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Abstract: The ground state of a singularly perturbed nonselfadjoint elliptic operator

µ2∇ia
ij(x)∇j + µbi(x)∇i + v(x)

defined on a smooth compact Riemannian manifold with metricaij(x) = (aij(x))−1, is
studied. We investigate the limiting behaviour of the first eigenvalue of this operator asµ
goes to zero, and find the logarithmic asymptotics of the first eigenfunction everywhere
on the manifold. The results are formulated in terms of auxiliary variational problems
on the manifold. This approach also allows to study the general singularly perturbed
second order elliptic operator on a bounded domain inRn.

0. Introduction

LetM be ann-dimensional smooth compact Riemannian manifold endowed with metric
aij(x). Consider the following eigenvalue problem

Aµp =
1
4
µ2|a(x)|−1/2 ∂

∂xi
aij(x)|a(x)|1/2 ∂

∂xj
p(x) + µbi(x)

∂

∂xi
p(x) + v(x)p(x)

= −λp(x) (0.1)

on M , whereµ > 0 is a small parameter; (aij(x)) = (aij(x))−1, |a(x)| = det{aij(x)}
and|a(x)|−1/2 ∂

∂xi a
ij(x)|a(x)|1/2 ∂

∂xj is the Laplace–Beltrami operator onM (see [1],
[8] for the relevant definitions). The coefficientsaij(x), bi(x), v(x) are supposed to be
continuously differentiable real functions and the matrixaij(x) is uniformly positive:

aij(x)ξiξj ≥ c|ξ|2, ξ ∈ Rn, c > 0.

Thus, we deal with singularly perturbed uniformly elliptic operator.
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It is well known (see, for example, [15]) that for any fixedµ > 0 the operatorAµ

has a discrete spectrum{λ0, λ1, ...}, <λk → +∞ ask → ∞. According to [6], the first
eigenvalue (i.e., the eigenvalue with the smallest real part)λ0 is simple and real, and
the first eigenfunctionp0(x) is also real and does not change sign. It then follows from
the maximum principle thatp0(x) can be chosen positive (see [4]). We assume, without
loss of generality, the following normalizing conditions to be satisfied:∫

M

p0(x)m(dx) = 1,
∫

M

m(dx) = 1, max
M

v(x) = 0, (0.2)

wherem(dx) = |a(x)|1/2dx1...dxn in local coordinates. This paper is aimed at an in-
vestigation of the asymptotic behaviour ofλ0 andp0(x) asµ → 0.

One of the most important applications of the results obtained here is a study of
the large-time behaviour of solutions to the Cauchy problem for singularly perturbed
parabolic equations. The growth or decay rate of the solutions, as well as their limiting
shape can be described in terms of the corresponding ground state.

Moreover, in the case of a torus, these asymptotics play a significant role in homog-
enization theory (see [5], [12], [14]). Indeed, as demonstrated in [4], [7], the homoge-
nization problem forAµ can be reduced to the homogenization problem for a certain
operator involving no zero-order term. Then, the standard homogenization technique
can be applied. The coefficients of the latter operator depend on the ground state ofAµ

and, therefore, in order to investigate the limit behaviour of the effective coefficients of
Aµ for smallµ, one should know the asymptotics of the ground state.

If the operatorAµ is selfadjoint, i.e. ifb(x) ≡ 0, one can use the variational technique
in order to find the limit ofλ0. In contrast with selfadjoint operators, in the case under
consideration the standard variational approach cannot be applied so even the study of
the first eigenvalue becomes nontrivial. Both the behaviour ofλ0 and the asymptotics
of p0(x) are described here in terms of auxiliary variational problems on the manifold
M . In particular, we give a simple necessary and sufficient condition for convergence
of λ0 to zero (recall that it is always so in the selfadjoint case). We also show that under
certain conditionsp0(x) decays exponentially at almost all points ofM , and give the
corresponding asymptotics in a logarithmic scale.

Previously, closely related eigenvalue problems in a smooth bounded domain inRn

for a singularly perturbed operator of special form

µaij(x)
∂

∂xi

∂

∂xj
+ bi(x)

∂

∂xi
(0.3)

were considered in [9]–[11], where only the asymptotics of the first eigenvalue were
analyzed, but the first eigenfunction was not considered. Note that this operator is, in
fact, a special case of (0.1). Indeed, it suffices to divide (0.1) byµ and setv(x) ≡ 0. It
turns out that the limit behaviour ofλ0(µ) in this special case depends crucially on the
geometry of the integral curves of the equation ˙x = b(x), especially near the boundary of
the domain. If, for instance,b(x) ·ν > 0 at the boundary, whereν is the inner normal, i.e.
if all the trajectories starting in the domain never leave it, then, as shown in [10], [11],
λ0(µ) decays exponentially asµ → 0 and, under additional assumptions, its logarithmic
asymptotics can be calculated with the help of the rate functional for the corresponding
diffusion process. On the other hand, if there is a smoothφ(x) such thatb(x) ·∇φ(x) > 0
in the entire domain then, according to [9],λ0(µ) > c for somec > 0 (note that our
normalization differs from [9]).
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Although in some special cases, the methods developed in the cited papers yield
precise asymptotics of the first eigenvalue, they only work for operators withv(x) ≡ 0,
and for domains with non-empty boundary. Then, even in those cases, the asymptotic
upper and lower bounds for the lowest eigenvalue need not coincide. Moreover, there
are no results on the corresponding eigenfunction.

In the present paper we use another approach which combines various variational
methods with the large deviation technique. This approach can also be applied to op-
erators defined in a bounded domain. In particular, the rough asymptotics ofλ0(µ) can
be found for the Dirichlet problem for an arbitrary elliptic operator of the form (0.1) or
(0.3).

In Sect. 1 we introduce auxiliary variational functionals and study their properties.
The basic result here is the existence of the following limit

λ̂ = lim
T→∞

inf
x(·)

1
T

T∫
0

(
aij(x(t))(ẋi − bi(x(t)))(ẋj − bj(x(t))) − v(x(t))

)
dt,

where the infimum is taken over all smooth curves on the manifold.
In Sect. 2 we prove the convergence of the first eigenvalue asµ → 0. The main

assertion here, Theorem 1, states that

lim
µ→0

λ0(µ) = λ̂.

Section 3 is devoted to the investigation ofp0(x). Under an additional condition on
the operator (see the definition of recursive operator below), the logarithmic asymptotics
of p0(x), uniform over the manifold, is constructed. This condition concerns the set of
accumulating points of trajectories satisfying the relation

sup
T

T∫
0

(
aij(x(t))(ẋi − bi(x(t)))(ẋj − bj(x(t))) − v(x(t))

)
dt − λ̂T < ∞.

Namely, the intersection of all such sets is assumed to be nonempty.
Section 4 is of special interest. Here we consider the operators with “potential” first

order terms:

bi(x) = aij(x)
∂

∂xj
U (x), i = 1, 2, . . . , n ,

for a smooth functionU (x) onM , i.e.b(x) is the gradient ofU (x) in the metricaij(x).
Then, the problem of findinĝλ takes the following algebraic form:

λ̂ = min
x∈M

(
aij(x)

∂

∂xi
U (x)

∂

∂xj
U (x) − v(x)

)
.

Moreover, an operator with potential first order terms is recursive iff the minimum point
of the above expression is unique; therefore, in this case, the recursiveness condition is
that of a general position.

Section 5 contains results about selfadjoint operators (b(x) ≡ 0). These results have
been proved in [12] by other methods and are included in this paper for the sake of
completeness. It should be noted that in case of selfadjoint operators the logarithmic
asymptotics ofp0(x) admits a simple geometric interpretation:
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lim
µ→0

µ ln p0(x) = −dist|v|aij
(x, x0),

wherex0 is the unique maximum point ofv(x), v(x0) = 0, and the distance is taken in
the metric|v(x)|aij(x).

1. Auxiliary Variational Problems

For absolutely continuous curvesx(t) = (x1(t), ..., xn(t)), 0 ≤ t ≤ T, onM , we define
the functionalI(x(·), T ) as follows:

I(x(·), T ) =

T∫
0

(
aij(x(t))(ẋi − bi(x(t)))(ẋj − bj(x(t))) − v(x(t))

)
dt;

hereaij(x) is the inverse matrix toaij(x); recall thataij is the metric onM . Let us extend
I(x(·), T ) to the spaceC(0, T ; M ) of continuous functions by settingI(x(·), T ) = ∞
for all otherx(·). It is easy to see that for every fixedT > 0 the functionalI(x(·), T )
mapsC(0, T ; M ) into (0, +∞). In what follows, we also use the functionals

S(x, y, T ) = inf
x(·), x(0)=x, x(T )=y

I(x(·), T ),

m(T ) = inf
x,y∈M

S(x, y, T ), M (T ) = inf
x∈M

S(x, x, T ),

I0(x(·), T ) = I(x(·), T ) +

T∫
0

v(x(t))dt

=

T∫
0

(
aij(x(t))(ẋi − bi(x(t)))(ẋj − bj(x(t)))

)
dt.

Taking the curvex(·) = const as a trial function in the definitions ofm(T ) andM (T )
we obtain

m(t) ≤ M (T ) ≤ c0T (1.1)

with a constantc0 ≥ 0. Hence,

lim sup
T→∞

m(T )
T

≤ lim sup
T→∞

M (T )
T

≤ c0. (1.2)

In fact, the limits
(

lim
T→∞

m(T )
T

)
and

(
lim

T→∞
M (T )

T

)
exist and coincide.

Lemma 1. The functionsm(T )/T andM (T )/T converge to the same limitλ̂ ≥ 0 as
T → ∞. The inequality

m(T ) ≤ λ̂T ≤ M (T ) (1.3)

holds for allT > 0, and there exists a sequencetk → ∞ such that lim
k→∞

|M (tk)− λ̂tk| =

0.
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Proof. The main idea of the proof is to use sub- and super-additivity ofm(t) andM (t),
respectively, in combination with the upper bound for|M (t) −m(t)| obtained in Propo-
sition 2 below. Propositions 1 and 3 provide relevant technical estimates and Proposition
4 states that the functionS(x, y, t) is Lipschitz continuous in all the variables.

The following relations

M (kt) ≤ kM (t), m(kt) ≥ km(t) (1.4)

hold for anyt > 0 and any integerk > 0. To prove the first one, let us rewrite the
definition ofM (t) in the formM (t) = inf

x(·)
x(0)=x(t)

I(x(·), t) and note that the infimum in

the last relation can be replaced by the minimum, i.e. thatM (t) assumes its minimum.
Indeed, in view of the positive definiteness ofaij(x) and the compactness ofM , any
minimizing sequence{xk(·)} for M (t) is uniformly bounded and, therefore, weakly
compact in the functional spaceH1(0, t) endowed with the norm

‖x(·)‖2 =

t∫
0

(x2(t) + ẋ2(t))dt.

Passing to the weak limit ask → ∞ and taking into account the weak semicontinuity
of I(x(·), t), we obtain the curve desired.

Then, iterating the closed curve ¯x(·) which provides the minimum forM (t) and
using the same notation ¯x(·) for the curve obtained, we find that

M (kt) ≤ I(x̄(·), kt) = kI(x̄(·), t) = kM (t)

for any positive integerk. To prove the second inequality in (1.4), it suffices to consider
the curve ˜x(·) which provides the minimum form(kt) and to divide an interval (0, kt)
into k equal parts:

m(kt) = I(x̃(·), kt) =
k−1∑
l=0

I(x̃(· + lt), t) ≥ km(t).

Set λ =

(
lim sup
T→∞

M (T )
T

)
and λ =

(
lim inf
T→∞

M (T )
T

)
and suppose that the difference

δ = λ − λ is positive. Then for some sequencest′k → ∞ andt′′k → ∞ we have

lim
k→∞

M (t′k)
t′k

= λ, lim
k→∞

M (t′′k)
t′′k

= λ.

Let us fixT > 1 such thatM (T )/T < λ+δ/4. Then by (1.4) we haveM (kT )/(kT ) <
λ + δ/4 for all positive integerk. On the other hand, for sufficiently largek, we have

M (t′k)/t′k > λ,
(
t′k − T [t′k/T ]

)
/t′k < T/t′k < δ/(4c1), (1.5)

where c1 = max
x∈M

(
aij(x)bi(x)bj(x) + v(x) + 1

)
and [·] means the integral part. Now let

us iterate [t′k/T ] times the curve that provides the minimum forM (T ) and extend it
as constant. Using the curve obtained as a trial function in the definition ofM (t′k) and
taking into account (1.5) and the choice of T, we find that
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λ − δ/4 < M (t′k)/t′k = M ([t′k]T + (t′k − [t′k]T ))/t′k

≤ [t′k/T ]M (T )/t′k + c1(t′k − [t′k/T ]T )/t′k ≤ M (T )/T + c1δ/(4c1) ≤ λ + δ/2.

This contradicts the fact thatδ > 0. Thusλ = λ and the limit lim
t→∞(M (t)/t) does exist.

The existence of lim
t→∞(m(t)/t) is a consequence of the following statements.

Proposition 1. The inequality

S(x, y, T ) ≤ c

(
T +

1
T

)
holds uniformly inx, y ∈ M .

Proof. Let us first note that in view of the compactness ofM and the positive definiteness
of aij , we have

inf
x(·), x(0)=x,

x(T )=y

T∫
0

aij(x(t))ẋi(t)ẋj(t)dt =
1
T

inf
x(·), x(0)=x,

x(1)=y

1∫
0

aij(x(t))ẋi(t)ẋj(t)dt

≤ c

T
dist(x, y),

where dist(x, y) is the geodesic distance in the metricaij , andc does not depend onx
andy. Then, reducing the set of trial curves in the definition ofS(x, , y, T ) to the only
curvex̂(·) that provides a minimum in the above problem, we obtain

S(x, y, T ) ≤ I(x̂(·), T ) =

T∫
0

aij(x̂(t)) ˙̂x
i
(t) ˙̂x

j
(t)dt − 2

T∫
0

aij(x̂(t)) ˙̂x
i
(t)bj(x̂(t))dt

+

T∫
0

(
aij(x̂(t))bi(x̂(t))bj(x̂(t)) − v(x̂(t))

)
dt ≤ 2

T∫
0

aij(x̂(t)) ˙̂x
i
(t) ˙̂x

j
(t)dt

+

T∫
0

(
2aij(x̂(t))bi(x̂(t))bj(x̂(t)) − v(x̂(t))

)
dt ≤ 2c

T
dist(x, y) + 2c1T ≤ c

(
T +

1
T

)
.

The last inequality follows from the compactness ofM . �

Proposition 2. The inequalitym(t) ≤ M (t) ≤ m(t) + c holds uniformly int > 0.

Proof. By Proposition 1, the functionS(x, y, 1) is bounded uniformly inx andy. Let
x̃(·) be a curve providing the minimum form(t). Combiningx̃(·) with a curve which
provides the minimum forS(x̃(t), x̃(0), 1) and using the curve obtained as a trial function
in the definition ofM (t + 1) we find

M (t + 1) ≤ m(t) + S(x̃(t), x̃(0), 1) ≤ m(t + 1) +c2;

here the monotonicity ofm(t) has also been used. �
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The relation lim
t→∞(m(t)/t) = lim

t→∞(M (t)/t) easily follows from Proposition 2.

Further, the estimatem(t) ≤ λ̂t ≤ M (t) follows from (1.4). Indeed, ifM (t0) <
λ̂t0 for somet0 > 0, thenM (t0) = (λ̂ − δ′)t0 for someδ′ > 0. By (1.4) we have
M (kt0)/(kt0) ≤ λ̂ − δ′ for all positive integerk. Therefore, lim

t→∞
M (t)

t ≤ λ̂ − δ′ in

contradiction with the definition of̂λ. The estimatem(t) ≤ λ̂t can be derived from (1.4)
in the same way.

The last assertion of the lemma relies on the following statements.

Proposition 3. The inequality

T∫
0

aij(x(t))ẋiẋjdt ≤ c2I(x(·), T ) + c3T (1.6)

holds uniformly inT > 0 andx(·) ∈ C(0, T ; M ).

Proof. By the Schwarz inequality,

I(x(·), T ) =

T∫
0

aij(x(t))ẋiẋjdt − 2

T∫
0

aij(x(t))ẋibj(x(t))dt

+

T∫
0

(
aij(x(t))bi(x(t))bj(x(t)) − v(x(t))

)
dt ≥

T∫
0

aij(x(t))ẋiẋjdt

− 1
2

T∫
0

aij(x(t))ẋiẋjdt − c4

T∫
0

aij(x(t))bi(x(t))bj(x(t))dt

+

T∫
0

(
aij(x(t))bi(x(t))bj(x(t)) − v(x(t))

)
dt ≥ 1

2

T∫
0

aij(x(t))ẋiẋjdt

− c5

T∫
0

(
aij(x(t))bi(x(t))bj(x(t)) − v(x(t))

)
dt.

In view of the boundness of the coefficients ofAµ this inequality implies (1.6). �

Proposition 4. For eachT0 > 0, the functionS(x, y, t) is uniformly Lipschitz continu-
ous on the setM × M × [T0, ∞).

Proof. First, let us establish the estimate

|S(x, y, t′) − S(x, y, t′′)| ≤ L|t′ − t′′| (1.7)

with a constantL that depends only onT0. To this end we note that, after a simple
transformation, the difference (I(x(·), t′) − I(x( t′′

t′ ·), t′′) can be written as
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I(x(·), t′) − I(x(
t′′

t′
·), t′′) =

t′ − t′′

t′

t′∫
0

aij(x(t))ẋiẋjdt

+
t′′ − t′

t′′

t′∫
0

(
aij(x(t))bi(x(t))bj(x(t)) − v(x(t))

)
dt.

From this relation, substituting the curvex(·) that provides the minimum forS(x, y, t′)
and using Propositions 1 and 3, we get

S(x, y, t′′) − S(x, y, t′) ≤ I(x(
t′′

t′
·), t′′) − (I(x(·), t′)

≤ |t′ − t′′|
t′

cc2

(
t′ +

1
t′

+ cc3t
′
)

+
|t′ − t′′|

t′′
ct′

≤ c|t′ − t′′|
{(

1 +
1
T 2

0

)
+

t′

t′′

}
.

If we suppose that|t′ − t′′| is bounded, say byT0, thent′/t′′ ≤ 2 and the last estimate
takes the form

S(x, y, t′′) − S(x, y, t′) ≤ c|t′ − t′′|
(

3 +
1
T 2

0

)
.

It remains to note that (1.7) for arbitrary|t′ −t′′| follows from (1.7) for sufficiently small
|t′ − t′′|.

Similarly, it suffices to verify the inequality

|S(x, y′, t) − S(x, y′′, t)| ≤ Ldist(y′, y′′) (1.8)

for sufficiently small dist(y′, y′′). This allows us to use the same local coordinates for
y′ andy′′. In particular, we can write|y′ − y′′| instead of dist(y′, y′′). Let x(·) be a
curve minimizingS(x, y′, t). Extending this curve to the interval (t, t + |y′ − y′′|) as
the functionx(s) = y′ + (y′′ − y′)(s − t)/|y′ − y′′| linear in the local coordinates and
considering (1.7), we obtain

S(x, y′, t) + c|y′ − y′′| ≥ I(x(·), t + |y′ − y′′|)
≥ S(x, y′′, t + |y′ − y′′|) ≥ S(x, y′′, t) − c|y′ − y′′|.

Thus,S(x, y′′, t) − S(x, y′, t) ≤ c|y′ − y′′| ≤ c1dist(y′, y′′). In view of the symmetry
betweeny′ andy′′, this implies (1.8). The inequality

|S(x′, y, t) − S(x′′, y, t)| ≤ Ldist(x′, x′′)

can be proved in the same way. �

To complete the proof of Lemma 1 we have to show that for anyT > 0 andδ > 0
there ist > T such that|M (t) − λ̂t| < δ. For this purpose, we cover the manifold
M by finitely many balls of radiusδ1 = δ/L, whereL is the Lipschitz constant from
Proposition 4 corresponding toT0 = 1. Denote byN the number of the balls forming the
covering. According to (1.3), for any positive integerk there exists a curvex(·) defined
on the interval (0, k(N + 1)T ) such that
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I(x(·), k(N + 1)T ) ≤ λ̂k(N + 1)T. (1.9)

Consider the set{x(jT )}k(N+1)
j=0 . It is clear that at least one ball in the covering contains

(k + 1) or more points of this set. Denote these points byz1, z2, ..., zs, s ≥ k + 1, and
the corresponding arguments byt1, ..., ts. Let us suppose that the inequalities

I(x(· − tj), tj+1 − tj) ≥ λ̂(tj+1 − tj) + δ/2 (1.10)

hold for all j < s. According to (1.3) and Proposition 2, the first and the last segments
of the curve satisfy the estimates

I(x(·), t1) ≥ λ̂t1 − c0,

I(x(· − ts), k(N + 1)T − ts) ≥ λ̂(k(N + 1)T − ts) − c0.

Taking the sum of the inequalities (1.10) for allj = 1, 2, ..., s, and then adding the last
two inequalities, we find that

I(x(·), k(N + 1)T ) ≥ λ̂k(N + 1)T + kδ/2 − 2c0.

For sufficiently largek this relation contradicts (1.9). Hence, for somej < s we get

S(zj , zj+1, tj+1 − tj) ≤ I(x(· − tj), tj+1 − tj) < λ̂(tj+1 − tj) + δ/2.

Our construction guarantees that|zj − zj+1| ≤ δ
2L andtj+1 − tj ≥ T . Therefore, by

(1.3) and Proposition 4, we have

λ̂(tj+1 − tj) ≤ M (tj+1 − tj) ≤ S(zj , zj , tj+1 − tj)

≤ S(zj , zj+1, tj+1 − tj) + L
δ

2L
≤ λ̂(tj+1 − tj) + δ,

and Lemma 1 is proved. �

Corollary 1. The inequality

|S(x, y, t) − λ̂t| < c (1.11)

holds uniformly int > T0 andx, y ∈ M .

2. Convergence of the First Eigenvalue

In this section we study the first eigenvalueλ0 of problem (0.1). The limit behaviour of
λ0 is described by the following

Theorem 1. The relationlim
µ→0

λ0(µ) = λ̂ holds.

First of all we establish some rough estimates forλ0 andp0(x). This is the subject
of the following two statements.

Proposition 5. For all µ > 0,

min
x∈M

v(x) ≤ −λ0(µ) ≤ max
x∈M

v(x) = 0.
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Proof. Due to the assumed normalizing conditions,p0(x) is a positive function onM .
Denote byx1 a maximum point ofp0. Then, according to the maximum principle,
we have−λ0p0(x1) = Aµp(x1) ≤ v(x1)p0(x1) . This implies the upper bound forλ0.
Similarly, writing down Eq. (0.1) at a minimum point ofp0, we obtain the lower bound.
�

Proposition 6. The following inequalities hold uniformly inx ∈ M :

e−c(M )/µ ≤ p0(x) ≤ µ−n; max
x∈M

p0(x) ≥ 1. (2.1)

Proof. The last inequality in (2.1) obviously follows from the normalizing conditions
(0.2). To prove the first one, let us rewrite Eq. (0.1) in the rescaled local coordinates
y = x

µ :

1
4
|a(µy)|− 1

2
∂

∂yi
|a(µy)| 1

2 aij(µy)
∂

∂yj
p0(µy) + bi(µy)

∂

∂yi
p0(µy) + v(µy)p0(µy)

= −λ0p0(µy).

According to our assumptions and Proposition 5, the coefficients of this equation are
continuously differentiable functions bounded uniformly inµ; therefore, by the Harnack
inequality (see [3]) we have

0 < c1 < p0(µy1)/p0(µy2) < c2

uniformly in µ > 0 andy1, y2 ∈ M satisfying the condition dist(y1, y2) < 1. Thus, in
the coordinatesx we have

c1 < p0(x1)/p0(x2) < c2 (2.2)

for all x1, x2 ∈ M such that dist(x1, x2) < µ. Let x1 be a maximum point of
p0. SinceM is compact, it follows that for anyx ∈ M there exists a sequence
x = z1, z2, z3, ..., zN−1, zN = x1 with the following properties: dist(zj , zj+1) < µ
for all j < N ; N ≤ N0(M )/µ with N0(M ) independent ofµ andx. Iterating (2.2), we
find

p0(x)/p0(x1) =
N−1∏
j=1

p0(zj)
p0(zj+1)

≥ (c1)N ≥ eN0(M ) ln c1/µ.

This yields the lower bound (2.1). To prove the upper bound, let us considerp0 in the
ball Qx = {z|dist(z, x) < µ}. By (2.2) and (0.2) we have

p0(x) ≤ c2 min
z∈Qx

p0(z) ≤ c3µ
−n min

z∈Qx

p0(z)
∫

Qx

m(dz) ≤ c3µ
−n

∫
M

p0(z)m(dz) ≤ c3µ
−n,

and thereby the proposition is proved. �

Remark 1.In fact, the method developed here allows us to obtain the following inequal-
ity

p0(x)/p0(y) ≤ exp(c dist(x, y)/µ). (2.3)
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[. Proof of Theorem 1.] In order to obtain the proper lower and upper bounds forλ0(µ),
let us consider an auxiliary Cauchy problem

∂u

∂t
=

1
4
µ|a(x)|−1/2 ∂

∂xi
|a(x)|1/2aij(x)

∂

∂xj
u(x, t) + bi(x)

∂

∂xi
u(x, t) +

1
µ

v(x)u(x, t)

u|t=0 = p0(x)
(2.4)

in the cylinderM × (0, +∞). To estimate its solutionu(x, t), which is obviously equal
to exp(−λ0

µ t)p0(x), we introduce the operator

Bµ =
1
4
µ|a(x)|−1/2 ∂

∂xi
|a(x)|1/2aij(x)

∂

∂xj
+ bi(x)

∂

∂xi
,

and denote byξx
t the corresponding diffusion process onM issuing from the pointx.

The processξx
t is defined on some probabilistic space (�, F, P) and is assumed to have

continuous trajectories. The relevant definitions can be found in [1].
Now the solution of (2.4) has the following probabilistic representation (see [1]):

u(x, t) = E

p0(ξx
t ) exp

 1
µ

t∫
0

v(ξx
s )ds

 , (2.5)

whereE denotes the expectation of random variables.

Upper bound. Let dist[0,t] (x′(·), x′′(·)) stand for the distance sup
0≤s≤t

dist(x′(s), x′′(s))

in the functional spaceC(0, t; M ). According to [2, Chapter 5, Th.3.2], the process
ξx
t satisfies the large deviation principle uniformly inx ∈ M , with the rate functional

I0(x(·), t); see the definition ofI0(x(·), t) in the previous section. In particular, for any
absolutely continuous curvex(·) and anyδ > 0 andγ > 0, there existsµ0 > 0 such
that for allµ < µ0,

P{dist[0,t] (ξ
x
· , x(·)) < δ} ≥ exp

(
−I0(x(·), t) + γ

µ

)
. (2.6)

Since the functionv(x) is smooth, the inequality

∣∣∣∣∣∣
t∫

0

v(ξx
s )ds −

∫ t

0
v(x(s))ds

∣∣∣∣∣∣ ≤ cδt (2.7)

holds for any trajectoryξx
t that satisfies the estimate dist(ξx

· , x(·)) ≤ δ. Let x̄(·) be the
minimizing curve forM (t). By (2.6) and (2.7), for allµ < µ0 we have
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p0(x̄(0))e−λ0t/µ = u(x, t) = E

p0(ξx̄(0)
t ) exp

 1
µ

t∫
0

v(ξx̄(0)
s )ds


≥ min

y∈M
p0(y)P

{
dist[0,t] (ξ

x̄(0)
· , x̄(·)) < δ

}
exp

 1
µ

t∫
0

v(x̄(s))ds − cδt


≥ min

y∈M
p0(y) exp

(
−I0(x̄(·), t) + γ

µ

)
exp

 1
µ

t∫
0

v(x̄(s))ds − cδt


= min

y∈M
p0(y) exp

(
−I(x̄(·), t) + γ + cδt

µ

)
;

here the equalityI(x(·), t) = I0(x(·), t) −
t∫

0
v(x̄(s))ds has also been used. According to

our choice of ¯x(·), we haveI(x̄(·), t) = M (t), and therefore,

p0(x̄(0))e−λ0t/µ ≥ min
y∈M

p0(y) exp

(
−M (t) + γ + cδt

µ

)
.

Finally, by Proposition 6

e−λ0t/µ ≥ exp

(
−2c(M )

µ

)
exp

(
−I(x̄(·), t) + γ + cδt

µ

)
= exp

(
−I(x̄(·), t) + γ + cδt + 2c(M )

µ

)
.

Therefore,

λ0 ≤ M (t)
t

+ cδ +
γ

t
+

2c(M )
t

for all sufficiently smallµ. Sinceδ andγ are arbitrary numbers andc(M ) does not
depend ont, this implies

lim sup
µ→0

λ0 ≤ lim
t→∞

M (t)
t

= λ̂. (2.8)

Lower bound. To estimateλ0 from below, we consider the following subset of
C(0, t; M ):

8x
t (α) = {x(·)|x(0) = x, I0(x(·), t) ≤ α} .

According to [2], this set is compact inC(0, t; M ), and for everyδ > 0, γ > 0 and
α > 0 there existsµ0 > 0 such that

P{dist[0,t] (ξ
x
· , 8x

t (α)) > δ} ≤ exp

(
−α − γ

µ

)
(2.9)

for all µ < µ0.
Moreover, for anyα0 > 0 the estimate (2.9) is uniform inα < α0 and inx ∈ M .

Let x be the initial point of the curve that provides the minimum form(t). Represent-
ing � as a union of the following two events:Q1 =

{
dist[0,t] (ξx

· , 8x
t (2M̄ (t)) ≥ δ

}
,
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Q2 =
{

dist[0,t] (ξx
· , 8x

t (2M̄ (t)) < δ
}

, M̄ (t) = max(M (t), 1), and denoting byχ· the
characteristic function of a set, one can rewrite (2.5) in the form

p0(x)e−λ0t/µ = E

χQ1p0(ξx
t ) exp

 1
µ

t∫
0

v(ξx
s )ds


+ E

χQ2p0(ξx
t ) exp

 1
µ

t∫
0

v(ξx
s )ds

 .

(2.10)

It follows from (2.9), Proposition 6 and the negativity ofv(·) that the first term on the
right hand side satisfies an estimate

E

χQ1p0(ξx
t ) exp

 1
µ

t∫
0

v(ξx
s )ds

 ≤ cµ−nP(Q1) ≤ cµ−n exp

(
−2M̄ (t) − γ

µ

)
(2.11)

for sufficiently smallµ. To estimate the second term, let us representQ2 in the form

Q2 = {dist[0,t] (ξ
x
· , 8x

t (δ)) < δ}

∪
[2M̄ (t)/δ]+1⋃

k=2

({dist[0,t] (ξ
x
· , 8x

t (kδ)) < δ} ∩ {dist[0,t] (ξ
x
· , 8x

t ((k − 1)δ)) ≥ δ})
= Q1

2 ∪
[2M̄ (t)/δ]+1⋃

k=2

Qk
2 .

It should be noted that some events in this union can be empty. Sincem(t) ≤ I(x(·), t) =
I0(x(·), t)−∫ t

0 v(x(s))ds, we obtain− ∫ t

0 v(x(s))ds ≥ m(t)−kδ for anyx(·) ∈ 8x
t (kδ).

Hence, by (2.7) we get

−
t∫

0

v(ξx
s )ds ≥ m(t) − kδ − cδt (2.12)

for all trajectories fromQk
2 . At the same time, according to (2.9),

P(Qk
2) ≤ P{dist[0,t] (ξ

x
· , 8x

t ((k − 1)δ) ≥ δ} ≤ exp

(
− (k − 2)δ

µ

)
.

Combining the last two estimates, we find



540 A. L. Piatnitski

E

χQ2p0(ξx
t ) exp

 1
µ

t∫
0

v(ξx
s )ds


≤

[2M̄ (t)/δ]+1∑
k=1

P(Qk
2) max

y∈M
p0(y) exp

(
−m(t) − kδ − cδt

µ

)

≤ cµ−n

[2M̄ (t)/δ]+1∑
k=1

exp

(
− (k − 2)δ

µ

)
exp

(
−m(t) − kδ − cδt

µ

)
≤ cµ−nM̄ (t)/δ exp

(
−m(t) − 2δ − cδt

µ

)
.

From (2.10), taking into account (2.11) and the last inequality we derive

p0(x)e−λ0t/µ ≤ cµ−n

{
exp

(
−2M̄ (t) − γ

µ

)
+

3M̄ (t)
δ

exp

(
−m(t) − 2δ − cδt

µ

)}
or, after simple transformation,

λ0t ≥ c(M ) − nµ ln µ(ln δ − ln M̄ (t)) + m(t) − γ − 2δ − cδt − c1;

herec1 depends neither ont norµ. Sinceδ andγ are arbitrary numbers, this implies

lim inf
µ→0

λ0 ≥ lim
t→∞

m(t)
t

= λ̂,

which, in view of (2.8), completes the proof of Theorem 1. �

Corollary 2. The first eigenvalueλ0 of problem (0.1) converges to zero asµ → 0 if and
only if the identityv(x(t)) ≡ 0 holds along at least one solution of the equationẋ = b(x)
onM .

3. Asymptotics of the First Eigenfunction

In this section the asymptotic behaviour of the first eigenfunctionp0(x) is studied. Some
additional assumptions are required in order to ensure the existence of the asymptotics.
These assumptions, in turn, involve the following definitions.

Condition A. A curvex(·) defined on(0, +∞) satisfies condition A, if for anyε > 0
there isT > 0 such that for allt > 0 we have

I(x(· − T ), t) =

T +t∫
T

(
aij(x(t))(ẋi − bi(x(t))(ẋj − bj(x(t))) − v(x(t))

)
dt < λ̂t + ε,

whereλ̂ is defined in Lemma 1.

Condition B. A curvex(·) defined on(0, +∞) satisfies condition B, if the inequality
I(x(·), t) ≤ λ̂t + c holds uniformly int > 0.
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First of all, we should answer the question if curves satisfying Conditions A and B
do exist. The proof of the following two simple assertions is outlined briefly.

Proposition 7. The conditions A and B are equivalent.

Proof. The implication A⇒B is obvious. To derive A from B it suffices to note that the
set{t | I(x(·), t) − λ̂t > sup

s
(I(x(·), s) − λ̂s) − ε} is not empty for eachx(·) satisfying

Condition B, and to take arbitraryT from this set. �

Proposition 8. A curve satisfying condition B does exist.

Proof. Thanks to the last statement of Lemma 1 and the definition ofM (t), there exist
a sequencetk → ∞ and curvesxk(t), 0 ≤ t ≤ tk, x(0) = x(tk) such that

lim
k→∞

|I(xk(·), tk) − λ̂tk| = 0.

Taking, if necessary, a proper subsequence one can assume that the sequencexk(0) does
converge, and that the inequalities

dist(xk(0), xk+1(0)) < exp(−k), |I(xk(·), tk) − λ̂tk| < exp(−k)

hold. Now, combining the curvesxk(·) and segments of geodesics that connectxk(tk)
andxk+1(0), we obtain the desired curve. �

Next, we introduce the class of operators to be studied.

Definition. The operatorAµ is recursive if there is at least one pointx0 of M such that
for anyε > 0,T > 0and anyx(·) satisfying condition A, the inequalitydist(x(t), x0) < ε
holds for somet > T . The pointx0 is called recurrent forAµ.

The following property of recurrent points plays an important role in further considera-
tions.

Proposition 9. For each recurrent pointx0 of Aµ,

lim inf
t→∞ (S(x0, x0, t) − λ̂t) = 0.

Proof. By Lemma 1,

S(x0, x0, t) − λ̂t ≥ M (t) − λ̂t ≥ 0.

Thus, lim inf
t→∞ (S(x0, x0, t)−λ̂t) ≥ 0. If we suppose that lim inf

t→∞ (S(x0, x0, t)−λ̂t)=c > 0,

then Proposition 4 implies thatS(x, y, t) − λ̂t ≥ c/2 for sufficiently larget andx, y
close tox0. Let x(·) satisfy condition B. Sincex0 is a recurrent point ofAµ, one can
find a sequence{tk}∞

k=1 such that (tk+1 − tk) → ∞ ask → ∞ andx(tk) are close tox0
for all k. Hence,

I(x(·), tk+1) − λ̂tk+1 = (I(x(·), t1) − λ̂t1) +
k∑

s=1

(I(x(·− ts), ts+1 − ts) − λ̂(ts+1 − ts))) ≥

≥ kc/2 − c1.

For sufficiently largek this estimate contradicts the fact thatx(·) satisfies condition B.
�
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For a recursive operator we define the functionW0 as follows

W0(x) = inf
t>0

inf
x(·), x(0)=x,

x(t)=x0

(I(x(·), t) − λ̂t) = inf
t>0

(S(x, x0, t) − λ̂t), (3.1)

wherex0 is a recurrent point.

Remark 2.In fact, the infimum over allt > 0 in (3.1) can be replaced by that over an
arbitrary half-linet > T0, T0 ≥ 0. Indeed, let{xk(·)} be a sequence of curves with the
following properties:

xk(0) = xk(tk) = x0, lim
k→∞

tk = ∞, lim
k→∞

(I(xk(·), tk) − λ̂tk) = 0.

Proposition 9 guarantees the existence of such a sequence. Now it suffices to extend the
curves from an arbitrary minimizing sequence forW0 as the curves from the sequence
just constructed.

In view of Remark 2, the following statement easily follows from Proposition 4.

Proposition 10. W0 is a Lipschitz continuous function onM .

It should be observed that, in general, the functionW0 depends on the choice of the
recurrent pointx0. Define the functionW (x) onM by the formula

W (x) = W0(x) − min
y∈M

W0(y).

A remarkable property ofW is its independence ofx0.

Proposition 11. W (x) is a well-defined function onM ; it does not depend on the choice
of the recurrent pointx0.

Proof. Consider two arbitrary recurrent pointsx′
0 andx′′

0 of the operatorAµ. The cor-
responding functions (3.1) will be marked by′ and ′′, respectively. Our proof is based
on the following relation:

W ′
0(x′′

0 ) + W ′′
0 (x′

0) = 0. (3.2)
In order to establish (3.2), let us first assume thatW ′

0(x′′
0 ) +W ′′

0 (x′
0) = c > 0. In view of

Propositions 4 and 10, this implies the estimate

inf
t>0

(S(x1, y1, t) − λ̂t) + inf
t>0

(S(y2, x2, t) − λ̂t) ≥ c/2

for all x1, x2 close tox′
0 andy1, y2 close tox′′

0 . Fixing an arbitrary curvex(·) which
satisfies condition B and taking into account the properties ofx′

0 andx′′
0 , one can easily

construct an increasing sequence{tk} such thatx(t2k) are close tox′
0 andx(t2k−1) are

close tox′′
0 for all k > 0. Then our assumption leads to the following inequality:

I(x(·), t2k+1) − λ̂t2k+1 = (I(x(·), t1) − λ̂t1)

+
k∑

s=1

{
(I(x(· − t2s−1), t2s − t2s−1) − λ̂(t2s − t2s−1))

+(I(x(· − t2s), t2s+1 − t2s) − λ̂(t2s+1 − t2s))
}

≥ (I(x(·), t1) − λ̂t1)

+
k∑

s=1

{
(S(x(t2s−1), x(t2s), t2s − t2s−1) − λ̂(t2s − t2s−1))

+ (S(x(t2s), x(t2s+1), t2s+1 − t2s) − λ̂(t2s+1 − t2s))
}

≥ c1 + kc/2,
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which contradicts the fact thatx(·) satisfies condition B. Thus,W ′
0(x′′

0 ) + W ′′
0 (x′

0) ≤ 0.
On the other hand,

W ′
0(x′′

0 ) + W ′′
0 (x′

0) = inf
t>0

(S(x′
0, x

′′
0 , t) − λ̂t) + inf

t>0
(S(x′′

0 , x′
0, t) − λ̂t)

≥ inf
t>0

(S(x′
0, x

′
0, t) − λ̂t) ≥ inf

t>0
(M (t) − λ̂t) ≥ 0

and (3.2) follows. Now,

W ′
0(x) = inf

t>0
(S(x, x′

0, t) − λ̂t) ≤ inf
t>0

(S(x, x′′
0 , t) − λ̂t) + inf

t>0
(S(x′′

0 , x′
0, t) − λ̂t)

= W ′′
0 (x) + W ′

0(x′′
0 ).

Similarly, W ′′
0 (x) ≤ W ′

0(x) + W ′′
0 (x′

0). In view of (3.2), this means thatW ′′
0 (x) =

W ′
0(x)+W ′′

0 (x′
0). In other words, the differenceW ′

0(x)−W ′′
0 (x) is constant, and therefore,

W is well-defined. �
The main result of this section is the following

Theorem 2. Let operatorAµ be recursive. Then

lim
µ→0

µ ln p0(x) = −W (x) (3.3)

uniformly inx ∈ M .

Proof. Lower bound. Let us fix an arbitrary recurrent pointx0 of the operatorAµ and
estimate the ratiop0(x)/p0(x0) from below. According to the definition ofW0, for any
x ∈ M andδ > 0 there is a curvex(·) defined on the interval (0, T (δ)) and such that

x(0) = x, x(T (δ)) = x0, I(x(·), T (δ)) − λ̂T (δ) < W0(x) + δ. (3.4)

Moreover, using compactness arguments and Proposition 4 and 10, we can chooseT (δ)
bounded by someT0(δ) uniformly in x ∈ M . Indeed, if we construct the segment of
geodesic curve that connectsy andx, combine it withx(·) and denote the obtained curve
by x̃(·), then we get

I(x̃(·), T (δ) + dist(y, x)) − λ̂(T (δ) + dist(y, x)) < W0(x) +
2δ

3
< W0(y) +

δ

3
for all y from a sufficiently small neighbourhood ofx.

According to [2], for anyδ1 > 0 there existsµ0 > 0 such that

P{dist[0,T (δ)] (ξ
x
· , x(·)) < δ1} ≥ exp

(
−I0(x(·), T (δ)) + δ1

µ

)
(3.5)

for all µ < µ0. From (2.3), (2.7), (3.4) and the last estimate, we get

p0(x)e−λ0T (δ)/µ = E

p0(ξx
T (δ)) exp

 1
µ

T (δ)∫
0

v(ξx
s )ds


≥ P{dist[0,T (δ)] (ξ

x
· , x(·)) < δ1}

× p0(x0) exp

(−cδ1

µ

)
exp

 1
µ

 T (δ)∫
0

v(x(s))ds − cT (δ)δ1


≥ p0(x0) exp

(
−I(x(·), T (δ)) + δ1 + cδ1 + cT (δ)δ1

µ

)
.
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Finally, using (3.4), we find

p0(x) ≥ p0(x0) exp

(
−W0(x) + δ + T (δ)|λ̂ − λ0| + (1 +c1 + cT (δ))δ1

µ

)
.

For suitably chosenδ, δ1 andµ0, the quantity (δ + T (δ)|λ̂ − λ0| + (1 + c1 + cT (δ))δ1)
becomes arbitrary small, and therefore,

lim inf
µ→0

µ ln(p0(x)/p0(x0)) ≥ −W0(x). (3.6)

Upper bound. The following statement is a direct consequence of the definition of a
recurrent point.

Proposition 12. Under the above conditions, for anyδ > 0 and c̄ > 0, there exists
t0 = t0(c̄, δ) such that for allt > t0 the inequality min

0≤s≤t
dist(x(s), x0) > δ implies that

I(x(·), t) ≥ λ̂t + c̄. (3.7)

The constant ¯c will be fixed later. Again using compactness arguments, we deduce from
Corollary 1 that for anyδ > 0 there ist1 = t1(δ) such that∣∣∣∣ inf

0≤t≤t1

(S(x, x0, t) − λ̂t) − inf
t>0

(S(x, x0, t) − λ̂t)

∣∣∣∣ < δ (3.8)

uniformly in x ∈ M . Let us denote max(t0(c̄, δ), t1(δ)) by t̄ and fixµ0(δ) such that the
estimate

|λ0 − λ̂|t̄ < δ (3.9)

holds for allµ < µ0(δ). Later on we assume thatµ < µ0(δ).
It is easy to check that the function ˜u(x, t) = p0(x) exp(−(λ0 − λ̂)t/µ) satisfies the

equation (
∂

∂t
− 1

µ
Aµ − λ̂

µ

)
ũ = 0, ũ|t=0 = p0. (3.10)

Moreover, according to our choice ofµ0(δ), the relation ˜u(x, t) = p0(x) exp(O(δ)/µ)
takes place for allt < t̄ andµ < µ0(δ).

Let τx
2δ be the exit time for the domainM \ O2δ(x0), whereO2δ(x0) is the ball

{y ∈ M | dist(y, x0) < 2δ}. For our purposes, it is convenient to fixδ0 > 0 and divide
the set� into three parts:

�1 =
{

dist[0,t̄] (8
x
t̄ (K), ξx

· ) ≥ δ0
}

,

�2 =
{

(τx
2δ > t̄) ∩ (dist[0,t̄] (8

x
t̄ (K), ξx

· ) < δ0)
}

,

�3 =
{

(τx
2δ ≤ t̄) ∩ (dist[0,t̄] (8

x
t̄ (K), ξx

· ) < δ0)
}

,

whereK = c̄ + t̄ max
y∈M

|v(y)| and8x
t̄ (K) is defined in the previous section. According to

[2], for sufficiently smallµ we have

P(�1) ≤ exp

(
−K − δ

µ

)
. (3.11)
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To estimate the contribution of�3 into the solution ˜u(x, t) written in a probabilistic
form, let us fix an arbitrary positiveδ1 and represent�3 as a finite union of the following
events:

�3 =
t̄/δ1⋃
k=1

K/δ⋃
l=1

({kδ1 ≤ τx
2δ < (k + 1)δ1} ∩ {dist[0,(k+1)δ1] (8

x
(k+1)δ1

((l + 1)δ), ξx
· ) < δ0}

∩ {dist[0,(k+1)δ1] (8
x
(k+1)δ1

(lδ), ξx
· ) ≥ δ0}

)
=

t̄/δ1⋃
k=1

K/δ⋃
l=1

�
k,l
3 .

We also fix a positiveν and suppose thatx ∈ M \ Oν(x0). The opposite case, namely
x ∈ Oν(x0), will be examined later. In what follows we assume thatδ, δ0, δ1 andν are
sufficiently small and satisfy the relationsν � δ > δ0, ν � δ1. According to [2], there
existst2(ν) such that

P{τx
2δ < t2(ν)} ≤ exp(−K/µ)

for all x ∈ M \ Oν(x0). In view of the definition of�k,l
3 , this implies thatP(�k,l

3 ) ≤
exp(−K/µ) for all k < t2(ν)/δ1, and therefore it suffices to examine�

k,l
3 only for k

from the intervalt2(ν) ≤ kδ1 ≤ t̄. According to [2],

P(�k,l
3 ) ≤ P{dist[0,(k+1)δ1] (8

x
(k+1)δ1

(lδ), ξx
· ) ≥ δ0} ≤ exp

(
− lδ − δ

µ

)
(3.12)

for sufficiently smallµ. At the same time, it follows from the definition of8x
(k+1)δ1

((l+1)δ)

that for anyξx
· ∈ �

k,l
3 there is a curvex(·) satisfying the estimates

I0(x(·), (k + 1)δ1) ≤ (l + 1)δ, dist[0,(k+1)δ1] (x(·), ξx
· ) < δ0. (3.13)

In view of the evident relation|x(ξx
τ2δ

) − x0| = 2δ, this implies

|x(τx
2δ) − x0| < 2δ + δ0 (3.14)

where the argumentτx
2δ is random. To estimate the same difference at a nonrandom

point, we apply the following

Proposition 13. The inequality

dist(x(s1), x(s2)) ≤ c(K, t̄)
√

|s1 − s2| , s1, s2 ≤ t (3.15)

holds uniformly int ≤ t̄ andx(·) satisfying the conditionI0(x(·), t) ≤ K.

Proof. Proposition 3, the definition of the distance and the Schwarz inequality yield

dist(x(s1), x(s2)) ≤
s2∫

s1

(
aij(x(s)ẋi(s)ẋj(s)

)1/2
ds

≤

√√√√√ s2∫
s1

aij(x(s)ẋi(s)ẋj(s)ds
√

|s1 − s2| ≤ c(K, t̄)
√

|s1 − s2|.

�
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Now, taking into account the inequalitykδ1 ≤ τx
2δ < (k + 1)δ1 and Proposition 13, we

deduce from (3.14),

|x((k + 1)δ1) − x0| < (c(K, t̄)
√

δ1 + 2δ + δ0). (3.16)

Note that the constantc(K, t̄) in (3.16) does not depend onδ1 and δ0. Then, by the
definition ofS(x, y, t), we get

I0(x(·), (k + 1)δ1) −
(k+1)δ1∫

0

v(x(t))dt ≥ S(x, x((k + 1)δ1), (k + 1)δ1).

In view of (3.16), Proposition 4 and the inequalitykδ1 > t2(ν), this implies

I0(x(·), (k + 1)δ1) −
(k+1)δ1∫

0

v(x(t))dt ≥ S(x, x0, (k + 1)δ1) − c′(ν)(c(K, t̄)
√

δ1 + δ + δ0).

Hence by virtue of (3.13),

−
(k+1)δ1∫

0

v(x(t))dt ≥ S(x, x0, (k + 1)δ1) − (l + 1)δ − c′(ν)(c(K, t̄)
√

δ1 + δ + δ0).

Finally, by (2.7,)

−
(k+1)δ1∫

0

v(ξx
t )dt ≥ S(x, x0, (k + 1)δ1) − (l + 1)δ − c′(ν)(c(K, t̄)

√
δ1 + δ + δ0) − ct̄δ0.

Using this inequality and (3.12), we obtain

E

χ
�

k,l
3

exp

 1
µ

τx
2δ∫

0

(v(ξx
s ) − λ̂)ds




≤ exp

(
cδ1

µ

)
E

χ
�

k,l
3

exp

 1
µ

(k+1)δ1∫
0

(v(ξx
s ) − λ̂)ds


 ≤ exp

(
cδ1

µ

)
P(�k,l

3 )

≤exp
(
−S(x, x0, (k + 1)δ1)−(k + 1)δ1λ̂−(l + 1)δ−c′(ν)(c(K, t̄)

√
δ1 + δ + δ0) − ct̄δ0

µ

)
(3.17)

≤exp

(
− lδ − δ

µ

)
exp

(
−W0(x) − (l + 1)δ − c′(ν)(c(K, t̄)

√
δ1 + δ + δ0) − ct̄δ0 − cδ1

µ

)

≤ exp

(
−W0(x) − 2δ − c′(ν)(c(K, t̄)

√
δ1 + δ + δ0) − ct̄δ0 − cδ1

µ

)
;
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here we have also used the obvious inequalityW0(x) ≤ S(x, x0, (k + 1)δ1)− (k + 1)δ1λ̂.
Then, representing�2 in the form

�2 =
K/δ⋃
l=1

({dist[0,t̄] (8
x
t̄ ((l + 1)δ), ξx

· ) < δ0} ∩ {dist[0,t̄] (8
x
t̄ (lδ), ξx

· ) ≥ δ0}
)

=
K/δ⋃
l=1

�l
2,

and applying the above arguments with obvious simplifications, we find that

E

χ�l
2
exp

 1
µ

t̄∫
0

(v(ξx
s ) − λ̂)ds


 ≤ exp

(
− c̄ − S̄ − cδ − ct̄δ0

µ

)
, (3.18)

whereS̄ = inf
x,y,t

(S(x, y, t) − λ̂t). Now let us notice that the solution of the following

initial boundary value problem(
∂

∂t
− 1

µ
Aµ − λ̂

µ

)
ū = 0, x ∈ M \ O2δ(x0);

ū|t=0 = p0, ū|∂O2δ(x0) = ũ|∂O2δ(x0),

coincides with ˜u(x, t) for x ∈ M \ O2δ(x0) and can be written in the form (see [1])

ũ(x, t) = ū(x, t) = E

ũ(ξx
τ̄x

2δ
, τ̄x

2δ) exp

 1
µ

τ̄x
2δ∫

0

(v(ξx
s ) − λ̂)ds


 ,

where ¯τx
2δ = min(τx

2δ, t̄). Using the relation ˜u(x, t) = exp(O(δ)/µ)p0(x), t < t̄, we
obtain

p0(x) ≤ exp

(
cδ

µ

)
E

(χ�1 + χ�2 + χ�3)p0(ξx
τ̄x

2δ
) exp

 1
µ

τ̄x
2δ∫

0

(v(ξx
s ) − λ̂)ds


 .

In view of (3.11), Proposition 6 and the choice ofK the first term on the right hand side
can be estimated as follows

E

χ�1p0(ξx
τ̄x

2δ
) exp

 1
µ

τ̄x
2δ∫

0

(v(ξx
s ) − λ̂)ds




≤ exp

(
−K − δ − c(M ) − t̄ max|v(y)|

µ

)
p0(x0)

≤ exp

(
− c̄ − c(M ) − δ

µ

)
p0(x0).

Then, by the definition of�3, Remark 1 and (3.17), we get
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E

χ�3p0(ξx
τ̄x

2δ
) exp

 1
µ

τ̄x
2δ∫

0

(v(ξx
s ) − λ̂)ds




≤ t̄

δ1

K

δ
exp

(
−W0(x) − 2δ − c′(ν)(c(K, t̄)

√
δ1 + δ + δ0) − ct̄δ0 − cδ1

µ

)
× exp

(
cδ

µ

)
p0(x0).

Similarly, by (3.18) and Proposition 6, we get

E

χ�2p0(ξx
τ̄x

2δ
) exp

 1
µ

τ̄x
2δ∫

0

(v(ξx
s ) − λ̂)ds




≤ K

δ
exp

(
− c̄ − S̄ − cδ − ct̄δ0

µ

)
exp

(
c(M )

µ

)
p0(x0).

Combining the last three estimates and choosing ¯c, ν, δ, δ0, δ1 properly, we find that

lim sup
µ→0

µ ln(p0(x)/p0(x0)) ≤ −W0(x)

for all x ∈ M \ Oν(x0). In view of (3.6), this yields

lim
µ→0

µ ln(p0(x)/p0(x0)) = −W0(x)

for all x ∈ M\Oν(x0). Sinceν > 0 is arbitrary, the last equality holds for allx 6= x0. But,
according to Remark 1, the functionsµ ln(p(x)/p(x0)) are equicontinuous. Therefore,
this equality holds uniformly inx ∈ M . Now, the statement of Theorem 2 follows from
our normalizing conditions. �

4. Operators with Potential First Order Terms

In the section we consider operatorsAµ with ’potential’ first order terms. These operators
admit explicit formula, both for the limit of the first eigenvalue and the recurrent point.
Moreover, the functionW (x) can be expressed in terms of the geodesic distance in a
proper auxiliary metric.

Definition. The operatorAµ has potential first order terms, if there is a functionU (x)
onM such that

bi(x) = aij(x)
∂

∂xj
U (x), i = 1, 2, ..., n.

Theorem 3. Suppose that the operatorAµ has potential first order terms. Then

lim
µ→0

λ0 = min
x∈M

(
aij(x)

∂

∂xi
U (x)

∂

∂xj
U (x) − v(x)

)
.

The operatorAµ is recursive if and only if the functionaij(x) ∂
∂xi U (x) ∂

∂xj U (x) − v(x)
has a unique minimum point onM . This minimum point is the only recurrent point of
Aµ.
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Proof. Let x0 be a minimum point of the function
(
aij(x) ∂

∂xi U (x) ∂
∂xj U (x) − v(x)

)
.

After simple transformation, we find that

I(x(·), t) =

t∫
0

(
aij(x(s)ẋiẋj + aij(x(s))

∂

∂xi
U (x(s))

∂

∂xj
U (x(s)) − v(x(s))

)
ds

+ 2(U (x(t)) − U (x(0))) ≥ t min
x∈M

(
aij(x)

∂

∂xi
U (x)

∂

∂xj
U (x) − v(x)

)
+ 2(U (x(t)) − U (x(0)))

for any absolutely continuous curvex(·). Since 2(U (x(t)) − U (x(0))) is bounded uni-
formly in t, we haveλ̂ ≥ min

x∈M

(
aij(x) ∂

∂xi U (x) ∂
∂xj U (x) − v(x)

)
. On the other hand,

taking the curvex(·) identically equal tox0, we obtain

λ̂ ≤ lim
t→∞

1
t
I(x(·), t) = min

x∈M

(
aij(x)

∂

∂xi
U (x)

∂

∂xj
U (x) − v(x)

)
.

The other assertions of the theorem can be proved in the same way.�

Denote

V (x) =

(
aij(x)

∂

∂xi
U (x)

∂

∂xj
U (x) − v(x)

)
− min

y∈M

(
aij(y)

∂

∂yi
U (y)

∂

∂yj
U (y) − v(y)

)
.

The next statement provides the geometric interpretation forW0(x).

Theorem 4. Letx0 be the unique minimum point ofV (x) onM . Then

W0(x) = 2
[
U (x0) − U (x) + dist(V (x))aij (x)(x, x0)

]
;

here dist(V (x))aij (x) is a distance in the metric(V (x))aij(x).

The proof is the same as that of Theorem 5 below.

Remark 3.The pointx0 need not belong to the set of minimum points ofW0(x) (and,
hence,W (x)). Thus,p0(x0) might be exponentially small.

5. Selfadjoint Operators

In this section we suppose thatb(x) ≡ 0, i.e. that the operatorAµ is selfadjoint. Then, the
formula of the previous section admit an interesting geometric interpretation. Clearly,
for selfadjoint operatorŝλ = min

x∈M
(−v(x)) = 0 and Condition B is equivalent to the

uniqueness of a minimum point of−v(x). Without loss of generality we suppose that
min
x∈M

(−v(x)) = 0. Denote the minimum point byx0.

Theorem 5. Letb(x) ≡ 0, and assume that the function(−v(x)) has a unique minimum
point. Then

lim
µ→0

µ ln p(x) = −2dist(−v(x))aij (x)(x, x0);

here dist(−v(x))aij (x) is a distance in the metric(−v(x))aij(x).



550 A. L. Piatnitski

Remark 4.Under the assumption of Theorem 5 the metric (−v(x))aij(x) degenerates
only at the pointx0.

Proof of Theorem 5..We will prove the following chain of equalities

lim
µ→0

µ ln p(x) = − inf
T>0

inf
x(·)

x(0)=x, x(T )=x0

T∫
0

(
aij(x(t))ẋiẋj − v(x(t))

)
dt

= − inf
x(·)

x(0)=x, x(1)=x0

2

1∫
0

√
(−v(x(t))aij(x(t))ẋiẋjdt = −2dist(−v(x))aij (x)(x, x0).

(4.1)
The first equality in (4.1) is a direct consequence of Theorem 3. To obtain the second
one let us consider a family of regularized functionsvκ(x) = v(x) − κ, κ > 0. We have

inf
T>0

inf
x(·)

x(0)=x, x(T )=x0

T∫
0

(
aij(x(t))ẋiẋj − vκ(x(t))

)
dt

= inf
T>0

inf
x(·)

x(0)=x, x(1)=x0

1∫
0

( 1
T

aij(x(t))ẋiẋj − Tvκ(x(t))
)
dt

≥ 2 inf
x(·)

x(0)=x, x(1)=x0

1∫
0

√
(−vκ(x(t))aij(x(t))ẋiẋjdt.

Now, for any fixed curvex(t), x(0) = x, x(1) = x0 we consider an equation

τ̇ = T

√
−aij(x(τ (t)))ẋiẋj

/
vκ(x(τ (t))), τ (0) = 0,

and chooseT in such a way thatτ (1) = 1. Changing the parametrizationz(t) = x(τ (t))
gives

1∫
0

( 1
T

aij(z(t))żiżj − Tvκ(z(t))
)
dt =

1∫
0

( τ̇

T
aij(x(τ ))ẋiẋj − T

τ̇
vκ(x(τ ))

)
dτ

= 2

1∫
0

√
(−vκ(x(τ ))aij(x(τ ))ẋiẋjdτ.

Thus, the relation

inf
T>0

inf
x(·)

x(0)=x, x(1)=x0

1∫
0

( 1
T

aij(x(t))ẋiẋj − Tvκ(x(t))
)
dt

= 2 inf
x(·)

x(0)=x, x(1)=x0

1∫
0

√
(−vκ(x(t))aij(x(t))ẋiẋjdt
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holds. Passing to the limit asκ → 0 we obtain (4.1). The theorem is proved. �
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Ann. de l’Inst. Henri Poincaré, Probability and Statistics32, N5, 571–587 (1996)

13. Agmon, S.:Lectures on exponential decay of solutions of second order elliptic equations: Bounds
on eigenfunctions of n-body Schrödinger operators.Mathematical Notes 29. Princeton, NJ: Princeton
University Press

14. Piatnitski, A.L.:Homogenization of singularly perturbed operators.GAKUTO International Series,
Math. Sciences and Appl.,9, Homogenization and Application to Material Sciences, 1997, pp. 355–361

15. Markus, A.S.:Introduction to the spectral theory of polynomial operator pencils.Providence, RI: AMS,
1988

Communicated by Ya. G. Sinai


