0

Passing to the weak limit @& — oo and taking into account the weak semicontinuity
of I(z(-),t), we obtain the curve desired.

Then, iterating the closed curvg-) which provides the minimum fod (¢) and
using the same notatior(-) for the curve obtained, we find that

M(kt) < I(x(), kt) = kI(x(:), t) = kM(t)

for any positive integek. To prove the second inequality in (1.4), it suffices to consider
the curvez({:) which provides the minimum fom(kt) and to divide an interval (G:t)
into k equal parts:

k—1
m(kt) = I(E(), kt) = Y I(E(-+18),1) > km(?).
=0

SetA = (lim supM}T)) and )\ = (Ii;ninf %) and suppose that the difference
T—o0 o0
§ =X — \is positive. Then for some sequenegs— oo andt; — oo we have
. M, - . M@
lim (, b - A, lim (,,’“) =)
k—o0 k k— o0 tk

Letus fixT' > 1 suchthatM(T)/T < A+§/4. Then by (1.4) we have/ (kT)/(kT) <
A+ 4/4 for all positive integek. On the other hand, for sufficiently large we have

M(t))/t), > A, (t — Tl /T1) [t < T/t), < 6/(4ca), (1.5)

wherec; = m%(aij(x)b"(x)b?(m) +u(z) + 1) and [] means the integral part. Now let
xTE

us iterate f}, /7] times the curve that provides the minimum ff(7) and extend it
as constant. Using the curve obtained as a trial function in the definitidfi(¢f) and
taking into account (1.5) and the choice of T, we find that
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A= 0/4 < M(ty)/t, = MBIT + (), — [t1T)/1
< [ty/TIM(T) /1y, + ea(ty, — [t/ TIT) /by, < M(T)/T +c16/(4er) < A+6/2.

This contradicts the fact thdt> 0. Thus) = X and the Iimitt lim(M(t)/t) does exist.
The existence otf linfm(¢)/t) is a consequence of the following statements.

Proposition 1. The inequality

1
< it
S(x,y,T) <c <T+ T)

holds uniformly inc,y € M.

Proof. Letusfirst note thatin view of the compactnesdbHénd the positive definiteness
of a;;, we have

T 1
o 1 o
. - gy 1 - YNy
I(_)’IQ(E):I’ /a” (x(®)x* ()2 (t)dt T I(_)’I:I;I(E)zm’ /a” (x(t)x* ()2 (t)dt
z(T)=y 0 ==y 0

< %dist(x,y),

where dist{, y) is the geodesic distance in the metj¢, andc does not depend an
andy. Then, reducing the set of trial curves in the definitior6¢f, , y, T') to the only
curvez(-) that provides a minimum in the above problem, we obtain

T

T
S(z,y,T) < I(Z(),T) = / ai; (B3 (O)F (t)dt — 2 / ai (B(6)3 (Y (E())dt
0

0

~

T
+[ (ai; GEND EEW @) — v(E())) dt < 2 / a;; () (O)F (t)dt
0

(2a:; RO EO)Y (3(1) — v(E (1)) dt < %dist(x, y)+ 2T < ¢ (T + ;)

o\+aﬂo

The last inequality follows from the compactness\éf O
Proposition 2. The inequalityn(t) < M(t) < m(t) + ¢ holds uniformly irn¢ > 0.

Proof. By Proposition 1, the functiod'(x, y, 1) is bounded uniformly in: andy. Let
Z(-) be a curve providing the minimum fan(t). Combiningz{-) with a curve which
provides the minimum faf (Z(t), 2(0), 1) and using the curve obtained as a trial function
in the definition ofM (¢ + 1) we find

M(t+1) < m(t) + S(E(), £(0), 1) < m(t +1) +c2;

here the monotonicity of.(t) has also been used. O
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The relationt lim(m(t)/t) = tlim (M (t)/t) easily follows from Proposition 2.

_ Further, the estimate(t) < Y < M(t) follows from (1.4). Indeed, ifM (to) <
Ato for someto > 0, thenM (to) = (A — 0')to for somed’ > 0. By (1.4) we have
M (kto)/(kto) < A — ¢’ for all positive integerk. Therefore,t Iim%‘t) <A-=4¢"in

contradiction with the definition of. The estimaten(t) < At can be derived from (1.4)
in the same way.
The last assertion of the lemma relies on the following statements.

Proposition 3. The inequality
T
/aij (z(t))x' @ dt < col(x(), T) + caT (1.6)
0

holds uniformly ini” > 0 andz(-) € C(0,T; M).

Proof. By the Schwarz inequality,

T T
1((),T) = / ai; (x(t))i' il dt — 2 / ai; (2(1)&'V (x(t))dt
0

0

T T
+/@mmm%mem7wwmﬁz/%uwwwﬁ
0 0

T T
~ 5 [ty - cs [ aseW EOW O
0 0

[

T T
+ / (@i (@@ @@V (1) — v(=()) dt > > / aij(z()i'd? dt
0 0

T
s [ (a0 O W ) — oal0) .
0

In view of the boundness of the coefficientsAf this inequality implies (1.6). O

Proposition 4. For eachT} > 0, the functionS(x, y, t) is uniformly Lipschitz continu-
ous on the sedM x M x [Tp, o).

Proof. First, let us establish the estimate
1S(z,y,t") — S(z,y,t")| < LIt —t"| @7

with a constantZ that depends only offy. To this end we note that, after a simple
transformation, the differencé((-),t') — I(x(%-), t") can be written as
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t/
t—

t/t / asy (e(t)i i dt

0

1O, ~ 1), 1) =

¢

EE [ s eow e 66 - o)
0

t//

+

From this relation, substituting the curwé) that provides the minimum fa$(x, y, t')
and using Propositions 1 and 3, we get
1
S(IL', Y, t/I) - S(CL’, Y, t/) < I(x(%)v t//) - (I(.’E(), t/)

B e P P S W e L B
=~ p CCo p CcC3 1 C

/
<t — 1| {(1+12> +t}.
TO t//

If we suppose that’ — t”| is bounded, say b¥p, thent’ /¢t < 2 and the last estimate
takes the form

1
S(z,y,t") — S(z,y,t') < c|t’ — "] (3 + 2) .
TO
It remains to note that (1.7) for arbitrajty — t| follows from (1.7) for sufficiently small
[t —t".
Similarly, it suffices to verify the inequality

|S(z,y',t) — S(x,y",t)| < Ldist/’, y") (1.8)

for sufficiently small dist{’, y"’). This allows us to use the same local coordinates for
y' andy”. In particular, we can writé¢y’ — y”'| instead of dist{’, y"). Let z(:) be a
curve minimizingS(z, y’,t). Extending this curve to the interval, ¢ + |y’ — y”'|) as

the functionz(s) = ¥’ + (v — ¥/)(s — t)/]y’ — y”| linear in the local coordinates and
considering (1.7), we obtain

S,y t)+ely' —y"| > I(x(), t+ |y —y"])
> S,y t+ |y —y")) = S,y t) —cly —y"|

Thus,S(x,y”,t) — S(z,y',t) < |y’ — y"| < erdist@’, y”’). In view of the symmetry
betweeny’ andy”, this implies (1.8). The inequality

[S(',y,t) — S(z",y,t)| < Ldist@’, 2")
can be proved in the same way. [

To complete the proof of Lemma 1 we have to show that forBny 0 andj > 0
there ist > T such tha M () — At| < 4. For this purpose, we cover the manifold
M by finitely many balls of radiug; = /L, whereL is the Lipschitz constant from
Proposition 4 corresponding i@ = 1. Denote byV the number of the balls forming the
covering. According to (1.3), for any positive intedethere exists a curve(-) defined
on the interval (Qk(N + 1)T") such that
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I(x(), k(N + 1)T) < Me(N + 1)T. (1.9)

Consider the squ(jT)}?ﬁgV”). Itis clear that at least one ball in the covering contains
(k + 1) or more points of this set. Denote these pointshyy, ..., zs,s > k+ 1, and
the corresponding argumentshyy..., t;. Let us suppose that the inequalities

I(a(- = t;), tjen — ;) > Atjer — t5) +6/2 (1.10)

hold for all j < s. According to (1.3) and Proposition 2, the first and the last segments
of the curve satisfy the estimates

I(x(-), t1) > A1 — co,
I(@(- — ), k(N + 1)T — t,) > Ak(N + 1) — t,) — co.

Taking the sum of the inequalities (1.10) for alk 1,2, ..., s, and then adding the last
two inequalities, we find that

I(z(-), k(N + 1)T) > Me(N + 1)T + k6 /2 — 2co.
For sufficiently largek this relation contradicts (1.9). Hence, for sopne s we get
S(Zj, Zj+1, b1 — tj) < [(33( — tj), tj+1 - tj) < 3\(tj+1 — tj) + 5/2

Our construction guarantees thaf — zj41| < % andt;+1 — t; > T. Therefore, by
(1.3) and Proposition 4, we have

AMtjsr —t;) < M(tjer — t5) < S(zj, 2j, tjer — t5)
< S(zj, zje1s tjer — ) + L% < Mtjer — 1))+,
and Lemma 1 is proved. [
Corollary 1. The inequality
1S(z,y,t) — M| < ¢ (1.11)

holds uniformly int > Tp andz,y € M.

2. Convergence of the First Eigenvalue

In this section we study the first eigenvaligof problem (0.1). The limit behaviour of
Ao is described by the following

Theorem 1. The relationlim0 Ao(p) = A holds.
>

First of all we establish some rough estimatesXgandpg(x). This is the subject
of the following two statements.

Proposition 5. For all u > 0,

i < — < v(x) = 0.
waellJ@v(w)_ Ao(u)_ggﬁ(u(m) 0
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Proof. Due to the assumed normalizing conditiopg(;z) is a positive function o/ .
Denote byz; a maximum point ofpg. Then, according to the maximum principle,
we have—\opo(x1) = AHp(x1) < v(z1)po(ri). This implies the upper bound fov.
Similarly, writing down Eqg. (0.1) at a minimum point pf, we obtain the lower bound.
O

Proposition 6. The following inequalities hold uniformly in € M:

e M0/ < po() < p™ maxpo(x) > 1. (21)

Proof. The last inequality in (2.1) obviously follows from the normalizing conditions
(0.2). To prove the first one, let us rewrite Eqg. (0.1) in the rescaled local coordinates

Yy=u

0
oy’

L D N
la(uy)|2a" (1y) 7 —po(uy) + b' (1Y) 7 poky) + v(y)po(iy)
oyJ oy

1
2 la(uy)| 2
= —opo(py)-

According to our assumptions and Proposition 5, the coefficients of this equation are
continuously differentiable functions bounded uniformlyirtherefore, by the Harnack
inequality (see [3]) we have

0 < c1 < po(py1)/popy2) < c2

uniformly in ¢ > 0 andy1, y» € M satisfying the condition disy{, y2) < 1. Thus, in
the coordinates we have

c1 < po(r1)/po(2) < c2 (2.2)

for all 1,20 € M such that distf;,z,) < p. Let 2! be a maximum point of
po. Since M is compact, it follows that for ang € M there exists a sequence
T = 21,2223, ...,2N-1,2n = 21 With the following properties: distf, z;+1) < u
forall j < N; N < No(M)/u with No(M) independent of. andz. Iterating (2.2), we
find

17 roz)

po(@)/polas) = [ 2% > (er)V > eNoDiner/u

=1 po(zj+1)
This yields the lower bound (2.1). To prove the upper bound, let us consjderthe
ball Q. = {z|dist(z, ) < u}. By (2.2) and (0.2) we have

pofi) < c2 1IN po(2) < car™" Min pof) [ m(d2) < can™ [polIm(ds) < can
« " J A
and thereby the proposition is proved. [
Remark 1.In fact, the method developed here allows us to obtain the following inequal-
ity
po(x)/po(y) < expldist(z,y)/p). (2.3)
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[. Proof of Theorem 1.] In order to obtain the proper lower and upper bounds oy,
let us consider an auxiliary Cauchy problem

ou 0
o = Sl 1/2 la@) et @) 5 u(:c 0+ b (@) 5, ) + Mv(x)u(x 1)
u‘t:O - pO(x)
(2.4)
in the cylinderM x (0, +o0). To estimate its solution(x, t), which is obviously equal
to exp( %t)po(x), we introduce the operator

B 4u\a(x)\ 1/2 Ia(ﬂt)ll/2 (w ) A )a P

and denote by} the corresponding diffusion process dhissuing from the point.
The process;} is defined on some probabilistic spa€g ¢, P) and is assumed to have
continuous trajectories. The relevant definitions can be found in [1].

Now the solution of (2.4) has the following probabilistic representation (see [1]):

u(z,t) = E {po(&t)exp( /v({m)ds) } , (2.5)

0

whereE denotes the expectation of random variables.

Upper bound. Let disto 4(2'(-), 2(-)) stand for the distance sugist(z’(s), z”'(s))
0<s<t

in the functional spac€’(0, t; M). According to [2, Chapter 5, Th.3.2], the process

&F satisfies the large deviation principle uniformlyane M, with the rate functional

Io(z(-), t); see the definition ofg(x(-), t) in the previous section. In particular, for any

absolutely continuous curveg(-) and anys > 0 andy > 0, there existgiy > 0 such

that for all 4 < pg,

P {disto.q(€7, #()) < 6} > exp (W) . (26)
Since the function(z) is smooth, the inequality
¢ t
/U(Ef)ds — / v(x(s))ds| < ¢t (2.7)
" Jo

holds for any trajectory? that satisfies the estimate dit(x(:)) < J. Letz(-) be the
minimizing curve forM (t). By (2.6) and (2.7), for alls < po we have
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t
u(z,t) = E {po(ff<°’) exp (1 / v(e§<°>)ds) }
o

0

po((0))e "/

Y

min po(y)P{disto o (€77, 7)) < exp(i JRCOE cat)

0

_ t
;glj\r} po(y) exp <—W> exp (i / v(x(s))ds — cdt)
0

I@(), 1)+~ + cét) .
: :

Y

152'{} po(y) exp <

t

here the equality (z(-), t) = Io(z(-),t) — [ v(z(s))ds has also been used. According to
0

our choice ofz(*), we havel (z(-), t) = M(t), and therefore,

(_ M(t) +M7 + c5t) '

po(z(0))e~/# > min po(y) exp
yeM

Finally, by Proposition 6

e=ot/i > exp (_ ZC(M)) exp (_ I(z(), )+ + aSt)
B 1%

o
_ exp(— I(x()),t) + v+ cot + ZC(M)) .
u
Therefore,
No < M(t) cess ) 2c(M)

t 4 t

for all sufficiently smalli. Sinced and~ are arbitrary numbers angAf) does not
depend ort, this implies

im supAo < lim Mt @ _ 5. 2.8)

n—0

Lower bound. To estimate), from below, we consider the following subset of
C(0,t; M):
@y (a) = {=(")[=(0) =z, lo(x(-), 1) < a} .

According to [2], this set is compact if(0, t; M), and for everyd > 0,y > 0 and
a > 0 there existgip > 0 such that

P {dist (%, ®7(a)) > 6} < exp(—a;’y) (2.9)

forall u < po.

Moreover, for anyng > 0 the estimate (2.9) is uniform im < ag and inz € M.
Let = be the initial point of the curve that provides the minimum#foft). Represent-
ing £ as a union of the following two event§); = {disto (£, ®7(2M (1) > 6},
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Qo = {disto (€%, @F(2M (1)) < 6}, M(t) = max(M(t), 1), and denoting byy. the
characteristic function of a set, one can rewrite (2.5) in the form

1 t
po(z)e ot/ H =E {Xleo(éf)eXp (u O/ v(&?)dS) }
1 t
+E {xczzpo(&f)EXp (u O/U(f‘f)dS) } :

It follows from (2.9), Proposition 6 and the negativity «f) that the first term on the
right hand side satisfies an estimate

(2.10)

t

E {Xleo(ff )exp (i / v(fff)ds) } < cp”"P(Q1) < cp " exp (ZM(Z)V)
0

(2.11)
for sufficiently smalli:.. To estimate the second term, let us repregégnin the form

Q2 = {distp 4 (£, @ (0)) < 6}
[2M(t)/5]+1

U J  ({distog(g”, @F (ko)) < 6} N {disto (&", DF ((k — 1)) > 6})
k=2
[2M(t)/58]+1

=u J @
k=2

It should be noted that some events in this union can be empty. @ii¢e< I1(x(),t) =
Io(z(-), ) — [y v(a(s))ds, we obtain— [ v(z(s))ds > m(t) - ké foranyz(-) € ¥ (kd).
Hence, by (2.7) we get

- / v(€7)ds > m(t) — kb — cdt (2.12)
0

for all trajectories fronY}. At the same time, according to (2.9),

PQ) < P {disto (&”. #7(k - 19) > 3} < exp - =20

Combining the last two estimates, we find
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t
E {Xszo(E'f)eXp (i / v(gg”)ds) }
0

[2M(t)/5]+1

t) — kd — cot
< P(Q%) max ex —m(>
< Y PEmEmwen(- "0
[2M(t)/8]1+1
cart 3 e (_ (k- 2)5) e (_ m(t) — kd — c6t>
k=1 H H

< cu_nZ\Z(t)/(S exp (_’rn(t)_zm> .

i’
From (2.10), taking into account (2.11) and the last inequality we derive

pola)e /1 < cpn {exp (‘ ZM(Z) - 7) + 3A§(t) exp(—W) }

or, after simple transformation,
Aot > (M) — npInp(Ind — In ML) +m(t) — v — 26 — 6t — c1;
herec; depends neither onnor .. Sinced and-y are arbitrary numbers, this implies

m(t) _ :\7
t

liminf Ao > lim
n—0 t—o0

which, in view of (2.8), completes the proof of Theorem 1. O
Corollary 2. The first eigenvalug, of problem (0.1) converges to zerozas— 0 if and

only if the identityu(z(¢)) = 0 holds along at least one solution of the equation b(x)
onM.

3. Asymptotics of the First Eigenfunction

In this section the asymptotic behaviour of the first eigenfunqgiign) is studied. Some
additional assumptions are required in order to ensure the existence of the asymptotics.
These assumptions, in turn, involve the following definitions.

Condition A. A curvez(-) defined on(0, +c0) satisfies condition A, if for any > 0
there isT" > 0 such that for allt > 0 we have

T+t

I(a(- = T),t) = / (@i (@)@ = b (@)@ — b (@(1) — v(z () dt < M +e,

T
where)\ is defined in Lemma 1.

Condition B. A curvez(-) defined on(0, +oo) satisfies condition B, if the inequality
I(x(-),t) < At + ¢ holds uniformly int > 0.
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First of all, we should answer the question if curves satisfying Conditions A and B
do exist. The proof of the following two simple assertions is outlined briefly.

Proposition 7. The conditions A and B are equivalent.

Proof. The implication A=B is obvious. To derive A from B it suffices to note that the
set{t | I(z(-),t) — A\t > suI(z(), s) — As) — e} is not empty for each(-) satisfying

Condition B, and to takesarbitra@? from this set. O
Proposition 8. A curve satisfying condition B does exist.

Proof. Thanks to the last statement of Lemma 1 and the definitialf (), there exist
a sequence, — oo and curvese(t), 0 <t < ¢y, z(0) = z(tx) such that

Jim [ 1(zk(), te) — Mg| = 0.

Taking, if necessary, a proper subsequence one can assume that the seg(f) s
converge, and that the inequalities

dist(z1(0), xx+1(0)) < exp(=k), [I(zx(-), tr) — S\tk\ < exp(=k)

hold. Now, combining the curves,(-) and segments of geodesics that connggty,)
andz+1(0), we obtain the desired curve. [

Next, we introduce the class of operators to be studied.

Definition. The operatord* is recursive if there is at least one poirg of M such that
foranye > 0,7 > 0and anyz(-) satisfying condition A, the inequalitijst(z(t), xo) < e
holds for some > T'. The pointzg is called recurrent forA*.

The following property of recurrent points plays an important role in further considera-
tions.

Proposition 9. For each recurrent poingtg of A*,
lim inf (S, 2o, 1) — At) = 0.
Proof. By Lemma 1,
S(wo, o, 1) — At > M(t) — At > 0.
Thus, lim inf(S (o, zo, t)—\t) > 0. Ifwe suppose that lim irf®(«o, o, t)—At)=c > 0,

then Proposition 4 implies tha(x, v, t) — At > ¢/2 for sufficiently larget andz, y
close toxg. Let () satisfy condition B. Sincey is a recurrent point ofiA*, one can
find a sequencéty } 2, such thatf+1 — tx) — oo ask — oo andx(tx) are close taxg
for all k. Hence,

k

I(@(), then) = Mas = (I(@(), t2) = M) + Y (I(@(- = ts), terr — ts) = A(tsrs — 1)) >
s=1

Z k‘C/z — C1.

For sufficiently largek this estimate contradicts the fact thdt) satisfies condition B.
O
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For a recursive operator we define the functiép as follows

Wo(x) = Inf m(')’(l%](g):w’ ((x(), 1) — A) = Inf (S(x, zo, 1) — A1), B1
x(t)=x0

wherex is a recurrent point.

Remark 2.In fact, the infimum over aft > 0 in (3.1) can be replaced by that over an
arbitrary half-linet > Ty, Tp > 0. Indeed, le{ 2, ()} be a sequence of curves with the
following properties:

wp(0) =wp(te) =wo,  lim tp=oo, lim (I(zx(), 1) — Ati) =0.

Proposition 9 guarantees the existence of such a sequence. Now it suffices to extend the
curves from an arbitrary minimizing sequence ¥gg as the curves from the sequence
just constructed.

In view of Remark 2, the following statement easily follows from Proposition 4.
Proposition 10. W is a Lipschitz continuous function av.

It should be observed that, in general, the functitip depends on the choice of the
recurrent pointo. Define the functiori? () on M by the formula

W(z) = Wo(z) — min Wo(y).
yeM

A remarkable property o’ is its independence afy.

Proposition 11. W (x) is a well-defined function ol/; it does not depend on the choice
of the recurrent point.

Proof. Consider two arbitrary recurrent point§ andzx{ of the operatord*. The cor-
responding functions (3.1) will be marked band ", respectively. Our proof is based
on the following relation:

Wo(zg) + We'(zg) = 0. (3:2)
In order to establish (3.2), let us first assume #g(zg) + W{'(xp) = ¢ > 0. In view of
Propositions 4 and 10, this implies the estimate

inf (S(x1, y1,t) — M) + Inf(S(y2, 22, 1) — Xt) > ¢/2
t>0 t>0

for all z1, z, close tox; andy,, y» close tozg. Fixing an arbitrary curves(-) which
satisfies condition B and taking into account the propertieg aindz{, one can easily
construct an increasing sequer{¢g} such thate(tz,) are close tacg andxz(to,—1) are
close tox( for all £ > 0. Then our assumption leads to the following inequality:

I(2(), taren) — Moger = ([(@ (), t1) — A1)
k
+ Z {(I(JZ( - tZs—l)a t25 - t25—1) - X(tZS - tZS—l))
s=1

HI((- = t2), taons — t20) = Maws — t2:)) } = (1), 1) — Ata)

k
+ 3 {(S@tas-1), 2(t2:), oy — t2s-2) = Mz, — t25-)

s=1
+ (S(I(tz‘i)a x(t28+l)a tos+1 — tZS) - X(152.<;+l - t29))} >ct kC/Z,
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which contradicts the fact tha{-) satisfies condition B. Thus¥(xzg) + W' (zg) < 0.
On the other hand,

Walag) + W (xg) = Inf(S(ag, 2, 1) — M) + Inf (S(af, 25,1) — M)
> >
. ! ! i - i
> inf (S(ag, a,1) = M) > inf (M(1) — Ar) > 0
and (3.2) follows. Now,
() = i V] 3 : " 3 . "o 3
Wola) = inf (S(a, x5, 1) — M) < Inf (S(w. a5, ) — ) + Inf(S(ag, 25, 1) — M)
= W' () + We(eg).

Similarly, W§/(z) < W{(x) + W§/(zp). In view of (3.2), this means thdl/j/(z) =
W(x)+W§ (z5). In other words, the differend&’(z)— Wy (z) is constant, and therefore,
W is well-defined. [

The main result of this section is the following
Theorem 2. Let operatorA* be recursive. Then
Iimou Inpo(x) = —W(x) (3.3)
p—

uniformly inz € M.

Proof. Lower bound. Let us fix an arbitrary recurrent point of the operatord* and
estimate the ratipo(z)/po(zo) from below. According to the definition d¥/, for any
x € M andé > 0 there is a curve(-) defined on the interval (0°(5)) and such that

2@ =z,  2(TE)=z0, I(@(),TO)) — AT(G) < Wo(z) +5.  (3.4)

Moreover, using compactness arguments and Proposition 4 and 10, we canEfose
bounded by somé&p(6) uniformly in z € M. Indeed, if we construct the segment of
geodesic curve that connegtandz, combine it withz(-) and denote the obtained curve
by Z(-), then we get

I(E(-), T(6) + dist(y, 2)) — \(T'(8) + dist(y, z)) < Wo(x) + 2—; < Wo(y) + g

for all y from a sufficiently small neighbourhood of
According to [2], for any; > 0O there existgi,y > 0 such that

P {disto 7y (£7, z(-)) < d1} > exp <_W>

for all u < po. From (2.3), (2.7), (3.4) and the last estimate, we get

7(5)
1
po(z)e T = E {po(&?w)) exp (M 0/ U(f'st)ds) }

> P{disto, 7y (§7, () < 61}

T(6)
% polo) exp(_05l) exp{ 1 ( /v(w(s))ds - cT(5)51) }
p AV

I(x(), T(9)) + 61+ cdy + cT(5)51>
u .

(3.5)

> po(wo) €Xp (—
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Finally, using (3.4), we find

Wo(w) + 0+ T()|A — Ao| + (1 +ex + cT(é)m)

po(x) > po(wo) EXP <— .

For suitably chosen, &; and i, the quantity § + T(8)|\ — Ao| + (1 +c1 + ¢T(8))d1)
becomes arbitrary small, and therefore,

"Ti'gf pIn(po()/po(x0)) > —Wo(x). (3.6)

Upper bound. The following statement is a direct consequence of the definition of a
recurrent point.

Proposition 12. Under the above conditions, for ady> 0 andc¢ > 0, there exists
to = to(c, 6) such that for allt > to the inequalityogﬁgtdist(x(s)7 xo) > ¢ implies that

I(z(), ) > At +c. (3.7)

The constant will be fixed later. Again using compactness arguments, we deduce from
Corollary 1 that for any > 0 there ist; = t1(d) such that

Ogl?gtl(S(x, To,t) — At) — ir;ig(S(m,xo,t) —A)| <6 (3.8)

uniformly inz € M. Let us denote max{(c, 6), t1(6)) by ¢ and fix x0(5) such that the
estimate L
[Ao— At < ¢ (3.9)

holds for allys < po(8). Later on we assume that< pig(9). )
It is easy to check that the functiarfz; t) = po(x) exp(—(\o — A)t/u) satisfies the
equation

( — ZAF - ) =0,  fe=o=po. (3.10)

Moreover, according_to our choice ph(), the relationu{z,t) = po(x) expO(0)/ 1)
takes place for alt < ¢ andu < po(6).

Let 735 be the exit time for the domaif \ Oy5(xo), WwhereOas(zo) is the ball
{y € M| dist(y, z9) < 25}. For our purposes, it is convenient to fix > 0 and divide
the setQ into three parts:

Q = {distp 7(PF(K), &%) > do}
Q = {(735 > ) N (disto (PF(K), £) < S0},
Q3 = { (735 < 1) N (disto 7 (PF(K), &) < do) },
whereK =c+ {m%w(y)\ and®#(K) is defined in the previous section. According to
ye
[2], for sufficiently smallu we have

P(€21) < exp(—Ku_é> ) (3.11)
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To estimate the contribution a@3 into the solutionu{x, t) written in a probabilistic
form, let us fix an arbitrary positivé and represeri2s as a finite union of the following
events:

t/51 K/§
Q3= J | ({kd1 < 735 < (k + 1)01} N {distio, (rs1)5,) (Pfanys, (L + 1)9), £7) < Jo}
k=1 i=1
t/61 K/
N {disto (k151 (Pfiorrys, (10), €7) = 00}) = | | 257
k=1 I=1

We also fix a positives and suppose that € M \ O, (xo). The opposite case, namely
x € O,(x0), will be examined later. In what follows we assume thady, ; andv are
sufficiently small and satisfy the relationss> § > do, v > 61. According to [2], there
existst,(v) such that

P{m35 < ta(v)} < exp(—K/p)
forall z € M \ O, (o). In view of the definition of25 ", this implies thaP(Q4") <

exp(—K/u) for all k < t2(v)/d1, and therefore it suffices to examiﬁ%’l only for k
from the intervak,(v) < ké; < t. According to [2],

. 16—6
P(RAY) < P{diSto (esayp (Pfurnys, (), %) > G0 < exp(—u) (312)

for sufficiently small.. Atthe same time, itfollows from the definition &}, s, ((1+1))
that for any¢® € Q’g’l there is a curve(-) satisfying the estimates

To(z(), (k +1)61) < (I +1)d, disto,(k+1)5,1 (x(-), £) < do. (313)
In view of the evident relatiofw(£7,,) — wo| = 26, this implies

|2(735) — 2ol < 25+ do (3.14)

where the arguments; is random. To estimate the same difference at a nonrandom
point, we apply the following

Proposition 13. The inequality
dist(z(s1), z(s2)) < (K, 1)\/|s1 — 52|, 51,852 <t (3.15)
holds uniformly int < ¢ andz() satisfying the conditiodo(z(-), t) < K.

Proof. Proposition 3, the definition of the distance and the Schwarz inequality yield
s2

diSt(ﬂ?(Sl), 33(32)) < / (ai,j (l‘(S)xl (S),Z‘J (3)) 1/2d8

S1

S2

< /aij(z(s)ri(s)dsj(s)dsx/ |s1 — s2| < (K, t)\/|s1 — s2].
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Now, taking into account the inequaliby; < 755 < (k + 1)é; and Proposition 13, we
deduce from (3.14),

|2((k + 1)82) — wo| < ((K, )y/51+ 25 + bo). (3.16)
Note that the constant(k, ¢) in (3.16) does not depend @h and dy. Then, by the
definition of S(x, y, t), we get

(k+1)51
To(x ("), (k +1)01) — / v(@(t))dt = Sz, x((k +1)01), (k + 1)d1).
0

In view of (3.16), Proposition 4 and the inequalkty; > t(v), this implies

(k+1)5
To(z(), (k+1)d1) — / v(@(t))dt > S(z, o, (k+1)01) — ¢ () (c(K, £)/61+ 8 + o).

0
Hence by virtue of (3.13),
(k+1)5;
— / v(z(t))dt > S(x, zo, (k +1)51) — (1 + 1) — /' (v)(c(K, t_)\/a+ 0 + dg).
0
Finally, by (2.7,)
(k+1)81
~ / w(ED)dt > S(x, w0, (k +1)51) — (1 + 108 — ¢ ()(c(K, £) /31 + & + do) — ctdo.
0

Using this inequality and (3.12), we obtain

5
E [ xoet €XxP 1 (W(€¥) — N)ds
3 I
0

(k+1)51
gexp(“sl) E (x exp{1 / (v(fff)ﬁ)ds}) < exp(”él) P(@}")
7 s o 7

S(z, zo, (k + 1)61) — (k + 1Yo A — (I + 1)5 — ' (0)(c(K, £)/S1 + § + §o) — ctiso)
o

<exp(-
(3.17)

< exp< ? > exp( Wo(z) — (1 +1)5 — C/(y)(c([i, DL+ 6+ 8g) — ctdg — 051)

< exp<_ Wo(z) — 26 — W) (K, t:);/ﬁ+ 8+ 80) — ctdo — 061)
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here we have also used the obvious inequdlitfz) < S(x, zo, (k+1)d1) — (k + 1)615\.
Then, representing, in the form

K/6 K/§
Q= ({disto g(®F(( + 1)0),£7) < do} N {distp 7(DF(10), &%) > do}) = | @b,
=1

=1

and applying the above arguments with obvious simplifications, we find that

v o _
E (XQ; exp{i / (v(fz)—&)ds}> < exp(—c‘s ‘:5‘0“"), (3.18)
0

whereS = inft(S(x,y, t) — S\t). Now let us notice that the solution of the following
z,y,

initial boundary value problem
<6 — EAM — >\> u =0, reM \ O2s(x0);

Elt:o = Po, maozs(wo) = a|3025(10)’

coincides withu{z, t) for x € M \ O,s(x0) and can be written in the form (see [1])
T35

~ — ~ e . 1 " 2
e.t) = o) = | A5, T o] O/ (€5~ Nds ¢ |,

where7;, = min(rg;, t). Using the relationu(z,t) = expO(5)/)po(z),t < t, we
obtain

25
1

polo) < exp( %2 ) E | (ens v +xedon(sg ) oxpd [ (60) ~ s
1 n

In view of (3.11), Proposition 6 and the choiceldfthe first term on the right hand side

can be estimated as follows

—r
T25

1 R
e | xam(é)exp] o [ - Vs
a 0

¢ (K= )
<exp (-C__c(i\:[)_é) po(xo)-

Then, by the definition of23, Remark 1 and (3.17), we get
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—x
T2s5

€ | xaum(ez) el [ wlen) ~ Ryas
0

 Wolx) = 26 = ¢ (W)(c(], 1)V/61 + 6 + Jo) — ctdo — 651)

<LK o
< 5y o .

X exp (cé) po(z0)-
L

Similarly, by (3.18) and Proposition 6, we get

1 T25 A
e | xem(ez)expd - [ (o(e) - s
0

K c— S — b — ctdo (M)
< 5 expl - exp po(T0)-
[ I

Combining the last three estimates and choosing §, do, d1 properly, we find that

lim Sup In(po()/po(0)) < —Wo(x)
p—

forallz € M \ O, (z0). In view of (3.6), this yields
lim s In(pofe)/po(ic) = ~Wo(a)

forallz € M\ O, (x0). Sincev > Oisarbitrary, the last equality holds for alk? z¢. But,
according to Remark 1, the functiopdn(p(x)/p(xo)) are equicontinuous. Therefore,
this equality holds uniformly in: € M. Now, the statement of Theorem 2 follows from
our normalizing conditions. [

4. Operators with Potential First Order Terms

Inthe section we consider operatar$ with 'potential’ first order terms. These operators
admit explicit formula, both for the limit of the first eigenvalue and the recurrent point.
Moreover, the functio¥ (z) can be expressed in terms of the geodesic distance in a
proper auxiliary metric.

Definition. The operatorA# has potential first order terms, if there is a functibifz)
on M such that

bi(z) = aij(x)iU(x), 1=12..,n.
oxJ
Theorem 3. Suppose that the operatar* has potential first order terms. Then

0
ozt

,LiLno Ao = :EQII\I} <aij () U(x)%U(x) — v(x)) .

The operatorA* is recursive if and only if the functiont? (z) .2: U () 525 U (2) — v(x)

has a unigue minimum point al/. This minimum point is the only recurrent point of
AF.
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Proof. Let zo be a minimum point of the functiofia’ (z) 52 U (z) 52 U(z) — v(z)).
After simple transformation, we find that

10000 = [ (1)1 + a7 ) 5 - Ual6) s Ul — o(a(s)) s
0

0
Ox?

+ 200((0) - U((0)) > ¢ min ( (@)
20U (0) - U(0)

for any absolutely continuous curvg:). Since 2{/(z(¢)) — U(x(0))) is bounded uni-
formly in ¢, we have\ > rreuz\r} (a¥ ()32 U(x) 52 U(x) — v(z)). On the other hand,
taking the curvex(-) identically equal tacg, we obtain

0
ox?

The other assertions of the theorem can be proved in the same way/l

U(x)%U(x) — v(m))

A< t[mw %I(m(), t) = CL’QIZG (a”(x) U(x)%U(m) — v(x)) .

Denote
0

oz’

V) = (0055 Ua) 5 5 U) — o0))

NN N
- min (00 5 U650 )~ 0) ).

The next statement provides the geometric interpretatiobigir).

Theorem 4. Letxzg be the unique minimum point &f(z) on M. Then
Wo(z) = 2 [U(xo) — U(x) + disty (m))a,, () (@, Z0)] ;
here disty (+))a,,(x) IS @ distance in the metri@/ (x))a;;(x).
The proof is the same as that of Theorem 5 below.

Remark 3.The pointzg need not belong to the set of minimum pointsig§(x) (and,
hence W (x)). Thus,po(xo) might be exponentially small.

5. Selfadjoint Operators

In this section we suppose thidit) = 0, i.e. thatthe operatot” is selfadjoint. Then, the
formula of the previous section admit an interesting geometric interpretation. Clearly,
for selfadjoint operators. = mil\r}(—v(x)) = 0 and Condition B is equivalent to the

TE

uniqueness of a minimum point efv(z). Without loss of generality we suppose that
mij\r}(—v(x)) = 0. Denote the minimum point hyp.
S

Theorem 5. Letb(z) = 0, and assume that the functi¢nv(xz)) has a unique minimum
point. Then

ETO” In p(x) = —2diSt v (@))a;; (=) (2, T0);

here dist_,(x))a;, () is @ distance in the metric-v(x))a;;(z).
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Remark 4.Under the assumption of Theorem 5 the metrie(x))a;;(x) degenerates
only at the pointz.

Proof of Theorem 5We will prove the following chain of equalities
T
i = _ i i - 2
;LITO wInp(x) %n>fO Lrgf) / (az j(@()z'x v(x(t))) dt
z(0)=z, x(T)=x0 0
1

=t 2 [ o Oa et = -2 e 10
z(0)=z, z(1)=z0 0

(4.2)
The first equality in (4.1) is a direct consequence of Theorem 3. To obtain the second
one let us consider a family of regularized functiengx) = v(z) — &, k > 0. We have

T
inf i / (aij (@(®)ii? — va(w(t)))dt

T>0 (")
z(0)=z, z(T)=z0 0

T>0 ()
z(0)=x, x(1)=xo

1
=inf  inf / (%aij(:c(t))ii:tj — T, ((t))) dt
0

=2 0 / Vo ®ay @i

z(0)=z, z(1)=z0 0

Now, for any fixed curvex(t), z(0) = x, (1) = zo we consider an equation

T= T\/—aij(l'(T(t)))j)ijjj/'Um(x(T(t)))v 7(0) =

and choos€é” in such a way that(1) = 1. Changing the parametrizatio(t) = z(7(t))
gives

1 1
[ Gase@zs = oo = [ (Faa)ilis - Zote))ir
0 0

=2 / \/(*UK(I(T Vai; (x(r))ztad dr.
0

Thus, the relation

T>0
.L(O)—l L(l)—aLo

1
it int / L @) — To(a(t)))dt
0

=2 / Ve @yiii

z(0)=z, x(1)=z0 0
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holds. Passing to the limit as— 0 we obtain (4.1). The theorem is proved. [
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