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Abstract

We prove that by scaling nearest-neighbour ferromagnetic energies defined on
Poisson random sets in the plane one obtains an isotropic perimeter energy with a
surface tension characterised by an asymptotic formula. The result relies on proving
that cells with ‘very long’ or ‘very short’ edges of the corresponding Voronoi
tessellation can be neglected. In this way we may apply Geometry Measure Theory
tools to define a compact convergence, and a characterisation of metric properties
of clusters of Voronoi cells using limit theorems for subadditive processes.

1. Introduction

In this paper we study a prototypical model of pair-interaction energies on Pois-
son random sets in the plane, and some interesting extension. These energies are
a random version of nearest-neighbour ‘ferromagnetic’ systems defined on Bra-
vais lattices, whose overall behaviour is that of an interfacial energy [1,20]. Aside
from their theoretical interest, the analysis of ferromagnetic energies is relevant for
numerical approximations and modeling issues in view of the possibility of lattice
approximations for arbitrary interfacial energies makes (we refer to [15] for optimal
constructions on regular lattices, available even with constraints on the interaction
potentials). Surface energies are, in turn, an important building block in the study
of general functionals defined on more complex spaces of functions of bounded
variation, passing through the generalization to functions with a discrete number
of values [5] and using the latter to approximate arbitrary functions by coarea-type
arguments (see e.g. [4]). Furthermore, the study of energies involving bulk and
surface part can often be decoupled in the analysis of each part, which justifies
the analysis of surface energies separately also in that context (see [14,21] and the
recent advances in the analysis and derivation of complex energies from discrete
systems in [6,7]). The present contribution can be then viewed as a step towards the
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extension of the analysis of discrete systems producing bulk and surface integrals
to general random distribution of points. The simplest case of parameters taking
only two values (equivalently, characteristic functions) will allow us to concentrate
on the basic geometric features of the underlying discrete environment.

Discrete energies with randomness producing surface effects have been previ-
ously considered under various hypotheses. Results on regular lattices with random
interactions comprise: random weak membrane models in [17], random ferromag-
netic energies with positive coefficients in [19] and ferromagnetic energies with
a random distribution of degenerate coefficients in [18]. Stochastic lattices have
been considered under the hypothesis that sites be distributed in such a way that no
‘great holes’ or ‘concentration of sites’ may occur, so that we obtain uniform upper
and lower estimates for the size of the Voronoi cells of the underlying tessellation.
This implies that those lattices can be treated in average as a regular periodic lattice
(see [2,3,8,13]). Our focus is precisely in avoiding such an hypothesis considering
points distributed according to a Poisson point process in the plane (Poisson ran-
dom set). We denote by N such a set of points and by & the set of the edges of the
underlying Delaunay triangulation, which are identified with pairs of points (i, j)
in N' x N\ (the nearest neighbours in N). The energy we consider can be viewed
as defined on subsets Z of ' by

E(T)=#{G,j)eE icT, j¢T). 1)

Note that the same energy can be interpreted as the number of edges of the boundary
of the set

Ar=Jai, )

iel
where C; is the cell of the Voronoi tessellation containing the pointi € A. Another
way to write the same energy is by identifying each set Z with a (scalar) spin function

parameterized by indices in A and defined by ulI =1ifi € 7 and ulI = —1if
i ¢ T, so that we may rewrite E(Z) as depending on u”, setting
1 1
E@h =g > @i—up’=7 3 lui—ujl 3)

i,jeN i,jeN
the factors coming from double counting and the fact that |u; — u;| € {0, 2}.
Conversely, we may take this as the definition of the energy, and correspondingly
pass to subsets of \ by noting that E(Z,) = E(u), where Z, = {I e N : u; = 1}.
In order to describe the overall properties of E we perform a discrete-to-
continuum analysis through a scaling procedure. We intoduce a small parameter
& > 0 and consider the scaled energy E. defined on subsets of €€ by

E.(I)=¢#{(i,j)eef:icel,j¢eTl}, 4

which again can be interpreted as ¢ times the number of edges of the boundary of
the scaled set

AS =¢e | Cije. 5)
iel
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Note that if we had a uniform upper and lower bound of the size of each of
these edges, then E¢(Z) would be comparable with the perimeter of A%. In that
case, given a family Z, with equibounded E,(Z), the sets A, = A% Would be
(locally) precompact in the sense of sets of finite perimeter; i.e., there would exist
a set of finite perimeter A such that, up to subsequences, |(A;AA) N Q] — O for
any cube Q.

For Poisson random sets, the edges of Voronoi cells do not satisfy a uniform
estimate. Nevertheless, very long or very short edges are in a sense negligible.
Indeed, a result by Pimentel [35] implies that a path in which a large proportion
of such sets is present must be ‘short’, and hence, by an isoperimetric argument
encircle a ‘small’ set. Using this result, we can show that if E.(Z) is equibounded
and A, are defined above, then there exists families of sets B, and B! such that
|B. U B]| — 0 and the perimeter of the sets

(Ae U B\ B/ (6)

is equibounded. We deduce then that, up to subsequences, A, still (locally) converge
to a set of finite perimeter A.

We can then characterize the behaviour of the energies E, by computing their
['-limit with respect to this convergence. Note that, by the isotropy of Poisson
random sets, if the limit is of perimeter type, it must be of the form

F(A) = o H' (8 A); (7)

i.e., a constant 7 (the surface tension) times the perimeter of A (in this notation 9 A
denotes the reduced boundary of A). The main issue is then to characterize such 7y
so as to adapt the discrete-to-continuum technique of [ 18, 19] to this case. A central
observation is that the union of the boundaries of all Voronoi cells C; for which
we have suitable outer and inner bounds determine a set which possesses a unique
infinite connected component. We then introduce a parameter « > 0 that quantifies
these bounds so that they become less and less stringent when o« — 0. We denote
by V, the union of boundaries of such ‘a-regular’ Voronoi cells. The properties of
V, are derived from percolation argument as in [17-19], and can be used to prove
that a first-passage percolation formula holds for paths in )V and at the same time
permit to use the blow-up technique [16,24] for proving a lower bound. An upper
bound is finally shown by using the subadditive properties of the problems defining
0.

The techniques used to prove the homogenization theorem for nearest-neigh-
bour interactions can be used to prove an analogous result when we take into account
interactions corresponding to pairs of nodes in A/ with distance not exceeding a
constant R. Namely, in place of energies (4), we consider

ER@)=e#licel,j¢el:|i—j| <Re} (8)

Note that this energy cannot be directly compared with E, in (4) since some near-
est neighbours in A/ may be at a distance larger than R. Nevertheless, using the
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properties of a-regular Voronoi cells we are able to show that for R large enough
energies EZa are equicoercive and still converge to an isotropic perimeter

FR(A) = (FH (9A) ©9)

almost surely as ¢ — 0. This result is interesting in view of applications to inho-
mogeneous interactions depending on the distance between the nodes (see [2,25]),
which may be of use in Data Science.

A further result is an ‘approximate homogenization theorem’, in which for
each o > 0 we consider energies EY defined as the restriction of energy (4) to sets
whose boundary is in €)/,. By the properties of «-regular Voronoi cells the length
of the boundary of sets is automatically estimated by the energy and compactness
arguments are immediate. We prove that the I'-limit of EY is still an isotropic
perimeter Fy(A) = 1, H' (9 A), with 7, decreasing to .

It is worth noting that some of the results extend to arbitrary dimension (mainly,
the compactness lemma for sets with equibounded energy), but the properties of
regular Voronoi cells as stated and the characterization of 7y with a first-passage
percolation formula are particular of the planar case. The treatment of the asymp-
totic analysis of the energies in higher dimension will require different tools and
homogenization formulas, which justify a separate treatment.

2. Notation and Statement of the Results

L2(A) or |A| denotes the 2-dimensional Lebesgue measure of a set A, 14 the
characteristic function of the set A, Q = [—1/2, 1/2]> the unit cube in R?.

2.1. Poisson random sets

N denotes a Poisson random set with intensity & > 0 in R? defined on a
probability space (€2, F, P). We recall that a Poisson random set or stationary
Poisson point process with intensity A in R? is a map from  to the set of locally
finite subsets of R? such that for any bounded Borel set B € R? the function
#{B N N} is a random variable, and the following two conditions are fulfilled:

o for any bounded Borel set B C R? the number of points in B N A has a Poisson
law with parameter \|B]|

B n
_am 1B
n!

P#(BNN) = n}

o for any collection of bounded disjoint Borel subsets in R? the random variables
defined as the number of points of A" in these subsets are independent.
We refer for instance to [23] for equivalent definitions of a Poisson random set and
its main properties.

We also assume that the probability space is equipped with a dynamical system
T. : Q — Q, x € R?, and that for any bounded Borel set B and any x € R?
we have #((B + x) N N)(w) = #(B N N)(Txw). We recall that Ty is a group of
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measurable measure-preserving transformations in €2, also measurable as a function
T. : Q xR? — Q. We suppose that T}, is ergodic. Further details can be found for
instance in [29, Chapter 7].

In what follows, we only consider a Poisson random set with intensity 1, since
the results for a Poisson random set with intensity A may be obtained by considering
the case with intensity 1 and then applying a scaling transformation N' —> /AN

The cells of the Voronoi tessellation of N are denoted by

Ci={xeR?: |x—i| <|x—j|forall j € N},

withi € N. Each C; thus defined is a polyhedral set; the set of edges of the Voronoi
cells is denoted by V. The set of the vertices of C; (or endpoints of elements of V)
is denoted by N'*

Note that we may assume that each point in R? belongs to at most three Voronoi
cells or three elements of &, since this is an event of probability 1.

The set of edges of the Delaunay triangulation of N is denoted by £ and is
identified with the set of pairs (i, j) in NV x N such that C; and Cj share a common
edge.

We define a path of Voronoi cells as a collection {C; i 1 < j < K} such that
Cij and Cij .+ have an edge in common, or, equivalently, such that (i;,ij11) € £
forall j € {1,..., K — 1}. From the latter standpoint, we also talk of a path in £.
We say that such a path connects two sets X and Y if XNCy # Vand Y NCk # 0.
If X = {x}and Y = {y} then we simply say that the path connects x and y.

2.2. Asymptotic behaviour of ferromagnetic energies on poisson random sets

For future reference and comparison with the existing literature, we state our
results in terms of energies on (scalar) spin functions, keeping in mind the possible
alternative formulations as energies on sets or on set of points. The (scaled) ferro-
magnetic energy of the Poisson random set is defined on spin functions u : eN —
{—1,1} by

1
Ecwy =g Y, elwi—u))’

(i,j)ee€
1
= 58#{(i’j) cefui #uj}
=e#{(i,j)eef:ui=1u;=~1}, (10)
where the scaling factor % is due to double counting and to the fact that (u; —u ;)* €
{0, 4}.

To each u : eN' — {—1, 1} we associate the (scaled) Voronoi set of u defined
by

Vi) = | &Cie. (11)

{iu;=1}
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and the piecewise-constant interpolation (with underlying set e \), still denoted
u : R?> — {—1, 1}, defined by
1 ifxeV,
= Trew (12)
—1 ifx e R\ Ve (u).
Definition 2.1. We say that a family u® : eN" — {—1, 1} converges to a set A if the
piecewise-constant interpolations u® converge to the function 14 — 12\ 4 locally

in LY(R?), or, equivalently, if 1y, (,¢) converge to 1, locally in LY(R?).

The following compactness lemma justifies the use of the convergence in Def-
inition 2.1 in the computation of the I'-limit of E, [11,12]. Note that the result
cannot be directly deduced from the compactness property of sets of equibounded
perimeter, since we cannot deduce the equiboundedness of the perimeters of the
sets Ve (#?) from the equiboundedness of Eg (u,):

Lemma 2.2. (compactness) Let u® be such that sup, E.(u®) < +oc. Then, up to
subsequences u® converges to some set A in the sense of Definition 2.1. Moreover,
the limit set is a set of finite perimeter.

The compactness lemma above ensures that the domain of the I"-limit of £, be
the family of sets of finite perimeter in R?. The asymptotic behaviour of E, will be
described by an asymptotic formula similar to those encountered in first-passage
percolation, involving minimal paths on £ between points of R?. To that end we
define for all x € R?

7o(x) = closest point of N* to x,

For almost all x this point is uniquely defined. For the remaining points we choose
one of the closest points of N* to x. For x, y € R2 we define

mo(x, y) = min{#{ex} : {ex} is a path in Econnecting o (x) and 7o(y)}, (13)

where a path of segments (in our case edges in V) connecting two points X and
y is a collection of segments [x;_1, xx] with 1 < k < K for some K € N such
that xo = X and xx = Y, and such that the related piecewise-linear curve is not
self-intersecting.

Theorem 2.3. (homogenization theorem) Let £ be a Poisson random set with in-
tensity 1. Then there exists a deterministic constant 1y € (0, +00) (the surface
tension) such that almost surely the energies E. defined in (10) I'-converge to the
energy F(A) = 10 H' (0 A), defined on sets of finite perimeter, with respect to the
convergence in Remark 3.4. Furthermore, the constant 1y satisfies

0,0), (¢,0
to:tlim —mo(( t) ( ))
—00

almost surely, where m is given by (13).
The proof of this result will be the content of Section 4.

Remark 2.4. By the scaling argument ' — /AN, we deduce that if £ is a
Poisson random set with intensity A then the I'-limit of the corresponding E; is
VitgH (DA).
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3. Compactness

This section is devoted to the proof of the Compactness Lemma 2.2. Even
though we will use it in the planar case, we note that that result can be proved in
any space dimension d up to minor changes (see Remark 3.3 below).

IT denotes the set of finite connected unions of Voronoi cells (here connected
means that the corresponding set of edges of the Delaunay triangulation is con-
nected). If P € IT we set

AP)=1{z€Z?:(z+ Q)NP #0).

In what follows, if it does not lead to an ambiguity, we identify A(P) with the union
of unit squares centered at the points of A(P).

Connected sets of Voronoi cells might have rather irregular geometric structure.
It is more comfortable to deal with their covering by elements of a regular grid of
squares. The lemma below states that for sufficiently large P € IT the numbers of
elements in P and in A(P) are comparable.

Lemma 3.1. (Pimentel’s polyomino lemma [35]) Let R > 0 and y > 0. Then
there exists a deterministic constant C such that, for almost all w, there exists
g0 = €o0(w) > O such that if P € Tl and ¢ < &g satisfy

PN §Q £, max{#i:C; C P}, #A(P)} > ¢, (14)

then we have
é#{i :C; C P} <#A(P) < C#{i : C; C P}. (15)
Proof. Denotel’[%r ={Pell : z+0NP #P, #i : C; C P} < r}and
Ny, ={Pell : z+ QNP #P, #{i : C; C P} > r}. According to [35,

Theorem 1] and comments to this theorem there exist constants k; > 0, kp > 0
and k3 > 0 such that for any z € Z?

P{ min #A(P) < s} <e 2 ifr > ks, (16)
Pel‘l;r
and
P{ max #A(P) > s} <e ™Y ifs > kor, 17)
Pel‘l%r

1
Letting 7 = s in (16) and summing up over z € Rs? Q N Z* we obtain

. . k.
P min min #A(P) <s ¢ < R*s*/Ve 2%,
1 z
zersv onz2 Py
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By the Borel-Cantelli lemma a.s. for sufficiently large s we have

min min  #A(P) > s.
1 ¥4
ZE€RsY QNZ2 Py s

Letting s = ¢~ we obtain the first estimate in (15). The second one can be derived
from (17) in the same way. O

Note in particular that in the hypotheses of the lemma, we also have
1
min {#{i : C; C P}, #A(P)} > Es"’. (18)

Further geometric properties of such Voronoi tessellations can be found in [22].
Lemma 2.2 will be a consequence of the following result:

Lemma 3.2. (compactness of Voronoi sets) Let u® be such that sup, E.(u®) < +o0.
Then we can write

Ve(u®) = (Ae U B\ B,

where |BL| + |B!| — 0, {A:} is a family of sets with equibounded perimeter, the
Sfamily 1,, is precompact in LlloC (R2) and each its limit point is the characteristic
function of a set of finite perimeter A, so that the same holds for 1y, ).

Proof. Since we reason locally, in order to ease the notation we assume that e.g. all
u® are identically —1 outside a fixed cube (or equivalently that V, (1?) are contained
in a fixed cube).

We fix y > 0 small enough. We subdivide 9V, («°) into its connected compo-
nents. We denote by C/ " the family of such connected components S with

#HieN u;=1,6CiNS #P} 277, 19)
Note that each such connected component can be identified with the set

P=PS) = J{Ci:ui=1,6C;nS #0}, (20)

which belongs to the set IT. We denote by C!"~ the family of the remaining con-
nected components.

The first step will be to identify the small sets B, and B; as the ‘interior’ of
contours in CY"~ where the inner trace of 1 v.e) 18 0 and 1, respectively. In this way
the remaining set will have a boundary only composed of ‘large’ components from
cl'* . This argument needs a little more formalization since we may have contours
contained in other contours.

By the finiteness of the energy we have

#Cl™ <

LN

Note that

1
# (A (—S)) < Ce™7 forevery S € CI"™.

&
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Indeed, otherwise #(A(%S)) > Ce™7 > &7V, so that the hypotheses of Lemma
3.1 are satisfied and (15) implies that (19) holds, which gives a contradiction.
Hence each S € C/"™ is contained in a set with boundary at most of length Ce' 7.
By an isoperimetric estimate, the measure of the bounded set sorrounded by each
S e Cl'” is 0(e27%). Hence, the total measure of such sets is O (¢! ~27).
Consider now each maximal S € CZ *";1.e., which is not contained in any other
bounded set whose boundary is another element in Cg/ . For each such S, let P
be defined from § by (20). We have two cases, whether ¢ P is interior to S or not.
We denote by C K’S_ the first family, by C{ . the second one, and define B; as the

union of the C; /. in the interior of S for some S € CT’E_ and such that uf =1, and

B/ as the union of the £C; /¢ in the interior of S for some § € C%/ ’8_ and such that

ui = —1.1If we set

Ve = (Ve(u®) \ B) U B/
then 3V, consists only of components in CY * and
|B.UB!| < Ce'7%,
We now write V. = A, U A, where
Ae = Jlz+20) ez +20 C Vi)
A’s = Vo \ As
Note that

0A. ce ) 0A(P(S)

seclt
with P(S) defined in (20). By Lemma 3.1 we have
H' (OA(P(8)) < C#li e N 1 ug; = 1,6C; NS # )
Summing up over all S € C/ "+ we obtain
H'(9A:) < C Ec(u).

Hence, {A;} is a family of sets with equibounded perimeter, and the functions 14,
are locally precompact in L' (R?) by the precompactness of sets of equibounded
perimeter [10,34].

Again by Lemma 3.1 we have

ALl < Ce* Y #A(P(S)) < CeE, ().

secrt

This shows that |A,,| — 0, and proves the claim, upon adding A/, to B, defined
above. O
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Remark 3.3. The previous compactness result holds in any dimension d with minor
changes in the proof, upon noting that Pimentel’s lemma holds with

AP)={z€Z: (z+ Q) NP #0),
and Q the coordinate unit cube in R4 [35].

Remark 3.4. (convergence in terms of the empirical measures) Toeachu® : e N —
{—1, 1} we can associate the so-called empirical measure

W= > &
{iceNut=1}

Ifu® are such thatsup, E.(u°) < +ooand u® converge to A asin Definition 2.1, then
the measures (1) locally converge to the measure 14 £> with respect to the weak*
convergence of measures. Thanks to Lemma 3.2, then these two convergences are
equivalent.

To check the convergence of w(u®), we first note that we may suppose that
w(ut) — fL2*forsome f : R? — [0, 1]. It suffices to show that f = 0 at almost
every point of density O for A (a symmetric argument then shows that f = 1 at
almost every point of density 1 for A).

For almost all such xp we have that

lim sup | Ve (u) N (xo + p Q)| = 0(p?)

e—0

and lim sup E¢(u®, Q,) = o(p), where we have set
e—>0

1
E.(u’, Q,) = 58#{(i’j) €efui # uj», iorjepQl}
We may subdivide V, (#%) N (xg + p Q) into disjoint connected components:

VeuHnm+e)= | pPU U L

#(PjNeN)<e™ #(LiNeN)>e=7

We may apply Lemma 3.1 to each L to obtain
1
D eM(LiNeN) < Ce® Y #A (—Lk> < C|V.®)| = 0(p?).
€
k k

As for Pj we have

1 1 1
#({Pj}) = gEa(ME, Qp) = 50(,0), Z#(Pj NeN) < pywY o(p).

J

In conclusion,
n@)(xo+ pQ) = e*#{uf =1, i € xo+ pQ} < 0(p*) + ' 7 o(p).

Letting first ¢ — 0 and then p — 0 we prove the claim.
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4. Proof of the Homogenization Theorem

In this section we prove Theorem 2.3, first characterizing the surface tension
and then computing the I"-limit. Preliminarily, we introduce regular Voronoi cells
and study their geometry.

4.1. Geometry of clusters of regular voronoi cells

The surface tension characterizing the I'-limit will be expressed by an asymp-
totic average length of minimal paths analogous to first-passage percolation for-
mulas. A difficulty in our case is that in principle one of the end-points of such
paths could be located in an ‘exceptional region’ where very small Voronoi cells
accumulate. In order to treat this case, we first introduce regular Voronoi cells and
study some percolation characteristics of the grid of such cells.

For o > 0 we set

o

1 1
N = {i € N : C; contains a ball of radius «, diam C; < —, #edges of C; < —}

o o
(2D

the family of regular Voronoi cells with parameter «. The following lemma de-
scribes some geometrical features of regular Voronoi tessellations.

Lemma 4.1. (a channel property of ./\/09) Let§ > 0. Forevery T € R, v € S! and
x € R? we define

1
RY () = {x o — x| < 8T, [(x — xi, v < ET}'

Then there exist oy, Cs > O such that a.s. there exists To(w) > 0 such that for all
T > Ty(w) the rectangle R;’ 5(x) contains at least CsT disjoint paths of Voronoi

cells C; with i € J\/'o(,) connecting the two opposite sides of R;’a(x) parallel to v.
This property is uniform as x| T vary on a bounded set of R>.

Proof. Our arguments rely on the result known as channel property in the Bernoulli
site percolation model in Z2. The idea of the proof is to consider a regular grid of
squares in R? and to choose the squares where the Poisson random set possesses a
number of geometric properties (properties (¢1)— (¢3) below). These properties are
designed in such a way that
i. the events that they hold in disjoint squares are independent, and the probability
of such event does not depend on the position of a square.
ii. the probability that these properties hold in a unit square is close enough to 1,
iii. there exists @ > 0 such that any channel of squares where the mentioned
properties are fulfilled contains a path of Voronoi cells C; withi € /\/'09 (x-channel).
We proceed to the detailed construction. Denote Q5; :=[—5L, 5L)?, and for
L, K,aeR"andj € 72 denote by (L, K, «, j) the event that the following
conditions are fulfilled:
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(c1) any square [0, L)? + Li withi € Z2 N [—4.5,5.5]? contains at least one
point of N' — 10Lj,

(c2) the total number of points #((N — 10Lj) N Qsz) does not exceed K,
(c3) the distance between any two points of (N — 10Lj) N Qs as well as the
distance from any point of (N — 10L;j) N Qs to d Qs is greater than 20,

Letting &; be the characteristic function of £(L, K, «, j) and considering the prop-
erties of the Poisson random set we conclude that §;, j € 72, are i.i.d. random
variables. For any y > 0 one can choose sufficiently large L and K and sufficiently
small & > 0 so that

PEWL,K,a,j)>1—1y. (22)

Indeed, the probability that any cube of size L in Q5 contains at least one point of
the Poisson random set tends to 1 as L — oo. Then, given L > 0, the probability
that the number of points in Qs; does not exceed K tends to 1 as K — oo. The
probability that in the cube Qs; the smallest distance between two points is less
than o goes to zero as « — 0. Finally, the probability that o-neighbourhood of
0 Qs contains at least one point also goes to zero. Combining this relations we
obtain the desired property.

For any two points j’, j” € Z? such that |j' — j”| = 1 denote by I,/ ;» the
segment [10Lj’, 10Lj"]in R%. If §; = &;» = 1 then

(s1) any Voronoi cell C; that has a non-trivial intersection with [}/ ;» belongs
to (Qsz, + 10Lj") U (Qsp + 10L;"),

(s2) any such a cell C; contains a ball of radius «,

(s3) the number of edges of each such C; is not greater than K.

In particular, due to (s1) and (cy), the total number of the cells C; having a non-
empty intersection with [/ ;» does not exceed 2K .

Statement (s1) can be justified as follows: Let x’ be an arbitrary point of 7/ j».
Denote by C; the Voronoi cell that contains x” and by x; the corresponding point of
the Poisson random set. Due to (¢;) we have |x” — x;| < +/2L. Then any point y €
3((Qs. +10Lj") U (Qs.. + 10L;")) satisfies the inequality [y —x;| = (5 —v/2)L.
On the other hand, by (¢;) the distance of y from A is not greater than \/EL. This
implies that y ¢ C;. Therefore, C; C (Qsy + 10L;") U (Qsz + 10L;j”), and (s1)
follows.

In a similar way one can show that for any C; that has a nontrivial intersection
with 7 j» and any x; € N such that C; and C;; have an edge in common we have
xj € (Qs + 10Lj") U (Qsp + 10L;j"). In view of (c2) this yields (s3).

Statement (s2) is an immediate consequence of (c3).

Now the desired channel property follows from the well-known channel prop-
erty in the Bernoulli site percolation model. For the reader convenience we formu-
late it here. Let n;, j € 72, be a collection of i.i.d. random variables taking on the
value 1 with probability p and the value 0 with probability (1 — p). We say that
{ji};Z, is a 1-pathif j; and ji1,i =1, 2,..., M — 1, are neighbouring points of
72 and nj. = 1 forall i. Then there exists p¢r € (0, 1) such that for all p > p., the
following statement holds: for any § > 0 there exists 's > 0 such that for almost
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each w € Q there exists Tp = Tpo(w) > 0 such that any rectangle R;_ 5 () with
T > Tyand x € [—T, T]? contains at least K5 > 0 disjoint 1-paths connecting the
two opposite sides of R;’ 5(x) parallel to v. We refer to [30] for further details.

It remains to choose y in (22) in such a way that 1 — y > p.. Labeling the
squares Qs; 4 10 with the corresponding points j € Z? and recalling the just
formulated channel property of the Bernoulli site percolation model with n; = &;
we obtain the desired statement. |

From the proof of the previous lemma, in particular we obtain the following
proposition:

Proposition 4.2. There exists o such that if @« < o« there exists a unique infinite
connected component of N OE) , and its complement is composed of bounded connected
sets.

With this proposition in mind, we may define clusters of regular Voronoi cells.

Definition 4.3. (a-clusters) Let o < ag be as in Proposition 4.2. We denote by N,
the infinite connected component of ./\[3 defined therein. Moreover, we denote by
N the set of vertices of edges of C; with i € Ny, by V, the set of the edges of
such C;, and by &, the set of edges of the Delaunay triangulation defined by set of
pairs (i, j) in N;z such that C; and C; share a common edge.

Remark 4.4. (a channel property of A,)With the notation of Definition 4.3, note
that the paths of cells C; in Lemma 4.1 can be taken with i € N,.

4.2. Geometric properties of voronoi tessellation of poisson set. Surface tension

In this section we consider the geometric properties of the Poisson-Voronoi
tessellation and introduce the surface tension in terms of an asymptotic distance
between two points of the grid. In order to apply the subadditive theorem we should
show that the grid distance between two arbitrary points has a finite expectation.
The symbol E stands for the expectation in 2.

Proposition 4.5. For allt > 0 we have
E(my((0,0), (£, 0))) < +o0. (23)
Furthermore, the limit

. mo((0,0), (z,0))
= lim ——

t——+00 t

exists almost surely and is deterministic.

Proof. We say that a set § C Z? is [*-connected if for any two points i and j in §
thereisapathi = ig, i1, ..., i = jinSsuchthat|iy —iy_1lcc = L,k =1,...,m.

Consider all /*°-connected sets in Z? of size n that contain the origin. According
to [28, Proof of Theorem 4.20] for any n = 0 the number of such sets is not greater
than C5 for some constant C> > 0.
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Next we choose L, K and « > 0 in such a way that C%y < }‘, where y is
defined in (22).

We say that a site j € 72 is open if conditions (¢1)-(c3) in the proof of Lemma
4.1 are satisfied; otherwise j is closed. The probability that a [°°-connected set in
72 consists of closed points, has size 7 and is a maximum /*°-connected component
of closed points does not exceed y". We denote such a set by S(n).

Consider the sets

Som) = | J (@sz+ 10Lj),

JjeS(n)

Sin) =Som) | {x e R? : diste (x, 10LS(n)) < IOL}.

If Sp(n) contains k points of AV, then the length of the shortest path from (0, 0) to
(1, 0) does not exceed (k + 8nK)?. The probability that So(n) contains exactly k
points of N is equal to

100L2n)*
% exp(—lOOLG).

Denote Ly = 100L>.
The probability that S(n) is a maximum connected component of closed sites
and that Sy (n) contains exactly k points of " is not greater than

Pin = (V”)%(

Summing up over all connected sets in Z? that contain the origin and over all k
from 0 to 400, we obtain that the expectation of the shortest path from (0, 0) to
(1, 0) admits the following upper bound:

1

exp(—Lon)> i .

(Lon)*
k!

E(mo((0,0), (1,00)) £ Y > C} prn(k + 8nK)?
n=0 k=0
1
— 1 Lon)k 2
< Z exp ((log(Cz) + 510g(y))n> <( 2’7) exp(—Lon)> (k + 8nK)>.
n,k=0
(Lom)*

Since =37~ exp(—Lon) < 1, using the Stirling formula and considering our choice
of y, one concludes that the series converges. This yields the relation in (23) for
t < 1. For larger ¢ we use the subadditive property of mq((0, 0), (¢, 0)). Namely,
for any s1, #; and s>, t» we have

mo((O, O)s (s27 t2)) g mo((ov O)v (Slv tl)) + mO((Slv tl)v (S2a 12))'

This ensures the relation E(m((0, 0), (¢, 0))) < oo for any ¢ > 0.
In the same way one can show that

E( sup mo((0,0), (¢, 0))) < 400.

0<r<1
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Then the second statement of Proposition follows from the Kingman subadditive
ergodic theorem, see [32, Theorem 5.6] for the continuous-time version of this
theorem that applies in the case under consideration. O

Proposition 4.6. (isotropy and uniformity of the surface tension) We have

t
0= lim M&.x+) (24)

t——+00 t
forall v € S', and the limit is uniform for x = x(t) if |x| < Ct and v € S".

Proof. Our first goal is to show that there exists a constant Cy such that a.s. for any
» > 0andc; > 0and forall t 2 #ty(w, c1) we have

mo(x, y) < Colx — y| + st + /1 (25)

for all x and y from the cube {x € R? : |x|oo < cit}. To this end we use again
the definition of a cube Qs given in the proof of Lemma 4.1 and recall that
asite j € Z2 is open if conditions (¢1)—(c3) are fulfilled. We then choose the
parameter y in (22) sufficiently small so that the open sites form a.s. an infinite
open cluster that we call C. Then a.s. for sufficiently large ¢ the diameter of any
[*°-connected component of sites in in the complement to the infinite open cluster
in{x € R? : |x|oo £ (10L)"'¢y1} does not exceed c» logt with ¢ > 0, see [28].
Computing the probability to have in a cube of size ¢, log ¢ more than /7 points
of V, considering the fact that the number of such cubes centred at j € 72 and
belonging to {x € R? : |x|so < (10L) !¢y} grows polynomially in 7 and using
the Borel-Cantelli lemma we conclude that a.s. for sufficiently large ¢ we have

mo(x, T (x)) N1, mo(y, T (y) S V1, (26)

where 77, (x) is the nearest to x vertex of the union of the Voronoi cells that contain
points of the scaled infinite open cluster 10LC.

From the results in [26] it follows that a.s. for sufficiently large ¢, for any two
points j! and j? of the open infinite cluster such that j!, j? € {x € R? : |x|oo <
(10L)~ !¢y}, and for any > > 0 the cluster distance between j' and j? is not
greater than C»|j! — j?| + s¢t; here C5 is a positive constant that does not depend
on s. Combining this estimate with (26) we obtain (25).

Next, we are going to show that for any x € R? with |x| < C and any v € S!
the limit relation

tx,tx +1t
0= lim mo(tx, tx + tv) 27)
t——+00 t
holds a.s. In view of (25) it suffices to prove this relation for integer ¢ that tends to
00. In the remaining part of the proof we call this parameter n instead of 7.

We fix a small positive 6 > 0 and denote by Ay the event

Ay = {a) eQ: )—mg((])c,kv) -

70 §9f0rallkzN}.

Since P(Ay) tends to 1 as N — oo, for any § > 0 there exists No = Ny(8) such
that
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P(Ay,) = 1—36.

By the Birkhoff ergodic theorem a.s. for any v > 0 and s > 0 there exists kg =
ko(w, v, ») such that

k
1
2 2Ly (Tjxw) = P(Axy)| S v
j=1

forall k = %ko and moreover inequality (25) holds for all such k. We assume that
v and § are small enough so that 3(v + §) < %

For k 2 kg denote by £ the maximum of integers j such that j > k + 1 and for
alli € (k, j) we have Ty & Ay,

Let M be the number of unities in the sequence {1 ANO(T,-xw)}f:l. By the
definition of £, the number of unities in {1 Ay (Tixw) }f:f
Since k + £ > kg, we have

is equal to M as well.

4 (k— M)

k+¢

M
2 p
v>‘k+€ (Any)

= ‘1 — P(ANO) —

This yields

L+ (k—M)

T <v+1-P(Ay,) Sv+36.

Since k — M = 0, recalling that v + § < % we obtain £ < 2(v + §)k.
For an arbitrary k > max (ko, No) and L = 3(v+8)k there exists n € [k, k+L]
such that 7,y € Ap,. Then we have

1 w
%mo (nx,nx + kv) — 19

Since n — k < 3(v + 8)k and k > ko, then by (25)

1
z'zmﬁwaxmo—u)<e. (28)

Imo(nx, nx + kv) — mo(kx, kx + kv)| < [3CoC(v + 8) + »lk + vk

Dividing by k and considering (28) we obtain

1
SO+ [B3CCW+8)+ 3]+ —.
- NS
It remains to take into account the fact that 8, v, § and s are arbitrary positive
number, and (27) follows.
In view of estimate (25) the pointwise convergence in (27) implies the uniform
convergence in (24) for |x| < Ct. This completes the proof. |

1
‘Emf)"(kx, kx + kv) — 19

Proposition 4.7. (coerciveness of the surface tension) We have 7y > 0.

Proof. Given t > 0 take a minimal path {e;} for mo((0, 0), (0, t)). We can apply
Lemma 3.1 withe = 1/¢t, R=1,y = 1/2,and P € Il with ¢, C P for all k. We
then have
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1(1+o0(1)) < #A(P) = CH#{C; : C; C P} = C#{er},
which shows the claim, since the constant in this estimate are independent of . O

Proposition 4.8. There exists a constant Cq such that if t is large enough then if
{er} is a test path for mo(x, x +tv) with x as in Proposition 4.6 with #({ex}) < tM,
then each point of {ex} is at most at distance CoMt from x.

Proof. Tt suffices to apply Lemma 3.1 to the set of all Voronoi cells with non empty
intersection with | J; ex and ¢ = 1/r. We then cover | J; ex with the union of at
most 2CoMt cubes, from which the claim follows. O

4.3. Computation of the T -limit

Lower bound. We use an argument typical of the blow-up technique [16,24].
Let u® — A. Since A is of finite perimeter, with fixed 0 > 0 and § > 0 we
consider a disjoint finite family of rectangles

1
R; = {x = xi, vi)| < 8pi, [(x — xi, )| < Epi}

such that

H! (aA\UR,-) <o and 'Zpi —H'BA)
i i
Since A, — A we may assume that

L2A: MR =0(1), L2(A\A)NRD) =o(1)

<o.

as ¢ — 0, where
Rl-:t = R,‘ + 28,0,-vl~.

We now fix an index i. We use the channel property in Lemma 4.1 to find a path
{EC]TL} joining the two sides of Rl.+ parallel to v;, with j endpoints of segments of
a path in &y, and such that

&
r2 Angfmsch gmcz(Astj),
. 1
J

which follows from the existence of a number of disjoints paths proportional to p;.

Note that, since |8C;-r| > we2a?, we have

#j1eCl C A} <

I o + +
— L AR m:UCj
J

1
——— L*(A: N R).

Similarly, we define {C;} joining the two sides of R;” parallel to v;, and such
that
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_ _ & _
L2 | (A\A:) N R; mech < ?piﬁ((A\Ag) NR),

so that

#j:eC7 C(A\ A} < L2(((A\ Ae) NR)).

e Cyp;a?

We define U™ as the connected component of RiJr \elJ j CJJF containing the
upper side S+ = {x € RJr :{x —x;,vi) = 38p;} and U; as the connected
component of R, \8U C containing the lower side §;” = {x € R, : (x —
Xi, V) = —38p,} and deﬁne

= (A N\UDHUU.

We now consider the connected component of the set (R; U Ri+ UR)\ Zfs
containing the upper side SJr Note that this connected component does not contain
", so that it contains a path of edges {ek} in V connecting the two sides of R; U
R;r U R, parallel to v;. We denote by xs the extreme points of this path.

Using Proposition 4.6, we can now estimate

#{edges of 9V, (u®) inside R;} > #{edges of A, inside R;}

> #{ef} — ————o(1
- {ek} SJTC(S,O[(XZO( )
> ) - —— o
mo(xg , x;) gncapiOtzO( )
i 1
> (1 + o) — ———o(1).
€ enCspia

Summing up in i we then get

lim inf £,(u®) 2 )" pito 2 to(H'(94) — 0)

i

and prove the claim by the arbitrariness of o.

Upper bound. By an approximation argument [10, 11] it is sufficient to prove
the upper bound for polyhedral sets. Moreover, we can just deal with a single
connected bounded polyhedron A with a connected boundary since all other cases
can be reduced to that by considering union or complements of such sets.

We write the boundary of A as the union of segments [x; 1, x;] with endpoints
X0, ...,xy € R? with xy = xo. With fixed m € N and § > 0, for all j e
{l,...,N}and ! € {1,...,m} we consider a non-intersecting path {ek } in V
between ”O(Xj',m—l) and no(x im m)» Where

.1 I
Xjm = g(xj—l + n—1(xj —Xj—1)>,
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such that
; 1
#el'y < —Ixj —xj_1l(00 +8). (29)
me

Denoting the union of the rescaled paths
Sm _ il
B =¢ U e
oLk

let A>™ be the complement of the infinite connected component of R?\ B3 (note

that the paths {e,{’l} may intersect, so that there may be more than one bounded
connected component of the complement of their union). If «° is defined as

uf = {1 | i’ € A" (30)
— i¢AP™,
then we have
E.(uf) <¢ Z#{ei*l} < Z %|xj —xj—1l(to +8)
Lk i
= H'(0A) (19 + 5), 31

since the boundary of A2 is contained in B>,
By Lemma 2.2, thanks to (31) these sets converge as ¢ — 0 to a set of finite
perimeter ASm and

- lim sup E¢(A%™) < H' (3A)(zg + 8). (32)

e—0

Thanks to Proposition 4.8 each point of s{e,i’l} is at most at a distance C/m
from the segment [e7rg (x;? m—1)s ETT0 (xf ) 1> and hence, since

l
lim emo(xé ) =x;_1+—(x; —xi_1),
e O( j,m) j—1 m( J J l)

the boundary of A% is contained in a C /m-neighbourhood of 3 A. This implies that
A%™ converge to A as m — +oc independently of 8. By the lower semicontinuity
of the I"-limsup [11] we then deduce that

F-limsup Ec(A) < lim -lim sup E, (A%™) < H' (0 A) (10 + 8),

li
e—0 m—100 e—0

and the claim is proved.

5. Finite Range of Interactions

In this section we consider a Poisson model with finite range of interactions.
Given R > 0 denote by E the subset of N x N defined by

ER=1{i,jeN,:li—jl <R

The corresponding (scaled) ferromagnetic energy on spin functions u : eN —
{—1, 1} takes the form
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E}(u):é > ewi—uy)’ = %e#{(i,j) € eER up #uj)

(i,j)eeER

=e#{(, j) € &R tuj =1, uj = —1). (33)

We assume that R is sufficiently large. In order to clarify this, we fix y € (0, %)
and denote by £1.(j), j € 72, the event that the following condition is fulfilled:

e any square [0, L1? + Li with i € Z2> N [—9.5, 10.5]? contains at least one point
of N —10Lj.

The squares 10Lj + Q»or for which this condition holds are called L-good. As
explained in the proof of Lemma 4.1 the probability of £ (j) tends to 1 as L — oo.
Letting Q201 (j) = 10Lj + Q2or with j € 72 we say that a collection of squares
{0201 ( jk)},]g’: | is admissible if the interiors of these squares do not intersect. We
say that Q»or (j) and Q2oz (m) are neighbouring if [m — j| =2 or |m — j| = V5.
The notion of connectedness is introduced accordingly.

Lemma 5.1. There exist Lo > 0and B > 0 suchthat a.s. forany R > 0, there exists
eo(w, R) such that forany L = Ly andfore < &g, any admissible connected subset
S of {Q201.(j)} jezz2 with #(S) Z ¢77 and S N[~ 'R, e 7' R]* # @ contains at
least B#(S) L-good squares.

Proof. The proof relies on the standard counting arguments. Each (20L)-square
has 12 neighbouring squares. Therefore, the total number of connected admissible
sets of squares that contain Q> (0) and have cardinality N does not exceed N
with a constant ¢ > 0, see [28]. For any finite collection of admissible (20L)-
squares the events &, (j) are independent. Thus, for any admissible connected set
of such squares that has exactly N squares the probability that the proportion of
good L-squares is less than  is less than exp [ (¢ +1log 2+ B(1 — £, (0))) N]. Since,
the probability of £ (0) tends to 1 as L — oo, this yields the desired statement by
the Borel-Cantelli lemma. O

From now on we assume that R = 5L¢. For the energies defined in (33) we obtain
a I'-limit (homogenization) result. Since the techniques used here are quite similar
to those used in the previous sections, for the majority of statements we provide
just a sketch of the proofs.

Lemma 5.2. Let R be sufficiently large, and assume that a family {u®} is such that
sup, Ez2 (u®) < +00. Then V¢ (uf) admits the following representation:

Ve(u®) = (A U B) \ B,
where |B}| + |B]| — 0as & — 0, the family 14, is precompact in L] .(R?) and

each its limit point is the characteristic function of a set of finite perimeter A, so
that the same holds for 1y, e).

Proof. The proof follows the line of the proof of Lemma 3.2 after replacing the
unit square Q with Qjor,. In particular, the sets B.,, B/, A/, and A} are introduced
in the same way as in Lemma 3.2. The inequality

H'(DAL) < C ERu®)

follows from Lemma 5.1. O
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Denote J R the set of segments [i, j] C R? with (i, j) € ER . Then for any smooth
non-selfintersecting curve ¢ : [0, 1] — R? such that ¢ has no points in common
with A we set

mR = # ({(p(t) St el0, 1N JR)

and
mR(x, y) = min m;z.
¢, p(0)=x,p(1)=y

The proof of the next statement is exactly the same as that of Proposition 4.5. It
relies on the properties of «-squares introduced above and the subadditive theorem.

Proposition 5.3. For allt > 0 we have
Em™((0,0). (,0))) < 400 (34)
Furthermore, the limit

R
Ry "0,0), ¢, 0))
t——+00 t

exists almost surely and is deterministic.

The convergence stated in the previous proposition is uniform if the starting point
satisfies the estimate x < Cr. This is granted by the following proposition:

Proposition 5.4. We have

R
s t
R — lim w (35)

——+00 t
forallv € S', and the limit is uniform for x = x(¢) if |x| < Ct and v € S'.

The proof of this statement is the same as that of Proposition 4.6.
We proceed with the main result of this section.

Theorem 5.5. (homogenization theorem) Let N' be a Poisson point process with
intensity 1. Then for sufficiently large R

the energies EZz definedin (33) T-converge to the energy F* (A) = TR H' (3 A),
defined on sets of finite perimeter, with respect to the convergence introduced in
Definition 2.1.

Proof. The statement of this Theorem can be derived from Lemmas 5.1-5.2 and
Propositions 5.3-5.4, it follows the line of the proof of Theorem 2.3. m]

6. Approximate Surface Tensions
In this final section we consider the restriction of the energies E, to (spin

functions with corresponding) sets whose boundary is composed of edges of «-
regular Voronoi cells. We denote by EY such energies. Note that in this case EY (1)
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immediately gives the equiboundedness of the perimeter of the sets V,(u®) and
hence their precompactness. We briefly describe the limit of EY at fixed o.
With given @ < « as in Proposition 4.2 we define, for all x € R2 that

7e(x) = closest point of AV to x.

For almost all x this point is uniquely defined. For the remaining points we choose
one of the closest points of AV} to x. Forall x, y € R? we set

my(x, y) = min{#{er} : {ex} is a path in V,, connecting 7y (x) and 7y (y)}.
Proposition 6.1. For all @ < g a.s. the limit

. mey(x,x +tv)
Ty = lim ——M—
t—+00 t
exists for all v € S', and the limit is uniform for x = x(t) if |x] < Ct and v € S'.
Furthermore t, € (0, 400).

Proof. The proof follows that for 7y, and is actually simpler since bounds for
my(x, x + tv) are easier. O

Theorem 6.2. (homogenization on the a-cluster) For a < og almost surely there
exists the T-limit of E% and it equals T, H' (3 A).

Proof. The proof is the same as for the homogenization theorem in the previous
section, taking care of using the same « as the one labeling the energies in the proof
of the lower bound. Note that it is not necessary to use Proposition 4.8 for the proof
of the upper inequality. O

Proposition 6.3. We have inf t, = lim t,.
<o a—0

Proof. Choose «g > 0 in such a way that for some L and K we have
PE(L, K, ag, j)) > pe-

It suffices to show that 7,, < 7,, if 0 < o] < a2 < . Since ./\f(,j‘2 C N* | then

ay’
min {#{ek} : {ex} is a path in V,, connecting my, (xp) and 7y, (xl)}

36
< Mg, (X0, X1), (36)

where xo = 0 and x; = (¢, 0). We should estimate
min {#{ek} : {ex} isapathin V,, connecting my, (x;) and mqy, (x,)} .

To this end we consider the cubes Qs; + 10Lj, j € Z?, that were introduced in
the proof of Lemma 4.1 and take those of them that satisfy conditions (¢j)—(c3)
for « = «g. Under our choice of o a.s. these exists a unique infinite cluster of
such cubes. The complement to the infinite cluster consists of connected bounded
sets. Moreover, according to [28], for sufficiently large ¢ the maximal size of the
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connected components in the complement to the infinite cluster that have a non-
trivial intersection with [—2¢, 2¢]*] does not exceed ¢ log(t). This implies that the
size of the maximal connected component of [—21, 211%] \ Vg, does not exceed
clog(t). Since Ny, C N, C Ny, then mq, (x;) and 74, (x;) belong to the closure
of the same connected component of [—21, 211 \ Vo Therefore,

1
lim — min {#{ek} : {ex} is a path in V,, connecting 7y, (x;) and 7g, (xl)} =0.
t—o0 t

Similarly,

N . . .

lim — min {#{ek} : {ex} is a path in V,, connecting my, (xo) and g, (xo)} =0.
t—o0 t

Combining these two relations with (36) we obtain the desired inequality
Ty, = Toy. O

It turns out that for vanishing o the approximate surface tension t, converges to
70; this is the subject of the following statement:

Proposition 6.4. The following relation holds:

lim 7, = 10. (37)

a—0

Proof. Due to Proposition 4.6 for large n we have
mq((0, 0), (0, n)) = mo((0, 0), (0, n))(1 + o(1)),

where a.s. o(1) tends to zero as n — o00. Therefore, 7, = 9. Our goal is to prove
the opposite inequality. To this end consider a cube Q,, = [—n, n]?, and denote by
C!" the cells of Voronoi tessellation corresponding to the set N = N N Q,, the
dual set is denoted by A", and £" is defined accordingly. Letting

7y (x) = closest point of N*" to x
for all x € Q,, we introduce
mg(x, y) = min{#{ex} : {ex} is a pathin £" connecting 7 (x) and 7y (¥)}(38)

for x, y € Q,. By the same arguments as those used in the proof of Proposition
4.6 one can show that a.s.

lim m((0,0), 0.m) _

n—o00 n

0. 39)
Then for any > > 0 and § > O there exists ng > 0 such that

P {mg((0,0), (0, n9)) = tono(1 +8)} < ». (40)
Next we choose o) > 0, K and L such that, for any j € 72,

PEL,K, a1, j) >1— 41)
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The choice of &1, K and L does not depend on nq. Without loss of generality we
may assume that

K < Stong 42)

and that ng = (5L + 10/1 L) for some /1 € Z™, that is the point (ng, 0) belongs to
the right side of the cube Qs + 10Lj; with j; = (I1, 0).
As was shown in the proof of Lemma 4.1 the inequality

Pl(™, Ky a0, )} > 1 — 5 43)

holds for sufficiently large K, and sufficiently small «p; here we assume that ng is
large enough.

Denotee;,i = 1, 2, the standard basis in R2. We say thata cube Q,,, is az-good,
if
° mgO(O, +noe;) < ono(1 +68), i=1,2;

e we&(L,K,uy,£le),i=1,2;

e weE 5("5—0, K>, a, 0).

Acube Quy +2n0j,j € 72, is said to be az-good, if the cube Q,,, is a2-good with
respect to the point process A — 2ng;j.

Define a random variable 6; which is equal to 1, if the cube Q,, + 2n¢j is o>-
good, and 0 otherwise. The random variables {0, } jezp are 1.1.d. From (40)—(43) it
follows that P{6; = 1} = 1 — 9¢. Furthermore, for any two neighbouring a>-good
cubes Qo + 2noj1 and Q,, + 2ngj2 with | ji — j2lco = 1 we have

Ma, (2no j1, 2n0 j2) = 210n0(1 + 26). (44)

For small enough s« the a2-good cubes {Q,,, + 2n¢ j} form a unique infinite cluster

which is identified with the corresponding cluster for the variables 6;. For t =

2nok with k € ZT denote by p,.(k) the cluster distance between the as-good

cubes which are closest to 0 and to ¢, respectively. According to [28] the limit

() = klim (k=1 ps.(k)) exists a.s. and is deterministic. Moreover, 5(3) — 1 as
— 00

2 — 0. Then for large k we obtain
M, ((0,0), (0, 1)) < 270n0(1 4 28) (05 (k) + 0(k)),

where o(k) tends to zero as k — oo. Dividing the last relation by # and passing to
the limit t — oo yields

Tay = T0(1 4 28)(p(>0)).

Since 8 and s are arbitrary positive numbers and p(») tends to 1 as s — 0, we
obtain the desired convergence (37). |
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