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Abstract. We consider the linearized equations of slightly compressible single fluid flow through a highly heterogeneous
random porous medium, consisting of two types of material. Due to the high heterogeneity of the two materials the ratio of their
permeability coefficients is of orderε2, whereε is the characteristic scale of heterogeneities. Supposing that the matrix blocks set
of the porous medium consists of random stationary inclusions, and assuming positive definiteness of the effective permeability
tensor associated to the corresponding Neumann problem for the random fractures system, we obtain the homogenized problem
for a random version of the double porosity model used in geohydrology. It includes as a particular case the periodic setting,
already studied by homogenization theory methods (see, for example, [1,7]). The homogenized problem is obtained by using the
stochastic two scale convergence in the mean, and by means of convergence results specially adapted to our a priori estimates
and to the random geometry, which do not require extension of solutions to the matrix part.

Introduction

The question on how to deal with fractured rock domains has been investigated both by geohydrologists
and by reservoir engineers in connection with simple or multiphase flow.

More recently, fractured rock domains received increasing attention in connection with the problem
of geological isolation of radioactive waste, where, in addition to the transport of mass of fluid phases
in single or multiphase flow, the issues of heat transport and mass transport of components have to be
addressed.

Of special interest are reservoirs composed of fractured porous rocks in which the blocks surrounded
by the network of fractures are porous. The permeability of such blocks is often rather low, but the poros-
ity and hence the storage capacity is very high. The “double porosity” model for fractured porous rock
domain was first introduced in the literature by Barenblatt in [2] and at present a large number of articles
on these subjects exists in the literature of several scientific and engineering disciplines, including geol-
ogy, hydrology, petroleum reservoir engineering and environmental engineering; see, for instance, [18,
19,3].

According to the Barenblatt’s dual porosity model we consider a large number of matrix blocks con-
taining most of the stored fluid together with a system of high-conductivity fissures. In this model, the
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fracture width is considerably greater than the characteristic dimension of the pores and the permeabil-
ity K∗ of the fissure system considerably exceeds the permeabilityk of the individual blocks of porous
media. At the same time, the fissures occupy a smaller volume than the pores, so the ratio of the volume
of the fissures to the total volume is smaller than the porosity of any individual block of porous media.

To obtain the double porosity model, the fracture system’s local properties are averaged over a volume
containing both the fractures and a matrix. The so-called dual-porosity model for a porous medium
consists of an equivalent coarse-grained porous medium in which the fissures play the role of “pores”
and the blocks of porous media play the role of “grains”.

Since flow in the fractures is much more rapid than that inside the matrix, the fluid does not flow
directly from one matrix block to another and, finally, only the flow inside fractures combined with the
matrix-fractures exchange is possible. The porous-rock matrix system plays the role of a global source
term macroscopically distributed over the entire equivalent coarse-grained porous medium.

If we denote byε the adimensionalized size of a typical block of porous media, then in order to have
the same characteristic time scale for a parabolic evolution in one block and for the flow through the
entire system of fractures, it is necessary to assume a ratio of permeability (or transmissibility) in the
blocks and in the fissures to be of orderε2.

This time ratio,ε2, is exactly the one leading to the dual-porosity model. For instance, in enhanced
oil recovery, at a timet � 1, a large fraction of the oil reserves is recovered from the fractures; then
at timet ∼ O(1), the exchange between porous blocks and fissures as described in [2] begins. It should
also be noted that thisε2 time scaling is done in the engineering literature, as, for instance, in [20,13],
but is motivated by introducing a geometric factor of transmissibility. If one takes the ratio of the two
permeabilities of order one, then by the usual theory of homogenization the limit model will be as, for
instance, in [4,16] a single porosity model. If the ratio is smaller than that of orderε2, then there is no
contribution from the blocks to the global continuity system of equations in the limit model, which then
corresponds to the homogenization of the only system of fissures.

The main goal of this work is to provide a rigorous mathematical justification of the dual porosity
model for a randomly fractured porous medium. Such a mathematical study has already been done but
only for periodically fractured media, for single phase flow in [1] and for two phase flow in [6]. For
the sake of simplicity and in order to avoid the technical problems associated to the possible loss of
ellipticity in the two phase flow model, we consider a weakly compressible single phase flow described
by the parabolic equations (7)–(13) below. The unknown variables in this model will be the density of
fluid in the blocks and the density of fluid in the fissures, coupled via the fluxes across the interfaces.

The microscopic model describing the exchange between the fractures system and the porous blocks
is introduced in the first section. This section includes also the probabilistic description of the fractured
media and basic a priori estimates.

In the next section we adapt two-scale convergence in the mean techniques to the problem under
consideration.

Results of the article were announced in the note [7].
Section 3 is devoted to the convergence results. Our approach involves two different auxiliary sto-

chastic problems. The first one is related to the flow in random fractures with Neumann condition at the
interface. The second one is a stochastic parabolic equation defined in the matrix blocks.

Finally, in Section 4, we provide several examples of the random double porosity model in such random
structures as disperse and generalized disperse media, perforated blocks structure, Voronoi tessellation
models.
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1. The ε-problem and a priori estimates

We start with a precise formulation of our microscopic problem (theε-problem):
Let (Ω,Ξ,µ) be a probability space, and assume that a dynamical systemT with n-dimensional time

is given onΩ, i.e., a family of invertible measurable mapsT (x) :Ω → Ω, x ∈ R
n, such that

(1) T (0) = Id onΩ andT (x1 + x2) = T (x1)T (x2) for all x1,x2 ∈ R
n;

(2) ∀x ∈ R
n and∀E ∈ Ξ,

µ
(
T (x)−1(E)

)
= µ(E) (endomorphism property).

(3) ∀E ∈ Ξ the set {(x,ω) ∈ R
n×Ω: T (x)ω ∈ E} is an element of theσ-algebraL×Ξ onR

n×Ω,
whereL is the usual Lebesgueσ-algebra onRn.

With the measurable dynamics introduced above we associate an-parameters group of unitary operators
onL2(Ω) ≡ L2(Ω,Ξ,µ), as follows

(
U (x)f

)
(ω) = f

(
T (x)ω

)
, f ∈ L1(Ω).

We suppose thatL2(Ω) is separable and that the dynamical system {T (x)} is ergodic.
At the next step, we use a fixed measurable setF ∈ Ξ such thatµ(F) > 0 andµ(Ω \ F) > 0, and to

define random fractures systemF (ω) ⊂ R
n, ω ∈ Ω, obtained fromF by setting

F (ω) =
{
x ∈ R

n: T (x)ω ∈ F
}
. (1)

In what follows we suppose thatF (ω) is open and connected a.s. (for almost allω ∈ Ω).
The random matrix blocks setM (ω) is constructed in a complementary way by setting

M = Ω \ F , M (ω) = R
n \ F (ω). (2)

In connection with the random setM (ω) we introduce a homothetic structureMε(ω), ω ∈ Ω, by

Mε(ω) =
{
x ∈ R

n: ε−1x ∈M (ω)
}
; (3)

further assumptions on the random structure will be given in Section 3.
LetG be a smooth bounded domain inR

n. After having chosen our random structure inR
n, we set

Gε
1 =

{
x ∈ G: dist(x,∂G) � ε

}
. (4)

Now it is possible to introduce the random fracture system inG by

Gε
f (ω) = G \Mε(ω) ∩Gε

1. (5)

Then, the random matrix block part ofG is defined as the complement ofGε
f (ω) in G:

Gε
m(ω) = G \Gε

f (ω). (6)
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After having defined the random geometry, we write for a typical realization, the equations of mass
conservation combined with Darcy’s law and the equation of state that includes gravity effects, for a
slightly compressible fluid:

Φ∗∂ρε

∂t
− div

{
K∗

λc

[
∇ρε + cρ0

(
2ρε − ρ0

)
g
]}

= f in Gε
f × ]0,T [, (7)

ϕε
∂σε

∂t
− εdiv

{
kε

λc

[
ε∇σε + cσε0

(
2σε − σε0

)
g
]}

= f in Gε
m× ]0,T [, (8)

K∗

λc

[
∇ρε + cρ0

(
2ρε − ρ0

)
g
]
· ν = ε

kε

λc

[
ε∇σε + cσε0

(
2σε − σε0

)
g
]
· ν on∂Gε

m× ]0,T [, (9)

ρε(x, 0) = ρin in Gε
f , (10)

σε(x, 0) = ρin in Gε
m, (11)

σε = ρε on∂Gε
m× ]0,T [, (12)

K∗

λc

[
∇ρε + cgρ0

(
2ρε − ρ0

)]
· ν = 0 on∂G× ] 0,T [. (13)

In the above equations,g is the gravitational constant vector,f (x, t) represents external force,ρ0 and
σε0(x,ω) = σ0(T (x/ε)ω) are given reference densities, andρin is the specified initial density.Φ∗(x) and
K∗(x) denote the porosity and the scalar permeability of the fractures set,

ϕε(x,ω) = ϕ

(
T

(
x

ε

))
ω) and kε(x,ω) = k

(
T

(
x

ε

)
ω

)

denote, respectively, the matrix block porosity and permeability, the latter being a symmetric tensor. All
above quantities are assumed smooth, uniformly bounded and positive-definite. Finally,λ is the fluid
viscosity andc is a constant compressibility.

Owing to the transmission conditions (9) and (12), one can rewrite the above equations using a globally
defined density functionϑε,

ϑε =

{
ρε in Gε

f (ω)× ]0,T [,

σε in Gε
m(ω)× ]0,T [

(14)

and globally defined coefficients:




αε(x,ω) = χGε
f

(ω)(x)Φ∗ + χGε
m(ω)(x)ϕε(x,ω),

βε(x,ω) = cg

{
ρ0χGε

f
(ω)(x) +

1
ε
σε0(x,ω)χGε

m(ω)(x)
}

,

κε(x,ω) =
1
λc

{K∗χGε
f

(ω)(x) + ε2kε(x,ω)χGε
m(ω)(x)},

ϑε0(x,ω) = ρ0χGε
f

(ω)(x) + σε0(x,ω)χGε
m(ω)(x).

(15)

Then the variational formulation of (7)–(13) reads as follows:
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Find ϑε ∈W (0,T ) ≡ { z ∈ L2(0,T ;H1(G)): ∂z/∂t ∈ L2(0,T ; (H1(G))′)} such that

d
dt

(∫
G
αε(x,ω)ϑε(t,x,ω)ψ(x) dx

)

+
∫
G
κε(x,ω)

[
∇ϑε(t,x,ω) + βε(x,ω)

(
2ϑε(t,x,ω) − ϑε0(x,ω)

)]
∇ψ(x) dx

=
∫
G
f (t,x)ψ(x) dx (16)

for anyψ ∈ H1(G), and

ϑε(0,x) = ρin(x). (17)

Suppose

f ∈ L2(]0,T [×G
)

and ρin ∈ H1(G). (18)

Then using the linear parabolic theory we deduce immediately that problem (16), (17) is uniquely solv-
able for allε > 0 almost surely inω. Furthermore,ϑε is a measurable function ofω.

A priori estimates are now straightforward.

Proposition 1.1. Let all above assumptions hold true. Then for allε > 0 we have a.s. inω:

‖ϑε‖L∞(0,T ;L2(G)) �C, (19)

‖∂tϑε‖L2(0,T ;(L2(G))n) + ‖∇ρε‖L∞(0,T ;(L2(Gε
f

(ω)))n) �C, (20)

‖∇σε‖L∞(0,T ;(L2(Gε
m(ω)))n) � C

ε
, (21)

whereC is an universal constant independent ofε and ofω.

2. The adapted stochastic two-scale convergence results

Before giving our convergence results, we recall the definition and some properties of the stochastic
two-scale convergence in the mean (see [8] for more details).

LetDj denotes the infinitesimal generator inL2(Ω) of the one-parameter group of translations inxj ,
with Dj its respective domain of definition inL2(Ω), i.e., forf ∈ Dj

(Djf )(ω) =
∂

∂xj

(
U (x)f

)
(ω)|x=0. (22)

Then {
√
−1Dj, j = 1, . . . ,n} are closed, densely-defined and self-adjoint operators which commute

pairwise onD(Ω) =
⋂n
j=1Dj . Equipped with the inner product

(f ,g)D(Ω) = (f ,g)L2(Ω) +
n∑

j=1

(Djf ,Djg)L2(Ω) (23)
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D(Ω) becomes a Hilbert space.
On the base of (22) we may define the stochastic gradient {∇ωf }, divergence {divω f } and

curl{curlω f }, as follows



∇ωf = (D1f , . . . ,Dnf ),

divω g =
∑
j

Djgj ,

curlω g = Digj −Djgi, i �= j.

(24)

Moreover, we will use the following spaces:

V2
pot(Ω) =

{
f ∈ L2

pot(Ω), E{ f } = 0
}
, (25)

V2
sol(Ω) =

{
f ∈ L2

sol(Ω), E{ f } = 0
}
, (26)

whereL2
pot(Ω) (respectivelyL2

sol(Ω)) is the set of allf ∈ (L2(Ω))n such that almost all realizations
f (T (x)ω) are potential (respectively solenoidal) inR

n; for more details we refer to Jikov, Kozlov and
Oleinik [12].

Next, we say that an elementψ ∈ L2(G×Ω) is admissible if the function

ψT : (x,ω) → ψ
(
x,T (x)ω

)
, (x,ω) ∈ G×Ω,

defines an element ofL2(G×Ω).
For example, as was shown in [8], functions fromC(G;L∞(Ω)) and fromL2(G;B(Ω)) are admissible.

In addition, every finite linear combination of functions of the form

(x,ω) → f (x)g(ω), (x,ω) ∈ G×Ω, f ∈ L2(G), g ∈ L2(Ω),

is also admissible.
We may now recall the definition of the stochastic two-scale convergence in the mean from Bourgeat,

Mikeli ć and Wright [8].

Definition 2.1. A sequence {uε} of functions fromL2(G × Ω) is said to converge stochastically two-
scale in the mean (s.2-s.m.) towardsu ∈ L2(G×Ω) if for any admissibleψ ∈ L2(G×Ω) we have

lim
ε→0

∫
G×Ω

uε(x,ω)ψ
(
x,T

(
x

ε

)
ω

)
dxdµ =

∫
G×Ω

u(x,ω)ψ(x,ω) dxdµ. (27)

After obtaining the a priori estimates (19)–(21) a possible way to proceed could be to extendρε from
Gε
f (ω) to G, and to use the functions obtained to pass to the limit, asε → 0, by virtue of Theorem 3.7

from Bourgeat, Mikelíc and Wright [8].
Here we prefer another approach, motivated by the results on the homogenization of Neumann problem

in perforated domains from Jikov, Kozlov and Oleinik [12]. First, we state and prove the following
convergence result:
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Proposition 2.2. Let {uε} ⊂ H1(G) be such a sequence that



‖uε‖L2(G) � C,

‖∇uε‖L2(Gε
f

(ω)) � C,

‖∇uε‖L2(Gε
m(ω)) � C

ε
.

(28)

Suppose that the set of all functionsψ ∈ D(Ω) such thatψ = 0 onM, is dense inL2(Ω \M), and the
set of all functionsψ ∈ D(Ω), being zero onΩ \ M, is dense inL2(M). LetX be the closure of the
spaceV2

pot(Ω) in L2(Ω \M)n. Suppose, furthermore, that the tensorA0
N associated to the homogenized

Neumann problem and defined by

ξ · A0
Nξ = inf

v∈X

∫
Ω\M

|ξ + v|2 dµ, ξ ∈ R
n, (29)

is positive definite. Then there exist functionsu ∈ H1(G), v ∈ L2(G;D(Ω)), v = 0 onΩ \ M, and
u1 ∈ L2(G; X), u1 = 0 onM, such that, up to a subsequence,

uε
s.2-s.m.−−−→ u(x) + χM(ω)v(x,ω), (30)

χGε
f

(ω)∇uε s.2-s.m.−−−→ χΩ\M
[
∇xu(x) + u1(x,ω)

]
, (31)

εχGε
m(ω)∇uε s.2-s.m.−−−→ χM(ω)∇ωv(x,ω), (32)

Proof. We generalize to the random case the construction developed for the periodic case in Fasano,
Mikeli ć and Primicerio [10, Proposition 2.2].

Using the above a priori estimates and the stochastic two-scale in the mean compactness theorem from
Bourgeat, Mikelíc and Wright [8], we conclude that, after taking a proper subsequence, the sequences
{uε}, { χGε

f
(ω)∇uε} and {εχGε

m(ω)∇uε}} have stochastic two-scale limits. We have then:

• uε
s.2-s.m.−−−→ u0(x,ω),

• χGε
f

(ω)∇uε s.2-s.m.−−−→ ξ0(x,ω),

• εχGε
m(ω)∇uε s.2-s.m.−−−→ ξ0(x,ω)z0(x,ω).

We should find relations betweenu0, ξ0 andz0. At the first step we takeg(x,ω) = g1(ω)g2(x), where
g1 ∈ L2(M), g1 = 0 onΩ \M, andg2 ∈ C∞

0 (G). Obviouslyg is an admissible function and we get

0 =
∫
Ω

∫
G
χGε

f
(ω)∇uεg

(
x,T

(
x

ε

)
ω

)
dxdµ→

∫
Ω

∫
G
ξ0(x,ω)g1(ω)g2(x) dxdµ

and, thus,ξ0 = 0 onG×M. Similarly, z0 = 0 onG× (Ω \M) and we obtain

{
ξ0(x,ω) = χΩ\M(ω)ξ0(x,ω),

z0(x,ω) = χM(ω)z0(x,ω).
(33)
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Let nowh ∈ C∞
0 (G), g ∈ D(Ω) andψ ∈ (D(Ω))n. Supposeg andψ vanishing onM. Then

lim
ε→0

∫
Ω

∫
G
uε(x)h(x)g

(
T

(
x

ε

)
ω

)
dxdµ =

∫
Ω

∫
G
u0(x,ω)h(x)g(ω) dxdµ (34)

and

lim
ε→0

∫
Ω

∫
G
∇uε(x)h(x)ψ

(
T

(
x

ε

)
ω

)
dxdµ =

∫
Ω

∫
G
ξ0(x,ω)h(x)ψ(ω) dxdµ. (35)

On the other hand

ε

∫
Ω

∫
G
χGε

f
(ω)∇uε(x)h(x)ψ

(
T

(
x

ε

)
ω

)

= −
∫
Ω

∫
G
χGε

f
(ω)u

ε
[

divω ψ
(
T

(
x

ε

)
ω

)
h(x) + ε∇xh(x)ψ

(
T

(
x

ε

)
ω

)]

→ −
∫
Ω

∫
G
χΩ\M(ω)u0(x,ω)h(x) divω ψ(ω)

= −
∫
Ω
χΩ\M(ω)

{ ∫
G
u0(x,ω)h(x) dx

}
divω ψ(ω) dµ = 0, (36)

asε→ 0.
If we setH(ω) =

∫
G u0(x,ω)h(x) dx, thenH ∈ L2(Ω) and

∫
Ω
χΩ\M(ω)H(ω) divω ψ(ω) dµ = 0

for all ψ ∈ (D(Ω))n, ψ = 0 onM. After taking onlyj-th components to be nonzero, we get

∫
Ω
χΩ\M(ω)H(ω)Djζ(ω) dµ = 0 (37)

for all ζ ∈ D(Ω), ζ = 0 onM, and for anyj ∈ {1, . . . ,n}. Taking into account the ergodicity of the
dynamical system and connectivity of the fractures, by the same arguments as in Bourgeat, Mikelić and
Wright [8], we conclude that

H(ω) =
∫
G
u0(x,ω)h(x) dx

is constant (a.s.) onΩ \M. Therefore,

u0(x,ω) = u(x) a.e. onG× (Ω \M). (38)

We proceed by supposing in addition that divω ψ = 0 inΩ. Then

∫
Ω

∫
G
χGε

f
(ω)∇uεh(x)ψ

(
T

(
x

ε

)
ω

)
dxdµ−

∫
Ω

∫
G
χGε

f
(ω)u

ε∇xh(x)ψ
(
T

(
x

ε

)
ω

)
dxdµ
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→
∫
Ω

∫
G
ξ0(x,ω)ψ(ω)h(x) dxdµ = −

∫
G
u(x)divx

{ ∫
Ω
χΩ\M(ω)h(x)ψ(ω) dµ

}
, (39)

asε→ 0; the fact thatψ = 0 inM has also been used here.
For anyϑ ∈ (L2(G))n we definew ∈ L2(G;X) to be a unique solution to problem (29) withξ =

(A0
N )−1ϑ(x). Then the functionq(x,ω) defined by

q = χΩ\M
{(
A0
N

)−1
ϑ(x) + w(x,ω)

}
, (40)

satisfies the relationE{ q} = ϑ(x), and q ∈ L2(G;L2
sol(Ω)). Owing to the density arguments (see

Bourgeat, Mikelíc and Wright [8] for more details) we get

∫
Ω

∫
G
ξ0(x,ω)q(x,ω) dxdµ =

∫
G
∇xu(x)ϑ(x) dx

for anyϑ ∈ (L2(G))n. Therefore,∇xu ∈ (L2(G))n andu ∈ H1(G).
Furthermore, we have

0 = ε

∫
Gε

f
(ω)

{
∂uε

∂xi

∂

∂xj
g

(
x,T

(
x

ε

)
ω

)
− ∂uε

∂xj

∂

∂xi
g

(
x,T

(
x

ε

)
ω

)}
dx

for all g ∈ C∞
0 (G;D(Ω)), g = 0 onM. Passing to the limit, asε→ 0, gives

0 =
∫
G

∫
Ω
χΩ\M(ω)

{
ξ0i(x,ω)Djg(x,ω) − ξ0j(x,ω)Dig(x,ω)

}
dxdµ

and we conclude that

ξ0(x,ω)−∇xu(x) ∈ L2(G;X)n.

It remains to identifyz0. First, it follows from Theorem 3.7 from Bourgeat, Mikelić and Wright [8]
that

ε∇uε s.2-s.m.−−−→ ∇ωu0(x,ω)

and

εχGε
m(ω)∇uε s.2-s.m.−−−→ χM(ω)∇ωu0(x,ω).

Therefore,z0 = ∇ωu0(x,ω) (a.e.) onG×M, and we obtain

uε
s.2-s.m.−−−→ χΩ\M(ω)u(x) + χM(ω)u0(x,ω) = u(x) + χM(ω)v(x,ω), (41)

wherev(x,ω) = u0(x,ω)− u(x) onG×Ω. It should be noticed that∇ωv = ∇ωu0 = z0 onG×M.
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Our last step is to prove thatv ∈ D(Ω) for a.e.x ∈ G. By passing to the limit, asε → 0, in ε∇uε we
obtain inG×Ω:

∫
G

∫
Ω
χM(ω)∇ωvψ(x,ω) dxdµ = −

∫
G

∫
Ω
χM(ω)v(x,ω) divω ψ(x,ω) (42)

for all ψ ∈ L2(G;D(Ω))n. Consequently,

∇ω
{
χM(ω)v(x,ω)

}
= χM(ω)∇ωv(x,ω)

a.e. inG×M andχM(ω)v(x,ω) ∈ D(Ω). Proposition is now proved.�

Remark 2.3. It should be noted thatA0
N is always positive definite in the periodic case if the fracture

part is connected. Sufficient conditions for positive-definiteness ofA0
N in the random case are given in

Jikov, Kozlov and Oleinik [12]. We discuss this question in the last section of this paper.

Remark 2.4. In the case of disperse media, one can prove easily that the functions fromD(Ω), being
zero onM, are dense inL2(Ω \ M). Indeed, by the definition (see [12] and Example 1 in Section 4),
M (ω) consists a.s. of closed components diffeomorphic to a ball and having a piecewise smooth bound-
ary. They have no interior points in common, and their diameters belong to a fixed interval [t1, t2],
0 < t1 < t2 < +∞. For each componentK we denote itsδ-neighborhood {x ∈ R

n: dist(x,K) � δ}
byKδ. Letf ∈ L2(Ω \M). Then by the Fubini theorem and the ergodicity,f (T (x)ω)χF (ω) ∈ L2

loc(R
n).

Moreover, for any regularizing sequenceρδ = δ−nρ(·/δ) with ρ ∈ C∞
0 ({ |x| < 1}),

∫
ρ(x) dx = 1,

we have (ρδ ∗ [fχ
Rn\

⋃
Kδ

](T (·)ω) → f (T (·)ω)χF (ω), asδ → 0, a.s. onΩ, andρδ ∗ (fχ
Rn\

⋃
Kδ

) is a
C∞

0 -function equal to zero onM (ω). The ergodicity now implies the fact that the functions fromD(Ω),
equal to zero onM, are dense inL2(Ω \M).

3. Auxiliary problems and convergence result

The peculiarity of the double-porosity models is the presence of two kinds of auxiliary problems.
An auxiliary problem of the first kind is used to compute the effective permeability; it turns out to be
connected with the Neumann problem for the elliptic part of the corresponding equations in fractures,
and reads:

Findvη ∈ X = {closure ofV2
pot(Ω) in L2(Ω \M)} such that

E
{
ζχΩ\M(η + vη)

}
=

∫
Ω\M

ζ(ω)
(
η + vη(ω)

)
dµ = 0 (43)

for all ζ ∈ V2
pot(Ω).

Proposition 3.1 (Jikov et al. [12]). The above problem(43) has a unique solution. Moreover, the corre-
sponding tensorA0

N is constant, positive and uniquely defined by

A0
Nη = E

{
χΩ\M(η + vη)

}
, η ∈ R

n. (44)
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Remark 3.2. The problem of non-degeneracy ofA0
N is discussed for instance in Jikov et al. [12]. One

possible way to prove non-degeneracy is to verify the extension property for the realizations of a ran-
dom medium; for example, in the particular case of random spherical structure inR

3 the matrixA0
N is

always positive definite. For some other random models the proof of non-degeneracy ofA0
N relies on the

percolation channels technique like in [14].

The second auxiliary problem is used to compute the source term, and connected with the correspond-
ing equation in the matrix blocks. A general formulation of this problem reads

Find ζ ∈ L2(0,T ;Z), Z = { z ∈ D(Ω): z = 0 onΩ \M}, such that∂ζ/∂t ∈ L2(0,T ;Z ′) and

d
dt

∫
Ω
ϕ(ω)χM(ω)ζ(t,ω)ξ(ω) dµ+

1
λc

∫
Ω
k(ω)χM(ω)∇ωζ(t,ω)∇ωξ(ω) dµ

+
∫
Ω

g

λ
k(ω)σ0(ω)χM

(
2ζ(t,ω)− σ0(ω)

)
∇ωξ(ω) dµ = γ(t)

∫
M
ξ(ω) dµ, ∀ξ ∈ Z, (45)

ζ(0,ω) = ρin. (46)

Problem (45), (46) can be studied by the classical parabolic variational theory methods with the choice
of the spacesV = Z,H = L2(M). Under the hypothesis of Proposition 2.2, we haveZ ⊂ L2(M) with
a dense and continuous embedding. The corresponding bilinear form

a(ζ, ξ) =
1
λc

∫
M
k(ω)∇ωζ∇ωξ dµ+

2g
λ

∫
M
k(ω)σ0(ω)ζ∇ωξ dµ (47)

is continuous onZ and the related quadratic form satisfies the estimate

a(ξ, ξ) =
1
λc

∫
M
k(ω)|∇ωξ|2 dµ+

g

λ

∫
M
k(ω)σ0(ω)∇ω|ξ|2

� 1
2λc

∫
M
k(ω)|∇ωξ|2 dµ− 2g2c

λ

∫
M
k(ω)σ2

0ξ
2 dµ.

Therefore,a(·, ·) is (V ,H)-coercive and forθ ∈ L2(0,T ) there exists a uniqueζ ∈ W (0,T ) = { z ∈
L2(0,T ;Z): ∂z/∂t ∈ L2(0,T ;Z ′)} that satisfies (45), (46). Furthermore,ζ ∈ C([0,T ]; L2(M)).

Now we obtain the following stochastic two-scale compactness result for the solutions to problem (16),
(17).

Proposition 3.3. Suppose(4)–(6)and (18), and assume that the tensorA0
N defined by(29), is positive

definite. Let{ϑε} ε>0 satisfy(16), (17). Then there existϑ ∈ L2(0,T ;H1(G)), ∂tϑ ∈ L2(]0,T [×G),
v ∈ L2(]0,T [×G;D(Ω)), v = 0 onF , andϑ1 ∈ L2(G× ]0,T [;X), ϑ1 = 0 onM, such that, up to a
subsequence,

ϑε
s.2-s.m.−−−→ ϑ(x, t) + χM(ω)v(x, t,ω), (48)

χGε
f

(ω)∇ϑε s.2-s.m.−−−→ χΩ\M(ω)
[
∇xϑ(x, t) + ϑ1(x, t,ω)

]
, (49)

εχGε
m(ω)∇ϑε s.2-s.m.−−−→ χM(ω)∇ωv(x, t,ω), (50)

∂tϑ
ε s.2-s.m.−−−→ ∂tϑ(x, t) + χM(ω)∂tv(x, t,ω). (51)
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Proof. This is an immediate consequence of the a priori estimates (19)–(21), of the non-degeneracy of
A0
N and of Proposition 2.2. We note thatt is a parameter.
The following corollaries are to describe some properties of the componentsϑ, v andϑ1 of the sto-

chastic two-scale limit above.�

Corollary 3.4. Letϑ, ϑ1 be the limits defined from(48)–(50);then the variational identity

∫
Ω\M

K∗{∇xϑ(x, t) + ϑ1(x, t,ω) + cgρ0(2ϑ− ρ0)
}
ξ dµ = 0 (52)

holds true for anyξ ∈ V2
pot(Ω), a.e. onG× [0,T ].

Proof. Letψ = ψ(x, t) ∈ C∞
0 (G× [0,T [), and supposeξ ∈ D(Ω). We write (16), (17) in the following

equivalent form:

−
∫ T

0

∫
G
αεϑεεξ

(
T

(
x

ε

)
ω

)
∂ψ

∂t
dxdt−

∫
G
αερinεξ

(
T

(
x

ε

)
ω

)
ψ(x, 0) dx

+
∫ T

0

∫
G
κε

[
∇ϑε + βε(2ϑε − ϑε0)

]{
∇ωξ

(
T

(
x

ε

)
ω

)
ψ + εξ∇ψ

}
dxdt

=
∫ T

0

∫
G
fεξψ dxdt. (53)

After applying the s.2-s.m. convergence results and (48)–(50), we obtain the equation

∫ T

0

∫
G

∫
Ω\M

K∗{∇xϑ(x, t) + ϑ1(x, t,ω) + cgρ0
(
2ϑ(x, t)− ρ0

)}
∇ωξ(ω)ψ(x, t) dxdt dµ = 0.

Now (52) is straightforward. �

Corollary 3.5. Letδj ∈ X be the solutions of(43) for η = ej, j = 1, . . . ,n. Then

K∗ϑ1(x, t,ω) =
∑
j

K∗{∇xϑ(x, t) + cgρ0
(
2ϑ(x, t) − ρ0

)}
ejδ

j(ω), (54)

and moreover the effective flux is given by:

A0
NK

∗{∇xϑ(x, t) + cgρ0
(
2ϑ(x, t) − ρ0

)}
= E

{
χΩ\M(ω)K∗(∇xϑ(x, t) + ϑ1(x, t,ω) + cgρ0

(
2ϑ(x, t) − ρ0

))}
. (55)

Finally, ϑ1 is given explicitly by(54) in terms ofϑ(x, t).

Proof. This is the direct consequence of the linearity of problem (52) and of the non-degeneracy of
A0
N . �
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Finally, we are going to derive the variational formulation of the homogenized problem describing the
global behaviour. To this end we choose proper admissible test functions and pass to the limit, asε→ 0.

Lemma 3.6. Letv be defined by(48)–(50);then it satisfies the variational equation

d
dt

∫
M
ϕ(ω)

{
ϑ(x, t) + v(x, t,ω)

}
ξ(ω) dµ

+
1
λc

∫
M
k(ω)

[
∇ωv(x, t,ω) + cσ0(ω)

(
2ϑ(x, t) + 2v(x, t,ω)− σ0(ω)

)
g
]
∇ωξ(ω) dµ

= f (x, t)
∫
M
ξ(ω) dµ ∀ξ ∈ D(Ω), ξ = 0 onΩ \M, (56)

i.e.,∀ξ ∈ Z, in the sense of distributions on]0,T [ and a.e. onG.

v(x, 0,ω) = 0, ϑ(x, 0) = ρin. (57)

Proof. Supposeψ = ψ(x, t) ∈ C∞
0 (G × [0,T [) andξ ∈ D(Ω), ξ = 0 a.s. onΩ \M. We substitute a

test function of the formξψ in Eq. (53). Then (53) reads

−
∫ T

0

∫
G
αεϑεξ

(
T

(
x

ε

)
ω

)
∂ψ

∂t
dxdt−

∫
G
αερinξ

(
T

(
x

ε

)
ω

)
ψ(x, 0) dx

+
∫ T

0

∫
G
κε

[
∇ϑε + βε(2ϑε − ϑε0)

]{1
ε
∇ωξ

(
T

(
x

ε

)
ω

)
ψ + ξ∇ψ

}
dxdt =

∫ T

0

∫
G
fξψ dxdt.

(58)

Passing to the limit inε in the latter formula gives

−
∫ T

0

∫
G

∫
M
ϕ(ω)

(
ϑ(x, t) + v(x, t,ω)

)∂ψ

∂t
ξ dxdt dµ−

∫
G

∫
M
ϕ(ω)ρinξ(ω)ψ(x, 0) dxdµ

+
∫ T

0

∫
G

∫
M

k(ω)
λc

{
∇ωv(x, t,ω) + gc(2ϑ + 2v − σ0)σ0

}
∇ωξ(ω)ψ(x, t) dxdt dµ

=
∫ T

0

∫
G

∫
M
f (x, t)ξ(ω)ψ(x, t) dxdt dµ (59)

and (56) easily follows. Then, from (17) and (48) taking into account the relationvχF = 0, we get

v(x, 0,ω) + ϑ(x, 0) = ρin(x).

Thus,v(x, 0,ω) does not depend onω and (57) follows. �

Remark 3.7. It follows from (56) that the functionv(x, t,ω) is determined as soon asϑ(x, t) is known.
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Proposition 3.8. Letϑ andv be defined by(48)–(50);thenϑ satisfies the equation

d
dt

∫
G

{∫
Ω

(
Φ∗χΩ\M(ω) + ϕ(ω)χM(ω

)
) dµϑ(x, t) +

∫
M
ϕ(ω)v(x, t,ω) dµ

}
ψ(x) dx

+
1
λc

∫
G
A0
NK

∗{∇xϑ+ cgρ0(2ϑ − ρ0)
}
∇xψ(x) dx

=
∫
G
f (x, t)ψ(x) dx, ∀ψ ∈ H1(G), (60)

with the initial condition.

ϑ(x, 0) = ρin(x). (61)

Proof. Usingψ ∈ C∞(G× [0,T ]), ψ(T ) = 0, as test function in (58) and taking into account (48)–(50),
(55) and the properties of the s.2-s.m. convergence, we obtain finally (60) and the relation

ϑ(x, 0)
∫
Ω

(
Φ∗χΩ\M(ω) + ϕ(ω)χM(ω)

)
dµ+

∫
M
ϕ(ω)v(x, 0,ω) dµ

= ρin

∫
Ω

(
Φ∗χΩ\M(ω) + ϕ(ω)χM(ω)

)
dµ, (62)

which, in turn, implies (61). �

Remark 3.9. Eq. (60) can also be rewritten as follows:

E
{
Φ∗χΩ\M(ω) + ϕ(ω)χM(ω)

} ∂

∂t
ϑ(x, t) +

∂

∂t
E

{
χMϕ(ω)v(x, t,ω)

}

− div
{

1
λc
A0
NK

∗[∇ϑ+ cρ0(2ϑ − ρ0)g
]}

= f in G× ] 0,T [,

A0
N

[
∇ϑ+ cρ0(2ϑ − ρ0)g

]
· ν = 0 on∂G× ] 0,T [,

ϑ(x, 0) = ρin(x) onG.

Remark 3.10. The tensorA0
N defined by (29), characterizes the relation between the initial fractures

permeabilityK∗ and the efficient permeability tensor in (60), depending on the geometry of the frac-
tures system. This tensor is the rigorous version of the so-called “tortuosity factor” widely used in the
engineering literature.

The result of the limiting process is summarized in the following proposition.

Proposition 3.11. Let ϑ ∈ L2(0,T ;H1(G)), ∂tϑ ∈ L2(]0,T [×G), andv ∈ L2(]0,T [×G;Z), ∂tv ∈
L2(]0,T [×G ×M), be defined by(48)–(51). Then we have

d
dt

{ ∫
G

[ ∫
Ω

[
Φ∗χΩ\M + ϕχM

]
dµϑ(x, t) +

∫
M
ϕ(ω)v(x, t,ω) dµ

]
ψ1(x) dx



A. Bourgeat et al. / On the double porosity model 325

+
∫
G

∫
M

(
ϑ(x, t) + v(x, t,ω)

)
ϕ(ω)ξ(ω)ψ2(x) dµ dx

}

+
1
λc

∫
G
A0
NK

∗[∇xϑ(x, t) + cgρ0
(
2ϑ(x, t) − ρ0

)]
∇xψ1(x) dx

+
∫
G

∫
M

k(ω)
λc

[
∇ωv(x, t,ω) + cσ0(ω)

(
2ϑ(x, t) + 2v(x, t,ω) − σ0(ω)

)
g
]
∇ωξ(ω)ψ2 dµ dx

=
∫
G

∫
M
f (x, t)ξ(ω)ψ2(x) dµ dx+

∫
G
f (x, t)ψ1(x) dx a.e. on]0,T [,

∀ψ1,ψ2 ∈ H1(G) and∀ξ ∈ Z, (63)

v(x, 0,ω) = 0 in L2(G;Z), ϑ(x, 0) = ρin in H1(G). (64)

Problem(63), (64)has a unique solution.

Proof. It is enough to prove uniqueness. Let {ϑ,v} be a solution for the homogeneous problem. Then
we have

1
2

E
{
Φ∗χΩ\M(ω)

} ∫
G
ϑ2(x, t) dx+

∫
G

∫
M

ϕ(ω)
2

(
ϑ(x, t) + v(x, t,ω)

)2
dµ dx

+
1
λc

∫ t

0

∫
G
A0
NK

∗∇xϑ(x, τ )∇xϑ(x, τ ) dxdτ

+
1
λc

∫ t

0

∫
G

∫
M
k(ω)∇ωv(x, τ ,ω)∇ωv(x, τ ,ω) dµ dx

+
2ρ0g

λ

∫ t

0

∫
G
A0
NK

∗ϑ(x, τ )∇xϑ(x, τ ) dxdτ

+
2g
λ

∫ t

0

∫
G

∫
M
k(ω)

(
ϑ(x, τ ) + v(x, τ ,ω)

)
∇ωv(x, τ ,ω) dµ dx = 0. (65)

Now we apply Gronwall’s inequality and getϑ = 0 andv = 0. �

4. Examples of random structures

In this last section we deal with the models of random structures commonly used in various applica-
tions.

Example 1. We start by considering the classical disperse media model defined in [12]. LetS be a
piecewise smooth bounded domain, we say that a random ergodic two-component medium is a disperse
medium if a.s. one of the component (fractures system) is connected and unbounded and the other one
(matrix blocks) consists of bounded connected closed setsSj(ω) having no points in common, and being
obtained fromS by a successful dilatation, rotation and shift. Moreover, we assume that the dilatation
coefficientθj(ω) belongs to a nonrandom interval [θ�,θ�], 0 < θ� � θ� <∞. In what follows the symbol
Hj(ω) stands for the linear transformation that mapsS ontoSj(ω).
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In the example below the extension condition is assumed to hold (see [12] for details), and for the sake
of simplicity we assume the coefficientskε andϕε in (8) to be constant andσε0 to be equal to zero.

Under the above assumptions the solution of the second auxiliary problem (45), (46) can be computed
by means of the Green functionQ(y, z, t) for the operatorϕ∂/∂t − (k/(λc))∆y in the cylinderS ×
S × (0,∞) with homogeneous Dirichlet boundary conditions. Namely, if we denote byṽ(x, t,y,ω) a
realizationv(x, t,T (y)ω) of v(x, t,ω), then the auxiliary problem (56), (57) reads a.s.

ϕ

(
∂

∂t
ϑ(x, t) +

∂

∂t
ṽ(x, t,y,ω)

)
− k

λc
∆yṽ(x, t,y,ω) = f (x, t), (y, t) ∈

⋃
j

Sj(ω)× (0,T ), (66)

ṽ|t=0 = 0, ṽ|
RN\

⋃
j
Sj

= 0. (67)

LetQ(y, z, t) be the above Green function inS × S × (0,∞), i.e., the functionQ(y, z, t− τ ) satisfying
for a.e.z ∈ S

ϕ
∂

∂t
Q(y, z, t− τ )− k

λc
∆yQ(y, z, t− τ ) = δ(y − z)δ(t − τ ) in S × (0,∞),

Q|t=τ = 0, Q(y, z, t− τ ) = 0 on∂S × (0,∞).
(68)

It is well known (see, e.g., [15]) that

∣∣∣∣ ∂r

∂tr
Ds

yQ

∣∣∣∣ � C(t− τ )−(n+2r+s)/2 exp
{
−c0

|y − z|2
t− τ

}
(69)

for 2r + |s| = 1, 2 and these derivatives are Hölder continuous in the argumentsz andτ .
Clearly, in any cylinderSj(ω)×Sj(ω)× (0,T ), the corresponding Green function satisfies the relation

Qj(y, z, t) = θ−N
j Q

(
H−1

j (y),H−1
j (z),

t

θ2
j

)
(70)

and thus fory ∈ Sj we have

ṽ(x, t,y,ω) =
∫ t

0

∫
Sj

θ−N
j Q

(
H−1

j (y),H−1
j (z),

t− s

θ2
j

)(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

)
dz ds

∈W 2,1
2

(
Sj × (0,T )

)
. (71)

We note thatx is just a parameter, entering throughf and∂ϑ/∂t.
Now, from the definition of̃v, we get

v(x, t,ω) = ṽ(x, t, 0,ω). (72)

In order to characterize the limit operator we introduce the “distribution” function for the dilatation
coefficient:

F (θ) = lim
r→∞

{
#j: Sj(ω) ⊂ Br, θj � θ

|Br|

}
,
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where # stands for the number of elements in a set,Br is the ball of radiusr centered at the origin and
|Br| its volume. The latter limit does exist by the Birkhoff theorem, and the functionF (θ) becomes the
distribution function of a dilatation coefficient after proper normalization.

Applying once more the Birkhoff theorem to the solution of problem (66) and taking into account
(70)–(72), we get

∫
M
v(x, t,ω)µ(dω) = lim

r→∞

{
1
|Br|

∫
Br

ṽ(x, t,y,ω) dy
}

= lim
r→∞

{
1
|Br|

∑
Sj⊂Br

∫ t

0

∫
Sj

∫
Sj

Qj(y, z, t− s)
(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

)
ds dy dz

}

=
∫ t

0

(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

) ∫ θ	

θ	

dF (θ)
∫
θS

∫
θS
θ−NQ

(
y

θ
,
z

θ
,
t− s

θ2

)
ds dy dz

=
∫ t

0

(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

)
κF (t− s) ds,

where we have used the notation

κF (s) =
∫ θ	

θ	

dF (θ)
∫
θS

∫
θS
θ−NQ

(
y

θ
,
z

θ
,
s

θ2

)
dy dz. (73)

Finally, with (73) the limit problem (60), (61), (56), (57) reads

[
µ(Ω \M)Φ∗ + µ(M)ϕ

] ∂

∂t
ϑ(x, t)− 1

λc
divx

(
A0
NK

∗∇xϑ(x, t)
)

= f (x, t)− ∂

∂t

(∫ t

0

(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

)
κF (t− s) ds

)
, (x, t) ∈ G× ] 0,T [, (74)

ϑ(x, 0) = ρin, A0
N∇ϑ(x, t) · ν = 0 on∂G× (0,T ),

ϕ

(
∂

∂t
ϑ(x, t) +

∂

∂t
ṽ(x, t,y,ω)

)
− k

λc
∆yṽ(x, t,y,ω) = f (x, t), (y, t) ∈

⋃
j

Sj(ω)× (0,T ),

ṽ(x, 0,y,ω) = 0, ṽ(x, t,y,ω) = 0, y ∈ R
n \

⋃
j

Sj(ω).
(75)

Example 2 (Generalized “disperse” media). In case of classical disperse media each inclusion can be
obtained from a sample setS by a linear diffeomorphism, and we generalize this construction as follows.
Let S be the same as in the preceding example, and assumeH(θ1, . . . ,θk) is ak-parametrized family of
diffeomorphisms mapping a fixed neighborhoodSδ of the sample setS into R

n, such that

∣∣∣∣∂Hi

∂xj

∣∣∣∣ � c <∞, i, j = 1, . . . ,N , det
∣∣∣∣∂H∂x

∣∣∣∣ � c1 > 0;

moreover, letθ → H(θ) be continuous and injective.
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A random medium is said to be generalized disperse medium if a.s. the matrix part consists of bounded
connected closed components having no points in common; each such a componentSj(ω) can be ob-
tained from the sample setS by a successful diffeomorphism from the family {H(θ)}.

Now, if we denote byF (dθ) the following measure inRn:

∫
O

1 dF (θ) = lim
r→∞

{
#j: Sj(ω) ⊂ Br, Sj = H(θ)(S), θ ∈ O

|Br|

}

for any Borel setO ⊂ R
n, then this measureF is well-defined due to the Birkhoff theorem. Denote by

Q(t,y, z,θ) the Green function of the operatorϕ∂/∂t−(k/(λc))∆y stated in the cylinderH(θ)(S)×(0,∞)
with homogeneous Dirichlet boundary conditions. In the same way as above, one can prove that the limit
problem (60), (61) has the form (74), (75) withκF (s) given by

κF (s) =
∫

Rk
dF (θ)

∫
H(θ)(S)

∫
H(θ)(S)

Q(s,y, z,θ) dy dz.

Example 3 (Coated perforation). Consider the same construction as in Example 1, and assume that
the sample set is nowS \ S1, whereS is like in Example 1, andS1 is a smooth open subdomain
of S compactly embedded toS. Thus, the fractures system consists a.s. of two parts, one of them is
connected unbounded componentR

n\⋃j Sj and the other one is the union
⋃
j S

1
j of bounded components

(inclusions) situated inside all the matrix blocks.
Denote byM′ the subset ofΩ that corresponds to the whole system of inclusionsSj:⋃

j

Sj(ω) =
{
y ∈ R

n: T (y)ω ∈M′}.
Evidently,M′ is the unionM and the subsetF ′ related to all the bounded inclusionsS1

j . Although in this
fractured porous medium model the fractures system is not connected and thus one of our assumptions is
violated, still, after a slight modification, the technique developed in Sections 1–3 applies and we obtain
the following assertion.

Lemma 4.1. Assume the extension condition forM′ ⊂ Ω to be satisfied. Then,(48), (50) and (49)
hold inM′ andΩ \ M′ respectively; the functionϑ(x, t) satisfies the equation obtained from(60) by
replacingM by M′ everywhere, and the functioñv(x, t,y,ω) = v(x, t,T (y)ω) is a solution to the
following auxiliary problem

ϕ
∂

∂t

{
ϑ(x, t) + ṽ(x, t,y)

}
=

k

λc
∆y ṽ(x, t,y) + f (x, t), y ∈ Sj \ S1

j ,

∇yṽ = 0, y ∈ S1
j ,

ϕ
∂

∂t

(
ṽ(x, t,y) + ϑ(x, t)

)
=

1

|S1
j |

∫
∂S1

j

k

λc

(
∂ṽ

∂ny

)out

dsy + f (x, t), y ∈ S1
j ,

ṽ(x, 0,y) = 0, ṽ|
Rn\

⋃
i
Si

= 0,

(76)

whereny is outer normal toS1
j , and symbol(·)out indicates the limit of the corresponding function from

the complement ofS1
j .
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Remark 4.1. Let

V =
{
z ∈ H1(Sj) | z is an unknown constant with respect toy onS1

j , z = 0 on∂Sj
}

and letH be the closure ofV in L2(Sj). Then the problem (76) is well-posed, and the corresponding
variational formulation is:

find a functionṽ ∈ L2(0,T ;V ) ∩ C([0,T ];H), for a.e.x ∈ G, such that

d
dt
ϕ

∫
Sj

ṽ(x, t,y)ζ(y) dy +
k

λc

∫ t

0

∫
Sj\S1

j

∇yṽ(x, t,y)∇yζ(y) dy

=
∫
Sj

{
f (x, t)− ϕ

∂

∂t
ϑ(x, t)

}
ζ(y) dy, ∀ζ ∈ V ,

ṽ(x, 0,y) = 0.

(77)

This problem is similar to that arising when homogenizing the hard inclusions, and for more details we
refer to [12].

Remark 4.2. If we denote byQ(y, z, t) the “Green function” of problem (76) posed on a sample setS,
i.e., the Schwartz kernel of the corresponding semigroup, then the relation (70) holds and the limit prob-
lem can be represented like in (74).

We proceed with examples involving random Voronoi tessellation structures.

Example 4 (Voronoi tessellations). We begin by defining a spatial process (or random point set). Denote
by Γ the space of all locally finite subsets inRn; for any bounded Borel setB ⊂ R

n, we define the
mappingNB :Γ → {0, 1, 2,. . .} as follows

NB(γ) = #(γ ∩B), γ ∈ Γ ,

where # stands for the number of elements in a set, then we equipΓ with the minimalσ-algebra of its
subsets that makesNB measurable for any bounded Borel setB in R

n, and denote thisσ-algebra byG.
Let (Ω,Ξ,µ) be a probability space.

Then, any (Ξ,G)-measurable mappingΦ :Ω → Γ is called spatial process inRn.
In what follows we assume the spatial processΦ = {xi}∞i=1 to be stationary, i.e., to have invariant

distribution with respect to all translations inR
n. Thus the distribution ofΦ coincides with that ofΦ+y =

{x+ y: x ∈ Φ} for any y ∈ R
n.

Similarly, Φ is said to be isotropic if its distribution is invariant under any rotation about the origin
in R

n.
It can be shown (see [17], for instance) that the stationarity implies, for any bounded Borel setB, the

relation

Λ(B) def= E
{
NB(Φ)

}
= τ |B|

with some constantτ , 0 � τ � ∞, called the intensity ofΦ.
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Given a random point setΦ = {xi}∞i=1, eachxi generates a random cellC(xi|Φ) (called Voronoi cell)
in the following way

C(xi|Φ) =
{
z ∈ R

n: |z − xi| � |z − xj | for all xj ∈ Φ
}
. (78)

Next, we recall the important statement proved, for example, in [17].

Proposition 4.3. LetΦ be a stationary spatial process, and assumeΦ �= ∅ a.s. Then a.s. all the Voronoi
cellsC(xi|Φ) are bounded convex polytopes.

Detailed information on point processes and Voronoi tessellations can be found in [17,9].
Denote byZ(xi|Φ) the centers of gravity of the Voronoi cellsC(xi|Φ). Then, given a small positiveα,

we introduceCα(xi|Φ) to be the homothetic dilatation ofC(xi|Φ) with respect toZ(xi|Φ) with coefficient
1− α. LetΠ be the space of convex polytopes inR

n endowed with a properσ-algebraU . Then for any
bounded Borel setB in R

n such that|B| > 0, the distribution on (Π,U ) defined by

Pα
n (U ) = E

{ ∑
xi∈Φ

(1{Z(xi|Φ)∈B} 1{Cα(xi|Φ)−Z(xi|Φ)∈U } )
}/(

τ |B|
)
, U ∈ U ,

is said to be a Palm measure ofCα(xi|Φ); here and in what follows we assume that 0< τ < ∞. It can
be shown thatPα

n does not depend onB, thusPα
n is well-defined probability measure on (Π,U ) that

characterizes the distribution of the typical cell.
We proceed by introducing the random double-porosity model generated by Voronoi tessellation.

Given a stationary spatial processΦ in R
n, we consider a random set defined by

Cα(ω) =
⋃
xi∈Φ

Cα(
xi(ω)|Φ(ω)

)

and may identifyCα(ω) with a random matrix blocks setM (ω). Then,M = {ω: 0 ∈ Cα(ω)}. As
usually, we assume ergodicity, and denote byQp(y, z, t) the Green function of the operatorϕ∂/∂t −
(k/(λc))∆y in the cylinderp× (0,+∞) with the homogeneous Dirichlet boundary condition, wherep is
a convex polytope inRn.

The statement below describes the double porosity model in case of a general spatial processΦ.

Theorem 4.4. Let all the above assumptions hold, and assume, moreover, thatA0
N , the homogenized

Neumann tensor defined in(29), is positive definite. Then the limit problem(60), (61) becomes

[
µ(Ω \M)Φ∗ + µ(M)ϕ

] ∂

∂t
ϑ(x, t)− 1

λc
divx

(
A0
NK

∗∇xϑ(x, t)
)

= f (x, t)− ∂

∂t

(∫ t

0

(
f (x,s)− ϕ

∂

∂s
ϑ(x,s)

)
καP (t− s) ds

)
, (x, t) ∈ G× ]0,T [, (79)

ϕ

(
∂

∂t
ϑ(x, t) +

∂

∂t
ṽ(x, t,y,ω)

)
− k

λc
∆yṽ(x, t,y,ω) = f (x, t), y ∈

⋃
j

pj(ω), (80)

ṽ(x, t,y,ω) = 0 on
⋃
j

∂pj(ω)
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with καP (s) = λ
∫
Π Pα

n (dp)
∫
p

∫
pQp(y, z,s) dy dz.

An important particular case of a Voronoi tessellation widely used in hydrogeology, is the so-called
Poisson–Voronoi tessellation.

Definition 4.5. A Voronoi tessellation is called the Poisson–Voronoi diagram if for any bounded Borel
setB:

– NB(Φ) has Poisson distribution with meanτ |B|, τ > 0;
– given the eventNB(Φ) = k, all thex1,x2, . . . ,xk are independent and uniformly distributed inB.

The Poisson–Voronoi diagram is ergodic for anyτ > 0. It follows, for instance, from the mixing
properties obtained in [11].

Unfortunately, the positive definiteness ofA0
N in case of the Poisson–Voronoi diagram is still an

open question, and we should modify slightly our fractured double porosity model to achieve the non-
degeneracy of the tensorA0

N . Namely, using the notationr(xi|Φ) for the diameter of the largest ball
contained inC(xi|Φ), andd(xi|Φ) for the diameter ofC(xi|Φ), we define a matrix blocks set as follows

Cα,δ(ω) =
⋃

xi∈Φ, r(xi|Φ)�δ

d(xi|Φ)�δ−1

Cα(xi|Φ), (81)

δ is a small positive number. By the definition (81), all the very big components as well as very small
ones have been removed from the random set, and it is then easy to show thatCα,δ(ω) possess almost
surely the following properties:

(1) Cα,δ(ω) consists of isolated convex components;
(2) the diameter of each component does not exceedδ−1;
(3) the distance between any two components is not less thanαδ.

The above properties (1)–(3) ensure the non-degeneracy ofA0
N > 0; one can easily show this by

means of the variational formula forA0
N (see [12]). The ergodicity is trivially inherited. Letting now, for

any bounded Borel setB of positive measure andU ∈ Π,

Pα,δ
n (U ) =

E{
∑

xi∈Φ(1{Z(xi|Φ)∈B} 1{ r(xi|Φ)�δ, d(xi|Φ)�δ−1} 1{Cα(xi|Φ)−Z(xi|Φ)∈U } )}

τ (δ|B|n)
,

with

τ (δ) =
E(#{xi ∈ B: r(xi|Φ) � δ, d(xi|Φ) � δ−1})

|B| ,

we arrive at the following statement.

Theorem 4.6. Let the random matrix blocks set be given byCα,δ(ω). Then the limit equations(60), (61)
have the form(79), (80) with

καP (s) = τ (δ)
∫
Π
Pα,δ
n (dp)

∫
p

∫
p
Qp(y, z,s) dy dz.
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