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Abstract

We consider the homogenization of a system of second-order equations with
a large potential in a periodic medium. Denoting by ε the period, the potential is
scaled as ε−2. Under a generic assumption on the spectral properties of the asso-
ciated cell problem, we prove that the solution can be approximately factorized as
the product of a fast oscillating cell eigenfunction and of a slowly varying solution
of a scalar second-order equation. This result applies to various types of equations
such as parabolic, hyperbolic or eigenvalue problems, as well as fourth-order plate
equation. We also prove that, for well-prepared initial data concentrating at the
bottom of a Bloch band, the resulting homogenized tensor depends on the chosen
Bloch band. Our method is based on a combination of classical homogenization
techniques (two-scale convergence and suitable oscillating test functions) and of
Bloch waves decomposition.

1. Introduction

We study the homogenization of evolution problems for a singularly perturbed
second-order elliptic system with periodically oscillating coefficients. To fix ideas,
let us consider the following parabolic problem

∂uε

∂t
− div

(
A
(x
ε

)
∇uε

)
+
(
ε−2c

(x
ε

)
+ d

(
x,
x

ε

))
uε=0 in �× (0, T ),

uε=0 on ∂�×(0, T ),
uε(t = 0, x)=u0

ε(x) in �,
(1)

where � ⊂ R
N is an open set and T > 0 a final time. The unknown uε(t, x) is

a vector-valued function from � × (0, T ) into R
K . The coefficients A(y), c(y)

and d(x, y) are real and bounded functions defined for x ∈ � and y ∈ T
N (the

unit torus). Furthermore, the tensorA(y) is symmetric, uniformly positive definite,
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while c(y) and d(x, y) are symmetric with no positivity assumption. The parabolic
equation (1) is just an example: other evolution problems of interest covered by this
paper are the wave equation, parabolic fourth-order equations, or spectral problems.
A generalization to the Schrödinger equation is the topic of another work [10]. The
scalar case of (1) (i.e., K = 1 and uε is a real-valued function) is well understood
(see, e.g., [5–9, 13, 20, 28]) and the goal of this paper is to solve the case of systems
of several coupled equations. However, the method, as well as some results, are
very different in the system case. In order to convince the reader, we first describe
the main results and ideas of proof in the scalar case.

For K = 1, introduce the first eigencouple of the spectral cell problem

−divy
(
A(y)∇yψ1

)+ c(y)ψ1 = λ1ψ1 in T
N, (2)

which, by the Krein-Rutman theorem, is simple and satisfies ψ1(y) > 0 in T
N .

The first eigenvalue λ1 can be interpreted physically as a measure of the balance
between the diffusion and potential terms. Since ψ1 does not vanish, the unknown
can be changed by writing a so-called factorization principle

vε(t, x) = e
λ1t

ε2
uε(t, x)

ψ1
(
x
ε

) , (3)

and, after some algebra, it can easily be shown that the new unknown vε is a solution
of a simpler equation

ψ2
1

(x
ε

) ∂vε
∂t

−div
(
(ψ2

1A)
(x
ε

)
∇vε

)
+(ψ2

1d)
(
x,
x

ε

)
vε=0 in �×(0, T ),
vε=0 on ∂�×(0, T ),

vε(t=0, x)= u0
ε(x)

ψ1( xε )
in �.

(4)

The new parabolic equation (4) is simple to homogenize since it does not contain
any singularly perturbed term, and we thus obtain the following result.

Theorem 1. Assume that (1) is a scalar problem (K = 1). If u0
ε(x) = v0(x)ψ1

(
x
ε

)
,

then vε, defined by (3), converges weakly in L2
(
(0, T );H 1

0 (�)
)

to the solution v
of the following homogenized problem:

∂v

∂t
− div

(
A∗∇v)+ d∗(x) v = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(t = 0, x) = v0(x) in �,

(5)

where A∗ is a constant homogenized tensor and d∗(x) a homogenized coefficient.

It is clear from the above brief summary of the scalar case that the main idea,
namely the factorization principle (3), does not usually work in the case of systems,
i.e., K > 1. Indeed, in general there is no maximum principle, and therefore no
Krein-Rutman theorem, for systems. Thus, ψ1 may change sign and the change
of unknowns (3) is meaningless because vε blows up at some points (see however
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[5] for a special system for which the maximum principle holds true). Even if we
perform a formal computation by assuming that (3) is valid, the system satisfied by
vε has not a simple structure and it is not clear that it admits a homogenized limit,
and even so, there is no reason why the homogenized tensor should be coercive.

In order to homogenize (1) in the system case, our main new idea is to use Bloch
wave theory. Under a generic simplicity assumption for the first eigenvalue and a
non-degenerate quadratic behavior near its minimum (see (9)) we obtain a result
similar to Theorem 1 (see Theorem 2 for details). The two main features are that
the homogenized equation is always scalar and that the cell problem must some-
times be shifted, namely the usual periodicity condition in (2) has to be replaced
by a Bloch periodicity condition. Technically, the Bloch wave theory allows us to
prove a new compactness result (Lemma 3) which shows that sequences satisfy-
ing some weak a priori estimates can be written approximately as the product of
a periodically oscillating sequence and another compact sequence. Our analysis
applies not only to the parabolic problem (1) but also to the corresponding spectral
problem and hyperbolic system. In the latter case, different limit regimes are ob-
tained according to the sign of the minimal cell eigenvalue λ1. Section 2 contains
our notation, a brief review of Bloch wave theory and our main assumption. Our
main results are stated in Section 3 while the proofs are distributed in Sections 4, 5
and 6.

In Section 7 we also obtain new homogenization results for some specific well-
prepared initial data (assuming that � = R

N ). More precisely, recall that Bloch
wave theory introduces the notion of Bloch bands, corresponding to the range of
cell eigenvalues or, in physical terms, to energy levels of Fermi surfaces. Theorem 1
is concerned with the first Bloch band (or ground state). If we assume that the initial
data u0

ε is concentrating at the bottom of a higher level Bloch band (see Section 7
for a precise statement), we obtain a convergence result similar to Theorem 1 but
with a different homogenized tensor (depending on the level of the chosen Bloch
band). Even in the scalar case this result is new. In the context of the Schrödinger
equation it is known as an effective mass theorem (see, the e.g., [21, 23, 24]). The
fact that the homogenized tensor depends on the initial data is very striking in
homogenization theory since usually effective properties are proved to be intrinsic
in the sense that they do not depend on the domain, the applied forces or source
terms, and the initial data.

In Section 8 we show that under a new assumption on the first Bloch eigenvalue,
a different homogenized limit can be obtained for (1). Indeed, the homogenized
problem is a parabolic fourth-order equation.

Finally, Section 9 is devoted to an extension of our previous results to a different
model, namely we consider a fourth-order equation. We first obtain homogenized
limits similar to those of Section 3 but with a fourth-order operator instead of a
second-order one. Then, under a different assumption on the first Bloch eigenvalue,
we prove that a second-order homogenized limit can also be obtained (a situation
which is symmetric to that in Section 8). Our method could be generalized to other
models. In particular, its application to the Schrödinger equation is of paramount
interest. However, since much more can be deduced in the Schrödinger case, we
address this problem in a separate work [10].
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There are several motivations for studying the homogenization of the singularly
perturbed system (1). First, (1) is a model of reaction-diffusion equations in peri-
odic media (like a porous medium or a crystal in solid state physics) and the large
potential is classical when studying long-time asymptotics. Second, the spectral
problem for (1) is the usual model in nuclear reactor physics, the so-called simpli-
fied transport equation. This is a set of diffusion equations for the even moments
of the neutron flux (moments with respect to the angular velocity variable). One
of the main features of this simplified transport system is that it does not satisfy a
maximum principle. So our work is the first rigorous study of homogenization for
this problem, which is of paramount interest for fast numerical computations in the
nuclear industry (see [27] for more details and numerical applications). Third, as
a limit case of large potentials we recover perforated domains with periodic holes
supporting Dirichlet boundary conditions (take c = +∞ in the holes and c = 0
elsewhere). In such a case the term of order ε−2 disappears from the equation (1)
although there is still a singular perturbation due to the presence of Dirichlet holes.
The scalar setting,K = 1, was studied in [28] and we extend this result to the vec-
tor-valued case. One possible application is the study of a composite material with
fixed inclusions in the context of linear elasticity. Fourth, even in the case when
c ≡ 0 (i.e., without singular perturbation) our homogenization result for initial
data concentrating at the bottom of high-level Bloch bands is new and can be seen
as a type of corrector result for capturing an initial layer in time in the context of
classical homogenization [11, 12, 18] (see Remark 16).

2. Notation and Bloch decomposition

We first give our precise notation and assumptions on the real coefficientsA(y),
c(y) and d(x, y) involved in equation (1). Our tensorial notation is the following.
Recall that N is the space dimension, and K is the system dimension, i.e., all
unknown functions are defined with values in R

K . We adopt the convention that
Latin indices i, j belong to {1, .., N}, i.e., refer to spatial coordinates, while Greek
indices α, β vary in {1, .., K}. The K × K matrices c and d are symmetric, with
entries cαβ , dαβ respectively, and have no specific positivity properties. The tensor
A acts on K × N matrices. Denoting by (uα)1�α�K the components of a vector-
valued function u, its gradient is the K ×N matrix ∇u defined by its entries

∇u =
(
∂uα

∂xi

)

1�α�K, 1�i�N
, (6)

and the product A∇u is also aK ×N matrix defined with the Einstein summation
convention by

A∇u =
(
Aαβij

∂uα

∂xi

)

1�β�K, 1�j�N
. (7)

The tensor A is symmetric in the sense that

Aξ · ξ ′ = Aξ ′ · ξ for any ξ, ξ ′ ∈ R
K×N,
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and it is uniformly coercive, i.e., there exists ν > 0 such that for a.e. y ∈ T
N

A(y)ξ · ξ � ν|ξ |2 for any ξ ∈ R
K×N.

We assume that A(y) and c(y) are real, measurable, bounded, periodic functions,
i.e. their entries belong to L∞(TN), while d(x, y) is real, measurable and bounded
with respect to x, and periodic continuous with respect to y, i.e., its entries belong
to L∞ (

�;C(TN)) (other assumptions are possible).
A formal two-scale asymptotic expansion (in the spirit of [11]) shows that the

leading term in the ansatz of uε is the solution of an equation in the unit cell T
N .

Therefore, we need to study a microscopic version of (1). It turns out that the key
cell problem is the following Bloch (or shifted) spectral cell equation

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψn

)
+ c(y)ψn = λn(θ)ψn in T

N, (8)

which, as a compact self-adjoint complex-valued operator on L2(TN)K , admits a
countable sequence of real increasing eigenvalues (λn)n�1 and normalized
eigenfunctions (ψn)n�1 with ‖ψn‖L2(TN)K = 1. The dual parameter θ is called

the Bloch frequency and it runs in the dual cell of T
N , i.e., by periodicity it is

enough to consider θ ∈ T
N . We refer to [11, 15, 25] for more details about the

Bloch spectral problem (8).
Our main assumption is that there exists a Bloch parameter θ0 ∈ T

N such that

(i) θ0 is the unique minimizer of λ1(θ) in T
N,

(ii) λ1(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλ1(θ0) is positive definite.

(9)

Remark 1. In the scalar case, K = 1, assumption (9) is satisfied with θ0 = 0.
Indeed, by using the maximum principle, it is easily seen that the minimum of
λ1(θ) is uniquely attained at 0, and then that the Hessian matrix ∇θ∇θλ1(0), being
equal to the usual homogenized matrix (see, e.g., [16]), is positive definite. On the
other hand, for any K > 1 and in the absence of a zero-order term, i.e., c ≡ 0, it
is easy to check that θ0 = 0 is the unique minimizer of λ1(θ) (however, λ1(0) is
not simple and, if it exists, the Hessian matrix may be not positive definite). In full
generality, there always exists a minimizer of λ1(θ) but it may be non-unique and
λ1(θ0) has no reason to be simple (although, by extending the results of [2], it is
possible to show that λ1(θ0) is generically simple).

Remark 2. The range of possible values of θ0 is limited. The coefficients A and c
being real, it is clear that taking the complex conjugate of (8) amounts to changing
θ to −θ . In other words the function λ1(θ) = λ1(−θ) is even. Since by periodicity
it is enough to minimize λ1(θ) on [−1/2,+1/2]N , the assumed uniqueness of the
minimizer θ0 implies that necessarily all the components of θ0 are either 0 or 1/2.

We do not know if it is possible to obtain a non-zero value of θ0. We performed
numerical experiments in 2-d to compute θ0 for the simplified transport equations
(the SPN model) which is a system of two coupled equations [27]. Even for numer-
ical values of the coefficients out of their range of physical validity, we always
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obtain θ0 = 0. Nevertheless, in a slightly different context, namely for a system of
linear elasticity which is not uniformly elliptic but simply satisfies the Hadamard
ellipticity condition (in other words the associated energy is rank-one convex but
not convex), there is numerical and physical evidence that the minimal value θ0
in (9) is not zero [17]. Similarly, numerical computations in [1] show that, for a
different model of fluid-structure interaction, in 2-d there are two minimal values
θ0: (0, 1/2) and (1/2, 0).

Remark 3. Assumption (9) can be slightly weakened, see Remarks 11, 12 and 13.
However, if we remove the simplicity assumption for λ1(θ0) the homogenized limit
is not any longer a scalar equation but rather a system (see Remark 13 for details).
For example, when c ≡ 0, the minimal eigenvalue λ1(0) = 0 is of multiplicity K
(with constant eigenvectors), and it is well known that, in such a case, (1) admits
an homogenized limit which is again a system of K equations.

Under assumption (9) it is a classical matter to prove that the first eigencouple
of (8) is smooth at θ0 (see, e.g., [19]). Introducing the operator A(θ) defined on
L2(TN)K by

A(θ)ψ = −(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)ψ

)
+ c(y)ψ − λ1(θ)ψ, (10)

it is easy to compute the derivatives of (8) for n = 1. Denoting by (ek)1�k�N the

canonical basis of R
N , the first derivative satisfies

A(θ)
∂ψ1

∂θk
= 2iπekA(y)(∇y + 2iπθ)ψ1 + (divy + 2iπθ) (A(y)2iπekψ1)

+∂λ1

∂θk
(θ)ψ1, (11)

and the second derivative is

A(θ)
∂2ψ1

∂θk∂θl
= 2iπekA(y)(∇y + 2iπθ)

∂ψ1

∂θl
+ (divy + 2iπθ)

(
A(y)2iπek

∂ψ1

∂θl

)

+2iπelA(y)(∇y + 2iπθ)
∂ψ1

∂θk
+ (divy + 2iπθ)

(
A(y)2iπel

∂ψ1

∂θk

)

+∂λ1

∂θk
(θ)

∂ψ1

∂θl
+ ∂λ1

∂θl
(θ)

∂ψ1

∂θk

−4π2ekA(y)elψ1 − 4π2elA(y)ekψ1 + ∂2λ1

∂θl∂θk
(θ)ψ1. (12)

For θ = θ0 we have ∇θλ1(θ0) = 0, thus equations (11) and (12) simplify and we
find

∂ψ1

∂θk
= 2iπζk,

∂2ψ1

∂θk∂θl
= −4π2χkl, (13)

where ζk is the solution of

A(θ0)ζk = ekA(y)(∇y + 2iπθ0)ψ1 + (divy + 2iπθ0) (A(y)ekψ1) in T
N,

(14)
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and χkl is the solution of

A(θ0)χkl = ekA(y)(∇y + 2iπθ0)ζl + (divy + 2iπθ0) (A(y)ekζl)

+elA(y)(∇y + 2iπθ0)ζk + (divy + 2iπθ0) (A(y)elζk)

+ekA(y)elψ1 + elA(y)ekψ1 − 1

4π2

∂2λ1

∂θl∂θk
(θ0)ψ1 in T

N. (15)

There exists a unique solution of (14), up to the addition of a multiple ofψ1. Indeed,
the right-hand side of (14) satisfies the required compatibility condition (i.e., it is
orthogonal to ψ1) because ζk is just a multiple of the partial derivative of ψ1 with
respect to θk which necessarily exists, see (11). By the same token, there exists a
unique solution of (15), up to the addition of a multiple of ψ1. The compatibility
condition of (15) yields a formula for the Hessian matrix ∇θ∇θλ1(θ0).

We now recall some results on the Bloch decomposition associated with the
spectral problem (8) (see, e.g., [11, 15]).

Lemma 1. Let u(y) ∈ L2(RN)K . Define αk(θ) = ∫
RN
u(y) ·ψk(y, θ)e−2iπθ ·ydy.

Then,

u(y) =
∑

k�1

∫

TN
αk(θ)ψk(y, θ)e

2iπθ ·ydθ.

Furthermore, if v(y) = ∑
k�1

∫
TN
βk(θ)ψk(y, θ)e

2iπθ ·ydθ in L2(RN)K , then

∫

RN
u(y) · v(y) dy =

∑

k�1

∫

TN
αk(θ)βk(θ) dθ.

In what follows we shall need a rescaled version of Lemma 1 that we now
describe. Upon the change of variable y = x

ε
, we define uε(x) = ε−N/2u(y)which

satisfies ‖uε‖L2(RN)K = ‖u‖L2(RN)K . Applying Lemma 1 we deduce the following
rescaled Bloch transform:

uε(x) =
∑

k�1

∫

ε−1TN
αεk(η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη, (16)

with η = θ−θ0
ε

and αεk(η) = εN/2αk(θ). The same orthogonality property holds
true:

∫

RN
uε(x) · vε(x) dx =

∑

k�1

∫

ε−1TN
αεk(η)β

ε

k(η) dη.
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3. Main results

Let � ⊂ R
N be an open set (bounded or not). Let 0 < T < +∞ be a final

time. We first consider the parabolic problem

∂uε

∂t
− div

(
A
(x
ε

)
∇uε

)
+
(
c
(
x
ε

)

ε2 + d
(
x,
x

ε

))
uε = 0 in �× (0, T ),

uε = 0 on ∂�× (0, T ),
uε(t = 0, x) = u0

ε(x) in �.
(17)

The unknown uε(t, x) is vector-valued, i.e., it is a function from (0, T ) × � into
C
K with K � 1. Since Bloch waves are involved in our results, we always con-

sider complex-valued unknown functions. Assuming that the initial data u0
ε belongs

to L2(�)K , it is a classical result that there exists a unique solution of (17) in
C
([0, T ];L2(�)K

) ∩ L2
(
(0, T );H 1

0 (�)
K
)
.

Since the matrix c does not satisfy any positivity property, we cannot obtain any
a priori estimate directly from (17). On the other hand, the cell spectral problem and
assumption (9) indicate that λ1(θ0) governs the time decay (or growth, according
to its sign) of the solution uε. Therefore, we first perform a time renormalization
in the spirit of the factorization principle (3) and we introduce a new unknown,

ũε(t, x) = e
λ1(θ0)t

ε2 uε(t, x), (18)

which satisfies

∂ũε

∂t
−div

(
A
(x
ε

)
∇ũε

)
+ c

(
x
ε

)− λ1(θ0)

ε2 ũε+d
(
x,
x

ε

)
ũε=0 in �×(0, T ),
ũε=0 on ∂�×(0, T ),

ũε(t=0, x)=u0
ε(x) in �.

(19)

Then, we can obtain the following a priori estimate.

Lemma 2. There exists a constant C > 0 which does not depend on ε(but may
depend on T ) such that the solution of (19) satisfies

‖ũε‖L∞((0,T );L2(�)K) + ε‖∇ũε‖L2((0,T )×�)N×K � C‖u0
ε‖L2(�)K . (20)

Theorem 2. Assume (9) and that the initial data u0
ε ∈ L2(�)K is of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x), (21)

with v0 ∈ W 1,∞(�). The solution of (17) can be written as

uε(t, x) = e
− λ1(θ0)t

ε2
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
, (22)
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where rε is a vector-valued remainder term, defined on (0, T )× R
N , such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N, (23)

and vε is a scalar sequence which converges weakly in L2
(
(0, T );H 1(�)

)
, and

strongly in L2
(
(0, T );L2

loc(�)
)
, to the solution v of the scalar homogenized prob-

lem

∂v

∂t
− div

(
A∗∇v)+ d∗(x) v = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(t = 0, x) = v0(x) in �,

(24)

with A∗ = 1
8π2 ∇θ∇θλ1(θ0) and d∗(x) = ∫

TN
d(x, y)ψ1(y) · ψ1(y) dy.

Remark 4. Of course, if � is bounded, we can take ω = � in (23) and replace
L2

loc(�) by L2(�) in the above theorem.

Remark 5. It is only for simplicity that we make assumption (21) on the “well-
prepared” character of the initial data. Indeed, we use it only for proving the
strong convergence of vε to v in L2

(
(0, T );L2

loc(�)
)
. The rest of Theorem 2

holds true with the weaker assumption that u0
ε(x)e

−2iπ θ0 ·x
ε two-scale converges

to ψ1(y, θ0)v
0(x) with v0 ∈ L2(�) (see [3, 22] and Proposition 1 for the notion

of two-scale convergence). What is more, for any kind of initial data we can still
obtain a similar result, but the homogenized initial condition v0 is just defined as
some type of weak two-scale limit (which may well be zero). In other words, there
is no need to have well-prepared initial data in Theorem 2.

Remark 6. Theorem 2 still holds true if we add to equation (17) a non-linear term
of order ε0. Typically, we can add a non-linear term of the type g(x, x

ε
, uε) where

g(x, y, ξ) is an homogeneous of degree one, Lipschitz function with respect to ξ
such that

|g(x, y, ξ)− g(x, y, ξ ′)| � C|ξ − ξ ′|, g(x, y, tξ) = tg(x, y, ξ) ∀ t > 0.

In such a case, the homogenized problem (24) has an additional zero-order term
which is g∗(x, v) with g∗(x, v) = ∫

TN
g(x, y, ψ1(y, θ0)v) · ψ1(y, θ0) dy. Simi-

larly, it is possible to add to (17) a source term of the type

fε(t, x) = e
− λ1(θ0)t

ε2 e2iπ θ0 ·x
ε f

(
t, x,

x

ε

)
.

It yields a source term f ∗(t, x) = ∫
TN
f (t, x, y) · ψ1(y) dy in the homogenized

equation (24).

We now consider the eigenvalue problem in a bounded domain �:

−div
(
A
(x
ε

)
∇uε

)
+
(
c
(
x
ε

)

ε2 + d
(
x,
x

ε

))
uε = λεuε in �,

uε = 0 on ∂�.

(25)
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Since � is assumed to be bounded, problem (25) has a real discrete spectrum

λε1 � λε2 � · · · � λεn · · · → +∞,

with real eigenfunctions denoted by uεk , normalized by ‖uεk‖L2(�)K = 1.

Theorem 3. Under assumption (9), for each k � 1 there is

λεk = λ1(θ0)

ε2 + µk + o(1) with lim
ε→0

o(1) = 0,

and the corresponding eigenvector uεk(x) admits the representation

uεk(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vεk(x)+ rεk (x) (26)

where vεk ∈ H 1
0 (�) and rεk ∈ L2(�)K satisfy

lim
ε→0

‖rεk‖L2(�)K = 0, ‖vεk‖H 1
0 (�)

� C, lim
ε→0

‖vεk‖L2(�) = 1,

and any limit point vk , as ε → 0, of the scalar sequence vεk is a normalized eigen-
function associated with the kth eigenvalue µk of the scalar homogenized spectral
problem

−div
(
A∗∇v)+ d∗(x)v = µv in �,

v = 0 on ∂�,
(27)

with A∗ = 1
8π2 ∇θ∇θλ1(θ0) and d∗(x) = ∫

TN
d(x, y)ψ1(y) · ψ1(y) dy.

Furthermore, if µk is a simple eigenvalue of (27), the entire sequence vεk con-
verges to the homogenized eigenfunction vk .

Finally we address the hyperbolic problem

∂2uε

∂t2
− div

(
A
(x
ε

)
∇uε

)
+ c

(
x
ε

)

ε2 uε = 0 in �× (0, T ),

uε = 0 on ∂�× (0, T ),
uε(t = 0, x) = u0

ε(x) in �,
∂uε

∂t
(t = 0, x) = u1

ε(x) in �,

(28)

where uε(t, x) takes its values in C
K with K � 1. Assuming that the initial

data are u0
ε ∈ H 1

0 (�)
K and u1

ε ∈ L2(�)K , (28) admits a unique solution uε ∈
C
([0, T ];H 1

0 (�)
K
)∩C1

([0, T ];L2(�)K
)
. The scalar caseK = 1 was addressed

in [4]. Depending on the sign of the minimal eigenvalue λ1(θ0) of the cell prob-
lem (8), we obtain different asymptotic behavior for (28). We begin with the case
λ1(θ0) = 0 which does not require any time renormalization.
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Theorem 4. Assume (9), λ1(θ0) = 0 and that the initial data are of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x) ∈ H 1
0 (�)

K,

u1
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v1(x) ∈ L2(�)K,
(29)

with v0 ∈ H 1
0 (�)∩W 1,∞(�) and v1 ∈ L2(�). The solution of (28) can be written

as

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x), (30)

where rε is a vector-valued remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N, (31)

and vε is a scalar sequence which converges weakly in L2
(
(0, T );H 1(�)

)
to the

solution v of the scalar homogenized problem

∂2v

∂t2
− div

(
A∗∇v) = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(t = 0, x) = v0(x) in �,
∂v

∂t
(t = 0, x) = v1(x) in �,

(32)

with A∗ = 1
8π2 ∇θ∇θλ1(θ0).

When λ1(θ0) �= 0, we cannot homogenize directly (28). As in the scalar case
[4] we must rather perform a time rescaling and consider large times of order ε−1.
In other words, instead of (28) we now consider

ε2 ∂
2uε

∂t2
− div

(
A
(x
ε

)
∇uε

)
+ c

(
x
ε

)

ε2 uε = 0 in �× (0, T ),

uε = 0 on ∂�× (0, T ),
uε(t = 0, x) = u0

ε(x) in �,
∂uε

∂t
(t = 0, x) = u1

ε(x) in �.

(33)

Let us first assume that λ1(θ0) < 0. We perform a time renormalization analo-
gous to (18) and we introduce a new unknown,

ũε(t, x) = e
−

√−λ1(θ0)t

ε2 uε(t, x), (34)

which satisfies

ε2 ∂
2ũε

∂t2
+ 2

√−λ1(θ0)
∂ũε

∂t−div
(
A
(
x
ε

)∇ũε
)

+ c( xε )−λ1(θ0)

ε2 ũε = 0 in �× (0, T ),
ũε = 0 on ∂�× (0, T ),

ũε(t = 0, x) = u0
ε(x) in �,

∂ũε

∂t
(t = 0, x) = u1

ε(x)−
√−λ1(θ0)

ε2 u0
ε(x) in �.

(35)
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In this case we obtain a parabolic homogenized equation.

Theorem 5. Assume (9), λ1(θ0) < 0 and that the initial data is

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x) ∈ H 1
0 (�)

K, (36)

with v0 ∈ H 1
0 (�) ∩ W 1,∞(�), and that ε2u1

ε(x) is bounded in L2(�)K while
ε2ψ1

(
x
ε
, θ0
) · u1

ε(x) converges weakly to 0 in L2(�). The solution of (33) can be
written as

uε(t, x) = e

√−λ1(θ0)t

ε2
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
, (37)

where rε is a vector-valued remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N, (38)

and vε converges weakly in L2
(
(0, T );H 1(�)

)
to the solution v of the scalar

homogenized problem

2
√−λ1(θ0)

∂v

∂t
− div

(
A∗∇v) = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(t = 0, x) = 1

2v
0(x) in �,

(39)

with A∗ = 1
8π2 ∇θ∇θλ1(θ0).

Remark 7. The 1
2 factor in front of the initial data in the homogenized problem

(39) is quite surprising. It arises because the initial velocity in (35) contains some
contribution of u0

ε . As already explained in the scalar case [4], there is an initial
layer in time in (35) which is not taken into account by Theorem 5.

Let us now assume that λ1(θ0) > 0. We perform another time renormalization
and we introduce a new unknown,

ũε(t, x) = e
−i

√
λ1(θ0)t

ε2 uε(t, x), (40)

which satisfies

ε2 ∂
2ũε

∂t2
+ 2i

√
λ1(θ0)

∂ũε

∂t−div
(
A
(
x
ε

)∇ũε
)

+ c( xε )−λ1(θ0)

ε2 ũε = 0 in �× (0, T ),
ũε = 0 on ∂�× (0, T ),

ũε(t = 0, x) = u0
ε(x) in �,

∂ũε

∂t
(t = 0, x) = u1

ε(x)− i

√
λ1(θ0)

ε2 u0
ε(x) in �.

(41)

In this case we obtain a Schrödinger-type homogenized equation. Remark that,
although there is no remainder term in (43), the convergence of vε is much weaker
than in the previous cases (see also Remark 14).



Homogenization of Periodic Systems with Large Potentials 191

Theorem 6. Assume (9), λ1(θ0) > 0 and that the initial data is

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x) ∈ H 1
0 (�)

K, (42)

with v0 ∈ W 1,∞(�), and that ε2u1
ε(x) is bounded in L2(�)K while ε2ψ1

(
x
ε
, θ0
) ·

u1
ε(x) converges weakly to 0 in L2(�). The solution of (33) can be written as

uε(t, x) = e
i

√
λ1(θ0)t

ε2 e2iπ θ0 ·x
ε vε(t, x), (43)

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2
(
(0, T );H 1

0 (�)
)

is
the solution of the scalar homogenized problem

2i
√
λ1(θ0)

∂v

∂t
− div

(
A∗∇v) = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(t = 0, x) = 1

2v
0(x) in �,

(44)

with A∗ = 1
8π2 ∇θ∇θλ1(θ0).

Remark 8. All the results in the hyperbolic case (Theorems 4, 5, and 6) hold true
when we add a zero-order term of the type d

(
x, x

ε

)
uε, where d(x, y) is a real sym-

metric non-negative matrix with entries inL∞ (
�;C(TN)). This yields a zero-order

term in the homogenized problem which is precisely d∗(x) = ∫
TN
d(x, y)ψ1(y) ·

ψ1(y) dy.

4. Proofs in the parabolic case

Notation. for any function φ(x, y) defined on R
N × T

N , we denote by φε the
function φ(x, x

ε
).

Proof of Lemma 2. We multiply equation (19) by ũε and we integrate by parts to
obtain

1

2

∫

�

|ũε(t, x)|2dx − 1

2

∫

�

|u0
ε(x)|2dx +

∫ t

0

∫

�

d
(
x,
x

ε

)
ũε · ũε ds dx

+
∫ t

0

∫

�

(
A
(x
ε

)
∇ũε · ∇ũε + c

(
x
ε

)− λ1(θ0)

ε2 ũε · ũε
)
ds dx = 0. (45)

If we can check that the last integral in (45) is non-negative, the lemma is proved
by a standard Gronwall inequality. Extending ũε by zero outside � and changing
the variable to y = x

ε
, a sufficient condition is to prove that, for any u ∈ H 1(RN)K ,

∫

RN
(A(y)∇u · ∇u+ (c(y)− λ1(θ0)) u · u) dy � 0.

Applying the Bloch decomposition of Lemma 1 to u yields
∫

RN
(A(y)∇u · ∇u+ (c(y)− λ1(θ0)) u · u) dy



192 Grégoire Allaire et al.

=
∑

k�1

∫

TN
|αk(θ)|2 (λk(θ)− λ1(θ0)) dθ

which is non-negative by assumption (9). ��
We now briefly recall the notion of two-scale convergence (see [3, 22]).

Proposition 1. Letwε be a bounded sequence inL2(�). There exist a subsequence,
still denoted by ε, and a limit w(x, y) ∈ L2(�× T

N) such that wε two-scale con-
verges to w in the sense that

lim
ε→0

∫

�

wε(x)φ
(
x,
x

ε

)
dx =

∫

�

∫

TN
w(x, y)φ(x, y) dx dy

for all functions φ(x, y) ∈ L2
(
�;C(TN)). The two-scale convergence is denoted

by wε
2s
⇀ w.

Furthermore, if ε∇wε is also bounded in L2(�)N , then, up to another subse-

quence, ε∇wε 2s
⇀ ∇yw and w belongs to L2

(
�;H 1(TN)

)
.

Proof of Theorem 2. To simplify the exposition we forget the notation ·̃ for the
solution ũε of (19). Equivalently, we could have subtracted from c(y) an adequate
constant, so that λ1(θ0) = 0 and uε = ũε. Define a sequence wε by

wε(t, x) = uε(t, x)e
−2iπ θ0 ·x

ε .

By the a priori estimate of Lemma 2 we have

‖wε‖L∞((0,T );L2(�)K) + ε‖∇wε‖L2((0,T )×�)K � C,

and applying Proposition 1, up to a subsequence, we find that there exists a limit
w(t, x, y) ∈ L2

(
(0, T )×�;H 1(TN)K

)
such that

wε
2s
⇀ w and ε∇wε 2s

⇀ ∇yw
in the sense of two-scale convergence.

First step. We multiply (19) by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ θ0 ·x

ε ,
where φ(t, x, y) is a smooth test function defined on [0, T )×�× T

N , with com-
pact support in [0, T )×�, and with values in C

K . Integrating by parts yields

ε2
∫

�

u0
ε · φεe−2iπ θ0 ·x

ε dx − ε2
∫ T

0

∫

�

wε · ∂φ
ε

∂t
dt dx

+
∫ T

0

∫

�

Aε(ε∇ + 2iπθ0)wε · (ε∇ − 2iπθ0)φ
ε
dt dx

+
∫ T

0

∫

�

(cε − λ1(θ0)+ ε2dε)wε · φε dt dx = 0.
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Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθ)
(
A(y)(∇y + 2iπθ)w

)
+ c(y)w = λ1(θ0)w in T

N.

By the simplicity of λ1(θ0), this implies that there exists a scalar function v(t, x) ∈
L2 ((0, T )×�) (possibly complex-valued) such that

w(t, x, y) = v(t, x)ψ1(y, θ0). (46)

Second step. We multiply (19) by the complex conjugate of

�ε = e2iπ θ0 ·x
ε

(
ψ1

(x
ε
, θ0

)
φ(t, x)+ ε

N∑
k=1

∂φ

∂xk
(t, x)ζk

(x
ε

))
, (47)

whereφ(t, x) is a smooth, compactly supported, test function defined from [0, T )×
� into C, and ζk(y) is the solution of (14). After some algebra we find that
∫

�

Aε∇uε · ∇�εdx =
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)
(φwε) ·

(
∇ − 2iπ

θ0

ε

)
ψ
ε

1

+ε
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)(
∂φ

∂xk
wε

)
·
(

∇ − 2iπ
θ0

ε

)
ζ
ε

k

−
∫

�

Aεek
∂φ

∂xk
wε ·

(
∇ − 2iπ

θ0

ε

)
ψ
ε

1

+
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)(
∂φ

∂xk
wε

)
· ekψε1

−
∫

�

Aεwε∇ ∂φ

∂xk
· ekψε1

−
∫

�

Aεwε∇ ∂φ

∂xk
· (ε∇ − 2iπθ0)ζ

ε

k

+
∫

�

Aεζ
ε

k(ε∇ + 2iπθ0)wε · ∇ ∂φ

∂xk
. (48)

Now, for any smooth compactly supported test function � from � into C
K , we

deduce from the definition of ψ1 that
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)
ψε1 ·

(
∇ − 2iπ

θ0

ε

)
�+ 1

ε2

∫

�

(cε − λ1(θ0))ψ
ε
1 ·� = 0,

(49)

and from the definition of ζk ,
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)
ζ εk ·

(
∇ − 2iπ

θ0

ε

)
�+ 1

ε2

∫

�

(cε − λ1(θ0))ζ
ε
k ·�

= ε−1
∫

�

Aε
(

∇ + 2iπ
θ0

ε

)
ψε1 · ek�− ε−1

∫

�

Aεekψ
ε
1 ·
(

∇ − 2iπ
θ0

ε

)
�.

(50)
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Combining (48) with the potential term, we easily check that the first line of its
right-hand side cancels out because of (49) with � = φwε, and the next three

lines cancel out because of (50) with � = ∂φ
∂xk
wε. On the other hand, we can pass

to the limit in the three last terms of we find that (48). Finally, using the above
information, we find that (19) multiplied by �ε yields after simplification,

∫

�

u0
ε ·�ε(t = 0)dx −

∫ T

0

∫

�

wε ·
(
ψ
ε

1
∂φ

∂t
+ ε

∂2φ

∂xk∂t
ζ
ε

k

)
dt dx

−
∫ T

0

∫

�

Aεwε∇ ∂φ

∂xk
· ekψε1dt dx

−
∫ T

0

∫

�

Aεwε∇ ∂φ

∂xk
· (ε∇ − 2iπθ0)ζ

ε

kdt dx

+
∫ T

0

∫

�

Aεζ
ε

k(ε∇ + 2iπθ0)wε · ∇ ∂φ

∂xk
dt dx

+
∫ T

0

∫

�

dεwε ·�ε dt dx = 0. (51)

Passing to the two-scale limit in each term of (51) gives
∫

�

∫

TN
ψ1v

0 · ψ1φ(t = 0)dx dy −
∫ T

0

∫

�

∫

TN
ψ1v · ψ1

∂φ

∂t
dt dx dy

−
∫ T

0

∫

�

∫

TN
Aψ1v∇ ∂φ

∂xk
· ekψ1dt dx dy

−
∫ T

0

∫

�

∫

TN
Aψ1v∇ ∂φ

∂xk
· (∇y − 2iπθ0)ζ kdt dx dy

+
∫ T

0

∫

�

∫

TN
Aζ k(∇y + 2iπθ0)ψ1v · ∇ ∂φ

∂xk
dt dx dy

+
∫ T

0

∫

�

∫

TN
dψ1v · ψ1φ dt dx dy = 0. (52)

Recalling the normalization
∫
TN

|ψ1|2dy = 1, and introducing

2A∗
jk =

∫

TN

(
Aψ1ej · ekψ1 + Aψ1ek · ejψ1

+Aψ1ej · (∇y − 2iπθ0)ζ k + Aψ1ek · (∇y − 2iπθ0)ζ j

−Aζk(∇y + 2iπθ0)ψ1 · ej − Aζj (∇y + 2iπθ0)ψ1 · ek
)
dy, (53)

and d∗(x) = ∫
TN
d(x, y)ψ1(y) · ψ1(y) dy, (52) is equivalent to

∫

�

v0φ(0)dx −
∫ T

0

∫

�

(
v
∂φ

∂t
+ A∗v · ∇∇φ − d∗(x)vφ

)
dt dx = 0,

which is a very weak form of the homogenized equation (24). Note, however, that
we cannot recover the Dirichlet boundary condition from (52). To this end we shall
use the compactness Lemma 3 below (which was not required so far) or, more
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precisely, its Corollary 1 which implies the existence of a bounded scalar sequence
vε in L2

(
(0, T );H 1(RN)

)
such that

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x), (54)

and limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N . Up to a subse-

quence, vε converges weakly to a limit v inL2
(
(0, T );H 1(RN)

)
, which necessarily

coincides with the two-scale limit obtained in (46). If the compact setω lies outside
�, i.e. ω ⊂ (

R
N \�), we deduce from (54) that

ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x) = −rε(t, x) in ω × (0, T ),

and since ψ1 is normalized, we obtain

‖rε‖2
L2((0,T )×ω)K =

∫ T

0

∫

ω

|ψ1

(x
ε
, θ0

)
|2|vε(t, x)|2dt dx

→
∫ T

0

∫

ω

|v(t, x)|2dt dx = 0.

Therefore, we deduce that v = 0 in any compact set ω outside�. This implies that
v belongs to L2

(
(0, T );H 1

0 (�)
)
.

The compatibility condition of (15) for the second derivative of ψ1 shows that
the matrix A∗, defined by (53), is indeed equal to 1

8π2 ∇θ∇θλ1(θ0), and thus is real,
symmetric, positive definite by assumption (9). Therefore, the homogenized prob-
lem (24) is well posed. By uniqueness of the solution of the homogenized problem
(24), we deduce that the entire sequence vε converges to v (which is a real-valued
function if the initial data v0 is so). ��
Remark 9. As usual in periodic homogenization, the choice of the test function
�ε, defined by (47), is dictated by the formal two-scale asymptotic expansion that
can be obtained for the solution uε of (17). Indeed, if we admit that the ansatz of
uε starts with the following two exponential terms (which is not obvious a priori!),
then a simple and formal computation shows that

uε(t, x) ≈ e
− λ1(θ0)t

ε2 e2iπ θ0 ·x
ε

(
ψ1

(x
ε
, θ0

)
v(t, x)+ ε

N∑
k=1

∂v

∂xk
(t, x)ζk

(x
ε

))
,

where v is the homogenized solution of (24).

Lemma 3. Let uε be a bounded sequence in L2(RN)K . Assume that there exists a
finite constant C such that

∫

RN

(
A
(x
ε

)
∇uε · ∇uε + c

(
x
ε

)− λ1(θ0)

ε2 uε · uε
)
dx � C. (55)

Then, under assumption (9),

uε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(x)+ rε(x), (56)
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where vε is a bounded scalar sequence inH 1(RN) and limε→0 ‖rε‖L2(ω)K = 0 for
any compact set ω ⊂ R

N .

Remark 10. If the sequence uε further vanishes outside an open set �, then we
can obtain the representation (56) with vε uniformly bounded inH 1

0 (�). Indeed, it
is enough to project the function vε ∈ H 1(RN), given by Lemma 3, on H 1

0 (�).

Corollary 1. Let ũε be the solution of the parabolic system (19). Then, under
assumptions (9) and (21),

ũε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x),

where vε is a bounded scalar sequence in L2((0, T );H 1(RN)), such that ∂vε
∂t

is
bounded in L2((0, T ) × R

N), and limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact
set ω ⊂ R

N . In particular, vε is relatively compact in L2
(
(0, T );L2

loc(R
N)
)
.

Proof of Lemma 3. Our proof is in the spirit of the previous works [14, 16, 26].
Applying the rescaled Bloch decomposition (16) to uε(x) with η = θ−θ0

ε
, we have

uε(x) =
∑

k�1

∫

ε−1TN
αεk(η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη, (57)

and

∫

RN

(
A
(x
ε

)
∇uε · ∇uε + c

(
x
ε

)− λ1(θ0)

ε2 uε · uε
)
dx

= ε−2
∑

k�1

∫

ε−1TN
|αεk(η)|2

(
λk(θ0 + εη)− λ1(θ0)

)
dη.

Since λk(θ) − λ1(θ0) � 0 and, for k � 2, λk(θ) − λ1(θ0) � C > 0, we deduce
from the bound (55) that

∑

k�2

∫

ε−1TN
|αεk(η)|2dη � Cε2.

For k = 1, by assumption (9) there exists C > 0 such that

λ1(θ)− λ1(θ0) � C|θ − θ0|2 ∀θ ∈ T
N,

and thus (55) implies ∫

ε−1TN
|η|2|αε1(η)|2dη � C.

Extending αε1(η) by zero outside ε−1
T
N , and using the inverse Fourier transform,

we deduce that the scalar sequence ṽε, defined by
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ṽε(x) =
∫

RN
αε1(η)e

2iπη·xdη,

is bounded in H 1(RN).
Introducing a parameter q ∈ (0, 1) (to be chosen later) we define a cut-off of

ṽε by

vε =
∫

|η|<ε−q
αε1(η)e

2iπη·xdη. (58)

The difference between vε and ṽε is small since

‖ṽε − vε‖2
L2(RN)

=
∫

|η|>ε−q
|αε1(η)|2dη � ε2q

∫

RN
|η|2|αε1(η)|2dη � Cε2q .

Similarly we have
∫

ε−1TN
αε1(η)ψ1

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη

=
∫

|η|<ε−q
αε1(η)ψ1

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη + tε(x),

where tε is small, i.e.,

‖tε‖2
L2(RN)

=
∫

η∈ε−1TN , |η|>ε−q
|αε1(η)|2dη � ε2q

∫

ε−1TN
|η|2|αε1(η)|2dη � Cε2q .

Since the first eigencouple of (8) is differentiable with respect to θ at θ0, there exists
a constant C > 0 such that

‖ψ1(·, θ)− ψ1(·, θ0)‖L2(TN)K � C|θ − θ0| ∀θ ∈ T
N.

Therefore, we have
∫

|η|<ε−q
αε1(η)ψ1

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη

= ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(x)+ sε(x)

where sε is small, i.e.,

‖sε‖2
L2(ω)K

=
∫

ω

∣∣∣∣
∫

|η|<ε−q
αε1(η)

(
ψ1

(x
ε
, θ0 + εη

)
− ψ1

(x
ε
, θ0

))
e2iπη·xe2iπ θ0 ·x

ε dη

∣∣∣∣
2
dx

�
∫

ω

(∫

|η|<ε−q
dη

)(∫

|η|<ε−q
|αε1(η)|2

∣∣∣ψ1

(x
ε
, θ0 + εη

)
− ψ1

(x
ε
, θ0

)∣∣∣2 dη
)
dx

� Cε−Nq
∫

|η|<ε−q
|αε1(η)|2

(∫

ω

∣∣∣ψ1

(x
ε
, θ0 + εη

)
− ψ1

(x
ε
, θ0

)∣∣∣2 dx
)
dη

� C|ω|ε−Nq
∫

|η|<ε−q
ε2|η|2|αε1(η)|2dη

� C|ω|ε2−Nq
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for any compact set ω ⊂ R
N (we cannot obtain a uniform estimate on R

N since sε
is not defined as a Bloch decomposition). Collecting all the intermediate steps we
deduce

uε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(x)+ rε(x)

and ‖rε‖2
L2(ω)K

� C|ω|ε 2
N+2 with the optimal value of q equal to 2/(N + 2). ��

Proof of Corollary 1. The parabolic energy estimate for (19) yields

1

2

∫

�

|ũε(T )|2dx +
∫ T

0

∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx dt � C.

This implies assumption (55) (integrated in time) and thus, mimicking the proof of
Lemma 3, we obtain the same result with vε bounded in L2((0, T );H 1(RN)) and
rε converging strongly to 0 in L2((0, T )× ω)K .

To obtain the bound on ∂vε
∂t

we now multiply (19) by ∂ũε
∂t

to obtain

∫ T

0

∫

�

∣∣∣∣∣
∂ũε

∂t

∣∣∣∣∣
2

dx + 1

2

∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
(T )dx

= 1

2

∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
(0)dx. (59)

When we use assumption (21) of well-prepared initial data, and take into account
the equation satisfied by ψ1, a simple computation shows that the right-hand side
of (59) is equal to

1

2

∫

�

Aε(ψ1
ε ⊗ ∇v0) ·

(
ψ

1
ε ⊗ ∇v0

)
dx,

which is bounded since v0 ∈ W 1,∞(�). Thus, it implies that ∂ũε
∂t

is bounded in
L2((0, T )×�)K . Recalling the Bloch wave decomposition (57) of ũε, we have

∂ũε

∂t
(t, x) =

∑

k�1

∫

ε−1TN

∂αεk

∂t
(t, η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη,

and
∥∥∥∥
∂vε

∂t

∥∥∥∥
2

L2((0,T )×RN)

=
∫ T

0

∫

ε−1TN

∣∣∣∣
∂αεk

∂t

∣∣∣∣
2

dη dt �
∥∥∥∥
∂ũε

∂t

∥∥∥∥
2

L2((0,T )×�)K
,

which proves that vε is bounded in H 1((0, T ) × R
N) and thus locally relatively

compact in L2((0, T )× R
N).

If� = R
N , we can obtain the same compactness of vε without using assumption

(21). Indeed, it suffices to multiply (19) by a test function

φε(t, x) =
∫

ε−1TN
β(t, η)ψ1

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη,
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where β(t, η) is the Fourier transform of a functionφ(t, x) ∈ L2((0, T );H 1(RN)).
Then, using the Bloch decomposition, we can prove that ∂vε

∂t
is bounded inL2((0, T );

H−1(RN)) which, by a standard embedding theorem, yields the result. This trick
does not work for � �= R

N because φε does not satisfy the Dirichlet boundary
condition. ��
Remark 11. If we remove from assumption (9) the positive definite character of the
Hessian matrix ∇θ∇θλ1(θ0), we can still obtain an homogenization result, weaker
than Theorem 2. Indeed, the same proof shows that wε two-scale converges, up
to a subsequence, to ψ1(y, θ0)v(t, x) where v is a solution of the homogenized
equation (24) with a possibly degenerate matrix A∗ (which is nevertheless always
non-negative because θ0 is a minimum point). However, Lemma 3 holds true only
if ∇θ∇θλ1(θ0) is positive definite. Thus, we cannot recover the Dirichlet boundary
condition, neither can we obtain the uniqueness of the homogenized solution and
the convergence of the entire sequence wε.

Remark 12. If we remove from assumption (9) the condition that the minimum
point θ0 of λ1(θ) is unique, then we can also prove a weaker version of Theorem 2.
For each minimum and associated Hessian matrix ∇θ∇θλ1, we can extract a sub-
sequence such that wε two-scale converges ψ1(y, θ0)v(t, x) where v is a solution
of the homogenized equation (24). However, since Lemma 3 does not hold true
in this case, we cannot recover the Dirichlet boundary condition. Nevertheless, if
� = R

N and ∇θ∇θλ1 is positive definite, we do not need any boundary condition to
obtain the unique resolvability of the homogenized equation. Thus, in such a case,

the entire sequence wε is converging. Recall that wε = e
λ1(θ0)t

ε2 e−2iπ θ0 ·x
ε uε, so that

for different minima we have different values of θ0, thus different sequences wε,
and eventually different homogenized problems. If the initial condition is a super-
position of well-prepared initial data for each minimum point θ0, then, by linearity,
we can decompose the solution in a superposition of elementary solutions, each of
them converging to its own homogenized limit depending on θ0.

Remark 13. If we replace, in assumption (9), the simplicity of λ1(θ0) by the con-
dition that its multiplicity is k � 1, and if we make suitable assumptions on the
smoothness of the k first branches of eigenvalues λn(θ) (and corresponding ei-
genvectors) in the vicinity of θ0, then we can generalize Theorem 2. The main
difference is that, in such a case, the homogenized problem is now a system of
k diffusion equations which are coupled only by zero-order terms. The diffusion
tensor of each equation is the Hessian of the corresponding branch of eigenvalues
at θ0. This is clearly seen in the first step of the proof of Theorem 2 where the
conclusion is now that the two-scale limitw(t, x, y) is a combination of k indepen-
dent eigenvectors associated with λ1(θ0). In the second step of the proof, we now
choose a test function which is a similar combination of k test functions associated
with each smooth branch of eigenvectors (the functions ζi are the corresponding
derivatives with respect to θi of these eigenvectors and may thus change from one
branch to another). Passing to the limit is as before and there is no coupling of the
second-order terms because of the orthogonality property of the chosen family of
eigenvectors.
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5. Proofs for the spectral problem

This section is devoted to the proof of Theorem 3.

Lemma 4. There exists a finite constant C, which does not depend on ε, such that

λ1(θ0)

ε2 + C � λε1 � λ1(θ0)

ε2 + µ1 + o(1), (60)

where o(1) vanishes as ε → 0.

Proof. Let (µ1, v1) be the first eigencouple of the homogenized problem (27). For
each small δ > 0, we introduce a smooth and compactly supported in � function
wδ , such that ‖wδ‖L2(�) = 1 and

∫

�

(
A∗∇wδ · ∇w̄δ + d∗(x)|wδ|2

)
dx < µ1 + δ.

In other words, wδ is an approximation of v1. In the variational formulation

λε1 = min‖u‖
L2(�)K=1

∫

�

(
Aε∇u · ∇u+

(
ε−2cε + dε

)
u · u

)
dx (61)

we substitute a test function of the form

Uε = γεe
2iπ θ0 ·x

ε

(
ψ1

(x
ε
, θ0

)
wδ(x)+ ε

N∑
k=1

∂wδ

∂xk
(x)ζk

(x
ε

))
, (62)

where ζk is the solution of (14) and γε is a normalization constant chosen in such
a way that ‖Uε‖L2(�)K = 1. Since ψ1 and ζk are periodic functions, and since
wδ is normalized, we have limε→0 γε = 1. In view of (10) and (14), after simple
rearrangements we obtain

λε1 � λ1(θ0)

ε2 + o(1)+ γ 2
ε

∫

�

Aεαβ,klψ
ε
1,αψ̄

ε
1,β
∂wδ

∂xk

∂wδ

∂xl
dx

+γ 2
ε

∫

�

{
ψ̄ε1,αA

ε
αβ,ml

(
∂

∂ym
+ 2iπθ0,m

)
ζ εk,β

∂wδ

∂xl

∂wδ

∂xk

+ψε1,α
(
∂

∂yk
− 2iπθ0,k

)(
Aεαβ,kmζ̄

ε
l,β

) ∂wδ
∂xm

∂wδ

∂xl

}
dx

+γ 2
ε

∫

�

ψ̄ε1,αψ
ε
1,βd

ε
αβ |wδ|2dx + ε2γ 2

ε

∫

�

dε(ζ ε∇wδ) · (ζ̄ ε∇wδ)dx

+2εγ 2
ε R

(∫

�

(
ψ̄ε1ζ

εAε∇∇wδwδ + dε(wδψ̄ε1 ) · (ζ ε∇wδ)) dx
)
.

From the definitions of A∗ and d∗, we deduce

λε1 � λ1(θ0)

ε2 + µ1 + δ + o(1), (63)
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where o(1) vanishes as ε → 0. Since δ is an arbitrary positive number, this yields
the required upper bound in (60). On the other hand, by using Lemma 1 we have

min‖u‖
L2(�)K=1

∫

�

(
Aε∇u · ∇u+

(
ε−2cε + dε

)
u · u

)
dx

� λ1(θ0)

ε2 + inf
x∈�,y∈TN ,|η|=1

d(x, y)η · η (64)

which yields the desired lower bound. ��
Lemma 5. There exists a scalar sequencevε, which is uniformly bounded inH 1

0 (�),
such that ‖vε‖L2(RN) = 1 + o(1) and

uε1(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(x)+ rε(x) with lim
ε→0

‖rε‖L2(�)K = 0. (65)

Proof of Lemma 5. From the upper bound of Lemma 4 and from the Bloch decom-
position applied to uε1, we deduce

λ1(θ0)

ε2 +
∫

�

dεuε1 · uε1 dx � λε1 � λ1(θ0)

ε2 + µ1 + o(1),

which, together with the normalization ‖uε1‖L2(�)K = 1, implies that

−∞ < inf
x∈�,y∈TN ,|η|=1

d(x, y)η · η �
∫

�

dεuε1 · uε1 dx � C. (66)

Then, the existence of ṽε, bounded in H 1(RN), and such that

uε1(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε ṽε(x)+ rε(x),

is a consequence of Lemma 3 since
∫

�

(
Aε∇uε1 · ∇uε1 + cε − λ1(θ0)

ε2 uε1 · uε1
)
dx = λε1 − λ1(θ0)

ε2 −
∫

�
dεuε1 · uε1 dx � C.

As explained in Remark 10, we can replace ṽε ∈ H 1(RN) by vε ∈ H 1
0 (�) defined

as the solution of

−�vε = −�ṽε in �, vε ∈ H 1
0 (�).

Since uε1 vanishes outside � and rε converges locally strongly to 0, it is easy to
show that (65) is satisfied with such a sequence vε. ��
Proof of Theorem 3. We focus on the first eigenfunction, k = 1. For k > 1 a
similar proof holds true.

By Lemma 5 the family vε is relatively compact in L2(�), and any limit point
v0 of a converging subsequence satisfies the relation ‖v0‖L2(�) = 1. By Lemma

4 we can also extract a subsequence such that λε1 − λ1(θ0)

ε2 converges to a limit µ.
According to (60),

C � µ � µ1. (67)
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The proof is now very similar to that of Theorem 2 (see Section 4). Up to an-
other subsequence, e−2πix·θ0/εuε1(x) two-scale converges to a limit u0

1(x, y) and

ε∇
(
e−2πix·θ0/εuε1

)
two-scale converges to ∇yu0

1(x, y). As in the first step of the

proof of Theorem 2, it can easily be shown that

u0
1(x, y) = v0(x)ψ1(y, θ0),

where v0 is a limit point of vε. To find the equation satisfied by v0, we proceed as
in the second step of the proof of Theorem 2. We multiply (25) by the test function

�ε(x) = e2iπ θ0 ·x
ε

(
ψ1

(x
ε
, θ0

)
φ(x)+ ε

N∑
k=1

∂φ

∂xk
(x)ζk

(x
ε

))
,

where φ is smooth with compact support. This yields

∫

�

Aε(x)∇uε1(x)∇�ε(x)dx +
∫

�

cε(x)− λ1(θ0)

ε2 uε1(x) ·�ε(x)dx

+
∫

�

dε(x)uε1(x) ·�ε(x) = λε1 − λ1(θ0)

ε2

∫

�

uε1(x) ·�ε(x).

As before, using (8) and (14), we can pass to the two-scale limit to obtain

∫

�

(
A∗v0 · ∇∇φ + d∗(x)v0φ

)
dx = µ

∫

�

v0φ dx

which is a weak variational formulation of

−A∗ · ∇∇v0 + d∗v0 = µv0 in �. (68)

The Dirichlet boundary condition for the limit v0 is recovered as in the parabolic
case. Since v0 �= 0 and µ � µ1, we necessarily have

µ = µ1,

and v0 is an eigenfunction of (27) associated with µ1. If µ1 is simple, up to a
convenient renormalization, the entire sequence uε1 is converging (and not merely
a subsequence). ��

6. Proofs in the hyperbolic case

We begin with a proof of Theorem 4 when λ1(θ0) = 0. Actually, as soon as
uniform a priori estimates are obtained for the solution of equation (28), the proof
of convergence is very similar to that of Theorem 2 in the parabolic case. There-
fore, for the sake of brevity, we content ourselves with establishing those a priori
estimates.
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Lemma 6. Under the assumptions of Theorem 4, the solution uε of (28) satisfies

‖uε‖L∞((0,T );L2(�)K) + ε ‖∇uε‖L2((0,T )×�)N×K + ‖∂uε
∂t

‖L∞((0,T );L2(�)K) � C,

(69)

where C > 0 is a constant which does not depend on ε. Furthermore, there exists
a scalar sequence vε, uniformly bounded in L2

(
(0, T );H 1(�)

)
, such that

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x), (70)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N. (71)

Proof. We multiply (28) by ∂uε
∂t

to obtain the usual energy conservation

Eε(t) = Eε(0) with Eε(t) = 1

2

∫

�

(∣∣∣∣
∂uε

∂t

∣∣∣∣
2

+ Aε∇uε · ∇uε + cε

ε2 uε · uε
)
dx.

(72)

Since λ1(θ0) = 0, by using the well-prepared character of the initial data (29) and
equation (8), a classical computation shows that

Eε(0) = 1

2

∫

�

(∣∣∣u1
ε

∣∣∣
2 + Aε(ψ1

ε ⊗ ∇v0) · (ψ1
ε ⊗ ∇v0)

)
dx,

which is uniformly bounded by assumption. Then, the Bloch wave analysis of
Lemma 2 yields

∫

�

(
Aε∇uε · ∇uε + cε

ε2 uε · uε
)
dx � 0.

Therefore, we deduce (69) from (72). To obtain (70) and (71) we use Lemma 3
since (72) implies that assumption (55) is satisfied. ��

We now turn to the proof of Theorem 5 when λ1(θ0) < 0. Once again the proof
of convergence is very similar to that of Theorem 2 as soon as uniform a priori
estimates are established (see [4] in the scalar case if necessary). Therefore, we
restrict ourselves to obtaining a priori estimates for the rescaled hyperbolic system
(35).

Lemma 7. Under the assumptions of Theorem 5 the solution ũε of (35) satisfies

‖ũε‖L∞((0,T );L2(�)K) + ε‖∇ũε‖L2((0,T )×�)N×K + ε

∥∥∥∥
∂ũε

∂t

∥∥∥∥
L2((0,T )×�)K

� C,

(73)
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where C > 0 is a constant which does not depend on ε. Furthermore, there exists
a scalar sequence vε, uniformly bounded in L2

(
(0, T );H 1(�)

)
, such that

ũε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x), (74)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N. (75)

Proof. In a first step we multiply (35) by ∂ũε
∂t

to obtain the usual energy conservation

Eε(T )+ 2
√−λ1(θ0)

∫ T

0

∫

�

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

dx dt = Eε(0) (76)

with

Eε(t) = 1

2

∫

�

(
ε2
∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

+ Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx.

As in the proof of Lemma 6, using (8) yields
∫

�

(
Aε∇u0

ε · ∇u0
ε + cε − λ1(θ0)

ε2 u0
ε · u0

ε

)
dx=

∫

�

Aε(ψ1
ε⊗∇v0)·(ψ1

ε⊗∇v0) dx,

which is however not sufficient to show that Eε(0) is uniformly bounded. Indeed
we have

∂ũε

∂t
(0) = u1

ε −
√−λ1(θ0)

ε2 u0
ε

which merely implies
Eε(0) � Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 2 we deduce
∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx � 0,

which, combined with (76), yields

ε2
∥∥∥∥
∂ũε

∂t

∥∥∥∥
L∞((0,T );L2(�)K)

+ ε
√−λ1(θ0)

∥∥∥∥
∂ũε

∂t

∥∥∥∥
L2((0,T )×�)K

� C. (77)

In a second step we multiply (35) by ũε to obtain a better energy estimate:

√−λ1(θ0)

∫

�
|ũε(T )|2 dx +

∫ T

0

∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx dt

= √−λ1(θ0)

∫

�
|ũε(0)|2 dx + ε2

∫ T

0

∫

�

∣∣∣∣
∂ũε

∂t

∣∣∣∣
2
dx dt

+ε2
∫

�
ũε(0)

∂ũε

∂t
(0) dx − ε2

∫

�
ũε(T )

∂ũε

∂t
(T ) dx. (78)
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Using (77) we deduce, from (78),
√−λ1(θ0)‖ũε(T )‖2

L2(�)K
� C

(
1 + ‖ũε(T )‖L2(�)K

)
,

which implies that ũε is bounded in L∞ (
(0, T );L2(�)K

)
. Using this information

in (78) shows that assumption (55) is satisfied: thus, Lemma 3 can be applied to
obtain (74) and (75). ��

Finally we arrive at the proof of Theorem 6 when λ1(θ0) > 0 and again we
simply address the question of uniform a priori estimates for (41) (the proof of
convergence is an adaptation of Theorem 2 and of the arguments of [4] in the scalar
case).

Lemma 8. Under the assumptions of Theorem 6 the solution ũε of (41) satisfies

‖ũε‖L∞((0,T );L2(�)K) + ε‖∇ũε‖L2((0,T )×�)N×K +ε2
∥∥∥∥
∂ũε

∂t

∥∥∥∥
L∞((0,T );L2(�)K)

� C,

(79)

where C > 0 is a constant which does not depend on ε.

Remark 14. The result of Lemma 8 is weaker than those of Lemmas 6 and 7 since
it does not give any strong compactness of ũε. In particular, it implies that we
can not straightforwardly recover the homogenized Dirichlet boundary condition.
As in the scalar case [4], in order to obtain the homogenized boundary condition
the trick is to study the homogenization of a time integral of (41) which has less
oscillating initial data. Indeed, defining wε(t, x) = ∫ t

0 ũε(s, x) ds + χε(x) with a
suitable choice of χε (so that wε satisfies the same partial differential equation as
(41) without a source term), we can obtain better a priori estimates for wε than for
ũε. We thus obtain an homogenized equation with a Dirichlet boundary condition
for a limit of wε, and upon differentiating in time we deduce the desired Dirichlet
boundary condition for the limit of ũε (see [4] for details).

Proof. In a first step we multiply (41) by ∂ũε
∂t

and we take the real part to obtain
the usual energy conservation

Eε(t) = Eε(0) (80)

with

Eε(t) = 1

2

∫

�

(
ε2
∣∣∣∣
∂ũε

∂t

∣∣∣∣
2

+ Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx.

As in the proof of Lemma 7, the assumptions merely imply

Eε(0) � Cε−2.

Nevertheless, from the Bloch wave analysis of Lemma 2 we deduce
∫

�

(
Aε∇ũε · ∇ũε + cε − λ1(θ0)

ε2 ũε · ũε
)
dx � 0,
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which, combined with (80), yields

ε2‖∂ũε
∂t

‖L∞((0,T );L2(�)K) � C. (81)

In a second step we multiply (41) by ũε and we take the imaginary part

√
λ1(θ0)

∫

�

|ũε(T )|2 dx −√
λ1(θ0)

∫

�

|ũε(0)|2 dx

+ε2I
(∫

�

ũε(T )
∂ũε

∂t
(T ) dx −

∫

�

ũε(0)
∂ũε

∂t
(0) dx

)
= 0.

(82)

Using (81) we deduce, from (82),

√
λ1(θ0)‖ũε(T )‖2

L2(�)K
� C

(
1 + ‖ũε(T )‖L2(�)K

)
,

which implies that ũε is bounded inL∞ (
(0, T );L2(�)K

)
. Remark that (82), unlike

(78), does not include any gradient term, so we cannot apply Lemma 3 to obtain a
better estimate. ��

7. Generalization to higher-level bands

We generalize the homogenization of a parabolic system established in Section
3 for initial data concentrating at the bottom of the first Bloch band to another type
of initial data concentrating at the bottom of an higher level band. Such a general-
ization holds true only in the case of the whole space � = R

N because otherwise
we lack an adequate generalization of the compactness Lemma 3. From now on in
this section we replace assumption (9) by the following one: for an energy level
n � 1, there exists a Bloch parameter θ0 ∈ T

N such that

(i) θ0 is the unique minimizer of λn(θ) in T
N,

(ii) λn(θ0) is a simple eigenvalue,
(iii) the Hessian matrix ∇θ∇θλn(θ0) is positive definite.

(83)

Under assumption (83) the nth eigencouple of (8) is smooth at θ0. It is easily seen

that the first derivative ∂ψn
∂θk

and the second derivative ∂2ψn
∂θk∂θl

satisfy equations sim-
ilar to (11) and (12) respectively, up to changing the index 1 to n. In particular, for
θ = θ0 we still use the notation

∂ψn

∂θk
= 2iπζk,

∂2ψn

∂θk∂θl
= −4π2χkl, (84)

where ζk and χkl are solutions of (14) and (15) respectively, up to changing the
label 1 to n.
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We study a parabolic system with purely periodic coefficients:

∂uε

∂t
− div

(
A
(x
ε

)
∇uε

)
+ c

(
x
ε

)

ε2 uε = 0 in R
N × (0, T ),

uε(t = 0, x) = u0
ε(x) in R

N.

(85)

We also need an assumption on the initial data which must be “well prepared”,
namely concentrating at the bottom on the nth Bloch band. Recall from Lemma 1
that any function u0

ε ∈ L2(RN) can be decomposed as

u0
ε(x) =

∑

k�1

∫

ε−1TN
αεk(η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe−2iπ θ0 ·x

ε dη,

with η = θ−θ0
ε

. We denote by�nε the projection operator on the Bloch bands above
the nth level

�nεu
0
ε(x) =

∑

k�n

∫

ε−1TN
αεk(η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe−2iπ θ0 ·x

ε dη. (86)

Our assumption on the initial data is that

u0
ε = �nεu

0
ε. (87)

Typically, we are interested in initial data of the type

u0,1
ε (x) = �nε

(
v0(x)ψn

(x
ε
, θ0

)
e2iπ θ0 ·x

ε

)
, (88)

with v0 ∈ L2(RN). However, since the projection operator�nε is not very explicit,
we also consider another type of initial data which satisfies assumption (87), namely

u0,2
ε (x) =

∫

ε−1TN
αn(η)ψn

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη, (89)

with αn ∈ L2(RN) being the Fourier transform of v0(x). Actually, it is easy to
check that

lim
ε→0

‖u0,1
ε − u0,2

ε ‖L2(RN)K = 0.

For such well-prepared initial data, we perform a time renormalization similar to
(18),

ũε(t, x) = e
λn(θ0)t

ε2 uε(t, x), (90)

such that ũε satisfies

∂ũε

∂t
− div

(
A
(x
ε

)
∇ũε

)
+ c

(
x
ε

)− λn(θ0)

ε2 ũε = 0 in R
N × (0, T ),

ũε(t = 0, x) = u0
ε(x) in R

N.

(91)
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Lemma 9. Under assumption (87), the solution of (91) satisfies

‖ũε‖L∞((0,T );L2(RN)K) + ε‖∇ũε‖L2((0,T )×RN)N×K � C‖u0
ε‖L2(RN)K , (92)

and there exists a bounded scalar sequence vε in L2
(
(0, T );H 1(RN)

)
such that

ũε(t, x) = ψn

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x), (93)

where limε→0 ‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N .

Theorem 7. Assume that the initial data u0
ε ∈ L2(RN)K is of the form (88) or (89).

The solution of (85) can be written as

uε(t, x) = e
− λn(θ0)t

ε2
(
ψn

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
, (94)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N, (95)

and vε converges weakly in L2
(
(0, T );H 1(RN)

)
to the solution v of the scalar

homogenized problem

∂v

∂t
− div

(
A∗
n∇v

) = 0 in R
N × (0, T ), (96)

v(t = 0, x) = v0(x) in R
N,

with A∗
n = 1

8π2 ∇θ∇θλn(θ0).

Remark 15. In the context of the Schrödinger equation Theorem 7 is called an
effective mass theorem [21, 23, 24]. Even in the case of a scalar equation, Theo-
rem 7 is new since the factorization principle does not work for an energy level
n > 1, namely one cannot divide the unknown uε by ψn

(
x
ε
, θ0
)
, which necessarily

vanishes at some points in T
N .

Remark 16. Initial data of the type (88) or (89) would yield a zero limit if homog-
enized in the setting of Theorem 2. The solution uε, given by (94), decays much
faster than that given by (22) because λn(θ0) > λ1(θ0). Therefore, we can inter-
pret Theorem 7 as describing initial layers in time, compared to Theorem 2 which
captures the average behavior. This is consistent with the classical homogenization
of parabolic equations, when c ≡ 0, where initial layers in time are known to exist
[12] but cannot be characterized by the classical homogenization theory.

Proof of Lemma 9. We apply the rescaled Bloch decomposition (16) to equation
(91):

ũε(t, x) =
∑

k�1

∫

ε−1TN
αεk(t, η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη,
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with

αεk(t, η) = αεk(0, η)e
(λn−λk)(θ0+εη)

ε2
t
.

From assumption (87) we deduce that αεk(t, η) = 0 for any k < n. Therefore, for
any time t , we have �nε ũε(t, x) = ũε(t, x). Thus,

∫

RN

(
A
(x
ε

)
∇ũε · ∇ũε + c

(
x
ε

)− λn(θ0)

ε2 ũε · ũε
)
dx � 0,

which easily yields the a priori estimate (92). We now mimic the arguments of the
proof of Lemma 3 (replacing the label 1 by n) to obtain the compactness result
(93). ��

Proof of Theorem 7. The proof is very similar to that of Theorem 2 so we simply
sketch the main points. We introduce, as before, a sequence wε defined by

wε(t, x) = ũε(t, x)e
−2iπ θ0 ·x

ε .

By the a priori estimates of Lemma 9, there exist a subsequence and a limit
w(t, x, y) ∈ L2

(
(0, T )× R

N ;H 1(TN)K
)

such that wε and ε∇wε two-scale con-
verges to w and ∇yw respectively (see [3, 22]). Similarly, by its very definition,
wε(0, x) two-scale converges to ψn (y, θ0) v

0(x). In a first step we multiply (91)

by the complex conjugate of ε2φ(t, x, x
ε
)e2iπ θ0 ·x

ε , where φ(t, x, y) is a smooth test
function defined in [0, T )× R

N × T
N with values in C

K . Passing to the two-scale
limit yields the existence of a scalar function v(t, x) ∈ L2

(
(0, T )× R

N
)

such that
w(t, x, y) = v(t, x)ψn(y, θ0). In a second step we multiply (91) by the complex
conjugate of

�ε = e2iπ θ0 ·x
ε

(
ψn

(x
ε
, θ0

)
φ(t, x)+ ε

N∑
k=1

∂φ

∂xk
(t, x)ζk

(x
ε

))
,

whereφ(t, x) is a smooth, compactly supported, test function defined from [0, T )×
R
N into C, and ζk(y) is the solution of (14) where the label 1 is replaced by n.

Passing to the two-scale limit yields a very weak form of the homogenized equation
(96). It is routine to show that its solution v(t, x) is indeed a classical weak solution.
Then, by uniqueness of the solution, we deduce that the entire sequence wε two-
scale converges to ψn (y, θ0) v(t, x). ��

Remark 17. All the results of this section are specific to the case of the whole
space, i.e.,� = R

N , and cannot be extended to the case of an additional zero-order
term d(x, x

ε
) because we crucially use the Bloch diagonalization to get a priori

estimates.
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8. Fourth-order homogenized problem

By changing the main assumption on the Bloch spectrum it is possible to obtain
a fourth-order homogenized equation from a second-order parabolic problem. Spe-
cifically we consider

ε2 ∂uε

∂t
− div

(
A
(x
ε

)
∇uε

)

+ (ε−2c
(
x
ε

)+ ε2d
(
x, x

ε

))
uε = 0 in �× (0, T ),
uε = 0 on ∂�× (0, T ),

uε(t = 0, x) = u0
ε(x) in �.

(97)

Remark that the time scaling in (97) is not the same as that in (17): this means that
we are looking for an asymptotic for longer time of order ε−2 in (97), compared to
(17). Instead of (9), we now make the following assumption

(i) θ0 is the unique minimizer of λ1(θ) in T
N,

(ii) λ1(θ0) is a simple eigenvalue,
(iii) ∇θ∇θλ1(θ0) = 0,
(iv) the fourth-order tensor ∇θ∇θ∇θ∇θλ1(θ0) is positive definite.

(98)

Remark 18. We do not know if assumption (98) is satisfied in any practical exam-
ple.

Since λ1(θ0) is a minimum, we also have ∇θλ1(θ0) = 0 and ∇θ∇θ∇θλ1(θ0) = 0.
Under assumption (98) the first eigencouple of (8) is smooth at θ0. Recall that, for
θ = θ0, the two first derivatives of ψ1 are given by

∂ψ1

∂θk
= 2iπζk,

∂2ψ1

∂θk∂θl
= −4π2χkl, (99)

where ζk is the solution of (14) and χkl is the solution of (15) (remark that this last
equation simplifies since ∇θ∇θλ1(θ0) = 0). Similarly, the third derivative is

∂3ψ1

∂θj ∂θk∂θl
= −8iπ3ξjkl, (100)

where

A(θ0)ξjkl = ejA(y)(∇y + 2iπθ0)χkl + (divy + 2iπθ0)
(
A(y)ejχkl

)
+ekA(y)(∇y + 2iπθ0)χjl + (divy + 2iπθ0)

(
A(y)ekχjl

)
+elA(y)(∇y + 2iπθ0)χkj + (divy + 2iπθ0)

(
A(y)elχkj

)
+ekA(y)elζj + ejA(y)elζk + ekA(y)ej ζl . (101)

There exists a unique solution of (101), up to the addition of a multiple of ψ1.
Indeed, the right-hand side of (101) satisfies the required compatibility condition
(i.e., it is orthogonal to ψ1) because all derivatives of λ1(θ), up to third order, are
zero at θ = θ0.

We perform a time renormalization by introducing a new unknown,

ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), (102)
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which satisfies

∂ũε

∂t
− ε−2div

(
A
(x
ε

)
∇ũε

)

+ c( xε )−λ1(θ0)

ε4 ũε + d
(
x, x

ε

)
ũε = 0 in �× (0, T ),
ũε = 0 on ∂�× (0, T ),

ũε(t = 0, x) = u0
ε(x) in �.

(103)

As usual we obtain the following a priori estimate:

‖ũε‖L∞((0,T );L2(�)K) + ε‖∇ũε‖L2((0,T )×�)N×K � C‖u0
ε‖L2(�)K ,

where the constant C > 0 does not depend on ε.

Theorem 8. Assume that the initial data u0
ε ∈ L2(�)K is of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x), (104)

with v0 ∈ L2(�). The solution of (97) can be written as

uε(t, x) = e
− λ1(θ0)t

ε4
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
, (105)

where rε is a remainder term such that

lim
ε→0

‖rε‖L2((0,T )×ω)K = 0 for any compact set ω ⊂ R
N,

and vε converges weakly in L2
(
(0, T );H 2(�)

)
to the solution v of the scalar

fourth-order homogenized problem

∂v

∂t
+ div div

(
A∗∇∇v) = 0 in �× (0, T ),

∂v

∂n
= v = 0 on ∂�× (0, T ),

v(t = 0, x) = v0(x) in �,

(106)

with A∗ = 1
(2π)44!∇θ∇θ∇θ∇θλ1(θ0).

To prove Theorem 8 we need the following generalization of Lemma 3.

Lemma 10. Let uε be a bounded sequence in L2(RN)K . Assume that there exists
a finite constant C such that

∫

RN

(
A
(x
ε

)
∇uε · ∇uε + c

(
x
ε

)− λ1(θ0)

ε2 uε · uε
)
dx � Cε2. (107)

Then, under assumption (98),

uε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(x)+ rε(x), (108)

where vε is a bounded scalar sequence inH 2(RN) and limε→0 ‖rε‖L2(ω)K = 0 for
any compact set ω ⊂ R

N .
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Proof. Introducing the rescaled Bloch decomposition (16) of uε(x)with η = θ−θ0
ε

,

uε(x) =
∑

k�1

∫

ε−1TN
αεk(η)ψk

(x
ε
, θ0 + εη

)
e2iπη·xe2iπ θ0 ·x

ε dη,

the same arguments as those in the proof of Lemma 3 and the estimate

λ1(θ)− λ1(θ0) � C|θ − θ0|4 ∀θ ∈ T
N,

show that ∫

ε−1TN
|η|4|αε1(η)|2dη � C.

Defining vε(x) as the inverse Fourier transform of αε1(η), we deduce that vε is
uniformly bounded in H 2(RN). ��
Proof of Theorem 8. The proof is similar to that of Theorem 2. The first step is

identical: the function wε(t, x) = uε(t, x)e
−2iπ θ0 ·x

ε two-scale converges to a limit
v(t, x)ψ1(y, θ0). In the second step, we multiply (103) by the complex conjugate
of

�ε = e2iπ θ0 ·x
ε

(
ψ1

(x
ε
, θ0

)
φ(t, x)+ ε

N∑
k=1

∂φ

∂xk
(t, x)ζk

(x
ε

)

+ε2
N∑

k,l=1

∂2φ

∂xk∂xl
(t, x)χkl

(x
ε

)
+ ε3

N∑
j,k,l=1

∂3φ

∂xj ∂xk∂xl
(t, x)ξjkl

(x
ε

) ,

(109)

whereφ(t, x) is a smooth, compactly supported, test function defined from [0, T )×
� into R, ζk(y) is the solution of (14), χkl(y) is the solution of (15), and ξjkl(y) is
the solution of (101). After some tedious algebra we find that

∫

�

|ψε1 |2v0φ(0) dx −
∫ T

0

∫

�

wε · ψε1
∂φ

∂t
dt dx

−
∫ T

0

∫

�

Aεwε∇ ∂3φ

∂xj ∂xk∂xl
· ekχεjl dt dx

−
∫ T

0

∫

�

Aεwε∇ ∂3φ

∂xj ∂xk∂xl
· (ε∇ − 2iπθ0)η

ε
jkl dt dx

+
∫ T

0

∫

�

Aεηεjkl(ε∇ + 2iπθ0)wε · ∇ ∂3φ

∂xj ∂xk∂xl
dt dx

+
∫ T

0

∫

�

dεwε · ψε1φ dt dx = O(ε). (110)

Passing to the two-scale limit in each term of (110) gives

∫

�

∫

TN
|ψ1|2v0φ(0) dx dy −

∫ T

0

∫

�

∫

TN
|ψ1|2v ∂φ

∂t
dt dx dy
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−
∫ T

0

∫

�

∫

TN
Aψ1v∇ ∂3φ

∂xj ∂xk∂xl
· ekχjl dt dx dy

−
∫ T

0

∫

�

∫

TN
Aψ1v∇ ∂3φ

∂xj ∂xk∂xl
· (∇y − 2iπθ0)ηjkl dt dx dy

+
∫ T

0

∫

�

∫

TN
Aηjkl(∇y + 2iπθ0)ψ1v · ∇ ∂3φ

∂xj ∂xk∂xl
dt dx dy

+
∫ T

0

∫

�

∫

TN
dψ1v · ψ1φ dt dx dy = 0. (111)

Recalling the normalization
∫
TN

|ψ1|2dy = 1, and introducing

A∗
jklm =

∫

TN

(
− Aψ1em · ekχjl − Aψ1em · (∇y − 2iπθ0)ηjkl

+Aηjkl(∇y + 2iπθ0)ψ1 · em
)
dy (112)

(which has to be symmetrized), and d∗(x) = ∫
TN
d(x, y)ψ1(y) ·ψ1(y) dy, we find

that (111) is equivalent to

∫

�

v0φ(0) dx −
∫ T

0

∫

�

(
v
∂φ

∂t
− A∗v · ∇∇∇∇φ − d∗(x)vφ

)
dt dx = 0

which is a very weak form of the homogenized equation (106). To recover the
Dirichlet boundary condition, we use Lemma 10 which implies that v ∈ H 2(RN)

and v = 0 in any compact set ω ⊂ (
R
N \�). Thus v belongs to H 2

0 (�).
The compatibility condition of the equation giving the fourth derivative of ψ1

shows that the tensor A∗, defined by (112), is indeed equal to
1

(2π)44!∇θ∇θ∇θ∇θλ1(θ0), and thus is real, symmetric, positive definite by assump-
tion (98). Therefore, the homogenized problem (106) is well posed. By uniqueness
of the solution, the entire sequence vε converges to v. ��

9. Homogenization of fourth-order equations

Our method also applies to fourth-order problems. Although systems of equa-
tions can be treated, for simplicity we focus on the case of a single equation,
without loss of generality since there is no maximum principle for fourth-order
elliptic equations. Let us introduce the following symmetric fourth-order operator

Aε = div div
(
�
(x
ε

)
∇∇

)
− 1

ε2 div
(
A
(x
ε

)
∇
)

+ 1

ε4 c
(x
ε

)
+ d

(
x,
x

ε

)
,

(113)

with periodic coefficients �(y) = {�ijkl(y)}, A(y) = {Aij (y)} and c(y) which
are real periodic functions in L∞(TN). Furthermore, � and A are symmetric ten-
sors, and� is uniformly elliptic (A need not be positive). The locally periodic term
d(x, y) belongs to L∞ (

�;C(TN)).
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Under these assumptions the Bloch decomposition for (113) is basically the
same as that for second order operators. On the torus T

N we introduce the Bloch
operators

A(θ)ψ(y) = e−2iπy·θAe2iπy·θψ(y)
= (∇y + 2iπθ)(∇y + 2iπθ) · (�(y)(∇y + 2iπθ)(∇y + 2iπθ))ψ(y)

−(∇y + 2iπθ) · (A(y)(∇y + 2iπθ)ψ(y)+ c(y)ψ(y),

with A = div div(�(y)∇∇) − div(A(y)∇) + c(y). Then, the Bloch spectral cell
problem

A(θ)ψn = λn(θ)ψn in L2(TN)

has a discrete spectrum λ1(θ) � λ2(θ) � · · · � λn(θ) → +∞. Moreover, all the
statements of Lemma 1 (and its rescaled version) remain valid.

It is quite natural to make assumption (98) which implies ∇θ∇θλ1(θ0) = 0. For
example, (98) is easily seen to be satisfied with θ0 = 0 if there are no zero- and
second-order terms in (113), i.e., A ≡ 0, c ≡ 0.

We begin with the parabolic Cauchy problem

∂uε

∂t
+ Aε uε = 0 in �× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂�× (0, T ),

uε(t = 0, x) = u0
ε(x) in �.

(114)

Theorem 9. Assume (98). Let uε(t, x) be a solution of (114) with Aε given by
(113), and u0

ε ∈ L2(�) be an initial data of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x),

with v0 ∈ L2(�). Then uε can be written as

uε(t, x) = e
− λ1(θ0)t

ε4
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
,

where the remainder term rε satisfies the relation

lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ R
N,

and vε converges weakly in L2
(
(0, T );H 2(�)

)
to the solution v of

∂v

∂t
+ A∗v = 0 in �× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂�× (0, T ),

v(t = 0, x) = v0(x) in �,

with the homogenized operator

A∗ = div div
(
�∗∇∇)+ d∗(x) (115)

and �∗ = 1
(2π)44!∇θ∇θ∇θ∇θλ1(θ0), d∗(x) = ∫

TN
d(x, y)|ψ1(y, θ0)|2dy.
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The proof of Theorem 9 is very similar to that of Theorem 8. Upon defining

ũε(t, x) = e
λ1(θ0)t

ε4 uε(t, x), the a priori estimates are

‖ũε‖L2(�) + ε‖∇ũε‖L2(�)N + ε2‖∇∇ũε‖
L2(�)N

2 � C,

which, up to a subsequence, implies the following two-scale convergences for
wε = e−2iπx·θ0/εũε(t, x):

wε
2s
⇀ v(t, x)ψ1(y, θ0),

ε∇wε 2s
⇀ v(t, x)∇yψ1(y, θ0),

ε2∇∇wε 2s
⇀ v(t, x)∇y∇yψ1(y, θ0),

where v(t, x) is a limit point of a sequence vε, bounded in L2
(
(0, T );H 2(RN)

)
,

introduced in a variant of Lemmas 3 and 10. Eventually, we use the same test
function defined in (109). We safely leave the details to the reader.

We then study the Dirichlet spectral problem

Aεuεn = λεnu
ε
n, uεn ∈ H 2

0 (�)

stated in a bounded domain� ⊂ R
N , which, under the standing ellipticity assump-

tions, admits a discrete spectrum, λεn → +∞ as n → +∞, with corresponding
normalized eigenfunctions denoted by uεn.

Theorem 10. Assume (98). Then, for any n � 1,

λεn = λ1(θ0)

ε4 + µn + o(1) as ε → 0

and the corresponding eigenfunction uεn(x) admits the representation

uεn(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vεn(x)+ rεn(x), (116)

where

lim
ε→0

‖rεn‖L2(�) = 0, ‖vεn‖H 2(�) � C, lim
ε→0

‖vεn‖L2(�) = 1, (117)

and the family vεn is relatively compact in L2(�). Moreover, any limit point v0
n, as

ε → 0, of the sequence vεn is a normalized eigenfunction associated with the nth

eigenvalue µn of the scalar homogenized spectral problem

A∗v = µv in �, v ∈ H 2
0 (�),

with A∗ defined by (115). If µn is a simple eigenvalue of the latter problem, the
entire sequence vεn converges to the homogenized eigenfunction vn.
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The proof is a combination of those of Theorems 3 and 8. The crucial point is
to obtain a uniform estimate for the energy (Aεuεn, u

ε
n). To this end we use a test

function of the type (109).
Finally, for the hyperbolic system

∂2uε

∂t2
+ Aεuε = 0 in �× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂�× (0, T ),

uε(0, x) = u0
ε(x) in �,

∂uε

∂t
(0, x) = u1

ε(x) in �,

(118)

we obtain different homogenized limits according to the sign of λ1(θ0).

Theorem 11. Let (98) be fulfilled, and assume that λ1(θ0) = 0 and the initial data
are

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x) ∈ H 2
0 (�),

u1
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v1(x) ∈ L2(�),

with v0 ∈ H 2
0 (�) and v1 ∈ L2(�). The solution of (118), with Aε given by (113),

can be written as

uε(t, x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x),

where the remainder term rε satisfies the relation

lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ R
N,

and vε converges weakly in L2
(
(0, T );H 2(�)

)
to the solution v of

∂2v

∂t2
+ A∗v = 0 in �× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂�× (0, T ),

v(t = 0, x) = v0(x) in �,
∂v
∂t
(t = 0, x) = v1(x) in �,

with A∗ defined by (115).

The proof is the same as that of Theorem 4. If λ1(θ0) �= 0, then we need to look
at a different time scaling. Instead of (118), we now consider

ε4 ∂
2uε

∂t2
+ Aεuε = 0 in �× (0, T ),

uε = 0,
∂uε

∂n
= 0 on ∂�× (0, T ),

uε(0, x) = u0
ε(x) in �,

∂uε

∂t
(0, x) = u1

ε(x) in �,

(119)



Homogenization of Periodic Systems with Large Potentials 217

Theorem 12. Let (98) be fulfilled, and assume that the initial data are

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε v0(x) ∈ H 2
0 (�),

with v0 ∈ H 2
0 (�), and that ε4u1

ε(x) is bounded in L2(�) while ε4ψ1
(
x
ε
, θ0
)
u1
ε(x)

converges weakly to 0 in L2(�).
If λ1(θ0) < 0, the solution of (119) can be written as

uε(t, x) = e

√−λ1(θ0)t

ε4
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
,

where lim
ε→0

‖rε‖L2((0,T )×ω) = 0 for any compact set ω ⊂ R
N , and vε converges

weakly in L2
(
(0, T );H 2(�)

)
to the solution v of

2
√−λ1(θ0)

∂v

∂t
+ A∗v = 0 in �× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂�× (0, T ),

v(t = 0, x) = 1
2v

0(x) in �.

If λ1(θ0) > 0 the solution of (119) satisfies

uε(t, x) = e
i

√
λ1(θ0)t

ε4 e2iπ θ0 ·x
ε vε(t, x),

where vε two-scale converges to ψ1(y, θ0)v(t, x) and v ∈ L2
(
(0, T );H 2

0 (�)
)

is
the solution of

2i
√
λ1(θ0)

∂v

∂t
+ A∗v = 0 in �× (0, T ),

v = 0,
∂v

∂n
= 0 on ∂�× (0, T ),

v(t = 0, x) = 1
2v

0(x) in �,

with A∗ defined by (115).

Again the proof is similar to those of Theorems 5 and 6.

Assumption (98) is not the only possible one. In particular, it may happen that
∇θ∇θλ1(θ0) does not vanish at the minimum point θ0. Therefore, we now make
assumption (9), i.e., ∇θ∇θλ1(θ0) is positive definite instead of (98).

Remark 19. We give an explicit example where (9) is satisfied rather than (98).
Consider an arbitrary periodic, symmetric, uniformly elliptic operator B of the
form B = −divy(B(y)∇y)+ c(y) and its Bloch spectrum µ1(θ) � µ2(θ) � · · · .
Adding, if necessary, a sufficiently large positive constant to c, we can assume that
µ1(θ) � C > 0. Considering the relation

(
e−2iπy·θB2e2iπy·θ)ψ =

(
e−2iπy·θBe2iπy·θ) (e−2iπy·θBe2iπy·θ)ψ
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we conclude that the Bloch spectrum of the operatorA = B2 is
(
λn(θ) = µ2

n(θ)
)
n�1.

According to Remark 1, the unique minimum point of µ1 is attained at θ0 = 0 and
the matrix ∇θ∇θµ1(0) is positive definite. Sinceµ1(θ) is strictly positive, the func-
tion λ1(θ) = µ2

1(θ) also has a unique minimum point at θ0 = 0 and its Hessian at
0 is positive definite.

Under assumption (9) we need to change the scaling of (113) and consider
instead the new operator

Aε = ε2div div
(
�
(x
ε

)
∇∇

)
− div

(
A
(x
ε

)
∇
)

+ 1

ε2 c
(x
ε

)
+ d

(
x,
x

ε

)
.

(120)

Then, the homogenization of the parabolic equation is given by a result similar to
Theorem 2.

Theorem 13. Assume (9). Letuε(t, x) be a solution of the parabolic equation (114)
with Aε given by (120), and u0

ε ∈ L2(�) be initial data of the form

u0
ε(x) = ψ1

(x
ε
, θ0

)
e2πi θ0 ·x

ε v0(x),

with v0 ∈ L2(�). Then uε can be written as

uε(t, x) = e
− λ1(θ0)t

ε2
(
ψ1

(x
ε
, θ0

)
e2iπ θ0 ·x

ε vε(t, x)+ rε(t, x)
)
,

where the remainder term rε satisfies

lim
ε→0

‖rε‖L2((0,T )×ω) = 0

on any compact set ω ⊂ R
N , and vε converges weakly in L2

(
(0, T );H 1(�)

)
to

the solution v of the scalar homogenized problem

∂v

∂t
− div

(
A∗∇v)+ d∗(x) v = 0 in �× (0, T ),

v = 0 on ∂�× (0, T ),
v(0, x) = v0(x) in �,

with A∗ = 1
8π2 ∇θ∇θλ1(θ0) and d∗(x) = ∫

TN
d(x, y)|ψ1(y, θ0)|2dy.

The proof of Theorem 13 relies on the same test function as that in the proof of
Theorem 2. It should be noted that althoughuε(t, x) belongs toL2

(
(0, T );H 2

0 (�)
)
,

the sequence vε, defined in Theorem 13, is only bounded in L2
(
(0, T );H 1(RN)

)
,

uniformly with respect to ε. This is due to assumption (9) which allows us to prove
Lemma 3 but not Lemma 10.

Of course, similar results can be obtained for the spectral problem and for the
hyperbolic equation: in both cases the homogenized operator is of second order in
space as in Theorem 13.
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