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Abstract: We consider a class of discrete time random dynamical systems and establish
the exponential convergence of its trajectories to a unique stationary measure. The result
obtained applies, in particular, to the 2D Navier-Stokes system and multidimensional
complex Ginzburg-Landau equation with random kick-force.

1. Main Result

The present paper is an immediate continuation of [KS2] and is devoted to studying the
following random dynamical system (RDS) in a Hilbert space H:

ubk = S@=N + e, k=1 (1.1)

Here S : H — H is a locally Lipschitz operator such that S(0) = 0 and {n;} is a
sequence of i.i.d. bounded random variables of the form

o0
m= Y bjEjrej, (1.2)
=1

where {e;}is an orthonormal basisin H,b; > 0 are some constants such that > b? < 00,
and & i are scalar random variables. The exact conditions imposed on S can be found
in [KS2, Sect. 2] (see Conditions (A) — (C)). Roughly speaking, they mean that S is
compact and S”(#) — 0 as n — oo uniformly on bounded subsets of H. Concerning
the random variables & i, we assume that they satisfy the following condition:

(D) For any j, the random variables & i, k > 1, have the same distribution 7 ;(dr) =
pj(r)dr, where the densities p;(r) are functions of bounded variation such that
supp p; C [—1,1] and fr|<£ pj(r)dr > 0 forall j > 1 and ¢ > 0. We normalise
the functions p; to be continuous from the right.
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Let us denote by 5 = B (k, v, -) the Markov transition function for (1.1) and by 5,
the associated Markov semigroup acting on the space of bounded continuous functions
on H. It was proved in [KS1, KS2] that, under the above conditions, the RDS (1.1) has
a unique stationary measure i, provided that

bj#0 for 1<j<N, (1.3)

where N > 1 is sufficiently large. Moreover, it is shown in [KS2] that any trajectory {u*}

of the RDS (1.1) converges to p (in an appropriate sense) with the rate ¢~V The aim
of this paper is to prove that this convergence is exponential:

Theorem 1.1. There is a constant ¢ > 0 and an integer N > 1 such that if (1.3) holds,
then

|k £ () — (. )| < Cre™*(supyy | f1+Lip(f)) for k>0, ueBy(R), (1.4)

where By (R) is the ball in H of radius R centred at zero, f is an arbitrary bounded
Lipschitz function on H, and Cg > 0 is a constant depending on R solely.

As it is shown in [KS1], the conditions (A) — (D) (under which Theorem 1.1 is
proved) are satisfied for the 2D Navier—Stokes system and multidimensional complex
Ginzburg-Landau equation perturbed by a kick-force of the form

n(t,x) =Y m(x)8(t —k),

k=1

where the kicks n; are i.i.d. random variables which can be written in the form (1.2) in
an appropriate functional space H.

We note that the exponential convergence to the stationary measure was established
earlier for the Navier—Stokes system perturbed by a finite-dimensional white noise force.
Namely, Bricmont, Kupiainen, Lefevere [BKL] showed that for p-almost all ! initial
functions u° the corresponding trajectory {u*} converges to the stationary measure ex-
ponentially fast. Our proof implies the exponential convergence for all initial data and
is much shorter. It exploits the coupling approach from [KS2].

For the reader’s convenience, we recall some notations used in [KS2].

Notations. We abbreviate a pair of random variables &1, §> or points uy, us to &2
and u 2, respectively. Given a probability space (2, F, P) and an integer k > 1 (the
case k = oo is not excluded), we denote by QF the space 2 X - - - x 2 (k times) endowed
with the o -algebra F x - - - x F and the measure > x - - - x IP. The points of Q¥ will be
denoted by 0t = (w1, ..., w), where w; € Q.

Cp(H) is the space of bounded continuous functions on H with the supremum
norm || - [|oo.

L(H) is the space of bounded Lipschitz functions on H endowed with the norm
Ifllz = I flleo + Lip(f), where Lip( f) is the Lipschitz constant of f.

Wy (k) denotes the measure B (k, v, -).

By (R) is the closed ball of radius R > 0 centred at zero.

I We denote by u the unique stationary measure.
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2. Proof of the Theorem

Step 1. For any two probability Borel measures @1 and > on H we set

w1 = p2ll; = sup |1 — pa, )|
IfllL=<1
(cf. [D], Sect. 11.3). In view of Lemma 1.2 in [KS2], to prove the theorem it suffices to
show that for any R > 0 there is Cr > 0 such that

| 1y () = puy ||, < Cre™* for wr,uz € Bu(R), k=1,

where ¢ > 0 is a constant not depending on R. As in [KS2], we can restrict our consid-
eration to the compact invariant set .4, which contains supports of the measures p,, (k),
k > 1,u € By (R) (see formula (2.5) in [KS2]). Moreover, by Lemma 1.3 in [KS2],
the required inequality (1.4) will be proved if we show that for any u1, u» € A and any
integer k > 1 there is a coupling y12(k) = y12(k, u1, u2) for the measures py, , (k)
such that '
P{liyi(k) = (bl = Ce™*} < Ce™* for k=1, 2.1)

where || - || is the norm in H and C > 0 is a constant not depending on uj,uy € A
and k. Finally, repeating the argument in Step 2 of the proof of Theorem 2.1 in [KS2,
Sect. 3.2], we see that it suffices to find an integer / > 1 and to construct a probability
space (€, 7', ?’) and a sequence of couplings Vi, uz, 0), w € Q/, for the mea-
sures [y, ,(nl),n > 1, such that the maps y{”z are measurable with respect to (11, uz, ®)
and satisfy the inequality

P{IV —yil = e} < e for n> 1. 2.2)
If (2.2) is established, then (2.1) holds with ¢ = ¢’/ and some constant C > 1.

Step 2. To prove (2.2), we shall need the following result, which is a particular case of
Lemma 3.3 in [KS2].

Lemma 2.1. Under the conditions of Theorem 1.1, there is a probability space (2, F, P),
positive constants dy < 1/2 and 6, and an integer | > 1 such that for any uy,uy € A
the measures (L, , (1) admit a coupling Uy = Uj 2(u1, uz; w) such that the following
assertions hold:

(i) The maps Uy 2(u1, uz, w) are measurable with respect to (u1, uz, ) € Ax Ax Q.
() If lur — uz|l > do, then

P{I|U1 — U2l <do} = 6. 2.3)
(i) If d = |luy — uzll < 27"dy for some integer r > 0, then
P{IU, — Upll <d/2} = 1 —27"7, (2.4)

Remark 2.2. In [KS2], it is proved that the probability on the left-hand side of (2.4)
can be estimated from below by 1 — 2-"=1 However, it is not difficult to see that the
term 27"~ ! can be replaced by 27”73 if the constant dj is sufficiently small.

Let us fix arbitrary uj, up € A and define a sequence of random variables y{’ ) =

n—1

y{"z(ul, uy, ®"), ®" = (@" ', wy,) € Q", by the rule y?’z =uy and

-1 1y a1 -1
Vi uz, @) = Uro(y] ™ (w1, uz, @"71), ¥y~ (ur, uz, @), @), n =L

We shall show that yi’l satisfy (2.2) for all n > 0.
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Step 3. Let us introduce a probability space (2°°, F°°, P*) as the countable product
of (2, F, IP) and note that the random variables y?‘z, n > 0, can be extended to Q% by
the natural formula

}’?,z(ul s U2, woo) = y{l,z(u] s U2, wn)5 woo = (wn’ w}’LJr] ) wn+2, . ')'

Thus, without loss of generality, we can assume that they are defined on the same prob-
ability space °°. To simplify notation, we write (2, F, P) instead of (2°°, F°, P°°).
For any non-negative integers » and n, we define the events

Qn,r = {0) €eQ:d < ”)7111(50) - y;(w)” < dr—l}a

where d, =27"dp forr > 1 and d_; = oo. Let us denote p, , = P(Q, ) and set

00
& = Z 2_rpn,r~
r=0

We claim that
L =<y", n=0, (2.5)

where y < 1 is a positive constant not depending on uy, up € A and n.

Taking inequality (2.5) for granted, let us complete the proof of (2.2).

For any real number s > 0, we denote by [s] its integer part. Let us choose o > 0 so
small that 8 := 2%y < 1 and consider the event

[an]

Ry := {1y} (@) = 5 (@) = diam} = | Qn.r-
r=0

In view of (2.5), we have

[an] [an]
P(Ry) =Y puy <213 277 p,, <2%¢, < 2%y)" = B".
r=0 r=0

Since dy < 1/2, we see that djg,] = 2-lenl gy < 2—an We have thus proved that
P{lIy} (@) — Y5 ()| = 27%"} < B".

This inequality implies (2.2) with ¢/ = min{alog2,log 8~} and (Q/, F,P) =
(@, F,P).

Step 4. Thus, it remains to establish (2.5). Since {y < 1, it is sufficient to show that
n <y &y forn > 1. We have

= Z 2_r]P(Qn,r)

r=0
00 00
= Zz—r Z pn—l,mP{Qn,r | Qn—l,m}
r=0 m=0
00 m 00
=< Z Pn—1,m ZP{Qn,r | anl,m} + 2—(m+1) Z P{Qn,r | anl,m}
m=0 r=0 r=m+1

(2.6)
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Let us estimate the two sums in 7 in the right-hand side of (2.6). In view of inequality (2.4)
with d € [d,,, d,,—1), for m > 1 we have

m
D P{Onr | Qnotm} =PIy} = Y51 = dn | Quorm} <2772 (27
0

r=
o
> P{Qur | Qntm} =PI} = Y51l < dm| Qu-rm} < 1. (2.8)

r=m+1

We now consider the case m = 0. Inequality (2.3) implies that

Op = ]P{Qn,O | Qn—l,O} <1-6.

Hence, denoting by Q¢ , the complement of O o, we derive

P{Qnol Qn-10}+27" Y "P{Qur| Quto} = on+27"P{Q5 4| Qn-10)}

r=1

=0, +(—-0,)/2=<1-0/2. (2.9)
Substitution of (2.7) — (2.9) into (2.6) results in

3
& < _9/2)pn—1,0 + Z Z 2 mpn—l,m <y -1,

m=1

if we choose y = max{l — 6/2,3/4} < 1. The proof of Theorem 1.1 is complete.
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