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Abstract. In the paper we propose a new approach to the homogenization theory on periodic wire-networks and junctions,
based on singular measures on these structures. We characterize the Sobolev spaces on such constructions and describe the
fields of potential and solenoidal (divergence free) vector-function. Then we compare the effective coefficients obtained for
the singular structures and the classical effective coefficients for thin constructions with vanishing thickness, and show that the
corresponding diagram is commutative.

0. Introduction

In the paper we develop a new approach to the homogenization problems stated on periodic networks
and junctions.

The method elaborated in this work provides convenient tools for studying rod-constructions, skele-
tal and lattice structures and other thin constructions. The investigation of such models is important to
researchers working with cellular materials (lightweight materials) such as honeycombs, foams, wood,
cancellous bone, corks. Other modern engineering applications are space antennas, solar panels, civil en-
gineering technologies and many others. Concerning methods for attacking such problems in a classical
engineering way we refer to [10].

The classical homogenization techniques (see, for example, [3–5,8,9,16,30]) involve resolving auxil-
iary PDE problems which makes the homogenization procedure quite complicated from the numerical
point of view.

The classical homogenization method and the classical engineering approach have recently been com-
pared for some interesting problems in [19,31] (see, also, [20]).
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In contrast to the standard homogenization technique, our approach inspired by the ideas from [12–15],
enables to deal not only with the classical fine-scale structures but also with the problems stated on in-
finitely thin constructions whose description involves singular measures. In the present work we develop
the measure approach for networks and junctions. This method allows us to reduce essentially the com-
putations in various applications. On the other hand, it requires a delicate analysis of Sobolev spaces
with nonabsolutely continuous measures. In the first part of this work we provide rigorous definitions of
such spaces, investigate their properties and describe important functional classes such as the fields of
potential and solenoidal (divergence free) vectors.

The importance of practical applications stimulated mathematical research in the area. There are sev-
eral recent works devoted to the homogenization of thin structures and other singular media. We quote
here the works [1,2,7,8,17,18,21–27].

An interesting attempt to simplify the homogenization process for thin rod-structures was undertaken
in [28,29], where the author replaced the equations in the interior parts of rods by one-dimensional
equations stated on the respective segments.

The last section of the paper is devoted to the homogenization problems on singular structures. We
consider the limit of the effective coefficients obtained for thin structures by the classical homogenization
method, as the thickness vanishes, and show that our method gives the same values of the effective
coefficients.

For simplicity in this work we only consider 2D constructions involving straight segments and regular
junctions. The techniques developed here also apply in the case of curved multidimensional structures.

1. Sobolev spaces on singular sets

Let Ω be a domain inR2, and suppose thatµ is a Borel finite positive (for example, probability)
measure onΩ. The spaceL2(Ω, dµ) is defined in a usual way, the corresponding norm is

‖u‖2 =
∫

Ω

∣∣u(x)
∣∣2 dµ.

We introduce the spaceH1(Ω, dµ) as follows:

Definition 1. A function u(x) belongs toH1(Ω, dµ), if there exist a sequence {un}, un ∈ C∞(Ω), and
z ∈ (L2(Ω, dµ))2 such that

un → u in L2(Ω, dµ) (1)

and

∇un → z in
(
L2(Ω, dµ)

)2
. (2)

We say thatz is a gradient ofu and denote it by∇u.

Remark 1. In the above definition the strong convergence in (1) and (2) can be replaced by the weak
convergence in the same spaces. In what follows we verify the weak convergence.
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In general, the gradient ofH1(Ω, dµ)-function is not unique (see, for instance, Proposition 1). We say
that a functionz is a gradient of zero if there exists a sequenceun ∈ C∞(Ω) such thatun → 0 and
∇un → z, asn → ∞, in L2(Ω, dµ), and denote the set of gradients of zero byΓ (0). It is easy to see
thatΓ (0) is a closed subspace of (L2(Ω, dµ))2. The gradient of aH1(Ω, dµ)-function is defined as the
corresponding equivalence class.

1.1. Segments

Let I = {x | a � x1 � b; x2 = 0} be a segment inR2, and suppose that a bounded domainΩ
containsI. For any sufficiently smallδ > 0 consider the barIδ := {x | a < x1 < b; −δ < x2 < δ} ⊂ Ω
(see Fig. 1).

Denote byµδ the probability measure inΩ, concentrated and uniformly distributed onIδ:

µδ(dx) =
1x∈Iδ

δ(b − a)
dx1 dx2.

It is easy to see that the familyµδ converges weakly, asδ → 0, to a singular probability measureµ
concentrated on the segmentI and uniformly distributed on it. In terms of distributions this measureµ
can be represented as followsµ(dx) = 1

b−a dx1 × δ(x2), whereδ(z) stands for the Dirac mass at zero.
Consider a family of smooth functionsuδ subject to the bound

∫
Ω

(
u2

δ + |∇uδ|2
)

dµδ � C.

Then there are functionsu0 ∈ L2(Ω, dµ) andz = (z1, z2) ∈ (L2(Ω, dµ))2 such that

uδ ⇀ u0, ∇uδ ⇀ z weakly asδ → 0 (3)

(see [13]). The latter convergence is defined as follows: for any functionsϕ ∈ C∞
0 (R2), ψ ∈ (C∞

0 (R2))2

∫
Ω
uδϕdµδ →

∫
Ω
u0ϕdµ, (4)

∫
Ω

(∇uδ,ψ) dµδ →
∫

Ω
(z,ψ) dµ, (5)

Fig. 1. Single bar.
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asδ → 0.
Let us recall that, according to Definition 1, a functionu is an element ofH1(Ω, dµ) if there are

a sequence of functionsun ∈ C∞(Ω) andz ∈ (L2(Ω, dµ))2 such that (1), (2) hold true.

Remark 2. Note thatµ(Ω \I) = 0. Therefore all the functions taking the same values on the segmentI,
coincide as elements ofL2(Ω, dµ). Thus due to (1) and (2), an element of the spaceH1(Ω, dµ) is uniquely
defined by the respective element of the spaceH1([a, b]). Later on we will identify these spaces.

Proposition 1. For the measure µ introduced above, the gradient of a function u ∈ H1(Ω, dµ) is not
unique.

Proof. Let us show that for an arbitrary functionu = u(x1), u(x1) ∈ H1([a, b]), considered as a function
of two variables (x1,x2), the corresponding gradient has the form:

∇u =
(

∂u

∂x1
,w(x1)

)
, (6)

wherew is an arbitrary function fromL2(Ω, dµ). Indeed, setting

un(x1,x2) ≡ u(x1) + x2w(x1)

and smootheningu andw if necessary, we obtain the convergenceun → u strongly inL2(Ω, dµ), as
n → +∞. Moreover,

∂un

∂x1

∣∣∣∣
x2=0

→ ∂u

∂x1
,

∂un

∂x2

∣∣∣∣
x2=0

→ w(x1).

By Definition 1 (∂u
∂x1

(x1,x2),w(x1)) is a gradient ofu andu ∈ H1(Ω, dµ). This completes the proof.�

Lemma 2. The function u0 defined in (3) belongs to H1(Ω, dµ). Moreover, for u0 and z from (3) the
following relation holds:

z = ∇u0. (7)

Proof. An analysis of the proof of Proposition 1 shows that (7) follows from the relation

z1 =
∂u0

∂x1
. (8)

To obtain this relation we consider the familyuδ used in (3) and denote

uδ(x1) =
1
2δ

∫ δ

−δ
uδ dx2.
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Consider aC∞
0 (Ω)-functionϕ, that depends only onx1 in a neighbourhood of the segmentI. From (4),

we get

∫
Ω
uδϕ(x) dµδ ≡ 1

2δ(b − a)

∫ b

a

∫ δ

−δ
uδϕ(x) dx1 dx2 =

1
b− a

∫ b

a
uδ(x1)ϕ(x1) dx1

→ 1
b− a

∫ b

a
u0ϕdx1.

Thereforeuδ ⇀ u0 in L2([a, b]). Now,

∫
Ω

∂uδ

∂x1
ϕ(x) dµδ ≡ 1

2δ(a − b)

∫ b

a

∫ δ

−δ

∂uδ

∂x1
ϕ(x) dx1 dx2 =

1
b− a

∫ b

a

∂uδ

∂x1
ϕ(x1) dx1

→ 1
b− a

∫ b

a
z1ϕdx1.

On the other hand if we assume in addition thatϕ = 0 in the vicinity of the end-points of the segment,
then∫

Ω

∂uδ

∂x1
ϕ(x) dµδ = −

∫
Ω
uδ

∂ϕ(x)
∂x1

dµδ = − 1
b− a

∫ b

a
uδ(x1)

∂ϕ(x1)
∂x1

dx1

→− 1
b− a

∫ b

a
u0

∂ϕ(x1)
∂x1

dx1.

This means thatz1 = ∂u0/∂x1. The lemma is proved.�

1.2. Cross

Let Ω be a bounded domain inR2, and denote byXδ ⊂ Ω the union of the crossing bars {x | a1 <
x1 < b1; −δ < x2 < δ} ∪ {x | −δ < x1 < δ; a2 < x2 < b2} with a1 < 0 < b1 anda2 < 0 < b2 (see
Fig. 2).

Fig. 2. Intersecting bars.
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In this subsection the notationµδ is used for a family of probability measures inΩ, supported by
the cross-barXδ and uniformly distributed on it. The weak limit of this family, asδ → 0, is a singu-
lar probability measureµ uniformly distributed on the crossX := {x | a1 < x1 < b1; x2 = 0} ∪
{x | x1 = 0; a2 < x2 < b2}. Consider a family of smooth functionsuδ in Ω, subject to the bound

∫
Ω

(
u2

δ + |∇uδ|2
)

dµδ � C.

Then there are functionsu0 ∈ L2(Ω, dµ) andz = (z1, z2) ∈ (L2(Ω, dµ))2 such that

uδ ⇀ u0, ∇uδ ⇀ z weakly asδ → 0. (9)

The latter convergence is defined in (4), (5).
The following statement characterizes the Sobolev spaceH1(Ω, dµ) for the measureµ defined above

or for a slightly more general measure onX. Let µ = µ1 + µ2 + µ3 + µ4, and assume thatµ1, µ2, µ3

andµ4 are singular positive measures uniformly distributed on the segments {x | a1 < x1 < 0; x2 = 0},
{x | 0 < x1 < b1; x2 = 0}, { x | x1 = 0; a2 < x2 < 0} and {x | x1 = 0; 0 < x2 < b2}, respectively.
The following result holds.

Lemma 3. The function u belongs to H1(Ω, dµ), if

u ∈ H1(Ω, dµ1) ∩H1(Ω, dµ2) ∩H1(Ω, dµ3) ∩H1(Ω, dµ4)

and u|X is continuous at the origin.

Proof. This statement easily follows from (8) and the properties ofH1-functions in the one-dimensional
case. �

Now introducing the sequence of smooth cut-off functionsβm(x) such thatβm(x) = 0 in {x | |x| <
1/m} and βm(x) = 1 in {x | |x| > 2/m} and applying the same arguments as in the proof of Lemma 2
we arrive at the following statement:

Lemma 4. The function u0 defined in (9) belongs to H1(Ω, dµ). Moreover, for u0 and z from (9), the
following relation holds:

z = ∇u0. (10)

Remark 3. Using the approach proposed here, one can generalize these results to more complex “star”-
structures and infinite periodic, quasi periodic and random wire structures (see Fig. 3).

1.2.1. Potential and solenoidal vectors
Suppose we are given a periodic networkR0 (see Fig. 4) and a periodic singular measureµ that

satisfies the normalization conditionµ(�) = 1, where the symbol� stands for the cell of periodicity. For
simplicity we assume that all the end points of each segment in the network are the intersection points of
two or more segments.
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Fig. 3. Intersecting bars. “Star”-structure.

Fig. 4. Periodic network.

According to Definition 1, a functionu is an element ofH1(�, dµ) if for some sequence of smooth
�-periodic functions {un}, one has

un → u in L2(�, dµ), ∇un → z in L2(�, dµ),

z is said to be a gradient ofu.
Our next aim is to introduce, in case of singular measures, the subspaces of potential and solenoidal

vector-functions and to study their properties.

Definition 2. A vector-functionv ∈ (L2(�, dµ))2 is said to bepotential if it belongs to the closure of the
following linear set:

{
w | w = ∇ψ, ψ ∈ C∞

per(�)
}

in the norm

‖w‖ =
(∫

�

w2 dµ
)1/2

,
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where the symbolC∞
per(�) stands for the space of�-periodic elements ofC∞(R2). For the subspace of

all the potential vector-functions we use the notationL
pot
2 (�, dµ).

The following proposition shows an interesting property of the Lebesgue measure on a torus.

Proposition 5. Let µ be a periodic measure. If for any ϕ ∈ C∞
per(�) the relation

∫
�
∇ϕdµ = 0, (11)

holds, then the measure µ is the Lebesgue measure.

Proof. Consider the distributionF ∈ D′(�) defined by the relation

〈F ,ϕ〉 =
∫
�

ϕdµ, ϕ ∈ C∞
per(�).

Then, by (11)

〈∇F ,ϕ〉 = −〈F ,∇ϕ〉 = 0,

where∇F is understood in the sense of distributions. Therefore,∇F = 0 andF = const. This implies
µ(dx) = cdx. �

Definition 3. A vector-functionp ∈ (L2(�, dµ))2 is said to besolenoidal (or divergence free) if

∫
�

p∇ψ dµ = 0 (12)

for any functionψ ∈ C∞
per(�). We denote byLsol

2 (�, dµ) the subspace of all divergence free vectors.

Note that, in the case of network constructions, the solenoidal vector-functions are always tangen-
tial to the segments. Indeed, the normal component of potential vectors can be chosen arbitrarily (see
Proposition 1) and consequently, the solenoidal vectors must be orthogonal to any normal vector.

Consider an arbitrary network constructionR and a singular measureµ concentrated onR. Suppose
µ is uniformly distributed on each segment ofR, and letI1, . . . , Ik be the segments intersecting at the
origin. Denote bye1, . . . , ek the unit vectors directed alongI1, . . . , Ik, respectively (see Fig. 5), and
by θ1, . . . ,θk the densities of dµ with respect to the standard Lebesgue measure on the corresponding
segments.

The assertion below describes the structure of solenoidal vectors onR.

Lemma 6. For each segment Ii, the restriction of a solenoidal vector p on Ii takes the form λiei, where
λi is a constant. Moreover, we have

k∑
i=1

θiλi = 0. (13)



G.A. Chechkin et al. / On homogenization of networks and junctions 69

Fig. 5. Network node.

Remark 4. For more general networks involving segments with free end points, any solenoidal vector-
function is necessary equal to zero at each such a segment.

Proof of Lemma 6. Consider the set of test-functionsϕ concentrated in a neighbourhood of the seg-
mentIs for a fixeds. Usingϕ as a test-function in (15), we deduce thatp is a constant vector onIs.

In order to justify (13) it suffices to substitute in (12) a test-function supported by a small neighbour-
hood of the origin, and to integrate by parts along each segment. This completes the proof.�

Consider a sequence of usual potential or solenoidal vector-functions that converges in the sense of (4).
The next theorem states that the limit is necessary a potential (solenoidal) vector-function.

Theorem 1. If vδ ∈ L
pot
2 (�, dµδ) is a family of potential vectors such that

vδ ⇀ v as δ → 0

in the sense of (4), then v is a potential vector. If pδ ∈ Lsol
2 (�, dµδ) is a family of the solenoidal vectors

such that

pδ ⇀ p as δ → 0

in the sense of (4), then p is a solenoidal vector.

The proof of this theorem relies on the following lemma, widely used in the sequel:

Lemma 7. If p ∈ Lsol
2 (�, dµ), then there exists a sequence p̃δ ∈ Lsol

2 (�, dµδ) such that p̃δ ⇀ p and

∫
�
p̃ 2

δ dµδ →
∫
�
p2 dµ (14)

as δ → 0.

We call this property of solenoidal vectorsstrong approximability. Lemma 7 will be proved in
Section 1.4 for the case of networks and junctions.
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Proof of Theorem 1. If vδ is potential, then by Lemma 7 we have

0 = lim
δ→0

∫
�
vδp̃δ dµδ =

∫
�
vp dµ

for an arbitrary solenoidal vectorp, and the first statement of Theorem 1 follows.
The second statement is almost obvious. By the definition (4) we conclude that

0 =
∫
�

pδ∇ϕdµδ →
∫
�

p∇ϕdµ (15)

for any potential∇ϕ. Thus,p is solenoidal. The theorem is proved.�

1.3. Junctions

A detail study of junctions was done in [6]. In this subsection we deal with singular measures on
junctions.

Let Ω be a bounded domain inR2, and denote byRδ ⊂ Ω the union of the squareQ = {x | −1 <
x1 < 1; −1 < x2 < 1} and the barΠδ = {x | 0 < x1 < 2; −δ < x2 < δ} (see Fig. 6).

Denote byµ̃δ a probability measure inΩ which is uniformly distributed onΠδ and byµδ the sum of
this measure and the Lebesque measure on the squareQ. We suppose thatµδ(Ω \Rδ) = 0. Let µ̃ be the
weak limit of the familyµ̃δ asδ → 0, clearlyµ̃ is a singular probability measure concentrated on the
segmentI = {x | 0 < x1 < 2; x2 = 0}. Denote byµ the sum of this measure and the usual Lebesque
measure on the squareQ. The measureµ is supported by the junctionR0 := Q ∪ I.

For a general junction structure we calljunction’s “body” any 2D connected component of the struc-
ture. For example,Q is a junction’s “body” ofR0.

Consider a family of smooth functionsuδ subject to the bound∫
Ω

(
u2

δ + |∇uδ|2
)

dµδ � C.

Then there are functionsu0 ∈ L2(Ω, dµ) andz = (z1, z2) ∈ (L2(Ω, dµ))2 such that

uδ ⇀ u0, ∇uδ ⇀ z weakly asδ → 0. (16)

Fig. 6. Simple junction.
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Fig. 7. General junction.

The latter convergence is defined by (4), (5).
The following statement characterizes the Sobolev spaceH1(Ω, dµ).

Lemma 8. The function u belongs to H1(Ω, dµ), if u ∈ H1(Q) ∩ H1(I, dµ̃) and the restriction
u|x1∈[0,1]; x2=0 is an element of H1([0, 1]).

Proof. We introduce the sequence of smooth cut-off functionsβm such thatβm = 0 in [− 1
m , 1+ 1

m ] ×
[− 1

m , 1
m ] andβm(x) = 1 in the exterior of [− 2

m , 1+ 2
m ] × [− 2

m , 2
m ], and then repeat the reasoning from

the previous subsection to get the result.�

In the same way as in the previous subsections, one can prove the following lemma:

Lemma 9. The function u0 defined in (16) belongs to H1(Ω, dµ). Moreover, for u0 and z from (16), the
following relation holds:

z = ∇u0. (17)

Remark 5. Using the approach suggested here, one can generalize these results to more complex junc-
tions (see, for instance, Fig. 7).

1.3.1. Potential and solenoidal vectors
Suppose we are given a periodic junction constructionR0 (see Fig. 8) and a periodic measureµ that

satisfies the normalization conditionµ(�) = 1, where the symbol� stands for the cell of periodicity.
The solenoidal (divergence free) and potential vector-functions are defined here in the same way as in
the case of networks (see Section 1.2.1).

In what follows we identify the cell of periodicity� with the torusT 2. For simplicity we assume that
any end point of a segment ofR0 is either an intersection point of two or more segments, or situated in
a junction’s “body” ofR0. We also assume that the cell of periodicity� contains only one junction’s
“body” which is sufficiently regular.
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Fig. 8. Periodic junction-structure.

In order to describe the structure of solenoidal vector-functions on the junctionR0, we first denote all
the segments ofR0 on T 2 by Ij , j = 1, 2,. . . ,m, and the plane domain byQ. Let yj be the induced
coordinate onIj. According to our assumptions, the measureµ admits the following representation

dµ = dµ0 +
m∑

j=1

dµj ,

whereµ0 is proportional to the Lebesgue measure onQ andµj, j = 1, . . . ,m, are singular measures
concentrated onIj and proportional to the 1D Lebesgue measures on this segment:

µ0(A) = θ0

∫
A∩Q

1 dx1 dx2, ∀A ⊂ �,

µj(A) = θj

∫
A∩Ij

1 dyj , ∀A ⊂ �, j = 1, 2,. . . ,m,

for some constantsθ0,θ1, . . . ,θm.
The structure of a solenoidal vector-function on the junction construction is given by the following

statement:

Theorem 2. Each solenoidal vector-function p ∈ Lsol
2 (�, dµ) can be represented as a sum

p(x) = p0(x) +
m∑

j=1

pj(x),

where the vector-function p0 defined in Q is such that p0 ∈ (L2(�, dµ0))2, and pj defined on Ij , j =
1, . . . ,m, is such that pj ∈ (L2(�, dµ0))2. A vector-function pj , j = 1, . . . ,m, is directed along the
segment Ij ; on the part of Ij located outside Q, pj is a constant vector. The vector-function p0 is a usual
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solenoidal vector-function in the set Q− = Q \ ⋃m
j=1 Ij . The derivative of pj along the segment Ij

compensates the jump of the normal components of p0 at Ij

d
dyj

pj(x) = nj · p0(x+)
− nj · p0(x−)

,

where nj is the normal to Ij and the symbols + and − indicate that the corresponding values should be
taken on the opposite banks of the cut.

If x is an intersection point of the segments Is1, . . . , Isl
, then the following relation holds

θs1p
s1(x) + θs2p

s2(x) + · · · + θsl
psl(x) = 0.

In particular, in any isolated end point, we have pj = 0.

Proof. Consider one of the segments, sayI1, and assume without loss of generality thatI1 coincides
with the interval {(x1,x2): 0 � x1 � 1, x2 = 0}. This can always be achieved by means of a proper
linear transformation. Theny1 = x1 and dµ1 = θ0 dx1.

Let ϕ be aC∞-function with the support in a neighbourhood ofI1, such thatϕ(0, 0) = ϕ(1, 0) = 0.
Integrating by parts we get

0 =
∫

T 2
∇ϕ(x)p(x) dµ = θ0

∫
Q
∇ϕ(x)p0(x) dx1 dx2 + θ1

∫ 1

0
∇ϕ(x)p(x) dx1

= θ0

∫ 1

0

(
p0

2
(
x+

1 , 0
)
− p0

2
(
x−1 , 0

))
ϕ(x1, 0) dx1 − θ1

∫ 1

0

d
dx1

p1
1(x1)ϕ(x1, 0) dx1

+ θ1

∫ 1

0
p1

2(x1)
∂

∂x2
ϕ(x1, 0) dx1

=
∫ 1

0

{
θ0

(
p0

2
(
x+

1 , 0
)
− p0

2
(
x−1 , 0

))
− θ1

d
dx1

p1
1(x1)

}
ϕ(x1, 0) dx1 + θ1

∫ 1

0
p1

2(x1)
∂

∂x2
ϕ(x1, 0) dx1.

In view of the arbitrariness ofϕ this yields

θ0
(
p0

2
(
x+

1 , 0
)
− p0

2
(
x−1 , 0

))
= θ1

d
dx1

p1
1(x1), p1

2(x1) = 0.

The other assertions of the theorem are obtained in a similar way.�

Remark 6. If the jump of the normal component ofp0 is equal to zero along eachIj , then we have
a trivial “uncoupled” case of solenoidal vector-functionsp0 ∈ Lsol

2 (T 2, dµ0) andpj ∈ Lsol
2 (Ij, dµj).

Remark 7. The statements of the latter theorem remain valid for junction structures having finite number
of elements and for junctions with more complex geometry. Indeed, in the proof we did not use the
periodicity ofR0, all our arguments were local.

Proposition 10. All the statements of Theorem 1 hold true in the case of junction structures.

It remains to prove the strong approximability property (Lemma 7) for all the above cases.
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1.4. Strong approximability

In this section we prove Lemma 7 for networks and junction structures.

Remark 8. It should be noted that the convergence introduced in Lemma 7 is equivalent to thestrong
convergence of the family p̃δ to p, which is defined as follows:

∫
�
vδp̃δ dµδ →

∫
�
vp dµ

for anyvδ which converges weakly tov asδ → 0.

We give below the proof of strong approximability for different geometrical structures.

Proof of Lemma 7. (i) Networks and rod-structures. Here we borrow the notation and the constructions
from Section 1.2 (see Fig. 9).

For the sake of convenience we introduce the following sets:

D0 := (−δ, δ)2,

D1 := {x | a1 < x1 < −δ, −δ < x2 < δ},

D2 := {x | −δ < x1 < δ, δ < x2 < b2},

D3 := {x | δ < x1 < b1, −δ < x2 < δ},

D4 := {x | −δ < x1 < δ, a2 < x2 < −δ},

and denoteSi := ∂D0 ∩ ∂Di, i = 1, . . . , 4.
Let p be an arbitrary periodic solenoidal vector fromLsol

2 (�, dµ). Taking into account the structure of
the solenoidal vector on crosses (see Lemma 6), we construct a family of vector-functionsp̃δ as follows:

• In the domainsDi, i = 1, 2, 3, 4, we set̃pδ = λiei.

Fig. 9. Cell of periodicity of lattice.
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• In the domainD0 we setp̃δ = ∇ϕ, whereϕ is a solution of the Neumann problem




∆ϕ = 0 in D0,
∂ϕ

∂ei
= λi onSi, i = 1, . . . , 4;

(18)

the compatibility condition for this problem is satisfied due to (13).

The family p̃δ has been constructed to converge weakly top in the sense of (4). Let us prove (14), i.e.,

∫
�

p̃ 2
δ dµδ →

∫
�

p2 dµ asδ → 0.

By the definition ofp̃δ we have

∫
�

p̃ 2
δ dµδ =

4∑
i=1

∫
Di

λ2
i dµδ +

∫
D0

p̃ 2
δ dµδ.

The second term on the right-hand side vanishes while the first one tends to the integral
∫
� p2 dµ, and the

required convergence follows.

Remark 9. In the above proof we assumed all the weightsθj to be equal to 1. For arbitrary set of
weightsθj, θj > 0, one can adopt the above construction by making the width of the barsDj equal
to θjδ, j = 1, 2, 3, 4.

(ii) Junctions. Here we use the notation introduced in Section 1.3 (see Fig. 10).
For the sake of brevity we only consider the intersection of the squareQ = (−1, 1)2 with one bar

Πδ = (0, 2)× (−δ, δ) related to the segmentI = {x | 0 � x1 � 2, x2 = 0}, and assume thatQ andI
are elements of a periodic junction. A general periodic junction construction can be managed in the same
way.

Fig. 10. Cell of periodicity of junction-structure.
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Denote

D0 = Q ∩Πδ, D1 = Πδ \D0,

S4 = ∂D0 ∩ ∂D1, S3 = {x | x1 = 0, −δ < x2 < δ},

S1 = {x | 0 < x1 < 1, x2 = −δ}, S2 = {x | 0 < x1 < 1, x2 = δ},

so that∂D0 = S1 ∪ S2 ∪ S3 ∪ S4.
Supposep is a periodic solenoidal vector-function on the junction involvingQ ∪ I. By Theorem 2

this vector-function admits onQ ∩ I the representationp(x) = p0(x) + p1(x) with p0 ∈ Lsol
2 (Q \ I),

p1(x) = (p1
1(x1), 0). Moreover,

d
dx1

p1
1(x1) = p0

2(x1,+0)− p0
2(x1,−0), 0< x1 < 1,

p1(x1) = λ1e1, 1 < x1 < 2.
(19)

We construct the required familỹpδ as follows:

• In D1 we setp̃δ = λ1e1.
• In the domainQ \D0 we setp̃δ = p0.
• In the domainD0 we setp̃δ = ∇ϕ, whereϕ is a solution of the Neumann problem




∆ϕ = 0 in D0,
∂ϕ

∂n
= δp0 · n onSi, i = 1, 2, 3,

∂ϕ

∂n
= λ1 onS4.

(20)

The compatibility condition for problem (20) reads∫
S1∪S2∪S3

δp0 · n ds +
∫

S4

λ1 ds = 0.

Thus, we should prove the relationλ1 = −
∫
S1∪S2∪S3

p0 · n ds.
By the Stokes formula and (19), one has

∫
S1∪S2∪S3

δp0 · n ds =
∫ 1

0

(
p0

2(x1,+0)− p0
2(x1,−0)

)
dx1 =

∫ 1

0

d
dx1

p1
1(x1) dx1 = λ1.

This implies the required compatibility condition.
Clearly, the familyp̃δ converges weakly top, asδ → 0, in the sense of (4). Let us prove (14), i.e.,∫

�

p̃ 2
δ dµδ →

∫
�

p2 dµ asδ → 0.

We have∫
Q∪Πδ

p̃ 2
δ dµδ =

∫
Q\D0

(
p0)2

dµδ +
∫

D1

(λ1)2 dµδ +
∫

D0

(∇ϕ)2 dµδ.
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Clearly, the first two terms on the right-hand side converge to
∫
Q(p0)2 dx andλ2

1, respectively. Multiply-

ing Eq. (20) byϕ and integrating by parts, one can show that the last term converges to
∫ 1

0 (p1)2 dx1. The
lemma is proved. �

This completes the proof of Theorem 1.

2. Scalar problems

In this section we compare two different homogenization methods for periodic networks and junctions.
The first method involves the direct homogenization procedure based on the analysis on networks and
junctions, that was developed in the previous sections. The second method is more classical: we homog-
enize constructions of small thickness in a usual way and then pass to the limit as the thickness goes to
zero. It is shown that these two approaches give the same answer. We deal here with a model problem
for one scalar equation, the case of general elliptic operator on networks and junction constructions can
be studied in the same manner.

Denote byδ the small parameter which characterizes the fixed thickness of rods, the corresponding
structures will be calledδ-structures. Another small parameterε will be used to characterize the micro-
scopic length-scale of the whole construction.

Given a�-periodic connectedδ-structureRδ and a regular bounded domainG ⊂ R
2, we define

a periodic microstructureRδ,ε by settingRδ,ε = εRδ, and then consider the homogenization problem in
G ∩Rδ,ε whose variational formulation reads

inf
v∈C∞

0 (G)

∫
G∩Rδ,ε

(∣∣∇v(x)
∣∣2 − 2f (x)v(x)

)
dµε

δ,

whereµε
δ(dx) = ε2µδ(ε−1 dx) andµδ is the measure onRδ that has been introduced in the previous

section,f is a given function. This is equivalent to say that we consider the homogenization problem
in G ∩ Rδ,ε for a divergence form isotropic operator with the coefficient equal to the density of the
measureµε

δ. The Dirichlet boundary condition is stated on the exterior boundary∂G ∩ Rδ,ε, and the
Neumann boundary condition at the boundary of the “microstructure”∂(G ∩Rδ,ε) \ ∂G. This homoge-
nization problem is well studied, we refer here to [7,8,27,28]. Denote byAε,δ the matrix of coefficients
of the original operator and byAhom

δ the constant matrix of coefficients of the homogenized operator.

Remark 10. The asymptotic behaviour ofAhom
δ , asδ → 0, and the properties of the corresponding limit

have been investigated in [3] and in [8], where other elliptic problems on reticulated structures have also
been considered.

A successful attempt to change the order of passage to the limit inε andδ in the network homogeniza-
tion problem, has been made in [11]. This work relies on the extension technique.

Consider also the following “singular” homogenization problem

inf
v∈C∞

0 (G)

∫
G

(∣∣∇v(x)
∣∣2 − 2f (x)v(x)

)
dµε,

whereµε(dx) = ε2µ(ε−1 dx) andµ is a (singular)�-periodic positive measure,µ(�) = 1. We as-
sume that the measureµ is the weak limit ofµδ asδ → 0. The latter problem is not standard. As was
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Fig. 11. Homogenization diagram.

shown in [14], this problem can be homogenized and the effective operator is a second order elliptic
operator with constant coefficients. Formally, we denote the matrix of coefficients of the singular prob-
lem byAsing

ε ; the coefficients of the effective matrix are denoted byAhom
0 . The formula that defines the

effective matrixAhom
0 will be given below.

We want to show that for the singular structures defined above, the corresponding diagram presented
at Fig. 11 is commutative.

The operatorsAsing
ε and the related variational problems were studied in [14], where the homogeniza-

tion resultAsing
ε −→

ε→0
Ahom

0 was proved.

The parts of the diagramAε,δ −→δ→0
A

sing
ε andAhom

δ −→
δ→0

Ahom
0 are studied in this section.

In the above homogenization problems onδ-structures and on the corresponding networks (junction
structures) the variational formula for the effective coefficients read respectively:

ηAhom
δ η = inf

u∈C∞
per(R2)

∫
�

|η + ∇u|2 dµδ, (21)

ηAhom
0 η = inf

u∈C∞
per(R2)

∫
�

|η + ∇u|2 dµ, (22)

whereµδ is the periodic measure on aδ-structure that was discussed above, andµ is the limit measure
on the corresponding network or junction construction.

Theorem 3. The homogenized matrices Ahom
δ and Ahom

0 satisfy the following limit relation

Ahom
0 = lim

δ→0
Ahom

δ . (23)

Proof. Let w make the expression (22) a minimum, i.e.,

ηAhom
0 η =

∫
�

|η + ∇w|2 dµ.

Given a sequence of positiveαn, αn → 0, asn → +∞, we can findwn ∈ C∞
per(R

2) such that

ηAhom
0 η + αn �

∫
�

|η + ∇wn|2 dµ.
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Sincewn is smooth for eachn > 0, we have

∫
�

|η + ∇wn|2 dµ = lim
δ→0

∫
�

|η + ∇wn|2 dµδ.

It follow from (21) that
∫
� |η + ∇wn|2 dµδ � ηAhom

δ η. Thus, for anyαn > 0

ηAhom
0 η + αn �

∫
�
|η + ∇wn|2 dµ = lim

δ→0

∫
�
|η + ∇wn|2 dµδ � lim sup

δ→0
ηAhom

δ η (24)

for any vectorsη. Keeping in mind the arbitrariness ofαn we conclude that

ηAhom
0 η � lim sup

δ→0
ηAhom

δ η.

On the other hand, the Euler equation for problem (21) reads

∫
�

(η + ∇uδ)∇ϕdµδ = 0, ∀ϕ ∈ C∞
per

(
R

2).
It follows from the variational formulation (21) that the family∇uδ is bounded, thus∇uδ ⇀ v in the

sense of (4) and taking into account the lower semicontinuity of a weak limit, we get

lim
δ→0

∫
�

|η + ∇uδ|2 dµδ �
∫
�

|η + v|2 dµ. (25)

The fact that the vector-functionv is potential follows from Theorem 1 for networks and from Proposi-
tion 10 for junctions. This completes the proof of Theorem 3.�

The top arrow of the diagram (see Fig. 11) which represents theΓ -convergence of the respective varia-
tional functionals (see [9,16]), can be justified in the same way as above with the evident simplifications.

Acknowledgements

During the work on this problem the authors were enjoying the Polar lights in the northern Norway
in Autumn 1999. We express our deep gratitude to Høgskolen i Narvik, whose support is gratefully
acknowledged.

Gregory A. Chechkin has been supported in part by the Russian Foundation for Basic Research
(RFBR) grants # 99-01-01143 and Joint French–Russian Project # 00-01. Vasili V. Jikov has been par-
tially supported by RFBR grant # 99-01-00872. Andrey L. Piatnitski has been supported in part by RFBR
grant # 00-01-22000.

References

[1] I.I. Argatov and S.A. Nazarov, Junction problem of shashlik (skewer) type,C. R. Acad. Sci. Paris Sér. I 316(6) (1993),
627–632.



80 G.A. Chechkin et al. / On homogenization of networks and junctions

[2] I.I. Argatov and S.A. Nazarov, Asymptotic analysis of problems in junctions of domains of different limit dimensions.
An elastic body, pierced by thin rods,Probl. Mat. Anal. 20 (2000), 3–55. English translation:J. Math. Sci. 102(5) (2000),
4349–4387.

[3] N.S. Bakhvalov and G.P. Panasenko,Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht, 1989.
[4] A. Bensoussan, J.-L. Lions and G. Papanicolau,Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam,

1978.
[5] A. Braides and A. Defranceschi,Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its

Applications, Vol. 12, Clarendon Press, Oxford, 1998.
[6] P.G. Ciarlet,Mathematical Elasticity. Volume II. Theory of Plates, Studies in Mathematics and its Applications, Vol. 27,

Elsevier, Amsterdam, 1997.
[7] D. Cioranescu and A. El Janati, Mathematical analysis of lattice-type structures with complicated geometry, Preprint

R 97029, Université Pierre et Marie Curie, Centre National de la Recherche Scientifique, Paris, 1997.
[8] D. Cioranescu and J. Saint Jean Paulin,Homogenization of Reticulated Structures, Applied Mathematical Sciences,

Vol. 136, Springer, Berlin, 1999.
[9] G. Dal Maso,An Introduction to Γ -convergence, Birkhäuser, Boston, 1993.

[10] L. Gibson and M. Ashby,Cellular Solids, Pergamon Press, New York, 1997.
[11] G. Griso, Thin reticulated structures, in:Progress in Partial Differential Equations: the Metz Surveys 3, Pitman Research

Notes in Mathematics, Longman, 1994, pp. 161–184.
[12] V.V. Jikov(Zhikov), Connectedness and homogenization. Examples of fractal conductivity,Russian Acad. Sci. Sb. Math.

187(8) (1996), 1109–1147.
[13] V.V. Jikov(Zhikov), Weighted Sobolev spaces,Russian Acad. Sci. Sb. Math. 189(8) (1998), 1139–1170.
[14] V.V. Jikov(Zhikov), On the homogenization technique for variational problems,Functional Anal. Appl. 33(1) (1999),

11–24.
[15] V.V. Jikov(Zhikov), On one extension and application of the method of two-scale convenrgence,Russian Acad. Sci. Sb.

Math. 191(7) (2000), 31–72.
[16] V.V. Jikov, S.M. Kozlov and O.A. Oleinik,Homogenization of Differential Operators and Integral Functionals, Springer,

Berlin, 1994.
[17] D. Lukkassen, Formulae and bounds connected to optimal design and homogenization of partial differential equations and

integral functionals, Ph.D. thesis, Department of Mathematics and Statistics, University of Tromsø, 1996.
[18] D. Lukkassen, A new reiterated structure with optimal macroscopic behaviour,SIAM J. Appl. Math. 59(5) (1999), 1825–

1842.
[19] A. Meidell, The out-of-plane shear modulus of two-component regular honeycombs with arbitrary thickness, in:Mechan-

ics of Composite Materials and Structures, Vol. III, C.A. Mota Soares, C.M. Mota Soares and M.J.M. Freitas, eds, NATO
ASI, Troia, Portugal, 1998, pp. 367–378.

[20] A. Meidell and P. Wall, Homogenization and design of structures with optimal microscopic behaviour, in:Computer
Aided Optimum Design of Structures V, S. Hernández and C.A. Breddia, eds, Computational Mechanics Publications,
Southhampton, 1997, pp. 393–402.

[21] T.A. Mel’nyk, Homogenization of the Poisson equation in a thick periodic junction,Zeitschrift für Analysis und ihre
Anwendungen 18(4) (1999), 953–975.

[22] S.A. Nazarov, Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity,C. R. Acad. Sci. Paris Sér. I
320(11) (1995), 1419–1424.

[23] S.A. Nazarov, Junctions of singularly degenerating domains with different limit dimensions. I,J. Math. Sci. 80(5) (1996),
1989–2034. Translated from:Trudy Sem. Petrovsk. 18 (1995), 3–78.

[24] S.A. Nazarov, General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin
ones,Algebra Analiz 7(5) (1995), 1–92. English translation:St. Petersburg Math. J. 7(5) (1996), 681–748.

[25] S.A. Nazarov, Korn’s inequalities for junctions of spatial bodies and thin rods,Math. Methods Appl. Sci. 20(3) (1997),
219–243.

[26] S.A. Nazarov and B.A. Plamenevskii, Asymptotics of the spectrum of the Neumann problem in singularly perturbed thin
domains,Algebra Analiz 2(2) (1990), 85–111. English translation:Leningrad. Mat. J. 2(2) (1991), 287–311.

[27] G.P. Panasenko, Asymptotic solutions of the elasticity theory system of equations for lattice and skeletal structures,Rus-
sian Acad. Sci. Sb. Math. 75(1) (1993), 85–110.

[28] G.P. Panasenko, Method of asymptotic partial decomposition of domain,Math. Models Methods Appl. Sci. 8(1) (1998),
139–156.

[29] G.P. Panasenko, Method of asymptotic partial decomposition of rod structures,Internat. J. Comput. Civil Structural Engrg.
1(2) (2000), 57–70.

[30] É. Sanchez-Palencia,Homogenization Techniques for Composite Media, Springer, Berlin, 1987.
[31] S. Torquato, L.V. Gibiansky, M.J. Silva and L.J. Gibson, Effective mechanical and transport properties of cellular solids,

Internat. J. Mech. Sci. 40(1) (1997), 71–82.


