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Abstract. In the paper we propose a new approach to the homogenization theory on periodic wire-networks and junctions,
based on singular measures on these structures. We characterize the Sobolev spaces on such constructions and describe the
fields of potential and solenoidal (divergence free) vector-function. Then we compare the effective coefficients obtained for

the singular structures and the classical effective coefficients for thin constructions with vanishing thickness, and show that the
corresponding diagram is commutative.

0. Introduction

In the paper we develop a hew approach to the homogenization problems stated on periodic networks
and junctions.

The method elaborated in this work provides convenient tools for studying rod-constructions, skele-
tal and lattice structures and other thin constructions. The investigation of such models is important to
researchers working with cellular materials (lightweight materials) such as honeycombs, foams, wood,
cancellous bone, corks. Other modern engineering applications are space antennas, solar panels, civil en-
gineering technologies and many others. Concerning methods for attacking such problems in a classical
engineering way we refer to [10].

The classical homogenization techniques (see, for example, [3-5,8,9,16,30]) involve resolving auxil-
iary PDE problems which makes the homogenization procedure quite complicated from the numerical
point of view.

The classical homogenization method and the classical engineering approach have recently been com-
pared for some interesting problems in [19,31] (see, also, [20]).
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In contrast to the standard homogenization technique, our approach inspired by the ideas from [12-15],
enables to deal not only with the classical fine-scale structures but also with the problems stated on in-
finitely thin constructions whose description involves singular measures. In the present work we develop
the measure approach for networks and junctions. This method allows us to reduce essentially the com-
putations in various applications. On the other hand, it requires a delicate analysis of Sobolev spaces
with nonabsolutely continuous measures. In the first part of this work we provide rigorous definitions of
such spaces, investigate their properties and describe important functional classes such as the fields of
potential and solenoidal (divergence free) vectors.

The importance of practical applications stimulated mathematical research in the area. There are sev-
eral recent works devoted to the homogenization of thin structures and other singular media. We quote
here the works [1,2,7,8,17,18,21-27].

An interesting attempt to simplify the homogenization process for thin rod-structures was undertaken
in [28,29], where the author replaced the equations in the interior parts of rods by one-dimensional
equations stated on the respective segments.

The last section of the paper is devoted to the homogenization problems on singular structures. We
consider the limit of the effective coefficients obtained for thin structures by the classical homogenization
method, as the thickness vanishes, and show that our method gives the same values of the effective
coefficients.

For simplicity in this work we only consider 2D constructions involving straight segments and regular
junctions. The technigues developed here also apply in the case of curved multidimensional structures.

1. Sobolev spaceson singular sets

Let £2 be a domain inR?, and suppose that is a Borel finite positive (for example, probability)
measure orf2. The spacd.»({2, du) is defined in a usual way, the corresponding norm is

Jul = [ Jua) o

We introduce the spadd!(¢2, du) as follows:

Definition 1. A function u(z) belongs toH1(£2, du), if there exist a sequencef}, u, € C*(12), and
z € (Lo(£2, dw))? such that

U — u N Lp(82, dy) 1)
and
: 2
Vu, — z in (La(f2,du))". 2
We say that is a gradient of, and denote it byWw.

Remark 1. In the above definition the strong convergence in (1) and (2) can be replaced by the weak
convergence in the same spaces. In what follows we verify the weak convergence.



G.A. Chechkin et al. / On homogeni zation of networks and junctions 63

In general, the gradient @ 1(£2, du)-function is not unique (see, for instance, Proposition 1). We say
that a functionz is a gradient of zero if there exists a sequengec C°°(f2) such thatu,, — 0 and
Vu, — z,asn — oo, in Ly(£2,du), and denote the set of gradients of zero/b{d). It is easy to see
that I"(0) is a closed subspace diA(£2, di))?. The gradient of &*(£2, du)-function is defined as the
corresponding equivalence class.

1.1. Segments

Let] = {z | a < x1 < b; 22 = 0} be a segment ifR?, and suppose that a bounded dom&in
containsI. For any sufficiently smalf > 0 consider the bafs :=={z | a < 21 <b; —d <x2 <} C 2
(see Fig. 1).

Denote byus the probability measure if2, concentrated and uniformly distributed én

11‘6]5

,Lég(de) = m d.I]_ d.Iz.

It is easy to see that the family; converges weakly, a& — 0, to a singular probability measuye
concentrated on the segmenand uniformly distributed on it. In terms of distributions this measure
can be represented as follow§dz) = ﬁ dr1 x §(x2), whered(z) stands for the Dirac mass at zero.
Consider a family of smooth functions subject to the bound

/Q(ug + [ Vusl?) dis < C.
Then there are functiong € Ly(2, du) andz = (21, 22) € (L2(£2, dw))? such that
us — ug, Vus—z weaklyasi — 0 (3)
(see [13]). The latter convergence is defined as follows: for any funcfioR€§°(R?), v € (C§°(R?))?
/ ugp ug — / uoy du, 4
Q Q

/' (Vs ) das — / (z.) d, 5)
(93 (93

Fig. 1. Single bar.
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asy — 0.

Let us recall that, according to Definition 1, a functiaris an element of71(£2, du) if there are
a sequence of functions, € C°(12) andz € (Lo(12, dw))? such that (1), (2) hold true.
Remark 2. Note thatu(2\ I) = 0. Therefore all the functions taking the same values on the seginent
coincide as elements @h(¢2, du). Thus due to (1) and (2), an element of the spE&€?2, du) is uniquely
defined by the respective element of the spac¢€ a, b]). Later on we will identify these spaces.

Proposition 1. For the measure ;. introduced above, the gradient of a function « € H*(£2, du) is not
unique.

Proof. Letus show that for an arbitrary functian= w(z1), u(z1) € H([a, b]), considered as a function
of two variables £1, z2), the corresponding gradient has the form:

0
Vu = (—u,w(xl)), (6)
a.%'l
wherew is an arbitrary function froni»(¢2, du). Indeed, setting
un (21, 22) = w(z1) + 2w(T1)

and smoothening andw if necessary, we obtain the convergenge — u strongly in Ly(f2, du), as
n — +o0o. Moreover,

0un, ou Oun, (1)
— — — — — .
011 |p,—0  Ox1’ 072 | 4,0 Wi

By Definition 1 (%(xl, x2), w(z1)) is a gradient ofs andu € H(£2, du). This completes the proof.O

Lemma 2. The function ug defined in (3) belongs to H(£2, du). Moreover, for ug and z from (3) the
following relation holds:;

z = Vup. (7)
Proof. An analysis of the proof of Proposition 1 shows that (7) follows from the relation

dup
7= =

(8)

- a.%'l.

To obtain this relation we consider the family used in (3) and denote

1 é
Us(z1) = %5 [5 ug da.
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Consider aCg°(f2)-function ¢, that depends only on; in a neighbourhood of the segmehtFrom (4),
we get

1 b o 1 b_
[ we)dns = geo= [ [ wsote)derary = ;= [Caenyoen) o

1 b
— / ugp dry.
b —a a

Thereforeus — ug in Lo([a, b]). Now,

/Q g—ﬁw(w)dm b) / / oo ap(x)dxldmz_ / 05 y) ey

On the other hand if we assume in addition that 0 in the vicinity of the end-points of the segment,
then

dus dp(x) 1 b atp(ﬂcl)
a—w(w)dus /Qué 0z, dus = b—a/a ugs(z1) o dz
1 / b a<P(961)
N
b—a/, o 0x1

This means that; = 0up/0x1. The lemma is proved. O
1.2. Cross

Let £2 be a bounded domain iR?, and denote byX; C {2 the union of the crossing bars:{ a; <
21 < b1y =0 <2<y U{z| -0 <z1<; az < x2 < b} with a3 < 0 < by anday < 0 < by (see
Fig. 2).

Fig. 2. Intersecting bars.
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In this subsection the notations is used for a family of probability measures §&, supported by
the cross-barXs and uniformly distributed on it. The weak limit of this family, &s— 0, is a singu-
lar probability measure: uniformly distributed on the cros = {z | a1 < =1 < b1; 22 = 0} U
{x ]| x1 = 0; a2 < z2 < by}. Consider a family of smooth functions; in (2, subject to the bound

/Q (u3 + [Vus|?) dus < C.

Then there are functiong € Ly(2, du) andz = (21, 22) € (L2(£2, dw))? such that
us — ug, Vus— z weaklyasi— 0. 9)

The latter convergence is defined in (4), (5).

The following statement characterizes the Sobolev spak(e?, du) for the measure defined above
or for a slightly more general measure &n Let u = p1 + p2 + p3 + pg, and assume thaty, uo, i3
andy4 are singular positive measures uniformly distributed on the segmentsf{ < =1 < 0; x, = 0},
{x|0< 21 <by; 22=0}{x|21=0; az < z2 < 0}and {z | z1 = 0; 0 < x < by}, respectively.
The following result holds.

Lemma 3. The function « belongs to H(£2, du), if
w € HY82,dua) N HY(2, dup) N HY(R2, dpuz) N HY($2, dpua)
and u| x is continuous at the origin.

Proof. This statement easily follows from (8) and the propertieg/éffunctions in the one-dimensional
case. O

Now introducing the sequence of smooth cut-off functighgz) such thatg,,(z) = 0in {z | |z| <
1/m} and G3,,(z) = 1in{z | |x| > 2/m} and applying the same arguments as in the proof of Lemma 2
we arrive at the following statement:

Lemma4. The function uo defined in (9) belongs to H (12, dyz). Moreover, for ug and z from (9), the
following relation holds:

z = Vup. (20)

Remark 3. Using the approach proposed here, one can generalize these results to more complex “star”-
structures and infinite periodic, quasi periodic and random wire structures (see Fig. 3).

1.2.1. Potential and solenoidal vectors

Suppose we are given a periodic netwdgk (see Fig. 4) and a periodic singular measuréhat
satisfies the normalization conditigifd) = 1, where the symbal stands for the cell of periodicity. For
simplicity we assume that all the end points of each segment in the network are the intersection points of
two or more segments.
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Fig. 3. Intersecting bars. “Star”-structure.

)

() )
¥ ~ <

H— [ —»

Fig. 4. Periodic network.

According to Definition 1, a functiom is an element of71(0, du) if for some sequence of smooth
O-periodic functions {i,,}, one has

Up — w N Lo(3, du), Vu, — z in Ly(3, du),
z is said to be a gradient af.
Our next aim is to introduce, in case of singular measures, the subspaces of potential and solenoidal

vector-functions and to study their properties.

Definition 2. A vector-functionv € (L»(0, du))? is said to bepotential if it belongs to the closure of the
following linear set:

{w|w= Vi, ¢ € C(D)}

in the norm

: 1/2
Jull = ([ w?de)
]
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where the symbol’55(0) stands for the space of-periodic elements of'**(R?). For the subspace of
all the potential vector-functions we use the notatlcgﬂt(m, du).

The following proposition shows an interesting property of the Lebesgue measure on a torus.

Proposition 5. Let 1 be a periodic measure. If for any ¢ € Cg(D0) therelation

/ Vedu =0, (11)
O
holds, then the measure 1 is the Lebesgue measure.

Proof. Consider the distributio” € D’(0) defined by the relation

(F\ o) :/Dtpdu, ¢ € CpedD).
Then, by (11)
(VF,p) = —=(F,Vy) =0,

whereV F' is understood in the sense of distributions. Theref®ig, = 0 andF’ = const. This implies
wdz) =cdz. O

Definition 3. A vector-functionp € (L»(T, du))? is said to besolenoidal (or divergence free) if
[ povdi=o (12)
O

for any functiony € Cgg(0). We denote by.$°(0, du) the subspace of all divergence free vectors.

Note that, in the case of network constructions, the solenoidal vector-functions are always tangen-
tial to the segments. Indeed, the normal component of potential vectors can be chosen arbitrarily (see
Proposition 1) and consequently, the solenoidal vectors must be orthogonal to any normal vector.

Consider an arbitrary network constructiéhand a singular measugeconcentrated oi. Suppose
w1 is uniformly distributed on each segment®f and letls, ..., I; be the segments intersecting at the
origin. Denote byes, ..., e, the unit vectors directed along, ..., I, respectively (see Fig. 5), and
by 61,...,60, the densities of d with respect to the standard Lebesgue measure on the corresponding
segments.

The assertion below describes the structure of solenoidal vectdRs on

Lemma 6. For each segment I;, therestriction of a solenoidal vector p on I; takes the form \;e;, where
\; isa constant. Moreover, we have

3 6:A = 0. (13)
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L,

Fig. 5. Network node.

Remark 4. For more general networks involving segments with free end points, any solenoidal vector-
function is necessary equal to zero at each such a segment.

Proof of Lemma 6. Consider the set of test-functiogsconcentrated in a neighbourhood of the seg-
ment/, for a fixeds. Usingy as a test-function in (15), we deduce tpas a constant vector of.

In order to justify (13) it suffices to substitute in (12) a test-function supported by a small neighbour-
hood of the origin, and to integrate by parts along each segment. This completes the proof.

Consider a sequence of usual potential or solenoidal vector-functions that converges in the sense of (4).
The next theorem states that the limit is necessary a potential (solenoidal) vector-function.

Theorem 1. If vs € L5%(O, dus) is a family of potential vectors such that
vs—v asdéd—0

in the sense of (4), then v isa potential vector. If ps € L§°'(D, dus) is a family of the solenoidal vectors
such that

ps —p asd—0
in the sense of (4), then p isa solenoidal vector.
The proof of this theorem relies on the following lemma, widely used in the sequel:

Lemma?7. Ifp e Lgo'(m, du), then there exists a sequence ps € L§°'(D, dug) such that ps — p and
~2 2
/ ps dus — / p°du (14)
[m] O

asé — 0.

We call this property of solenoidal vectostrong approximability. Lemma 7 will be proved in
Section 1.4 for the case of networks and junctions.
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Proof of Theorem 1. If v; is potential, then by Lemma 7 we have

0= Iim/vgﬁgdy(;:/vpdu
—0Jn O

for an arbitrary solenoidal vectgr, and the first statement of Theorem 1 follows.
The second statement is almost obvious. By the definition (4) we conclude that

0= /D psVpdus — /D pVedu (15)
for any potentialV ¢. Thus,p is solenoidal. The theorem is provedd
1.3. Junctions

A detail study of junctions was done in [6]. In this subsection we deal with singular measures on
junctions.

Let £2 be a bounded domain iR?, and denote by?; C 2 the union of the squar@ = {z | -1 <
r1<1; —1<xy < 1}andthe badls; ={z |0 < z1 < 2; —§ < z2 < &} (see Fig. 6).

Denote byjis a probability measure if? which is uniformly distributed orils and by the sum of
this measure and the Lebesque measure on the sqQuale suppose thats(2 \ Rs) = 0. Letj be the
weak limit of the familyzs asé — 0, clearlyzz is a singular probability measure concentrated on the
segmentl = {x | 0 < x1 < 2; z2 = 0}. Denote by the sum of this measure and the usual Lebesque
measure on the squafg The measurg is supported by the junctioRy := Q U I.

For a general junction structure we cglhction’s “ body” any 2D connected component of the struc-
ture. For example) is a junction’s “body” of Rg.

Consider a family of smooth functions subject to the bound

| (4 Vusf?) ds <

Then there are functiong € Ly(2, du) andz = (21, 22) € (L2(£2, du))? such that

us — ug, Vus— z weaklyasi— 0. (16)

Fig. 6. Simple junction.
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Fig. 7. General junction.

The latter convergence is defined by (4), (5).
The following statement characterizes the Sobolev spEde?, du.).

Lemmas8. The function u belongs to H(£2,du), if u € HYQ) N HY(I,dr) and the restriction
] 21€[0.1]; z,—0 IS @n element of H1([0, 1]).

Proof. We introduce the sequence of smooth cut-off functiGpssuch thats,,, = 0 in [—%, 1+ %] X
[-1,1]andB,,(z) = linthe exterior of {- 2,1+ 2] x [-2, 2] and then repeat the reasoning from
the previous subsection to get the result]

In the same way as in the previous subsections, one can prove the following lemma:

Lemma 9. The function uq defined in (16) belongs to H (12, dyx). Moreover, for ug and = from (16), the
following relation holds:

z = Vug. a7

Remark 5. Using the approach suggested here, one can generalize these results to more complex junc-
tions (see, for instance, Fig. 7).

1.3.1. Potential and solenoidal vectors

Suppose we are given a periodic junction construcfigr(see Fig. 8) and a periodic measur¢hat
satisfies the normalization conditipr{C) = 1, where the symbadll stands for the cell of periodicity.
The solenoidal (divergence free) and potential vector-functions are defined here in the same way as in
the case of networks (see Section 1.2.1).

In what follows we identify the cell of periodicity with the torusI2. For simplicity we assume that
any end point of a segment & is either an intersection point of two or more segments, or situated in
a junction’s “body” of Ryg. We also assume that the cell of periodicitycontains only one junction’s
“body” which is sufficiently regular.
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Fig. 8. Periodic junction-structure.

In order to describe the structure of solenoidal vector-functions on the junBtiowe first denote all
the segments oRy on T2 by I, j = 1,2,...,m, and the plane domain bg. Let y; be the induced
coordinate orY;. According to our assumptions, the measu@dmits the following representation

du = duo + Zduj,
j=1

where o is proportional to the Lebesgue measure(@and;, j = 1,...,m, are singular measures
concentrated oi; and proportional to the 1D Lebesgue measures on this segment:

Mo(A) = 60/ 1ldeidz,, VA CO,
ANQ

M(A)zej»/ ldy, YACO,j=12...,m,
Aﬂ]j

for some constantéy, 61, ..., 0,,.
The structure of a solenoidal vector-function on the junction construction is given by the following
statement:

Theorem 2. Each solenoidal vector-function p € Lgo'(D, du) can be represented as a sum
p(x) = p°(@) + ) P/ (2),
j=1
where the vector-function p° defined in @ is such that po € (L2(T, duo))?, and p’ defined on I;, j =

1,...,m, issuch that p; € (LZ(D,d,uO))Z. Avegtor-function p,j =1,...,m, is directed along the
segment /;; on the part of I; located outside @, p’ is a constant vector. The vector-function p° isausual
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solenoidal vector-function in the set @ = @ \ UjL, I;. The derivative of p’ along the segment I;
compensates the jump of the normal components of p° at I j

diyjpj(m) — O — - p0a),

where n/ isthe normal to I; and the symbols + and — indicate that the corresponding values should be
taken on the opposite banks of the cut.
If z is an intersection point of the ssgments I, , . . ., I, then the following relation holds

951p81(w) + Hszpsz(x) +--- 4+ GSLPSZ (.%') =0.
In particular, in any isolated end point, we have p’ = 0.

Proof. Consider one of the segments, sy and assume without loss of generality thiatcoincides
with the interval {(x1,z2): 0 < 21 < 1, 2o = 0}. This can always be achieved by means of a proper
linear transformation. Thegy = x1 and du1 = 6y dxy.

Let ¢ be aC*°-function with the support in a neighbourhood faf such thaty(0, 0) = ¢(1,0) = O.
Integrating by parts we get

1
0= / Voo(@)p(z) du = b / Vo(@)po(z) dey drz + 6y / Vo(@)p(x) day
T2 Q 0

1

_g /l( O(a+,0) — P27, 0)) o1, 0) dhry — 0 / 9 oy, 0)
0 0 po\xq P2\Tq P\r1, 1 1 o dzlpl 1)p(x1, 1

+91/ P%(Jﬂl)—a ©(z1,0) dry
0 T2

1 d 1 0
=/ {90(19(2)(361“, 0) — p3(z1,0)) — 91d—Pi($1)}<P(9€1, 0)dry + 91/ p3(1) = (1, 0) dry.
0 1 0 0x2

In view of the arbitrariness af this yields

_ d
bo(p2(21.0) = p3(r1,0)) = rg-pilar).  palas) = 0.
The other assertions of the theorem are obtained in a similar way.

Remark 6. If the jump of the normal component @f is equal to zero along eadh, then we have
a trivial “uncoupled” case of solenoidal vector-functigifse L5°(T2, dug) andp’ € L$°(1;, du).

Remark 7. The statements of the latter theorem remain valid for junction structures having finite number
of elements and for junctions with more complex geometry. Indeed, in the proof we did not use the
periodicity of Ry, all our arguments were local.

Proposition 10. All the statements of Theorem 1 hold true in the case of junction structures.

It remains to prove the strong approximability property (Lemma 7) for all the above cases.
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1.4. Strong approximability
In this section we prove Lemma 7 for networks and junction structures.

Remark 8. It should be noted that the convergence introduced in Lemma 7 is equivalent stootiige
convergence of the family ps to p, which is defined as follows:

/ v5Ps A — / vp du
O O

for anywvs which converges weakly teasé — 0.
We give below the proof of strong approximability for different geometrical structures.

Proof of Lemma 7. (i) Networks and rod-structures. Here we borrow the notation and the constructions
from Section 1.2 (see Fig. 9).
For the sake of convenience we introduce the following sets:

Do = (—5,5)2,
Dliz{x|a1<$1<—5, —5<562<5},
Dy:={x|-d<x1<0, 0 <m2 < b3},
D3::{x\5<x1<bl, —5<$2<5},
Dy:={z|-d<x1<90, ax <xp < —0d},
and denotes; ;== 0DgN0D;, i =1,...,4.

Let p be an arbitrary periodic solenoidal vector frdig?(0, du). Taking into account the structure of
the solenoidal vector on crosses (see Lemma 6), we construct a family of vector-fupgtemfollows:

e Inthe domaingD;, i = 1,2, 3,4, we sebs = \e;.

Fig. 9. Cell of periodicity of lattice.



G.A. Chechkin et al. / On homogeni zation of networks and junctions 75

¢ In the domainDg we setps = V¢, wherey is a solution of the Neumann problem

AQDZO in Do,
18
a—(p:)\z OnSZ',’L'Zl,...,4; ( )
ael-

the compatibility condition for this problem is satisfied due to (13).

The family ps has been constructed to converge weakly itothe sense of (4). Let us prove (14), i.e.,

/'pv(;zd,u(;ﬁ/pzdu asd — 0.
[m] O

By the definition ofps we have

4
/ﬁfdua=2/ A?du5+/ P dus.
o i=17Di Do

The second term on the right-hand side vanishes while the first one tends to the ifitegrak, and the
required convergence follows.

Remark 9. In the above proof we assumed all the weighfsto be equal to 1. For arbitrary set of
weightsé;, 6; > 0, one can adopt the above construction by making the width of the/baesjual
tod;0,j=1,2,3,4.

(i) Junctions. Here we use the notation introduced in Section 1.3 (see Fig. 10).

For the sake of brevity we only consider the intersection of the sqate (—1, 1¥ with one bar
II5 = (0,2) x (=9, 9) related to the segmetit= {z | 0 < x1 < 2, z, = 0}, and assume thap and’
are elements of a periodic junction. A general periodic junction construction can be managed in the same
way.

Fig. 10. Cell of periodicity of junction-structure.
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Denote
Do = QN I, D1 = II5 \ Do,
Sa=0DgN 0D, 53:{£C|561:0,—5<562<5},

S1={x|0<z1 <1, o2 =—0}, So={x|0<z1 <1, 22 =7},

so thatoDg = S1 U S2 U S3 U Sa.

Supposep is a periodic solenoidal vector-function on the junction involvigJ I. By Theorem 2
this vector-function admits o N I the representatiop(z) = p°(z) + p(x) with p° € L@ \ 1),
pX(z) = (p}(x1), 0). Moreover,

d
—pi(r1) = pY(a1, +0) — p3(x1,—-0), 0< z1 < 1,

dzq (19)
pHr1) = Mer, 1<a1 <2
We construct the required famipg as follows:
e In Dy we setps :ilel-
e In the domainQ \ Do we setps = p°.
¢ In the domainDg we setps = Vi, wherey is a solution of the Neumann problem
AQD =0 inDoy,
(% 0 .
%—(5]9 n OnSZ, 2—1,2,3, (20)
6}
o _ A1 0OnSy.
on

The compatibility condition for problem (20) reads

/ op°-nds+ [ Aids=0.
S1US»US3 Sa

Thus, we should prove the relation = — [q.,s,,5, ?° - 7 ds.
By the Stokes formula and (19), one has

X 1 1 d
/ op° - nds = / (P21, +0) — pY(z1, —0)) dzg = / d—Pi(xl) dry = A1
S1US5US5 0 0 Yr1

This implies the required compatibility condition.
Clearly, the familyps converges weakly tp, asd — 0, in the sense of (4). Let us prove (14), i.e.,

/ﬁ(;zdp5—>/p2dy asd — 0.
O )
We have

/ pédus = / (p°) dus + / (A1)? dus + / (V)2 dus.
QUH6 Q\DO D1 Do
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Clearly, the first two terms on the right-hand side convergg,(©°)? dx and\Z, respectively. Multiply-

ing Eq. (20) by and integrating by parts, one can show that the last term converg’égnﬁ'c)2 dr1. The
lemma is proved. O

This completes the proof of Theorem 1.

2. Scalar problems

In this section we compare two different homogenization methods for periodic networks and junctions.
The first method involves the direct homogenization procedure based on the analysis on networks and
junctions, that was developed in the previous sections. The second method is more classical: we homog-
enize constructions of small thickness in a usual way and then pass to the limit as the thickness goes to
zero. It is shown that these two approaches give the same answer. We deal here with a model problem
for one scalar equation, the case of general elliptic operator on networks and junction constructions can
be studied in the same manner.

Denote bys the small parameter which characterizes the fixed thickness of rods, the corresponding
structures will be called-structures. Another small parameterwill be used to characterize the micro-
scopic length-scale of the whole construction.

Given aO-periodic connected-structureRs and a regular bounded domai c R?, we define
a periodic microstructur®s . by settingRs . = R, and then consider the homogenization problem in
G N Rs . whose variational formulation reads

whereu§(dr) = e?us(e~1dz) and us is the measure o5 that has been introduced in the previous
section, f is a given function. This is equivalent to say that we consider the homogenization problem
in G N R, for a divergence form isotropic operator with the coefficient equal to the density of the
measureu;. The Dirichlet boundary condition is stated on the exterior boun@d¥yn Rs., and the
Neumann boundary condition at the boundary of the “microstructe@”’n R ;) \ 0G. This homoge-
nization problem is well studied, we refer here to [7,8,27,28]. Denotd hythe matrix of coefficients

of the original operator and b&?om the constant matrix of coefficients of the homogenized operator.

Remark 10. The asymptotic behaviour oqgom, asé — 0, and the properties of the corresponding limit
have been investigated in [3] and in [8], where other elliptic problems on reticulated structures have also
been considered.

A successful attempt to change the order of passage to the lim#rnidd in the network homogeniza-
tion problem, has been made in [11]. This work relies on the extension technique.

Consider also the following “singular” homogenization problem

inf / (IVo(@)? - 2/ @)u()) e,

veCse (@) Ja

where ;£ (dz) = £2u(e~tdz) and i is a (singular)O-periodic positive measurgy(0) = 1. We as-
sume that the measugeis the weak limit ofus aséd — 0. The latter problem is not standard. As was
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sing
_ >
Ag’s 6%0 AS
g >0 £—=>0
hom hom
_ >
AS 5>0 AO

Fig. 11. Homogenization diagram.

shown in [14], this problem can be homogenized and the effective operator is a second order elliptic
operator with constant coefficients. Formally, we denote the matrix of coefficients of the singular prob-
lem by A2, the coefficients of the effective matrix are denoted4§y™. The formula that defines the
effective matrixA°™ will be given below.

We want to show that for the singular structures defined above, the corresponding diagram presented
at Fig. 11 is commutative.

The operatorst2™ and the related variational problems were studied in [14], where the homogeniza-

tion resultAZ"™? — Ah°™was proved.
e—0

The parts of the diagram, mAﬁi”g and A§°™ — Af°™ are studied in this section.

In the above homogenization problems @atructures and on the corresponding networks (junction
structures) the variational formula for the effective coefficients read respectively:

nAlP™) = inf /\77+Vu]2du5, (21)
ueCsS(R?) Jo

Aoy, inf / + VP dy, 22

n4g L L/ I |“du (22)

wherey is the periodic measure ondastructure that was discussed above, arid the limit measure
on the corresponding network or junction construction.

Theorem 3. The homogenized matrices A°™ and AL°™ satisfy the following limit relation
Abom — |im Afhom, (23)
6—0
Proof. Letw make the expression (22) a minimum, i.e.,
Ahom — . \V/ 2 d
nAg = | |n+ Vwldp.
Given a sequence of positivg,, o, — 0, asn — +o0, we can findw,, € ngr(Rz) such that

nAG™ + o >/D\U+an!2du-
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Sincew,, is smooth for eaclhh > 0, we have
/ |7 + Vw,|?du = lim / 17 + Vwy,|? dus.
O 0—0./o
It follow from (21) that [, |1 + Vwy|? dus > nAR°™). Thus, for any,, > 0
B+ an > [ I+ VunP o= lim [ 0+ V2 des > lim sup ™y (24)
O —0Jo 5—0

for any vectors). Keeping in mind the arbitrariness af, we conclude that

nA§°™) > lim sup nA5e™.
6—0

On the other hand, the Euler equation for problem (21) reads

/](77 + Vus)Vepdus =0, Vo€ ngr(Rz).

It follows from the variational formulation (21) that the familyu; is bounded, thu§¥ us — v in the
sense of (4) and taking into account the lower semicontinuity of a weak limit, we get

im [ 1+ Vusous > [ -+ o (25)
—0 /o 0O

The fact that the vector-functionis potential follows from Theorem 1 for networks and from Proposi-
tion 10 for junctions. This completes the proof of Theorem 8l

The top arrow of the diagram (see Fig. 11) which representg'tbenvergence of the respective varia-
tional functionals (see [9,16]), can be justified in the same way as above with the evident simplifications.
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