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1 Introduction

The aim of this work is to study the limit as ¢ — 0 of the solution u® of the second
order semilinear parabolic PDE

O 1 2) = L, o) 2 (t,) + —g(Z, €y, w1, )

ot o A oz; " piel L I

(t,z) € (0,T) x R* u®(0,z) = uo(x).

The main assumptions are the periodicity (of period one in each direction) of a;; and ¢
with respect to their first variable, the fact that {£;, ¢ > 0} is a d-dimensional ergodic
diffusion process with a unique invariant measure 7, and a centering condition for g :

. [, sy udenidy) =0, VueR.

Our equation is a particular model of random homogenization, where the stochastic
perturbation fluctuates as time evolves, in contradiction with the more traditional model
where the coefficients are time invariant stationary random fields. Note also that the
equation is nonlinear and that the nonlinear term is highly oscillating. For the basic
results on homogenization of periodic and random equations, we refer respectively to
Bensoussan, Lions, Papanicolaou [1], and Jikov, Kozlov, Oleinik [4].

The same problem, with ¢ linear, has been considered by Campillo, Kleptsina,
Piatnitski [3]. Note also that the same problem, whithout the appearance of the process
{&}, has been studied by Pardoux [5], and without the dependance upon z/¢, by Bouc,
Pardoux [2]. It follows clearly from the last quoted work that the limit of u® as ¢ — 0
should satisfy a stochastic partial differential equation. This is our main result. Note
however that our approach is not just a combination of the techniques in [5] and [2].
We need to introduce new types of correctors, which depend on the whole trajectory of
the process {&;} after time t/c.

2 Setup and preliminaries

This work is aimed at averaging the following Cauchy problem
ou® 0 ou®

T 1 z .
—a_t(tv T) = %aij(gvgt/ﬂ)&;(t:x) =n Eg(g,ét/az,u (t,2}),

(t,z) € (0,T) x R® u(0,) = uo(z) € L2(R").
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where € > 0 is a small parameter, and &, a stationary diffusion with values in R%. We
denote the infinitesimal generator of £ by L,
02 0

L= qij(y)a—yia—yj + b"(y)a_y,»’

and impose the following conditions on the coefficients of (1) and on the generator of
the process € :

C1 The functions a;;(z,y) and g(z,y, u) are sufficiently regular, periodic in z of period
1 in all the coordinate directions; the matrix {a;;(z,y)} is uniformly positive
definite:

0 <l < a(z,y) <c'I

moreover, the gradient of a;; is uniformly bounded:
IVzai5(z, )| + [ Vyai(z,y)| < c (2)

C2 g(z,y,u) satisfies the estimates

l9(2, y, u)| < (1 +y[)* (1 + |ul), 3)
19, (2, y, w)| < (1 + y])*e, (4)
lugiu(2, 9, u)| < c(1 + |y[)*; (5)

with some pg < a@ — 1 (@ is defined in the next assumption).

C3 The following bounds hold
0< cl S q:_;(z7y) S c‘lla

IVai;(W)l < ¢, 1b(y)] + [Vb(y)| < e(1+[y)™,
(@) -v)
[yl
here (b(y) - y) stands for the inner product in R%.
Under these bounds the process £ possesses a unique invariant probability measure

7(dy) = p(y)dy whose density decays at the infinity faster than any negative power
of [y (see [8)).

S |y’a7 a > —17 (6)

C4 The relation
/,, /Rd 9(z,9,u)p(y)dzdy = 0 (7)

holds for any u € R.
It is convenient to decompose g(z,y, u) as follows

9(zy,u) = 9(z,y,u) + 9(y, u)

where
3w = [ o(zywdz,
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so that
[y wdz=0,vyeR: ueRi [ g, uwp)dy=0, ueR  (8)

The first relation here implies in a standard way the existence of a vector function

G(z,y,u) such that

g(z7 y’ u) = diVZG(Z5 y’ u)

For any u(t,z) we have now

divG(Z,y, u(t,2)) =

M | =

v ut) + GG ut o) Valts) )

According to [8], under the assumptions C3 and C4 the second relation in (8) ensures
the solvability of the Poisson equation

LG(y,u)+g(y,u) =0, VueR (10)

in the space of functions of polynomial growth in |y|; the solution is unique up to an
additive constant, for definiteness we assume that it has zero mean w.r.t. the invariant
probability =.

3 A priori estimates and tightness
In this section we obtain uniform a priori estimates for the solution u¢ and then use
them to show the tightness of the distributions of .

First, considering (8) and (9) one can rewrite the term g(Z,&y.2,u(t,z)) on the
right hand side of (1) in the form

1 =z . =, T .
_g(:agt/527u5(tvz)) = dlva(gagt/Ezvu (Ivt))_

GUAE (0 )Tt (,5) + Loy, ) "
For v € L*(R™) and y € R denote
W (u,) = 3 lullfs + e, Gy, ).
From Ito’s formula, using (1) and (11), we get
AU (' (1), Eyzex) = (A" (2), w*(8))dt — (Vau'(£), G (<, Eyrer, w () )t —
(G2 g () Vi (1), w2 (1))t + = (u(0), FEgen, w* (1))t +
20, DO, u ()t + (0 (8), V6 6y, (1)) s + (12)

+5(A5u5(t)a G_'(ét/sza ue(t)))dt + (g(éa ét/azv ue(t)), G(&t/szv ue(t)))dt F
e (A% (8), G (Een, (1) (1)
+(g(ga ft/e‘?a us(t))’ G;(gt/ezv ua(t))us(t))dt,
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where A° stands for %aij(f,ft/ﬂ)a—z;- Taking the expectation in the last formula,
considering (10) and integrating by parts, one gets

B (u(t), §/c2) + B / o &vjer) Vo' (s), Vi (5))ds =

=-E / Vo (s), G (2, yper, u*(5)))ds—
-E / (é;(ﬁ,fs/ez,uf(s»vzuf(s),uf(s))ds—

B [ (0l /)Tt (5), Gl Eyen, 1(5)) Vi (3)) s+
B [ (92 &y, (5)), {G(Een,0(5)) + Gl () s+
~eB [ (a2, &) 9t (5), Gll€oger, U () Vi ()~
—<B [ (02 6et) Vo (9), 0 (5) Gl (€5, ' (5)) Vit (5) ds.

According to Theorem 2 from [8], under condition C2 the functions G(z,y,u),
G (z,y,u) and Gi,(2,y,u) admit the following bounds

IG(z,y,w)| S cQ+ul), |Gz y,u)l<e |1+ [u)G(zyu)l <e

Thus, the first two terms on the r.h.s. of the above relation can be estimated as follows

B [ (7205 (5), G e w51l

B [ (G €y, w9 Vau(5), uE(5))ds| <

<E/WL IV au(s)llds < E/Hu P@+U@/HVu 5)|Pds,

while all the terms involving the factor ¢ are dominated by (the second term on) the
Lh.s. Finally, taking sufficiently small v we have by the Gronwall lemma

t
@) +E [ IVar(s)|%ds<C,  ¢<T. (13)
0
To obtain tightness we should also estimate, for any ¢ € C§°(R"), the modulus of
continuity of the family (uf(t),¢). Namely, we are going to show that for any v > 0
there is a compact set K7 in C(0,T) such that
P{(u’,p) ¢ K} < 7. (14)

To this end we consider the expression

% = (u*(t), ) + &(G(&yex, w(1)), ¥)

By the Ito formula

42 = —(a(-, €yer) Vo’ (), Vap)dt = (Vaip, G2, ugen, u (1))t
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~(Gu(z e, w () Vi (), @)ds + (0, VG 6y, u*(1))) dof -

_E(a'(gv §t/52)vz‘p, G:L(gt/Ezi ue(t))vzus(t))dt—
—(a( Eyer) Vs (), @G Eyer (1)) Vi (1) i+

+(g(é7 ft/eza u® (t))a G:; (gt/eza u® (t))w)dt

Denote by 7y the Markov time inf{¢ > 0 : ||u*(¢)|| > N} and by u§ the function
u(t A 7n). For each N > 0 the family

t -
In() = [ (0, V,GEzer, uie(s))
is tight in C([0,T]) by the Kolmogorov criterion. Also, from (13) we get
Jim P{Jui() - u*Ollega # 0} = 0.
Thus, the family
t o
1) = [[ (0, 9,G (6, u*(5))u

is also tight. All the absolutly continuous terms in the above formula do not make any
difficulties and the required tightness in C([0,T]) follows.
We summarize this in the following statement.

Proposition 1 For the family of solutions of problem (1) the estimate holds

T
B sup 14O + ] 1950 Ot < (15)
0<t<T 0

and for any ¢ € C°(R") and any v > 0 there is a compact subset K7 of C(0,T) such
that (14) takes place.

Proof. The second statement has just been proved. The first one follows from (13)
and (12) and the Burkholder-Davis-Gundy inequality (see [6]).

According to [10] the bounds of the above proposition imply the tightness of the
distributions of {u®, ¢ > 0} in the functional space

V= [L*0,T; H'®RM)] N C((0,T]; L, (R™),

where the index w means that the corresponding space is equipped with its weak topol-
ogy. Note that this space V' has first been introduced by Viot [10].

4 Passage to the limit

The aim of this section is to pass to the limit, as ¢ — 0, in the family of laws of {u®}
and to determine the limiting problem. In view of the tightness results of the preceding
section it is sufficient to find the limit distributions of the inner produtts (¢, u¢) with
@ € C°(R™), see [10]. To this end we introduce the following two auxiliary parabolic
equations

0 0

9 k _ 9 n
'57'_' b a—ziaij(z7 éT)a_Z]_X (sz) = _a_zia'ik(zz £T)7 (ZvT) €T" x (—-007 +OO)7 (16)



E. Pardoux and A.L. Piatnitski / Nonlinear Random Parabolic Operators 273

and

0 0 0

=+ 5a5(2,&) =Y (2,7, u) = —§(z,&,u), (2,7) € T™ X (—00, +0), 17
57 T o5 E) g ¥ W = i), (5T €T x ( ) an
where u is a parameter. The functions x*(z,7) and ¥(z,7,u) are now defined as sta-
tionary solutions to these equations.

Lemma 1 There ezist stationary solutions to (16) and (17), these solutions are er-
godic and unique up to an additive constant. Moreover, under the normalization
Jra x(2,7)dz = 0 and [ ¥(z,7,u)dz = 0 the following estimates hold

t+1 5
[ IxC)lingmds < © (18)
t+1 2
19,5, 0) s rmyds < C(1 + ful) (19)
t
t+1 . 5
LI s Wl mds < © (20)

Proof The existence and uniqueness of-stationary ergodic solution as well as the bound
(18) have been proved in [7]. The other two estimates (19) and (20) follow easily from
C2 and the definition of g.

Remark 1 In contrast with G(y,u), the functions x(z,7) and U(z,7,u) depend not
only on the value of £ at a given time 7, but on the whole halftrajectory {&, s>}

Having defined G(y,u), x(2,7) and ¥(z, 7,u), for an arbitrary function p € Cg°, we
consider the expression

O = (u(t), ) + (X" (W)u(1), Vo) +(¥°(t, u(2)), ) + e(G(&, w(1)), ),

where x*(t), ¥¢(¢,u) and & stand for b E%), Wz, E%,u) and &;/.» respectively.
By the It6 formula:

d®° = {(uf (1), 9) + 7 (X (V)ui (1), Vaop) + (X" (8)u5 (£), Vo) +
+eTH (W (ut (1), @) + (W5 (8w (8)us (8), ) + e (LG(E, v (1), )+

+e(Gu(&l, u (D)) (1), @) Yt + (a(€))V, G (&, w (1)), ¢).-duwf

Considering (1), after multiple integration by parts and simple rearrangements, we
obtain

d®® = {(u*(t),a"V. Vo) + €7 (uf(t), V.a Vo) +
+e7(3(E, uT (1), ) + e G(E, ut (1)), ) + €T (NE(B)uE (), Vi) +
+eT (A (DU (1), Vo) + ([@° VX (8) + V(05X (1))], uf () Vo Vo) +
e (X (1), W (OVaVaVap) + () (0 (1), V) + 7 (¥ (1, 0(8), )
—(V. W, (8wt (2))aVous(t), ) — e(¥5,a°Voul (1), Vaus (t)p)—
—e(Voa"Vou' (1), Vo) + (Vog°, @) + €7 (LGF, p) }dt + (0°V,G, o) dw+
H{—e(GruaVous (t), Vous (t)p) — e(GLa*V,ut (1), Vo) + (Gigt, o) .
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In view of (10), (16), (17) and the obvious relation
(@ VUL Vouf, 0) = —(a°V, T%, Vap) — €71 (AT, p),
the above expression can be simplified further as follows
0* = {(u*(1)),a°Va V) + ([a°Vax*(8) + Va(a™X (1)), u () Vo Vo) +
+OC (9" (8w (1)), Vo) — (@°V. 05, Vap) + (Y597, 0) + (Gig®, 0) bdt+
+(0°V,G, p)dw; + e{a®x* (t)u’(t), VoV Vo) — (21)
— (Ve Vaul(t), Vout (t)p) — (Ra°Veus(t), Vap) — (Goa®Vou(t), Vap) -
—(Grua"Vzu(t), Vous (t)p) bt

The following statements will allow us to pass to the limit, as € — 0, in the laws of
®° and thus to obtain the desired limiting distribution of (u¢, ).

Proposition 2 Let v®(z,t) converge to v°(z,t) in V. Then vé(z,t) converges towards
v(z,t) in L, (R™ x (0,T)). In other words V is continuously embedded in L} (R™ x
(0, T)).

Proposition 3 Let the family of laws of u® be tight in V, and suppose that (2,7, u)
is periodic in z, stationary and ergodic in T. Assume, furthermore, that the following
bounds hold:

16C, 7 w)lloany < en(T)(L + [ul), (22)
16C, 75 w1) = 0(, 7, u2)llom) < en(r)lur — ual, (23)

with a stationary process n(7) subject to the estimate E|n(7)|P < c(p) for each p > 1.
Then for any ¢ € C§° one has

LI . _
P—yggstggl L (0(2, 5 u)= <0> (u), p)dt] =0

where < 0 > (u) = E [ 0(2, 7, u)dz.

Proposition 4 Let u® converge in law towards ug in the space V', and suppose © :
R — R is a uniformly continuous function satisfying the estimate |O(u)| < c(1 + |ul).
Then for any ¢ € C§° the family {[{(O(v®),p), 0 < t < T} converges in law to
{fo(e(*),¢), 0 <t < T} in C([0,T)).

The next statement will allow us to deal with the stochastic term.

Proposition 5 Suppose the family of laws of u is tight in V. If a continuous function
H :R? x R — R satisfies the estimates

[H(y, w)| < e(X+ [y (1 + ful),  [H(y,u1) — H(y,uz)| < (1 + |y))*(Jur — )
then for any ¢ € C§° the following quantity tends to zero in probability :
t .
I I/O < q(§e/e2) (H (&ese2, uf), ), (H (€72, w%), ) > —(R(uf)p, p)dt],

where

Ruye.o) = [ [ < a@H.u@), Hyu@") > ¢@)p(a")r(dy)do' dr.”
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Note that below H will be identified with V,G. Now it is natural to rewrite (21) as
follows

(ue(t)v (10) - (u()»(p) - /Ot{(us(s)7 < a(I F VzX) >7V1Vz<ﬂ)}ds_
— [1(< x9 > (F(5)), V) = (< aVa¥ > (u*(9)), Vi) s
= [1(< Yug > @ (6)), ) + (< Gug > (u2()), o) s = (29

t >
= [(@9,G, p)au; + K1)

where K¢(t) — 0 in probability, as ¢ — 0.
Hence, if we denote by Q° an accumulating point of the family of laws of u® in V,
as ¢ — 0, then the functional

Fo(u) = (ult), 0) ~ ((0), 0) = [ {(u(s), < all+ Vax) >, VaVaip)ps—

- /Ot{(< X9 > (U(S)),VI(,D) . (< avqu > (U(S)),Vz(p)}ds—

- [1(< Tg > (@(s)), ) + (< Gug > (uls)), ) s =

is a martingale w.r.t. Q° equipped with the natural filtration, whose bracket is given
by

L Fy(u)>(t) =
//Rd/ n/n y)V,G(y, u(s, 2)), V,G(y, u(s, 2")) > o(z')p(z")dsm (dy)dz'dz".

Theorem 1 Any accumulation point of the family of laws of the solutions {u®} of
problem (1), as € — 0, is a solution of the martingale problem

du(t) = A(u(t))dt + dM (t), where
¢
<M >>t:/0 R(u(s)ds,
A(w) = V- < a(bfI + Vx> Vou— Vi < xg > (u) + Var < aV, ¥ > (u)+
+ < Wug > (u)— < Gug > (u),
and the covariance operator given by

(R(u)p, ) =
L | < a@)V,60,u(@)), 9,6, u(z") > pla')p(e")r(dy)da’da”

Remark 2 Uniqueness of the limiting martingale problem remains so far an openn
problem.

Remark 3 The detailed proofs will appear elsewhere.
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