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Abstract: We study the homogenization of a Schrödinger equation with a large periodic
potential: denoting by ε the period, the potential is scaled as ε−2. We obtain a rigorous
derivation of so-called effective mass theorems in solid state physics. More precisely,
for well-prepared initial data concentrating on a Bloch eigenfunction we prove that the
solution is approximately the product of a fast oscillating Bloch eigenfunction and of
a slowly varying solution of an homogenized Schrödinger equation. The homogenized
coefficients depend on the chosen Bloch eigenvalue, and the homogenized solution may
experience a large drift. The homogenized limit may be a system of equations hav-
ing dimension equal to the multiplicity of the Bloch eigenvalue. Our method is based
on a combination of classical homogenization techniques (two-scale convergence and
suitable oscillating test functions) and of Bloch waves decomposition.

1. Introduction

We study the homogenization of the following Schrödinger equation
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(1)

where 0 < T ≤ +∞ is a final time, and the unknown functionuε is complex-valued. The
coefficients A(y), c(y) and d(x, y) are real and bounded functions defined for x ∈ R

N

and y ∈ T
N (the unit torus). Furthermore, the matrix A(y) is symmetric, uniformly

positive definite, while c(y) and d(x, y) do not satisfy any positivity assumption. Of
course, the “usual” Schrödinger equation corresponds to the choice A(y) ≡ Id. Other
choices may be interpreted as a periodic metric. The scaling of Eq. (1) is typical of
homogenization (see e.g. [3], or chapter 4 in [6]) but is different from the scaling for
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studying its semi-classical limit (see e.g. [12, 15–17, 27, 29]). Let us recall this different
semi-classical scaling of the Schrödinger equation which is

iε−1 ∂uε

∂t
− div

(
A
(x

ε

)
∇uε

)
+ ε−2

(
c
(x

ε

)
+ d (x)

)
uε = 0. (2)

There are two differences between (1) and (2). First, there is a ε−1 coefficient in front of
the time derivative in (2), which implies that in (1) we consider much larger times than
in the semi-classical limit. Second, the microscopic potential c(y) and the macroscopic
potential d(x) are of the same order of magnitude in (2), on the contrary of (1) where
only small macroscopic potentials are considered (of order ε2 with respect to the micro-
scopic ones). Having both potentials of the same order of magnitude implies a strong
mixing of different Bloch band components, while in our case the macroscopic potential
vanishes fast enough, as ε tends to 0, so that it does not affect the phase function but
only the amplitude. (From our analysis it is clear that ε2 is the critical power of ε for
which this effect holds.) The results are thus very different in these two frameworks.
In particular, our framework is somehow simpler and enough to derive effective mass
theorems without taking the semi-classical limit.

The “standard” homogenization of (1) is simple as we now explain. (By standard, we
mean that assumption (6) on the initial data is satisfied.) Introduce the first eigencouple
of the spectral cell problem

−divy
(
A(y)∇yψ1

)+ c(y)ψ1 = λ1ψ1 in T
N, (3)

which, by the Krein-Rutman theorem, is real, simple and satisfies ψ1(y) > 0 in T
N .

Furthermore, by a classical regularity result,ψ1 is also continuous. Thus, one can change
the unknown by writing a so-called factorization principle (see e.g. [3, 5, 21, 33])

vε(t, x) = e
−i λ1t

ε2
uε(t, x)

ψ1
(
x
ε

) , (4)

and check easily, after some algebra, that the new unknown vε is a solution of a simpler
equation
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(5)

The new Schrödinger equation (5) is simple to homogenize (see e.g. [6]) since it does
not contain any singularly perturbed term, and we thus obtain uniform a priori estimates
for its solution.

Theorem 1.1. Let v0 ∈ H 1(RN). Assume that the initial data satisfies

u0
ε(x) = ψ1

(x

ε

)
v0(x). (6)

The new unknown vε , defined by (4), converges weakly in L2
(
(0, T );H 1(RN)

)
to the

solution v of the following homogenized problem
{

i
∂v

∂t
− div

(
A∗∇v)+ d∗(x) v = 0 in R

N × (0, T ),

v(t = 0, x) = v0(x) in R
N,

(7)
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where A∗ is the “usual” homogenized tensor for the periodic coefficients (|ψ1|2A)(y)
and d∗(x) = ∫

TN
|ψ1|2(y)d(x, y) dy.

In other words, Theorem 1.1 gives the following asymptotic behavior for the solution
of (1) :

uε(t, x) ≈ e
i
λ1t

ε2 ψ1

(x

ε

)
v(t, x),

where v is the solution of (7). Assumption (6) can be interpreted as an hypothesis on the
well-prepared character of the initial data. There are many other types of initial data for
which Theorem 1.1 is not meaningful. It turns out that, according to heuristical results
in solid state physics (see e.g. [25, 28, 30]), there are many other types of well-prepared
initial data for which a result like Theorem 1.1 holds true, but with a different value of
A∗ and d∗. Such results are called effective mass theorems.

Let us describe briefly one example of such an effective mass theorem (many gen-
eralizations are treated in the sequel). We first introduce a variant of (3), the so-called
Bloch or shifted cell problem,

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψn

)
+ c(y)ψn = λn(θ)ψn in T

N,

where θ ∈ T
N is a parameter and (λn(θ), ψn(y, θ)) is the nth eigencouple. In physical

terms, the range of λn(θ), as θ run in T
N , is a Bloch or conduction band (also called

Fermi surface). Theorem 1.1 (with its special initial data satisfying (6)) is concerned with
the bottom of the first Bloch band (or ground state). Now, we focus on higher energy
initial data (or excited states) and consider new well-prepared initial data of the type

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0(x). (8)

Under the additional assumption (11), which means that θn is a critical point of the
simple eigenvalue (or energy) λn(θ), we shall prove in Theorem 3.2 that the solution of
(1) satisfies

uε(t, x) ≈ e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε ψn

(x

ε
, θn

)
v(t, x),

where v(t, x) is the unique solution of the following Schrödinger homogenized equation:
{

i
∂v

∂t
− div

(
A∗
n∇v

)+ d∗
n(x) v = 0 in R

N × (0, T ),

v(t = 0, x) = v0(x) in R
N,

(9)

with different homogenized coefficients A∗
n and d∗

n , depending on the parameter θn and
on the energy level n. In other words, the homogenized problem depends on the type
of initial data. If A∗

n is a scalar (instead of a full matrix), its inverse value is called the
effective mass of the particle. A typical effect is that the effective mass depends on the
chosen energy of the particle, may be negative or zero, and even not a scalar.

Remark 1.2. A posteriori, a possible explanation of our “homogenization” scaling in
(1) is the following. It is well known that the effective mass of an electron in solid state
physics is a purely quantum mechanical notion, and its derivation should not involve any
arguments from classical or semi-classical limits [20, 25, 30]. The small macroscopic
potential in (1) has only a perturbative effect and will therefore not force the limit to be
semi-classical. Instead the limit will stay in the context of quantum mechanics. Finally
let us notice that the scaling of (1) was already used in the physical literature for deriving
effective mass equations [28].
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To obtain the homogenized limit (9) we can not follow the above simple idea, namely
the factorization principle (4). Indeed, for n > 1 or θn �= 0 there is no maximum princi-
ple, and therefore no Krein-Rutman theorem, soψn(y, θn)may change sign. Clearly we
can not divide by ψn in a formula similar to (4). In order to homogenize (1) for initial
data of the type of (8), we use a method which was first introduced in our previous work
[3] for systems of parabolic equations. The main idea is to use Bloch wave theory to build
adequate oscillating test functions and to pass to the limit using two-scale convergence
[2, 26].

Apart from the previously quoted references in the physical literature, to the best of
our knowledge effective mass theorems were addressed only in the two following math-
ematical papers. First, two-scale asymptotic expansions were previously performed in
Sect. 4 of Chap. 4 in [6] for a slightly different version of this problem: indeed, [6] put
a ε−1 scaling factor in front of the time derivative in the Schrödinger equation (which
corresponds to a short time asymptotic). Second, some special cases of effective mass
theorems were obtained in [29] with a different method of semi-classical measures. Let
us emphasize again that the scaling of (1) is not that of the semi-classical analysis (see
e.g. [12, 15–17, 27, 29]).

The content of this paper is the following. In Sect. 2 we recall some results on
Bloch theory and two-scale convergence. Section 3 is devoted to the derivation of the
homogenized Schrödinger equation (9). Section 4 generalizes the previous effective
mass theorem to the case when θn is not a critical point of an eigenvalue λn(θ), which
is still assumed to be simple. This yields a large drift of the solution (of order ε−1) in
the direction of the group velocity ∇θλn(θ). The main technical tool is a variant of the
notion of two-scale convergence due to [23] which takes into account this large drift.
Section 5 is concerned with another generalization when θn is a “third order” critical
point of λn(θ). In such a case, the limit equation features a fourth-order operator instead
of the usual second-order one. Finally in Sect. 6 we discuss a special case of a multiple
eigenvalue λn(θ). Under the strong assumption (52), which amounts to say that λn(θ)
is of multiplicity k > 1 at θ = θn and made of k smooth branches of eigenvalues and
eigenvectors which all share the same value for the first order derivative ∇θλn(θ), we
prove that the homogenized limit is precisely a coupled system of k equations. However,
the coupling is weak since it occurs only through the macroscopic potential term d∗(x)
which is a full k × k tensor. It turns out that there is no coupling through the second
order operator A∗

n. This result is reminiscent of a problem of modes crossing analyzed
in [13, 14], but is definitely different since we assume that the drift vectors ∇θλn(θ) are
equals.

2. Bloch Spectrum and Two-Scale Convergence

We assume that the coefficients A(y) and c(y) are real measurable bounded periodic
functions, i.e. their entries belong to L∞(TN), while d(x, y) is real measurable and
bounded with respect to x, and periodic continuous with respect to y, i.e. its entries
belong to L∞ (

R
N ;C(TN)) (other assumptions are possible). The tensor A is symmet-

ric and uniformly coercive, i.e. there exists ν > 0 such that for a.e. y ∈ T
N ,

A(y)ξ · ξ ≥ ν|ξ |2 for any ξ ∈ R
N.

We recall the so-called Bloch (or shifted) spectral cell equation

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψn

)
+ c(y)ψn = λn(θ)ψn in T

N, (10)
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which, as a compact self-adjoint complex-valued operator on L2(TN), admits a count-
able sequence of real increasing eigenvalues (λn)n≥1 (repeated with their multiplicity)
and normalized eigenfunctions (ψn)n≥1 with ‖ψn‖L2(TN) = 1. The dual parameter θ
is called the Bloch frequency and it runs in the dual cell of T

N , i.e. by periodicity it is
enough to consider θ ∈ T

N .
In the sequel, we shall consider an energy level n ≥ 1 and a Bloch parameter θn ∈ T

N

such that the eigenvalue λn(θn) satisfies some assumptions. Depending on these precise
assumptions we obtain different homogenized limits for the Schrödinger equation (1).
In Sect. 3 we assume that

{
(i) λn(θ

n) is a simple eigenvalue,
(ii) θn is a critical point of λn(θ) i.e., ∇θλn(θn) = 0. (11)

In Sect. 4 we make the weaker assumption

λn(θ
n) is a simple eigenvalue. (12)

This assumption of simplicity has two important consequences. First, if λn(θn) is simple,
then it is infinitely differentiable in a vicinity of θn. Second, if λn(θn) is simple, then the
limit problem is going to be a single Schrödinger equation. In Sect. 6 we make another
assumption of a multiple eigenvalue with smooth branches. Then the homogenized limit
is a system of several coupled Schrödinger equations (as many as the multiplicity).

Remark 2.1. In one space dimension N = 1 it is well-known that all eigenvalues λn(θ)
are simple, except possibly for θ = 0 or θ = ±1/2 when there is no gap below or above
the nth band (the so-called co-existence case, see [22]). In higher dimensions, λn(θ) has
no reason to be simple although there are some results of generic simplicity in similar
contexts, see [1].

Remark 2.2. Concerning the existence of critical points of λn(θ), it is easily checked
that for the first band or energy level n = 1 assumption (11) is always satisfied with
θ1 = 0 which is a minimum point of λ1 (see e.g. [6], [11]). In full generality, there may
be or not a critical point of λn(θ). For example, in the case of constant coefficients, λn(θ)
has no critical points for n > 1. However, in N = 1 space dimension it is well known
(see e.g. [22, 31]) that the top and the bottom of Bloch bands are attained alternatively
for θn = 0 or θn = ±1/2, and that the corresponding eigenvalue λn(θn) is simple if
it bounds a gap in the spectrum. Therefore, the maximum point θn below a gap, or the
minimum point θn above a gap, do satisfy assumption (11), which possibly holds for a
non-zero value of θn.

Under assumption (12) it is a classical matter to prove that the nth eigencouple of
(10) is smooth in a neighborhood of θn [19]. Introducing the operator An(θ) defined on
L2(TN) by

An(θ)ψ = −(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψ

)
+ c(y)ψ − λn(θ)ψ, (13)

it is easy to differentiate (10). Denoting by (ek)1≤k≤N the canonical basis of R
N and by

(θk)1≤k≤N the components of θ , the first derivative satisfies

An(θ)
∂ψn

∂θk
= 2iπekA(y)(∇y + 2iπθ)ψn + (divy + 2iπθ) (A(y)2iπekψn)

+∂λn
∂θk

(θ)ψn, (14)
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and the second derivative is

An(θ)
∂2ψn

∂θk∂θl
= 2iπekA(y)(∇y + 2iπθ)

∂ψn

∂θl
+ (divy + 2iπθ)

(

A(y)2iπek
∂ψn

∂θl

)

+2iπelA(y)(∇y + 2iπθ)
∂ψn

∂θk
+ (divy + 2iπθ)

(

A(y)2iπel
∂ψn

∂θk

)

+∂λn
∂θk

(θ)
∂ψn

∂θl
+ ∂λn

∂θl
(θ)
∂ψn

∂θk

−4π2ekA(y)elψn − 4π2elA(y)ekψn + ∂2λn

∂θl∂θk
(θ)ψn. (15)

Under assumption (11) we have ∇θλn(θn) = 0, thus Eqs. (14) and (15) simplify for
θ = θn and we find

∂ψn

∂θk
= 2iπζk,

∂2ψn

∂θk∂θl
= −4π2χkl, (16)

where ζk is the solution of

An(θ
n)ζk = ekA(y)(∇y + 2iπθn)ψn + (divy + 2iπθn) (A(y)ekψn) in T

N, (17)

and χkl is the solution of

An(θ
n)χkl = ekA(y)(∇y + 2iπθn)ζl + (divy + 2iπθn) (A(y)ekζl)

+elA(y)(∇y + 2iπθn)ζk + (divy + 2iπθn) (A(y)elζk)

+ekA(y)elψn + elA(y)ekψn − 1

4π2

∂2λn

∂θl∂θk
(θn)ψn in T

N. (18)

There exists a unique solution of (17), up to the addition of a multiple of ψn. Indeed, the
right hand side of (17) satisfies the required compatibility condition or Fredholm alter-
native (i.e. it is orthogonal to ψn) because ζk is just a multiple of the partial derivative
of ψn with respect to θk which necessarily exists, see (14). On the same token, there
exists a unique solution of (18), up to the addition of a multiple ofψn. The compatibility
condition of (18) yields a formula for the Hessian matrix ∇θ∇θλn(θn).

Finally we recall the notion of two-scale convergence introduced in [2, 26].

Proposition 2.3. Let uε be a sequence uniformly bounded in L2(RN).

1. There exists a subsequence, still denoted by uε , and a limit u0(x, y) ∈ L2(RN ×T
N)

such that uε two-scale converges weakly to u0 in the sense that

lim
ε→0

∫

RN
uε(x)φ(x,

x

ε
) dx =

∫

RN

∫

TN
u0(x, y)φ(x, y) dx dy

for all functions φ(x, y) ∈ L2
(
R
N ;C#(T

N)
)
.

2. Assume further that uε two-scale converges weakly to u0 and that

lim
ε→0

‖uε‖L2(RN) = ‖u0‖L2(RN×TN).

Then uε is said to two-scale converge strongly to its limit u0 in the sense that, if u0
is smooth enough, e.g. u0 ∈ L2

(
R
N ;C#(T

N)
)
, we have

lim
ε→0

∫

RN

|uε(x)− u0( x,
x

ε
)|2 dx = 0.
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3. Assume that ε∇uε is also uniformly bounded in L2(RN)N . Then there exists a sub-
sequence, still denoted by uε , and a limit u0(x, y) ∈ L2(RN ;H 1(TN)) such that uε
two-scale converges to u0(x, y) and ε∇uε two-scale converges to ∇yu0(x, y).

Notation. for any function φ(x, y) defined on R
N × T

N , we denote by φε the function
φ(x, x

ε
).

3. Homogenization Without Drift

In this section we use the strong assumption (11) about the stationarity of λn(θ) at
θn. Physically, it implies that the particle modeled by the limit wave function does not
experience any drift and is a solution of an effective Schrödinger equation.

Our precise assumptions on the coefficients are thatAij (y) and c(y) are real, measur-
able, bounded, periodic functions, i.e. belong to L∞(TN), the tensor A(y) is symmetric
uniformly coercive, while d(x, y) is real, measurable and bounded with respect to x,
and periodic continuous with respect to y, i.e. belongs to L∞ (

�;C(TN)). Then, if the
initial data u0

ε belongs to H 1(RN), there exists a unique solution of the Schrödinger
equation (1) in C

(
(0, T );H 1(RN)

)
which satisfies the following a priori estimate.

Lemma 3.1. There exists a constant C > 0 that does not depend on ε such that the
solution of (1) satisfies

‖uε‖L∞((0,T );L2(RN)) = ‖u0
ε‖L2(RN),

ε‖∇uε‖L∞((0,T );L2(RN)N) ≤ C
(
‖u0
ε‖L2(RN) + ε‖∇u0

ε‖L2(RN)N

)
.

(19)

Proof of Lemma 3.1. We multiply Eq. (1) by uε and we take the imaginary part to obtain

d

dt

∫

RN
|uε(t, x)|2dx = 0.

Next we multiply (1) by ∂uε
∂t

and we take the real part to get

d

dt

∫

RN

(
ε2A

(x

ε

)
∇uε · ∇uε +

(
c
(x

ε

)
+ ε2d

(
x,
x

ε

))
|uε |2

)
dx = 0.

This yields the required a priori estimates without using assumption (11). �
We obtain the following homogenized problem.

Theorem 3.2. Assume (11) and that the initial data u0
ε ∈ H 1(RN) is of the form

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0(x), (20)

with v0 ∈ H 1(RN). The solution of (1) can be written as

uε(t, x) = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε vε(t, x), (21)

where vε two-scale converges strongly to ψn(y, θn)v(t, x), i.e.

lim
ε→0

∫

RN

∣
∣
∣vε(t, x)− ψn

(x

ε
, θn

)
v(t, x)

∣
∣
∣
2
dx = 0, (22)
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uniformly on compact time intervals in R
+, and v ∈ C ((0, T );L2(RN)

)
is the unique

solution of the homogenized Schrödinger equation
{

i
∂v

∂t
− div

(
A∗
n∇v

)+ d∗
n(x) v = 0 in R

N × (0, T )

v(t = 0, x) = v0(x) in R
N,

(23)

with A∗
n = 1

8π2 ∇θ∇θλn(θn) and d∗
n(x) = ∫

TN
d(x, y)|ψn(y)|2 dy.

In the context of quantum mechanics or solid state physics Theorem 3.2 is called
an effective mass theorem [25, 28, 30]. More precisely, the inverse tensor (A∗

n)
−1 is

the effective mass of an electron in the nth band of a periodic crystal (characterized by
the periodic metric A(y) and the periodic potential c(y)). Since we did not assume that
θn was a minimum point, the tensor A∗

n = 1
8π2 ∇θ∇θλn(θn) can be neither definite nor

positive, which is quite surprising for a notion of mass (but this fact is well understood
in solid state physics [25, 30]).

Remark 3.3. Theorem 3.2 does not fit into the framework of G- or H -convergence (see
e.g. [24, 32]). Indeed these classical theories of homogenization state that the homoge-
nized coefficients are independent of the initial data, which is not the case here. There
is no contradiction in our result since H -convergence does not apply because we lack
a uniform a priori estimate in L2((0, T );H 1(RN)) for the sequence of solutions uε , as
required by H -convergence.

Remark 3.4. Assumption (20) can be slightly weakened for proving Theorem 3.2. For

example, it still holds true if we merely assume that u0
ε(x)e

−2iπ θ
n·x
ε two-scale converges

strongly to ψn(y, θn)v0(x).
On the other hand, if (20) is replaced by the even weaker assumption that u0

ε(x)

e−2iπ θ
n·x
ε two-scale converges weakly to ψn(y, θn)v0(x) (which is always true up to a

subsequence), then Theorem 3.2 is still valid provided that its conclusion is modified by
replacing the strong two-scale convergence of vε by a weak two-scale convergence.

Remark 3.5. In the case n = 1 and θn = 0 (bottom of the first Bloch band), Theorem
3.2 still holds true (with a different proof however) in the following non-linear setting.
Assume that we add to the Schrödinger equation (1) a non-linear term of order ε0,
g(x, x

ε
, uε), where g(x, y, ξ) is a Caratheodory function (i.e. measurable in y ∈ T

N and
continuous in (x, ξ) ∈ R

N ×C) such that g(x, y, 0) = 0, the product g(x, y, ξ)ξ is real
and depends only on the modulus |ξ |, i.e.

g(x, y, ξ)ξ = g(x, y, ξ ′)ξ ′
for any |ξ | = |ξ ′|,

and g satisfies some growth condition with respect to ξ . A first example is a uniformly
Lipschitz function

|g(x, y, ξ)− g(x, y, ξ ′)| ≤ C|ξ − ξ ′|.
A second example is

g(x, y, ξ) = g0(x, y)|ξ |p−2ξ with g0(x, y) ≥ C > 0 and p ≥ 2.

In such a case, it is well-known that the non-linear Schrödinger equation admits
a unique solution in C

(
(0, T );H 1(RN)

)
which satisfies the same a priori estimates of
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Lemma 3.1 [8]. Then, Theorem 3.2 can be generalized by using the factorization principle
(4) which yields Eq. (5) with an additional non-linear termψ1(

x
ε
, 0)g(x, x

ε
, ψ1(

x
ε
, 0)vε).

Such an equation does not contain anymore a singularly perturbed term and its solution
vε is easily seen to satisfy a uniformH 1(RN) bound. Therefore, by a standard compact-
ness argument it is possible to pass to the limit in the zero-order non-linear term and to
obtain a non-linear homogenized equation, similar to (23) with an additional non-linear
zero-order term which is

g∗(x, v) =
∫

TN
g(x, y, ψ1(y, 0)v)ψ1(y, 0) dy.

The generalization of this result for higher order Bloch bands n > 1 (with a different
method) is the topic of a future paper.

Proof of Theorem 3.2. This proof is in the spirit of our previous work [3]. Define a
sequence vε by

vε(t, x) = uε(t, x)e
−i λn(θn)t

ε2 e−2iπ θ
n·x
ε .

Since |vε | = |uε |, by the a priori estimates of Lemma 3.1 we have

‖vε‖L∞((0,T );L2(RN)) + ε‖∇vε‖L2((0,T )×RN) ≤ C,

and applying the compactness of two-scale convergence (see Proposition 2.3), up to a
subsequence, there exists a limit v∗(t, x, y) ∈ L2

(
(0, T )× R

N ;H 1(TN)
)

such that vε
and ε∇vε two-scale converge to v∗ and ∇yv∗, respectively. Similarly, by definition of
the initial data, vε(0, x) two-scale converges to ψn (y, θn) v0(x).

First step. We multiply (1) by the complex conjugate of

ε2φ(t, x,
x

ε
)e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε ,

where φ(t, x, y) is a smooth test function defined on [0, T )× R
N × T

N , with compact
support in [0, T )× R

N . Integrating by parts this yields

iε2
∫

RN
u0
εφ
ε
e−2iπ θ

n·x
ε dx − iε2

∫ T

0

∫

RN
vε
∂φ

ε

∂t
dt dx

+
∫ T

0

∫

RN
Aε(ε∇ + 2iπθn)vε · (ε∇ − 2iπθn)φ

ε
dt dx

+
∫ T

0

∫

RN
(cε − λn(θ

n)+ ε2dε)vεφ
ε
dt dx = 0.

Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθn)
(
A(y)(∇y + 2iπθn)v∗

)
+ c(y)v∗ = λn(θ

n)v∗ in T
N.

By the simplicity of λn(θn), this implies that there exists a scalar function v(t, x) ∈
L2
(
(0, T )× R

N
)

such that

v∗(t, x, y) = v(t, x)ψn(y, θ
n). (24)
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Second step. We multiply (1) by the complex conjugate of

ε = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x)+ ε

N∑

k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

)

,

where φ(t, x) is a smooth test function with compact support in [0, T )× R
N , and ζk(y)

is the solution of (17). After some algebra we found that

∫

RN
Aε∇uε · ∇εdx =

∫

RN
Aε
(

∇ + 2iπ
θn

ε

)
(
φvε

) ·
(

∇ − 2iπ
θn

ε

)

ψ
ε

n

+ε
∫

RN
Aε
(

∇ + 2iπ
θn

ε

)(
∂φ

∂xk
vε

)

·
(

∇ − 2iπ
θn

ε

)

ζ
ε

k

−
∫

RN
Aεek

∂φ

∂xk
vε ·

(

∇ − 2iπ
θn

ε

)

ψ
ε

n

+
∫

RN
Aε
(

∇ + 2iπ
θn

ε

)(
∂φ

∂xk
vε

)

· ekψεn

−
∫

RN
Aεvε∇ ∂φ

∂xk
· ekψεn

−
∫

RN
Aεvε∇ ∂φ

∂xk
· (ε∇ − 2iπθn

)
ζ
ε

k

+
∫

RN
Aεζ

ε

k

(
ε∇ + 2iπθn

)
vε · ∇ ∂φ

∂xk
. (25)

Now, for any smooth compactly supported test function�, we deduce from the definition
of ψn that

∫

RN
Aε
(

∇ + 2iπ
θn

ε

)

ψεn ·
(

∇ − 2iπ
θn

ε

)

�+ 1

ε2

∫

RN

(
cε − λn(θ

n)
)
ψεn� = 0,

(26)

and from the definition of ζk ,

∫

RN
Aε
(

∇ + 2iπ
θn

ε

)

ζ εk ·
(

∇ − 2iπ
θn

ε

)

�+ 1

ε2

∫

RN

(
cε − λn(θ

n)
)
ζ εk � =

ε−1
∫

RN
Aε
(

∇ + 2iπ
θn

ε

)

ψεn · ek�− ε−1
∫

RN
Aεekψ

ε
n ·
(

∇ − 2iπ
θn

ε

)

�.

(27)

Combining (25) with the other terms of the variational formulation of (1), we easily
check that the first line of its right-hand side cancels out because of (26) with� = φvε ,

and the next three lines cancel out because of (27) with � = ∂φ
∂xk
vε . On the other hand,

we can pass to the limit in three last terms of (25). Finally, (1) multiplied by ε yields
after simplification
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i

∫

RN
u0
εε(t = 0)dx − i

∫ T

0

∫

RN
vε

(

ψ
ε

n

∂φ

∂t
+ ε

∂2φ

∂xk∂t
ζ
ε

k

)

dt dx

−
∫ T

0

∫

RN
Aεvε∇ ∂φ

∂xk
· ekψεndt dx

−
∫ T

0

∫

RN
Aεvε∇ ∂φ

∂xk
· (ε∇ − 2iπθn)ζ

ε

kdt dx

+
∫ T

0

∫

RN
Aεζ

ε

k(ε∇ + 2iπθn)vε · ∇ ∂φ

∂xk
dt dx

+
∫ T

0

∫

RN
dεvεε dt dx. = 0.

(28)

Passing to the two-scale limit in each term of (28) gives

i

∫

RN

∫

TN
ψnv

0ψnφ(t = 0) dx dy − i

∫ T

0

∫

RN

∫

TN
ψnvψn

∂φ

∂t
dt dx dy

−
∫ T

0

∫

RN

∫

TN
Aψnv∇ ∂φ

∂xk
· ekψndt dx dy

−
∫ T

0

∫

RN

∫

TN
Aψnv∇ ∂φ

∂xk
· (∇y − 2iπθn)ζ kdt dx dy

+
∫ T

0

∫

RN

∫

TN
Aζ k(∇y + 2iπθn)ψnv · ∇ ∂φ

∂xk
dt dx dy

+
∫ T

0

∫

RN

∫

TN
d(x, y)ψnvψnφ dt dx dy. = 0.

(29)

Recalling the normalization
∫

TN
|ψn|2dy = 1, and introducing

2
(
A∗
n

)

jk
=
∫

TN

(
Aψnej · ekψn + Aψnek · ejψn

+Aψnej · (∇y − 2iπθn)ζ k + Aψnek · (∇y − 2iπθn)ζ j

−Aζk(∇y + 2iπθn)ψn · ej − Aζj (∇y + 2iπθn)ψn · ek
)
dy, (30)

and d∗
n(x) = ∫

TN
d(x, y)|ψn(y)|2 dy, (29) is equivalent to

i

∫

RN
v0φdx − i

∫ T

0

∫

RN
v
∂φ

∂t
dt dx −

∫ T

0

∫

RN
A∗v · ∇∇φdt dx

+
∫ T

0

∫

RN
d∗(x)vφdt dx = 0

which is a very weak form of the homogenized equation (23). The compatibility con-
dition of Eq. (18) for the second derivative of ψn yields that the matrix A∗

n, defined by
(30), is indeed equal to 1

8π2 ∇θ∇θλn(θn), and thus is symmetric. Although, the tensorA∗
n

is possibly non-coercive, the homogenized problem (23) is well posed. Indeed, by using
semi-group theory (see e.g. [7] or chapter X in [31]), there exists a unique solution in
C((0, T );L2(RN)), although it may not belong to L2((0, T );H 1(RN)). By uniqueness
of the solution of the homogenized problem (23), we deduce that the entire sequence vε
two-scale converges weakly to ψn (y, θn) v(t, x).
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It remains to prove the strong two-scale convergence of vε . By Lemma 3.1 we have

‖vε(t)‖L2(RN) = ‖uε(t)‖L2(RN) = ‖u0
ε‖L2(RN) → ‖ψnv0‖L2(RN×TN) = ‖v0‖L2(RN)

by the normalization condition of ψn. From the conservation of energy of the homoge-
nized equation (23) we have

‖v(t)‖L2(RN) = ‖v0‖L2(RN),

and thus we deduce the strong convergence (22) from Proposition 2.3. �
Remark 3.6. As we said in Sect. 2, the function ζk(y), which is used in the test function
ε , is uniquely defined up to the addition of a multiple of ψn (see (17)). This multiple
may depend on (t, x) and therefore the homogenized system could, in principle, depend
on the choice of this additive term. This is not the case as we now explain. In the homog-
enized system, ζk appears only in definition (30) of the homogenized tensor A∗

n. If we
replace ζk(y) by ζk(y) + ck(t, x)ψn(y), an easy calculation shows that all terms ck
cancel out because of the Fredholm alternative for ζk , i.e. the right-hand side of (17) is
orthogonal to ψn.

Remark 3.7. As usual in periodic homogenization [2, 6], the choice of the test func-
tion ε , in the proof of Theorem 3.2, is dictated by the formal two-scale asymptotic
expansion that can be obtained for the solution uε of (1), namely

uε(t, x) ≈ e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε

(

ψn

(x

ε
, θn

)
v(t, x)+ ε

N∑

k=1

∂v

∂xk
(t, x)ζk(

x

ε
)

)

,

where v is the homogenized solution of (23). The purpose of the corrector ζk is to com-
pensate by its second derivatives the first derivatives of ψn. Since ζk is proportional to
∂ψn/∂θk , the rule of thumb is that derivatives with respect to x correspond to derivatives
with respect to θ .

Remark 3.8. Our method applies also to systems of equations (see [3]). We never use
the fact that (1) is a single scalar equation.

4. Generalization with Drift

The Schrödinger equation (1) can still be homogenized when θn is not a critical point of
λn(θ). In other words we generalize Theorem 3.2 by weakening assumption (11) that we
now replace by (12), i.e. λn(θn) is simple. This yields a large drift in the homogenized
problem associated to the group velocity

V = 1

2π
∇θλn(θn). (31)

To begin with, we shall show that assumption (12) leads to a drift of velocity V at the
small time scale of order ε. Looking at such a ε time asymptotic is equivalent to replacing
the original Schrödinger equation (1) by
{
i

ε

∂uε

∂t
− div

(
A
(x

ε

)
∇uε

)
+
(
ε−2c

(x

ε

)
+ d

(
x,
x

ε

))
uε = 0 in R

N × (0, T ),

uε(t = 0, x) = u0
ε(x) in R

N,

(32)
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with the new ε−1 scaling in front of the time derivative (if the macroscopic potential
d(x, y)was of order ε−2, this would be precisely the scaling of semi-classical analysis).

Proposition 4.1. Assume that the initial data u0
ε ∈ H 1(RN) is of the form

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0(x),

with v0 ∈ L2(RN). The solution of (32) can be written as

uε(t, x) = ei
λn(θ

n)t
ε e2iπ θ

n·x
ε vε(t, x),

where vε(t, x) two-scale converges strongly to ψn(y, θn)v(t, x) and v ∈ C
(
(0, T );

L2(RN)
)

is the unique solution of the following transport equation:

{
∂v

∂t
− V · ∇v = 0 in R

N × (0, T ),

v(t = 0, x) = v0(x) in R
N,

(33)

which admits the explicit solution v(t, x) = v0 (x + Vt), and we have

lim
ε→0

∫

RN

∣
∣
∣vε(t, x)− ψn

(x

ε
, θn

)
v0 (x + Vt)

∣
∣
∣
2
dx = 0,

uniformly on compact time intervals in R
+.

Proof. First of all, the a priori estimates of Lemma 3.1 still hold true since its proof does
not depend on the assumption made on λn(θn) nor on the time scaling of the equation.
As in the first step of the proof of Theorem 3.2 we obtain that the sequence

vε(t, x) = uε(t, x)e
−i λn(θn)t

ε e−2iπ θ
n·x
ε

two-scale converges to a limit ψn (y, θn) v(t, x). Then, in a second step we multiply
(32) by the complex conjugate of

ε = ε ei
λn(θ

n)t
ε e2iπ θ

n·x
ε

(

ψn(
x

ε
, θn)φ(t, x)+ ε

N∑

k=1

∂φ

∂xk
(t, x)ζ ′

k(
x

ε
)

)

, (34)

where φ(t, x) is a smooth test function with compact support in [0, T )× R
N and ζ ′

k(y)

is defined by

∂ψn

∂θk
= 2iπζ ′

k.

Note that ζ ′
k is different from ζk , the solution of (17), since it is a solution of

An(θ
n)ζ ′

k = ekA(y)(∇y + 2iπθn)ψn + (divy + 2iπθn) (A(y)ekψn)

− i

2π

∂λn

∂θk
(θn)ψn in T

N,
(35)
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and ∇θλn(θn) �= 0. After integration by parts and some algebra similar to that in the
proof of Theorem 3.2 we obtain

i

∫

RN
v0|ψεn |2φ(t = 0) dx − i

∫ T

0

∫

RN
vεψ

ε

n

∂φ

∂t
dt dx

− 1

2iπ

∂λn

∂θk

∫ T

0

∫

RN
vεψ

ε

n

∂φ

∂xk
dt dx = o(1),

(36)

where o(1) denotes all other terms going to zero with ε. Passing to the two-scale limit
in (36) gives a variational formulation of (33). The strong two-scale convergence is
obtained as in the proof of Theorem 3.2 by using the energy conservation of the original
and homogenized equations. �

We now come back to the original time scale of the Schrödinger equation (1),





i
∂uε

∂t
− div

(
A
(x

ε

)
∇uε

)
+
(
ε−2c

(x

ε

)
+ d

(
x,
x

ε

))
uε = 0 in R

N × (0, T ),

uε(t = 0, x) = u0
ε(x) in R

N,

(37)

where the macroscopic zero-order term is assumed to satisfy

lim
|x|→+∞

d(x, y) = d∞(y) uniformly in T
N. (38)

Actually, assumption (38) could be weakened by stating that the limit exists for any fixed
direction in x but may vary. Using the following extension of the notion of two-scale
convergence (see [2, 26]), which has been introduced in [23], it is possible to homogenize
(37).

Theorem 4.2. Let V ∈ R
N be a given drift velocity. Let (uε)ε>0 be a uniformly bounded

sequence in L2((0, T )×R
N). There exists a subsequence, still denoted by ε, and a limit

function u0(t, x, y) ∈ L2((0, T ) × R
N × T

N) such that uε two-scale converges with
drift weakly to u0 in the sense that

lim
ε→0

∫ T

0

∫

RN
uε(t, x)φ

(

t, x + V
ε
t,
x

ε

)

dt dx =
∫ T

0

∫

RN

∫

TN
u0(t, x, y)φ(t, x, y) dt dx dy

(39)

for all functions φ(t, x, y) ∈ L2
(
(0, T )× R

N ;C(TN)).
Recall that, T

N being the unit torus, the test function φ in (39) is (0, 1)N -periodic
with respect to the y variable. Remark that Theorem 4.2 does not reduce to the usual
definition of two-scale convergence upon the change of variable z = x + V

ε
t because

there is no drift in the fast variable y = x
ε

. The proof of Theorem 4.2 is similar to the
proof of compactness of the usual two-scale convergence, except that it relies on the
following simple lemma.

Lemma 4.3. Let φ(t, x, y) ∈ L2
(
(0, T )× R

N ;C(TN)). Then

lim
ε→0

∫ T

0

∫

RN

∣
∣
∣
∣φ

(

t, x + V
ε
t,
x

ε

)∣
∣
∣
∣

2

dt dx =
∫ T

0

∫

RN

∫

TN
|φ(t, x, y)|2dt dx dy.
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It is not difficult to check that the L2-norm is weakly lower semi-continuous with
respect to the two-scale convergence (see Proposition 1.6 in [2]), i.e., in the present
setting

lim
ε→0

‖uε‖L2((0,T )×RN) ≥ ‖u0‖L2((0,T )×RN×TN).

The next proposition asserts a corrector-type result when the above inequality turns out
to be an equality.

Proposition 4.4. Let (uε)ε>0 be a sequence in L2((0, T ) × R
N) which two-scale con-

verges with drift to a limit u0(t, x, y) ∈ L2((0, T )× R
N × T

N). Assume further that

lim
ε→0

‖uε‖L2((0,T )×RN) = ‖u0‖L2((0,T )×RN×TN).

Then, it is said to two-scale converge with drift strongly and it satisfies

lim
ε→0

∫ T

0

∫

RN

∣
∣
∣
∣uε(t, x)− u0

(

t, x + V
ε
t,
x

ε

)∣
∣
∣
∣

2

dx dt = 0,

if u0(t, x, y) is smooth, say u0(t, x, y) ∈ L2
(
(0, T )× R

N ;C(TN)).
The proofs of Theorem 4.2 and Lemma 4.3 can be found in [23]. That of Proposition

4.4 is a simple adaptation of Theorem 1.8 in [2].
Under assumption (12) we obtain the following generalization of Theorem 3.2.

Theorem 4.5. Assume that the initial data u0
ε ∈ H 1(RN) is of the form

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0(x), (40)

with v0 ∈ H 1(RN). The solution of (37) can be written as

uε(t, x) = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε vε(t, x), (41)

where vε(t, x) converges strongly in the sense of two-scale convergence with drift to
ψn(y, θ

n)v(t, x), i.e.

lim
ε→0

∫ T

0

∫

RN

∣
∣
∣
∣vε(t, x)− ψn

(x

ε
, θn

)
v

(

t, x + V
ε
t

)∣
∣
∣
∣

2

dx dt = 0, (42)

and v ∈ C
(
(0, T );L2(RN)

)
is the unique solution of the Schrödinger homogenized

problem

{

i
∂v

∂t
− div

(
A∗
n∇v

)+ d∗
n v = 0 in R

N × (0, T ),

v(t = 0, x) = v0(x) in R
N,

(43)

with A∗
n = 1

8π2 ∇θ∇θλn(θn) and d∗
n = ∫

TN
d∞(y)|ψn(y)|2 dy.

Remark 4.6. For the longer time scale of Eq. (37), the transport equation (33) can still
be seen in the large drift V/ε of formula (42).
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Proof of Theorem 4.5. The proof is similar to that of Theorem 3.2 and Proposition 4.1.
Nevertheless, we do not use, as before, the usual two-scale convergence but rather the
two-scale convergence with drift. In a first step, by multiplying (37) by a test function

ε2φ

(

t, x + V
ε
t,
x

ε

)

e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε ,

where φ(t, x, y) is a smooth test function defined on [0, T )× R
N × T

N , with compact
support in [0, T )× R

N , we prove that the sequence

vε(t, x) = uε(t, x)e
−i λn(θn)t

ε2 e−2iπ θ
n·x
ε

two-scale converges with drift to a limit ψn (y, θn) v(t, x). Then, in a second step we
multiply (37) by the complex conjugate of

ε = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x + V

ε
t)+ ε

N∑

k=1

∂φ

∂xk
(t, x + V

ε
t)ζ ′

k(
x

ε
)

)

,

which is different from the previous test function (34) by the ε factor, the time scale of
the phase, and mostly the large drift in the macroscopic variable. Integrating by parts we
perform a computation which is very similar to that in the proof of Theorem 3.2 except
that new terms arise. Indeed, the time integration by parts of

∫ T

0

∫

RN
i
∂uε

∂t
εdt dx

yields two new terms. The first one, of order ε−1, corresponds to the time derivative
applied to φ(t, x + V

ε
t), and cancels out exactly with the additional term in Eq. (35) for

ζ ′
k (compared to Eq. (17) for ζk) which is

− 1

2iπε

∂λn

∂θk

∫ T

0

∫

RN
vεψ

ε

n

∂φ

∂xk
dt dx.

The second new term, of order ε0, corresponds to the time derivative applied to ε ∂φ
∂xk
(t, x+

V
ε
t), and cancels out exactly with the additional term in the Fredholm alternative of Eq.

(15) for ∂2ψn
∂θk∂θl

(compared to Eq. (18) for χkl). In any case we still obtain that the homog-
enized matrix A∗

n is proportional to the Hessian matrix ∇θ∇θλn(θn). The rest of the
proof is as in Theorem 3.2, provided the usual two-scale convergence is replaced by the
two-scale convergence with drift which relies on test functions having a large drift in
the macroscopic variable. �

5. Fourth Order Homogenized Problem

By changing the main assumption on the Bloch spectrum it is possible to obtain a fourth
order homogenized equation instead of the usual Schrödinger equation. Specifically we
consider
{

iε2 ∂uε

∂t
− div

(
A
(x

ε

)
∇uε

)
+
(
ε−2c

(x

ε

)
+ ε2d

(
x,
x

ε

))
uε = 0 in R

N × (0, T )

uε(t = 0, x) = u0
ε(x) in R

N.

(44)
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Remark that the time scaling in (44) is not the same as that in (1): this means that we are
looking for an asymptotic for longer time of order ε−2 in (44), compared to (1). Instead
of (11), we now make the following assumption:

{
(i) λn(θ

n) is a simple eigenvalue,
(ii) ∇θλn(θn) = 0,∇θ∇θλn(θn) = 0,∇θ∇θ∇θλn(θn) = 0, (45)

which means that θn is a “third order” critical point of λn(θ). We do not know if assump-
tion (45) is satisfied for any practical example but it seems “reasonable”. Under assump-
tion (45) the first eigencouple of (10) is smooth at θn. Recall that, for θ = θn, the two
first derivatives of ψn are given by

∂ψn

∂θk
= 2iπζk,

∂2ψn

∂θk∂θl
= −4π2χkl, (46)

where ζk is the solution of (17) and χkl is the solution of (18) (remark that this last
equation simplifies since ∇θ∇θλn(θn) = 0). Similarly, the third derivative is

∂3ψn

∂θj ∂θk∂θl
= −8iπ3ξjkl, (47)

where

A(θn)ξjkl = ejA(y)(∇y + 2iπθn)χkl + (divy + 2iπθn)
(
A(y)ejχkl

)

+ekA(y)(∇y + 2iπθn)χjl + (divy + 2iπθn)
(
A(y)ekχjl

)
(48)

+elA(y)(∇y + 2iπθn)χkj + (divy + 2iπθn)
(
A(y)elχkj

)

+ekA(y)elζj + ejA(y)elζk + ekA(y)ej ζl .

There exists a unique solution of (48), up to the addition of a multiple of ψn. Indeed, the
right hand side of (48) satisfies the required compatibility condition (i.e. it is orthogonal
to ψn) because all derivatives of λn(θ), up to third order, are zero at θ = θn.

Theorem 5.1. Assume that the initial data u0
ε ∈ L2(RN) are of the form

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0(x), (49)

with v0 ∈ H 1(RN). The solution of (44) can be written as

uε(t, x) = e
i
λn(θ

n)t

ε4 e2iπ θ
n·x
ε vε(t, x), (50)

where vε converges strongly in the sense of two-scale convergence to ψn(y, θn)v(t, x)
and v ∈ C ((0, T );L2(RN)

)
is the solution of the fourth-order homogenized problem

{

i
∂v

∂t
+ div div

(
A∗
n∇∇v)+ d∗

n(x) v = 0 in R
N × (0, T )

v(t = 0, x) = v0(x) in R
N,

(51)

with A∗
n = 1

(2π)44!
∇θ∇θ∇θ∇θλn(θn) and d∗

n(x) = ∫

TN
d(x, y)|ψn(y)|2 dy.
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Proof. The proof is similar to that of Theorem 3.2 since we have the same a priori
estimates as in Lemma 3.1. The first step is identical: the sequence

vε = uεe
−i λn(θn)t

ε4 e−2iπ θ
n·x
ε ,

two-scale converges to a limit v(t, x)ψn(y, θn). In the second step, we multiply (44) by
the complex conjugate of

ε = e
i
λn(θ

n)t

ε4 e2iπ θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x)+ ε

N∑

k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

+ε2
N∑

k,l=1

∂2φ

∂xk∂xl
(t, x)χkl(

x

ε
)+ ε3

N∑

j,k,l=1

∂3φ

∂xj ∂xk∂xl
(t, x)ξjkl(

x

ε
)



 ,

where φ(t, x) is a smooth test function with compact support in [0, T ) × R
N , ζk(y) is

the solution of (17), χkl(y) is the solution of (18), and ξjkl(y) is the solution of (48).
After some tedious algebra we can pass to the two-scale limit and find a variational
formulation of (51) (see [3] where a similar computation is done for a parabolic system).
We obtain a fourth-order homogenized tensor which is (up to symmetrization)

(
A∗
n

)

jklm
=
∫

TN

(
− Aψnem · ekχjl − Aψnem · (∇y − 2iπθn)ηjkl

+Aηjkl(∇y + 2iπθn)ψn · em
)
dy.

The compatibility condition of the equation giving the fourth derivative of ψn shows
that this tensor A∗ is actually equal to 1

(2π)44!
∇θ∇θ∇θ∇θλn(θn). �

Remark 5.2. Similarly we could derive a third-order homogenized problem, if we replace
assumption (45) by the hypothesis that θn is a “second order” critical point of λn(θ),
and if we change the time scale in (44) by writing the time derivative as iε ∂uε

∂t
. More

generally, any p-order critical point of λn(θ) yields a p-order (in space) homogenized
equation. This is a well-known consequence of the duality between derivatives in the
physical space and multiplication by Fourier variables (or more precisely here Bloch
variables).

6. Homogenized System of Equations

In this section we investigate the case of a Bloch eigenvalue which is not simple. To
simplify the exposition we consider an eigenvalue of multiplicity two, but the argument
works through for any multiplicity. We replace assumption (11) by the following one:
for n ≥ 1, we consider a Bloch parameter θn ∈ T

N such that





(i) λn(θ
n) = λn+1(θ

n) �= λk(θ
n) ∀k �= n, n+ 1,

(ii) locally near θn, λn(θ) and λn+1(θ) form two
smooth branches of eigenvalues with corresponding
smooth eigenfunctions ψn(θ) and ψn+1(θ),

(iii) ∇θλn(θn) = ∇θλn+1(θ
n) = 0.

(52)
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By a convenient abuse of language we still denote by λn(θ) and λn+1(θ) the two smooth
(local) branches of eigenvalues passing through θn (this is equivalent to a pointwise rela-
beling of these two eigenvalues, not necessarily following the usual increasing order). In
dimensionN = 1 a double eigenvalue can only occur when there is no gap between two
consecutive Bloch bands and assumption (52) is automatically satisfied [22]. However,
in dimension N > 1 it is not even clear that, near a double eigenvalue, one can find two
smooth branches because θ is a vector-valued parameter (see [19]). Therefore, (52) is a
very strong mathematical assumption which is physically not very relevant in dimension
N > 1.

Theorem 6.1. Assume (52) and that the initial data u0
ε ∈ H 1(RN) are of the form

u0
ε(x) = ψn

(x

ε
, θn

)
e2iπ θ

n·x
ε v0

1(x)+ ψn+1

(x

ε
, θn

)
e2iπ θ

n·x
ε v0

2(x), (53)

with v0
1, v

0
2 ∈ H 1(RN). The solution of (1) can be written as

uε(t, x) = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε vε(t, x), (54)

where vε two-scale converges strongly to ψn(y, θn)v1(t, x)+ψn+1(y, θ
n)v2(t, x), i.e.,

uniformly on compact time intervals in R
+,

lim
ε→0

∫

RN

∣
∣
∣vε(t, x)− ψn

(x

ε
, θn

)
v1(t, x)− ψn+1

(x

ε
, θn

)
v2(t, x)

∣
∣
∣
2
dx = 0, (55)

and (v1, v2) ∈ C ((0, T );L2(RN)2
)

is the unique solution of the homogenized Schrödinger
system of two equations






i
∂v1

∂t
− div

(
A∗
n∇v1

)+ d∗
11(x) v1 + d∗

12(x) v2 = 0 in R
N × (0, T )

i
∂v2

∂t
− div

(
A∗
n+1∇v2

)+ d∗
21(x) v1 + d∗

22(x) v2 = 0 in R
N × (0, T )

(v1, v2)(t = 0, x) = (v0
1, v

0
2)(x) in R

N,

(56)

with A∗
n = 1

8π2 ∇θ∇θλn(θn), A∗
n+1 = 1

8π2 ∇θ∇θλn+1(θ
n) and

(
d∗

11(x) d
∗
12(x)

d∗
21(x) d

∗
22(x)

)

=
∫

TN
d(x, y)

(
ψn(y)ψn(y) ψn(y)ψn+1(y)

ψn+1(y)ψn(y) ψn+1(y)ψn+1(y)

)

dy.

Remark 6.2. The main point in Theorem 6.1 is that the homogenized system is of dimen-
sion equal to the multiplicity of the eigenvalue λn(θn). However, the homogenized sys-
tem (56) is coupled only by zero-order terms since the diffusion operator is diagonal.

Remark 6.3. Part (iii) of assumption (52) means that the two Bloch modes λn and λn+1
are tangent at θn. The fact that the derivatives are zero is not essential and (52)-(iii) can
be replaced by V = ∇θλn(θn)/2π = ∇θλn+1(θ

n)/2π . In such a case, Theorem 6.1 can
easily be generalized and both components of the homogenized solution are subject to
a large common drift ε−1V �= 0.

However, if assumption (iii) in (52) is not satisfied, i.e. if there are two different
group velocities, ∇θλn(θn) �= ∇θλn+1(θ

n), then we obtain an uncoupled limit system,
i.e. each branch of eigenfunctions yields a different homogenized Schrödinger equation
(we safely leave the details to the reader). Physically speaking, this last situation can
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be interpreted as a crossing of modes, whereas (52) is just a case of tangential modes.
The semi-classical limit of the crossing of modes yields the so-called Landau-Zerner
formula, recently analyzed in [13], [14]. Our study is very different since it leads to a
non-trivial limit only in the case of tangential modes.

Proof of Theorem 6.1. Introducing a sequence vε defined by

vε(t, x) = uε(t, x)e
−i λn(θn)t

ε2 e−2iπ θ
n·x
ε ,

which satisfies the same a priori estimates as uε , and applying Proposition 2.3, there
exists a limit v∗(t, x, y) ∈ L2

(
(0, T )× R

N ;H 1(TN)
)

such that, up to a subsequence,
vε and ε∇vε two-scale converge to v∗ and ∇yv∗, respectively.

First step. We multiply (1) by the complex conjugate of

ε2φ
(
t, x,

x

ε

)
e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε ,

where φ(t, x, y) is a smooth test function defined on [0, T )× R
N × T

N , with compact
support in [0, T ) × R

N . Integrating by parts and passing to the two-scale limit yields
the variational formulation of

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)v∗

)
+ c(y)v∗ = λn(θ

n)v∗ in T
N.

Since λn(θ
n) = λn+1(θ

n) is of multiplicity 2, there exist two scalar functions
v1(t, x), v2(t, x) ∈ L2

(
(0, T )× R

N
)

such that

v∗(t, x, y) = v1(t, x)ψn(y, θ
n)+ v2(t, x)ψn+1(y, θ

n). (57)

Second step. We multiply (1) by the complex conjugate of

ε = e
i
λn(θ

n)t

ε2 e2iπ θ
n·x
ε

(
ψn(

x

ε
, θn)φ1(t, x)+ ψn+1(

x

ε
, θn)φ2(t, x)

+ε
N∑

k=1

(
∂φ1

∂xk
(t, x)ζ 1

k (
x

ε
)+ ∂φ2

∂xk
(t, x)ζ 2

k (
x

ε
)

))
,

where φ1, φ2 are two smooth test functions with compact support in [0, T )× R
N , and

ζ 1
k (y) is the solution of (17) with ψn in the right hand side (respectively, ζ 2

k (y) with
ψn+1). Note that at this point we strongly use the assumption on the smoothness of the
eigenfunctions since ζ 1

k (y) (respectively, ζ 2
k (y)) is defined as the partial derivative of

ψn (respectively, ψn+1) with respect to θk . We integrate by parts and we pass to the
two-scale limit using the same algebra as in the proof of Theorem 3.2. We also use the
orthogonality property

∫

TN
ψnψn+1 dy = 0,
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to obtain

i

∫

RN

(
v0

1φ1(0)+ v0
2φ2(0)

)
dx − i

∫ T

0

∫

RN

(

v1
∂φ1

∂t
+ v2

∂φ2

∂t

)

dt dx

−
∫ T

0

∫

RN

2∑

p,q=1

A∗
pqvp · ∇∇φq dt dx

+
∫ T

0

∫

RN

∫

TN
d(ψnv1 + ψn+1v2)(ψnφ1 + ψn+1φ2) dt dx dy = 0, (58)

where A∗
11 = A∗

n and A∗
22 = A∗

n+1, defined by (30), and A∗
12 is defined by

2
(
A∗

12

)

jk
=
∫

TN

(
Aψnej · ekψn+1 + Aψnek · ejψn+1

+Aψnej · (∇y − 2iπθn)ζ
2
k + Aψnek · (∇y − 2iπθn)ζ

2
j

−Aζ 2
k(∇y + 2iπθn)ψn · ej − Aζ

2
j (∇y + 2iπθn)ψn · ek

)
dy, (59)

with a symmetric formula for A∗
21. Recall that A∗

n = 1
8π2 ∇θ∇θλn(θn) because of the

compatibility condition of Eq. (18) for the second derivative of ψn. This compatibility
condition is obtained by multiplying (18) by ψn and remarking that

∫

TN
An(θ

n)χklψn dy =
∫

TN
χklAn(θn)ψn dy = 0

because An(θ
n)ψn = 0. However, the same holds true if we multiply (18) by ψn+1 ,

∫

TN
An(θ

n)χklψn+1 dy = 0,

because An(θ
n)ψn+1 = 0. Therefore, we deduce that (59) is equivalent to

2
(
A∗

12

)

lk
=
∫

TN

1

4π2

∂2λn

∂θl∂θk
(θn)ψnψn+1 dy = 0

by orthogonality of ψn and ψn+1. Thus A∗
12 = A∗

21 = 0 and (58) is a weak formulation
of the limit system (56) which is thus coupled only through the zero-order terms. It is
easily seen that (56) is well-posed in C

(
(0, T );L2(RN)2

)
. The rest of the proof is as

for Theorem 3.2. �
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tiques Appliquées at Ecole Polytechnique.

References

1. Albert, J.H.: Genericity of simple eigenvalues for elliptics pde’s. Proc. A.M.S. 48, 413–418 (1975)
2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518

(1992)
3. Allaire, G., Capdeboscq, Y., Piatnitski, A., Siess, V., Vanninathan, M.: Homogenization of periodic

systems with large potentials. Arch. Rat. Mech. Anal. 174, 179–220 (2004)



22 G. Allaire, A. Piatnitski

4. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures
et Appli. 77, 153–208 (1998)

5. Allaire, G., Malige, F.: Analyse asymptotique spectrale d’un problème de diffusion neutronique. C.
R. Acad. Sci. Paris Série I, t 324, 939–944 (1997)

6. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Amster-
dam: North-Holland, 1978
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