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Abstract. We consider the linearized equations of slightly compressible single fluid flow through a highly heterogeneous
random porous medium, consisting of two types of material. Due to the high heterogeneity of the two materials the ratio of their
permeability coefficients is of ordef, wheres is the characteristic scale of heterogeneities. Supposing that the matrix blocks set

of the porous medium consists of random stationary inclusions, and assuming positive definiteness of the effective permeability
tensor associated to the corresponding Neumann problem for the random fractures system, we obtain the homogenized problem
for a random version of the double porosity model used in geohydrology. It includes as a particular case the periodic setting,
already studied by homogenization theory methods (see, for example, [1,7]). The homogenized problem is obtained by using the
stochastic two scale convergence in the mean, and by means of convergence results specially adapted to our a priori estimates
and to the random geometry, which do not require extension of solutions to the matrix part.

Introduction

The question on how to deal with fractured rock domains has been investigated both by geohydrologists
and by reservoir engineers in connection with simple or multiphase flow.

More recently, fractured rock domains received increasing attention in connection with the problem
of geological isolation of radioactive waste, where, in addition to the transport of mass of fluid phases
in single or multiphase flow, the issues of heat transport and mass transport of components have to be
addressed.

Of special interest are reservoirs composed of fractured porous rocks in which the blocks surrounded
by the network of fractures are porous. The permeability of such blocks is often rather low, but the poros-
ity and hence the storage capacity is very high. The “double porosity” model for fractured porous rock
domain was first introduced in the literature by Barenblatt in [2] and at present a large number of articles
on these subjects exists in the literature of several scientific and engineering disciplines, including geol-
ogy, hydrology, petroleum reservoir engineering and environmental engineering; see, for instance, [18,
19,3].

According to the Barenblatt’s dual porosity model we consider a large number of matrix blocks con-
taining most of the stored fluid together with a system of high-conductivity fissures. In this model, the
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fracture width is considerably greater than the characteristic dimension of the pores and the permeabil-
ity K* of the fissure system considerably exceeds the permeabitifythe individual blocks of porous
media. At the same time, the fissures occupy a smaller volume than the pores, so the ratio of the volume
of the fissures to the total volume is smaller than the porosity of any individual block of porous media.

To obtain the double porosity model, the fracture system'’s local properties are averaged over a volume
containing both the fractures and a matrix. The so-called dual-porosity model for a porous medium
consists of an equivalent coarse-grained porous medium in which the fissures play the role of “pores”
and the blocks of porous media play the role of “grains”.

Since flow in the fractures is much more rapid than that inside the matrix, the fluid does not flow
directly from one matrix block to another and, finally, only the flow inside fractures combined with the
matrix-fractures exchange is possible. The porous-rock matrix system plays the role of a global source
term macroscopically distributed over the entire equivalent coarse-grained porous medium.

If we denote bye the adimensionalized size of a typical block of porous media, then in order to have
the same characteristic time scale for a parabolic evolution in one block and for the flow through the
entire system of fractures, it is necessary to assume a ratio of permeability (or transmissibility) in the
blocks and in the fissures to be of ordér

This time ratio,e?, is exactly the one leading to the dual-porosity model. For instance, in enhanced
oil recovery, at a time¢ < 1, a large fraction of the oil reserves is recovered from the fractures; then
at timet ~ O(1), the exchange between porous blocks and fissures as described in [2] begins. It should
also be noted that this? time scaling is done in the engineering literature, as, for instance, in [20,13],
but is motivated by introducing a geometric factor of transmissibility. If one takes the ratio of the two
permeabilities of order one, then by the usual theory of homogenization the limit model will be as, for
instance, in [4,16] a single porosity model. If the ratio is smaller than that of efgénen there is no
contribution from the blocks to the global continuity system of equations in the limit model, which then
corresponds to the homogenization of the only system of fissures.

The main goal of this work is to provide a rigorous mathematical justification of the dual porosity
model for a randomly fractured porous medium. Such a mathematical study has already been done but
only for periodically fractured media, for single phase flow in [1] and for two phase flow in [6]. For
the sake of simplicity and in order to avoid the technical problems associated to the possible loss of
ellipticity in the two phase flow model, we consider a weakly compressible single phase flow described
by the parabolic equations (7)—(13) below. The unknown variables in this model will be the density of
fluid in the blocks and the density of fluid in the fissures, coupled via the fluxes across the interfaces.

The microscopic model describing the exchange between the fractures system and the porous blocks
is introduced in the first section. This section includes also the probabilistic description of the fractured
media and basic a priori estimates.

In the next section we adapt two-scale convergence in the mean techniques to the problem under
consideration.

Results of the article were announced in the note [7].

Section 3 is devoted to the convergence results. Our approach involves two different auxiliary sto-
chastic problems. The first one is related to the flow in random fractures with Neumann condition at the
interface. The second one is a stochastic parabolic equation defined in the matrix blocks.

Finally, in Section 4, we provide several examples of the random double porosity model in such random
structures as disperse and generalized disperse media, perforated blocks structure, Voronoi tessellation
models.
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1. Thee-problem and apriori estimates
We start with a precise formulation of our microscopic problem ¢tpeoblem):

Let (12, =, ) be a probability space, and assume that a dynamical syBteiith n-dimensional time
is given on{?, i.e., a family of invertible measurable map$x) : 2 — (2, x € R", such that

(1) 7(0)=Idon 2 and7 (x1 + x2) = 7 (x1)7 (x2) for all 1,2, € R";
(2) Vz € R®andVFE € =,

w(T(x)"YE)) = w(E) (endomorphism property).

(3) VE € Z'the set{f,w) € R" x 2: T(z)w € E}is an element of ther-algebral x = onRR"™ x (2,
where/ is the usual Lebesgue-algebra oriR™.

With the measurable dynamics introduced above we associafmeameters group of unitary operators
on L?(2) = L3(£2, =, 1), as follows

U@)f)(w) = f(T(x)w), [e L),
We suppose thal?(£2) is separable and that the dynamical systéf(x{)} is ergodic.
At the next step, we use a fixed measurablefet = such thafu(F) > 0 andu(f2 \ F) > 0, and to
define random fractures systefifw) C R"™, w € 2, obtained fromF by setting

Fw) = {z € R": T(z)w € F}. 1)

In what follows we suppose th#t(w) is open and connected a.s. (for almostalt (2).
The random matrix blocks sétf(w) is constructed in a complementary way by setting

M=0\F, M(w) =R"\ F(w). 2
In connection with the random s&f (w) we introduce a homothetic structuké. (w), w € 2, by
M. () ={z e R™ etz € M(w)}; (3)

further assumptions on the random structure will be given in Section 3.
Let G be a smooth bounded domaini®. After having chosen our random structureRifi, we set

G5 = {z € G: dist(z,0G) > ¢}. 4
Now it is possible to introduce the random fracture systei¥ ioy
7(w) =G\ M:(w) NG ®)
Then, the random matrix block part 6fis defined as the complement@?(w) inG:

G5 (W) = G\ G5(). (6)
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After having defined the random geometry, we write for a typical realization, the equations of mass
conservation combined with Darcy’s law and the equation of state that includes gravity effects, for a
slightly compressible fluid:

0 (K ) .
] E — d|V{ e [V,o + cpo(Zp — po)g]} = f In Gf X ]O,T[, (7)

GGlopd . [ k* .
©° 5 5d|v{)\— [eVe® + cog(20° — ag)g]} =f inG:, x]0,TJ, (8)

c

* 1>
o [Vp® 4 cpo(2p° — po)g] - v = v [eVo® + cog(20° — 0f)g] v ondG;, x10,T7, 9)
p°(x,0)=pin in G, (10)
o°(z,0)= pin InG5,, (11)
o° =p° onoG;, x10,T7, (12)
o [Vp® + cgpo(20° — po)] -v =0 0ondG x]0,TT. (13)

In the above equationg, is the gravitational constant vectqgf(z,t) represents external forcgg and
o§(x,w) = oo(T (z/e)w) are given reference densities, amglis the specified initial density?*(x) and
K*(z) denote the porosity and the scalar permeability of the fractures set,

O (z,w) = ¢<T<§>)w) and £°(zr,w) = k<7<§>w)

denote, respectively, the matrix block porosity and permeability, the latter being a symmetric tensor. All
above quantities are assumed smooth, uniformly bounded and positive-definite. Ririaliy)e fluid
viscosity and: is a constant compressibility.

Owing to the transmission conditions (9) and (12), one can rewrite the above equations using a globally
defined density functior®,

¢ inGe 0,TY,
W:{p 7(w) x 10,7 ”
o inG: (w) x]0,T[
and globally defined coefficients:
o (z,w) = XG5 ) ()P + Xag, () (@) (7, w),
1
5°(0) = e poxc (@) + 205 G5 @)
© (15)

1
K (2,w) = S={ K" XG5 0(@) + 2K (2, @)xas, @ (@)
oz, w) = poxcs(w)() + o6(z, w)xes, ) (2)-

Then the variational formulation of (7)—(13) reads as follows:
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Find 9° € W(0,T) = {z € L?(0,T; HYQG)): 9z/0t € L?(0,T; (H*(G)))} such that

d

pm </G o (z,w)9°(t, z,w)(x) d:r:>

+ /G/-Qa(:v,w)[VW(t,x,w)—i—ﬂa(:v,w)(Zz?a(t,x,w) — 95(x, w)) | Vip(z) dx

= [ @ (16)
for anyy € HY(G), and
¥°(0,2) = pin(x). (17)
Suppose
feL?(10,T[xG) and pin € HYG). (18)

Then using the linear parabolic theory we deduce immediately that problem (16), (17) is uniquely solv-
able for alle > 0 almost surely inv. Furthermorey© is a measurable function af.
A priori estimates are now straightforward.

Proposition 1.1. Let all above assumptions hold true. Then foratt O we have a.s. iw:

19| Lo (0.1:22(cy) < Cs (19)

10:9° || oo, zaanm + VAl e iriracs wmym < C (20)
C

Vol Lo orira(cs, @y < = (21)

where(' is an universal constant independentaind ofw.

2. Theadapted stochastic two-scale conver gence results

Before giving our convergence results, we recall the definition and some properties of the stochastic
two-scale convergence in the mean (see [8] for more details).

Let D; denotes the infinitesimal generatorfid({2) of the one-parameter group of translations:jn
with D; its respective domain of definition ib?((2), i.e., for f € D;

(D)) = 5 (U)o 22)

Lj

Then {/-1D;, j = 1,...,n} are closed, densely-defined and self-adjoint operators which commute
pairwise onD(2) = (j_; D;. Equipped with the inner product

(f. 9o = (F+ Dz + O_DifDig) 120 (23)
=1
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D(£2) becomes a Hilbert space.
On the base of (22) we may define the stochastic gradi&nt f§, divergence {diy, f} and
curl{curl,, f}, as follows

Vof = D1f,....,Dnf),

ding = Zngj; (24)
J

curl, g = Digj - ngi’ i ].

Moreover, we will use the following spaces:

Vool 2) = { f € Loy(2), E{ f} = 0}, (25)
Vai$2) = { f € L5(92), E{ f} =0}, (26)

where L2,,(£2) (respectivelyL3,(£2)) is the set of allf € (L?(2))" such that almost all realizations
f(T (z)w) are potential (respectively solenoidal)®k¥; for more details we refer to Jikov, Kozlov and
Oleinik [12].

Next, we say that an elemente L?(G x £2) is admissible if the function
U7 i(z,w) = Yz, T(@)w), (r,w) € G x £,

defines an element di?(G x 12).
For example, as was shown in [8], functions fratG; L>°(£2)) and fromL3(G; B(£2)) are admissible.
In addition, every finite linear combination of functions of the form

(@,w) = f(@)g(w), (r,w) € G xR, feL*G), g€ L),

is also admissible.
We may now recall the definition of the stochastic two-scale convergence in the mean from Bourgeat,
Mikeli¢ and Wright [8].

Definition 2.1. A sequence 4} of functions from L?(G x 2) is said to converge stochastically two-
scale in the mean (s.2-s.m.) towards L3(G x £2) if for any admissible) € L3(G x 2) we have

lim GXQue(ac,w)i/)<x,T<§>w) d:r:d,u:/(;Xgu(:v,w)ib(:v,w)dxdu. (27)

e—0

After obtaining the a priori estimates (19)—(21) a possible way to proceed could be to gktieooh

jc(w) to GG, and to use the functions obtained to pass to the limit, as 0, by virtue of Theorem 3.7
from Bourgeat, Mikelc and Wright [8].

Here we prefer another approach, motivated by the results on the homogenization of Neumann problem
in perforated domains from Jikov, Kozlov and Oleinik [12]. First, we state and prove the following
convergence result:
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Proposition 2.2. Let{u°} ¢ H(G) be such a sequence that

vl L2y < C,

V|l 2 @y < % (28)
Vsl roGe, () < -

Suppose that the set of all functiose D(£2) such that) = 0 on M, is dense inL2(£2 \ M), and the
set of all functions) € D(f2), being zero o2 \ M, is dense inL?(M). Let X be the closure of the
spacevgot(ﬁ) in L2(£2\ M)". Suppose, furthermore, that the tenst®t; associated to the homogenized
Neumann problem and defined by

§-ANE=nt [ letolfde eRT (29)

2\

is positive definite. Then there exist functions HY(G), v € L*(G;D(2)),v = 0on 2\ M, and
uy € LZ(G; X), u1 = 0on M, such that, up to a subsequence,

u® 225 @) + xm(W)o(z, w), (30)
XG5 Ve 2220 o [Vau(z) + ua(z, )], (31)
exas (Ve 2220 (@) V(e w), (32)

Proof. We generalize to the random case the construction developed for the periodic case in Fasano,
Mikeli¢ and Primicerio [10, Proposition 2.2].

Using the above a priori estimates and the stochastic two-scale in the mean compactness theorem from
Bourgeat, Mikele and Wright [8], we conclude that, after taking a proper subsequence, the sequences
{u}, { ey ) Vuc}and {exq:, () Vu©}} have stochastic two-scale limits. We have then:

s.2-sm.
o uf == up(z,w),
* XGi(w) VU SZEM: oz, w),
® EXG5, (W) VU 28 ¢o(w, w)zo(w, w)-

We should find relations between, £, and zg. At the first step we takg(z,w) = g1(w)g2(z), where
g1 € L2(M), g1 = 00on 2\ M, andg, € C$°(G). Obviouslyg is an admissible function and we get

0= [ [ xeovug(sn7(2)o) dodi— [ [ tolwwdgn@loata)drc
eJa 3 eJa
and, thus§o = 0 onG x M. Similarly, zo = 0 onG x (£2'\ M) and we obtain

{ﬁo(ﬁv,w) = Xo\m(W)éo(z, w), (33)

20(2,w) = xm(W)zo(z, w)-
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Letnowh € C3°(G), g € D(§2) andy € (D(£2))". Supposeg andq vanishing onM. Then

lim /Q /G W @)h(z)g (T(g)w) de dpy = /Q /G o, )h()g(w) da dis (34)
and
lim /Q /G Ve () b)) (T(g)w) o s — /Q /G ol )h(a)(w) da dy. (35)

On the other hand

€ /Q /G xaéf(w)VuE(ﬁv)h(:vW(TG)w)
:_/Q/GXg;(w)ue[divww<7(§)w)h(x)—i—avxh(x)w(T(g)w)]

o /Q/G Xo\m (W)uo(z, w)h(x) divy, P(w)

_ /9 X\ M(w){ /G wo(, w)h(z) dx} div,, ¢/(w) diu = O, (36)

ase — 0.
If we setH(w) = [ uo(z,w)h(z) dz, thenH € L?(£2) and

| xowm@H @) dv. v du =0
for all ¢ € (D(£2))", ¢ = 0 on M. After taking onlyj-th components to be nonzero, we get
| xou@HED; (@) du =0 37)

forall ( € D(£2),( = 0 on M, and for any; € {1, ...,n}. Taking into account the ergodicity of the
dynamical system and connectivity of the fractures, by the same arguments as in Bourgeat, aiteli
Wright [8], we conclude that

H(w) = /G wo(z, w)h(z) d
is constant (a.s.) of® \ M. Therefore,
uo(z,w) = u(x) a.e.onG x (£2\ M). (38)

We proceed by supposing in addition that.div = 0 in 2. Then

/Q /G XG?(w)Vueh(x)T/)<T<§)w> dr dps — /Q /G X V) <T<§)w> o d
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= /Q /G o(z, w)(W)h(zr) dr dy = — /G u(m)divgg{ /Q Xom@)h(z)p(w) du}, (39)

ase — 0; the fact that) = 0 in M has also been used here.
For any?d € (L%(G))" we definew € L*(G; X) to be a unique solution to problem (29) with=
(A%)~19(x). Then the functiony(z, w) defined by

¢ = xom{ (A%) T9@) + wiz, W)}, (40)

satisfies the relatiorE{q} = 9¥(z), and ¢ € L*(G; L3,(£2)). Owing to the density arguments (see
Bourgeat, Mikele and Wright [8] for more details) we get

/Q/Gfo(%w)Q(ﬂU,W)dxd,u:/vau(x)ﬁ(x)dx

for anyd € (L*(G))". Therefore V, u € (L*(G))" andu € HY(G).
Furthermore, we have

€ £
o= o (o or(2)e) - B oler(2)e) o
G5w) L 0T 0x; € 0x; 0x; €

for all g € C5°(G; D(£2)), g = 0 on M. Passing to the limit, as — 0, gives

0= /G/Q XQ\M(W){foz‘(HU,w)ng(w,w) — &oj(z,w)D;g(z,w)} dr du
and we conclude that
oz, w) — Vau(z) € LA(G; X)".

It remains to identifyzg. First, it follows from Theorem 3.7 from Bourgeat, Mikgland Wright [8]
that

2-sm,
eV 2220 v, uo(z, w)
and

EXGs, (w) VU s2sm, XM W)V uo(z, w).

Thereforezg = V,up(z,w) (a.e.) onG x M, and we obtain

e S.2-sm.

u — xo\mWu(z) + xamW)uo(z, w) = u(x) + xmW)v(z, w), (41)

wherev(z,w) = ug(z,w) — u(z) on G x 2. It should be noticed tha¥ ,v = V,ug = 20 ONG x M.
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Our last step is to prove thate D((?) for a.e.x € G. By passing to the limit, as — 0, ineVu® we
obtain inG x (2:

/' / o (@) Vvt (2, ) da = — / / (@), w) divy ¥, w) (42)
GJ 2 GJ
for all ¢y € L%(G; D(£2))". Consequently,

VW{XM(UJ)'U(.I,W)} = XM(W)VW'U('I,W)
a.e. inG x M andy a(w)v(x,w) € D(§2). Proposition is now proved. O

Remark 2.3. It should be noted thazt?v is always positive definite in the periodic case if the fracture
part is connected. Sufficient conditions for positive-definitenesd%fin the random case are given in
Jikov, Kozlov and Oleinik [12]. We discuss this question in the last section of this paper.

Remark 2.4. In the case of disperse media, one can prove easily that the functionsff&n being

zero onM, are dense i.(2 \ M). Indeed, by the definition (see [12] and Example 1 in Section 4),

M (w) consists a.s. of closed components diffeomorphic to a ball and having a piecewise smooth bound-
ary. They have no interior points in common, and their diameters belong to a fixed intarval, [

0 < t1 < tp < +o0. For each componert’ we denote it9-neighborhood ¢ € R™: dist(x, K) < 0}

by K. Let f € L?(2\ M). Then by the Fubini theorem and the ergodict{7 (z)w)x r(w) € L3 (R™).
Moreover, for any regularizing sequenpg = 6~ "p(-/d) with p € C°({|z| < 1}), [ p(z)dz = 1,

we have ps * [fXRn\U k(7T (w) = f(T()w)xrw), asd — 0, a.s. onf2, andps * (fX[R"\U K,;)isa
C§°-function equal to zero o/ (w). The ergodicity now implies the fact that the functions fréx?2),

equal to zero oo\, are dense iL2(2 \ M).

3. Auxiliary problems and convergence result

The peculiarity of the double-porosity models is the presence of two kinds of auxiliary problems.
An auxiliary problem of the first kind is used to compute the effective permeability; it turns out to be
connected with the Neumann problem for the elliptic part of the corresponding equations in fractures,

and reads:
Findv, € X = {closure of V3,(£2) in L?(£2 \ M)} such that

B{Cxomn+ o)} = [ o S+ ) G =0 (43)

for all ¢ € Va(£2).

Proposition 3.1 (Jikov et al. [12]) The above probler(®3) has a unique solution. Moreover, the corre-
sponding tensoxét?V is constant, positive and uniquely defined by

A8 =E{xomm +vy)}, neR™ (44)
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Remark 3.2. The problem of non-degeneracy,dﬁ’v is discussed for instance in Jikov et al. [12]. One
possible way to prove non-degeneracy is to verify the extension property for the realizations of a ran-
dom medium; for example, in the particular case of random spherical structiretive matrixAS’V is

always positive definite. For some other random models the proof of non-degenevé?;yrel’les on the
percolation channels technique like in [14].

The second auxiliary problem is used to compute the source term, and connected with the correspond-
ing equation in the matrix blocks. A general formulation of this problem reads
Find ¢ € L?(0,T; Z), Z = {z € D(£2): z = 00on{2\ M}, such thatd¢/dt € L?(0,T; Z') and

% /Q P M@)C(E W)EW) du + % /Q F()x (@) Vol @) Vol (w) di

+ [ S0 (20 0) — 0o Vot du =) [ @, veez, @)
(O.0) = in (46)

Problem (45), (46) can be studied by the classical parabolic variational theory methods with the choice
of the space¥ = Z, H = L?(M). Under the hypothesis of Proposition 2.2, we have L?(M) with
a dense and continuous embedding. The corresponding bilinear form

o6 = 5 [ HOVLeTutdu+ L [ Haloo)eVat du (@7)

is continuous or¥ and the related quadratic form satisfies the estimate

L
a6 =15 [ MVt + 5 [ o)V 6P

2¢°c

1 n
> — k EPPdp —
S /M @IVt —

/ k:(w)acz)gz du.
M
Therefore,a(-, ) is (V, H)-coercive and fod € L?(0,T) there exists a uniqué € W(0,T) = {z €
L?(0,T; Z): 9z/dt € L?(0,T; Z')} that satisfies (45), (46). Furthermorgc C([0, T]; L?(M)).

Now we obtain the following stochastic two-scale compactness result for the solutions to problem (16),
7).

Proposition 3.3. Supposd4)—(6)and (18), and assume that the tensdf, defined by(29), is positive
definite. Let{9°} .o satisfy(16), (17). Then there exist € L3(0,T; HY(G)), 9,9 € L?(0,T[ xG),
v € L2(0,T[ xG;D(2)), v = 0on F, and¥y € L*G x 0, T[; X), 91 = 0 on M, such that, up to a
subsequence,

e SZsm Hzx,t) + x m(W)v(x, t,w), (48)
XG5 (w) VI° SZEM (@) [V, ) + V1, t,w)], (49)
EXGz, () VU* sZsm xm(W)Vu(x, t,w), (50)

0,0° s2sm 019(z, t) + xm(w)dev(z, t, w). =
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Proof. This is an immediate consequence of the a priori estimates (19)—(21), of the non-degeneracy of
A8, and of Proposition 2.2. We note thais a parameter.

The following corollaries are to describe some properties of the compotientand; of the sto-
chastic two-scale limit above.O

Corollary 3.4. Letd, ¢4 be the limits defined frorf#8)—(50);then the variational identity
/Q\M KV, 0(x, 1) + 91z, £,w) + cgpo(20 — po)}édu = 0 (52)

holds true for any € vpot((z), a.e.onG x [0,T].

Proof. Lety = i(z,t) € C§°(G % [0,TY), and supposé€ € D({2). We write (16), (17) in the following
equivalent form:

// 519655< (x) >a1/1d;gdt—/oz,o.ne§<7< ) >1/,(x,o)d,3
+/O/G,{€[Vq9€+ﬂe(219€_ { ( ( u))w—i-a{Vzp}dxdt

= /OT/C.: fe&y dx dt. (53)

After applying the s.2-s.m. convergence results and (48)—(50), we obtain the equation

T
/ / K*{V,0(, £) + 01z 1, w) + cgpo(20(z, 1) — po) W utW)(z, t) dz dt dy = 0.
0 Jaom

Now (52) is straightforward. O

Corollary 35. Leté’ € X be the solutions a@3)for n = e, j = 1,...,n. Then

K*91(z,t,w) = Z K*{V,9(x,t) + cgpo(29(x, t) — po) }e;0? (w), (54)
J

and moreover the effective flux is given by
AX KV, 9(x, ) + cgpo(29(x,t) — po) }
= E{xomW) K" (V 0(z,t) + V1(z, t,w) + cgpo(29(z, t) — po)) }- (55)
Finally, 91 is given explicitly by54) in terms ofd(z, t).

Proof. This is the direct consequence of the linearity of problem (52) and of the non-degeneracy of
AR O
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Finally, we are going to derive the variational formulation of the homogenized problem describing the
global behaviour. To this end we choose proper admissible test functions and pass to thedimit0as

Lemma 3.6. Letv be defined by48)—(50);then it satisfies the variational equation
d
m /M o(W){ ¥z, t) + v(z,t,w) }E(w) du
—i—)\i / k(w)[Vov(z,t,w) + cogw) (20(z, t) + 2v(z, t,w) — oo(w)) 9] Vué(w) du
cJM
~ 1) /M (W) VE e DE), £ =000\ M, (56)
i.e.,V¢ € Z, in the sense of distributions 4@, T[ and a.e. orG.
v(z,0,w) =0, ¥z, 0) = pin. (57)

Proof. Suppose) = i(z,t) € C5°(G x [0,T]) and{ € D(£2), £ = 0 a.s. onf2 \ M. We substitute a
test function of the forngv in Eq. (53). Then (53) reads

(o)) we- Lonc(r(z))eom

s [ el s per - {2Vt (7(2)w)w+evulra = [ [ sevara

(58)
Passing to the limit i in the latter formula gives
T
~ [ ] e+ o te) % ¢~ L] eneen 0 drdy
T, k:(w)
+ /0 /G/M Y{va(x, t,w) + gc(29 + 2v — Uo)ao}vwﬁ(w)ip(a@, t) dx dt du
T,
= // / f(x, )& (w)Y(z, t) dz dt du (59)
0J/GIM

and (56) easily follows. Then, from (17) and (48) taking into account the relaign= 0, we get
v(z, 0,w) + ¥z, 0) = pin(z).
Thus,v(z, 0,w) does not depend an and (57) follows. O

Remark 3.7. It follows from (56) that the functiom(x, ¢, w) is determined as soon &¢x, t) is known.
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Proposition 3.8. Let« andv be defined by48)—(50);then satisfies the equation

a / { [ @ X0 + el i) + [ pedetanti) du}w) d

1
o AN (a0 + copo(@) - po)} V(o) o
_ /G Fla (@) de, Vb € HYG), (60)
with the initial condition.

Iz, 0) = pin()- (61)

Proof. Usingy € C*°(G x [0,T]), ¥(T) = 0, as test function in (58) and taking into account (48)—(50),
(55) and the properties of the s.2-s.m. convergence, we obtain finally (60) and the relation

9z, 0) /Q (@ Xor @) + P@)xm(w)) dp + /M p(w)u(z, 0,w) dy

= pin [ (@) + HDxa)) (62)
which, in turn, implies (61). O

Remark 3.9. Eq. (60) can also be rewritten as follows:

B{@" X0 ) + D)} 300 + B (arpl)elz, ,0))
- div{%A?VK* [V + cpo(20 — po)g]} —f inGx]0,T[

A% [V + cpo(29 — po)g] - v =0 0ndG x ]0,T],

Hx,0) = pin(z) onG.

Remark 3.10. The tensorAS; defined by (29), characterizes the relation between the initial fractures
permeability K* and the efficient permeability tensor in (60), depending on the geometry of the frac-
tures system. This tensor is the rigorous version of the so-called “tortuosity factor” widely used in the
engineering literature.

The result of the limiting process is summarized in the following proposition.

Proposition 3.11. Let® € L?(0,T; HY(G)), 99 € L?(0,7[xG), andv € L?(|0,T[ xG; Z), d;v €
L?(10,T[ xG x M), be defined by48)—(51) Then we have

L e xom+ oxa duoten + [ oot dulintoras
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b [ ] 0+ o) e ole) o
+ )\_1c /G A K* [V 9(x, t) + cgpo(20(z, ) — po)] Vatbr(z) dz
" k(w
" /G/M % [Vau(z,t,w) + coow) (20(z, t) + 20(z, t,w) — 00(w)) 9] Vet (W)p2 du da

_ / / Pl () a() dpn dr + / Fla Da(x)dz ae. o0, T,
GJIM G

Vibn, ¥p € HY(G) andVe € Z, (63)
v(z,0,w) =0 in L¥G; 2), Iz, 0)=pin  in HY(G). (64)

Problem(63), (64)has a unique solution.

Proof. It is enough to prove uniqueness. Let, '} be a solution for the homogeneous problem. Then
we have

%E{@*XQ\ (@)} /G 92z, 1) da + /G /M @ (9, ) + v(z, 1, 0)) du da
+ % /0 t /G ALKV (2, )V, 7) e dir
+ % /0 t /G /M @)V ov(@, 7 ) Voo, 7 w) du do
n 2'0_;’9 /0 ' /G A K92, )V o9, 7) da i
+ ng /0 t /G /M k(W) (9(z, 7) + (@, 7, w)) Vou(z, 7,w) dda = O. (65)

Now we apply Gronwall’'s inequality and gét=0andv = 0. O

4. Examplesof random structures

In this last section we deal with the models of random structures commonly used in various applica-
tions.

Example 1. We start by considering the classical disperse media model defined in [12} beta
piecewise smooth bounded domain, we say that a random ergodic two-component medium is a disperse
medium if a.s. one of the component (fractures system) is connected and unbounded and the other one
(matrix blocks) consists of bounded connected closed%éts having no points in common, and being
obtained fromS by a successful dilatation, rotation and shift. Moreover, we assume that the dilatation
coefficientd;(w) belongs to a nonrandom interval [ 6*], 0 < 6, < 6* < oo. In what follows the symbol

H,;(w) stands for the linear transformation that mapsnto .S;(w).
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In the example below the extension condition is assumed to hold (see [12] for details), and for the sake
of simplicity we assume the coefficierts and® in (8) to be constant angfj to be equal to zero.

Under the above assumptions the solution of the second auxiliary problem (45), (46) can be computed
by means of the Green functiafi(y, z, t) for the operatorpd/0t — (k/(A\c))A, in the cylinderS x
S x (0,00) with homogeneous Dirichlet boundary conditions. Namely, if we denoté(byt, y,w) a
realizationv(z, t, 7 (y)w) of v(z, t,w), then the auxiliary problem (56), (57) reads a.s.

w(%ﬁ(m,t) + %f}(x,t,y,w)) - %Ayﬁ(x,t,y,w) = f(x,t), @.t)el]Sjw)x(0,T), (66)
J
O)4=0 = 0, 17|RN\Uj s, = 0. (67)

Let Q(y, z,t) be the above Green function f1x S x (0,00), i.e., the function)(y, z,t — 7) satisfying
foraeze S

LpatQ(y, z,t—71) — %AyQ(y,z,t —1)=0( — 2)0(t —7) InS x(0,00), (68)

Qli=r =0, Qy,z,t —7)=0 0ndS x (0,00).

It is well known (see, e.g., [15]) that

s —(n+2r+s)/2 |y - Z|2

for 2r + |s| = 1, 2 and these derivatives are Holder continuous in the argumemdr.
Clearly, in any cylindeiS;(w) x S;(w) x (0,T), the corresponding Green function satisfies the relation

- — _ t
Q21 = 0,V Q(H o) H 0, s ) (70)
J
and thus fory € S; we have

d
oz, t,y,w) = 0-NQ( H; Hw), Hy (2), fx,s) — o=—0(z,5) ) dzd
v(x, t,y,w // ( Y z J)(ws gpas xs)zs
e WS, x (0,T)). (71)

We note thatr is just a parameter, entering througfandov/0t.
Now, from the definition ofy, we get

v(x, t,w) = 0(x, t,0,w). (72)

In order to characterize the limit operator we introduce the “distribution” function for the dilatation
coefficient:

1 T <
F(G):Tlimoo{#j 5iw) € Br, b; 9},

| By |
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where # stands for the number of elements in aBgtis the ball of radius- centered at the origin and
|B,.| its volume. The latter limit does exist by the Birkhoff theorem, and the fundii(f) becomes the
distribution function of a dilatation coefficient after proper normalization.

Applying once more the Birkhoff theorem to the solution of problem (66) and taking into account
(70)—(72), we get

/Mv(m,t,w)u(dw)zrleoo{| 1T|/ @(x,t,y,w)dy}
ZTI@OO{’B ’S // / Q;y, z, t—s)(f(:v 8) — $3q 19(30 s)> dsdydz}
CBy

:/ (f(x ) - o 19(35 s)) /G*dF(G)/ / 6 NQ(Z = tez )dsdydz

= [ (7609 — it ) e - ),

where we have used the notation

kp(s) = / " dr () o NQ<y z S)d dz. (73)

05Jos 0’0’ 02

Finally, with (73) the limit problem (60), (61), (56), (57) reads
[1(2\ M)D* + p(M)] %19(x, t) — % div, (A%K*Vxﬁ(x, t))

t
= f(x,t) — %(/0 (f(x,s) — ap%ﬁ(m,s))np(t —9) ds), (x,t) € G x10,T], (74)
Iz, 0)= pin,  AXYVI(z,t)- v =0 0ndG x (0,7),
w(%ﬁ(ﬂc,t) + %@(x,t,y,w)) - %Ayﬁ(x,t,y,w) = f(z,t), .t elJS;w)x(0,1),
J

(75)
(z,0,y,w) =0, o(z,t,y,w)=0, yeR"\ USj(w).
J

Example 2 (Generalized “disperse” medja In case of classical disperse media each inclusion can be
obtained from a sample s&tby a linear diffeomorphism, and we generalize this construction as follows.
Let S be the same as in the preceding example, and assi{(fthe. . ., 0;) is ak-parametrized family of
diffeomorphisms mapping a fixed neighborhoggof the sample set into R™, such that

oH;

al'j

0
<e<oo, 4,j=1,...,N, de[‘%’>c1>0;

moreover, let) — H(f) be continuous and injective.
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A random medium is said to be generalized disperse medium if a.s. the matrix part consists of bounded
connected closed components having no points in common; each such a compdgugrmtan be ob-
tained from the sample sstby a successful diffeomorphism from the famil§{0)}.

Now, if we denote byF'(dd) the following measure ifR™:

' o #i: Si(w) C By, S; = H(O)(S), 0 € O
/OldF(H) = TILmoo{ J ‘ér‘ }

for any Borel setD C R", then this measuré&’ is well-defined due to the Birkhoff theorem. Denote by

Q(t, y, z,0) the Green function of the operatpd /ot —(k /(Ac))A, stated in the cylindek/(0)(S) < (0, o0)

with homogeneous Dirichlet boundary conditions. In the same way as above, one can prove that the limit
problem (60), (61) has the form (74), (75) with-(s) given by

kp(s) = / dF(6) / / Qs,y, 2 0) dy dz.
RF HO)(S) JH(O)(S)

Example 3 (Coated perforation Consider the same construction as in Example 1, and assume that
the sample set is now \ S', whereS is like in Example 1, ands? is a smooth open subdomain
of S compactly embedded t§. Thus, the fractures system consists a.s. of two parts, one of them is
connected unbounded compon&fit\J, S; and the other one is the unig S} of bounded components
(inclusions) situated inside all the matrix blocks.

Denote byM’ the subset of? that corresponds to the whole system of inclusiSiis

USj(w) ={yeR™ T(yw e M'}.
J

Evidently, M’ is the unionM and the subsef’ related to all the bounded incIusioS%. Although in this
fractured porous medium model the fractures system is not connected and thus one of our assumptions is
violated, still, after a slight modification, the technique developed in Sections 1-3 applies and we obtain
the following assertion.

Lemma4.1l. Assume the extension condition ' C (2 to be satisfied. Ther{48), (50) and (49)

hold in M’ and 2 \ M’ respectively the functiond(x, t) satisfies the equation obtained frq80) by

replacing M by M’ everywhere, and the functioi(z,t,y,w) = v(z,t,7 (y)w) is a solution to the
following auxiliary problem

9 {9, t) + 0(x, t,y)} = %Ayﬁ(:c,t,y) + f(x,t), yeS;\ST

Yot
V,5=0, yeSt
. (76)
) 1 [ k/op\"
— (v 1t! "-9 1t = T 1 3 A d 1t ] Sl!
@at(v(zﬂ y) + o )) |S]1| a5t )\c<any) Sy+f(x e

o(x,0,y) =0, ®|Rn\ui s, =0,

wheren,, is outer normal toSJl, and symbo(-)°"t indicates the limit of the corresponding function from
the complement of.
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Remark 4.1. Let
V={z¢€ Hl(Sj) | z is an unknown constant with respectiton S, z = 0 on 95}

and letH be the closure of in LZ(Sj). Then the problem (76) is well-posed, and the corresponding
variational formulation is:
find a functionv € LZ(O,T; VYN C([0,T]; H), fora.e.x € G, such that

d 7 .

a@/gﬁ(w,t,y)((y)dy%— £A/9~\S1 V0, t, y) V() dy
_ 0 -
- /g {f ($’f>—¢az9<w,t)}<<y>dy, eV,

o(x,0,y) = 0.

This problem is similar to that arising when homogenizing the hard inclusions, and for more details we
refer to [12].

Remark 4.2. If we denote byQ(y, z, t) the “Green function” of problem (76) posed on a sampleSet
i.e., the Schwartz kernel of the corresponding semigroup, then the relation (70) holds and the limit prob-
lem can be represented like in (74).

We proceed with examples involving random Voronoi tessellation structures.

Example 4 (Voronoi tessellatios We begin by defining a spatial process (or random point set). Denote
by I" the space of all locally finite subsets Ri*; for any bounded Borel sé8 ¢ R", we define the
mappingNg:I" — {0,1, 2,.. .} as follows

Np(y)=#(NDB), ~vel,

where # stands for the number of elements in a set, then we équiith the minimalc-algebra of its
subsets that make$z measurable for any bounded Borel é&tn R™, and denote this-algebra byg.
Let (12, =, i) be a probability space.

Then, any £, G)-measurable mapping: 2 — I is called spatial process ™.

In what follows we assume the spatial procéss= {z;};°; to be stationary, i.e., to have invariant
distribution with respect to all translationsit¥. Thus the distribution of coincides with that of+y =
{x+y: x € P}forany y € R".

Similarly, @ is said to be isotropic if its distribution is invariant under any rotation about the origin
in R™,

It can be shown (see [17], for instance) that the stationarity implies, for any bounded BaBglthet
relation

def

A(B) = E{Np(®)} = 7|B|

with some constant, 0 < 7 < oo, called the intensity ob.
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Given a random point s@t = { z;}3°,, eachz; generates a random céll(z;|®) (called Voronoi cell)
in the following way

C(zi|®) = {z € R": |z —a;| < |z — x| forall z; € §}. (78)
Next, we recall the important statement proved, for example, in [17].

Proposition 4.3. Let® be a stationary spatial process, and assutng () a.s. Then a.s. all the Voronoi
cellsC(x;|®) are bounded convex polytopes.

Detailed information on point processes and Voronoi tessellations can be found in [17,9].

Denote byZ(z;|®) the centers of gravity of the Voronoi celi(x;|®). Then, given a small positive,
we introduceC'*(x;|®) to be the homothetic dilatation 6f(x;|2?) with respect taZ (z;|®) with coefficient
1 — «. Let IT be the space of convex polytopedsRfi endowed with a proper-algebral/. Then for any
bounded Borel seB in R™ such that B| > 0, the distribution oni, /) defined by

Pr(U) = E{ > W z@i0en ]-{Ca(mi@)—Z(xiQ)EU})}/(T‘BD’ Uel,

T, EDP

is said to be a Palm measure@f(x;|®); here and in what follows we assume that.0r < co. It can
be shown thatP* does not depend oB, thus P is well-defined probability measure of/ (/) that
characterizes the distribution of the typical cell.

We proceed by introducing the random double-porosity model generated by Voronoi tessellation.
Given a stationary spatial processn R", we consider a random set defined by

C'w) = | C*(ziw)oW))

T, EDP

and may identifyC%(w) with a random matrix blocks se¥/(w). Then, M = {w: 0 € C*w)}. As
usually, we assume ergodicity, and denote(yy, z, t) the Green function of the operaten /ot —
(k/(Ae))A, in the cylinderp x (0,+o0) with the homogeneous Dirichlet boundary condition, wheig
a convex polytope ifR™.

The statement below describes the double porosity model in case of a general spatialgprocess

Theorem 4.4. Let all the above assumptions hold, and assume, moreoverA&patthe homogenized
Neumann tensor defined (B9), is positive definite. Then the limit problg@D), (61) becomes

[(2\ M)D* + p(M)y] %19(x, t) — % div,, (A%K*Vxﬁ(x, t))
t
= f(x,t) — %(/0 (f(x, s) — @%0(% 3)) Kp(t —s) ds), (x,t) € GX10,T7, (79)
0 0 k
go<a19(:6,t) + aﬁ(w,t,y,w)) — %Ayﬁ(x,t,y,w) = f(x,t), yE€ L]Jpj(w), (80)

o(z,t,y,w) =0 on Uapj(w)
J
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with k%(s) = A [;; P(dp) [, [, Qp(y, 2, ) dy dz.

An important particular case of a Voronoi tessellation widely used in hydrogeology, is the so-called
Poisson—Voronoi tessellation.

Definition 4.5. A Voronoi tessellation is called the Poisson—Voronoi diagram if for any bounded Borel
setB:

— Np(®) has Poisson distribution with meahB|, T > O;
— given the evenlVg(®) = k, all thex1, zo, ..., x; are independent and uniformly distributedBn

The Poisson—Voronoi diagram is ergodic for any> 0. It follows, for instance, from the mixing
properties obtained in [11].

Unfortunately, the positive definiteness ﬂﬁ’v in case of the Poisson—-\Voronoi diagram is still an
open question, and we should modify slightly our fractured double porosity model to achieve the non-
degeneracy of the tensot®,. Namely, using the notation(z;|®) for the diameter of the largest ball
contained inC'(z;|®), andd(x;|®) for the diameter o’(z;|®), we define a matrix blocks set as follows

CH(w) = U C%(x4| D), (81)
T, €D, r(z;|P)=d
d(z;| )<t

0 is a small positive number. By the definition (81), all the very big components as well as very small
ones have been removed from the random set, and it is then easy to sh@¢fif@) possess almost
surely the following properties:

(1) C*°(w) consists of isolated convex components;
(2) the diameter of each component does not exéeég
(3) the distance between any two components is not lessathian

The above properties (1)—(3) ensure the non-degeneragifof> 0; one can easily show this by
means of the variational formula f()ﬂtﬁ’V (see [12]). The ergodicity is trivially inherited. Letting now, for
any bounded Borel sd? of positive measure and < 11,

{0, co(L2(:19)e By Yrws|0)25, dwi|#)<s-1} Y Co(i|8)— 2 (s #)eU})}

a,d o
FU) = (G/Bl) ’

with

E@#{z; € B: r(z;|®) > 6, d(z;|®) < 671}

7(9) =
() B

we arrive at the following statement.

Theorem 4.6. Let the random matrix blocks set be given®y°(w). Then the limit equationg0), (61)
have the forn{79), (80) with

K3 (s) = 7(0) /H P (dp) / / Qp(y. 2 ) dy d.
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