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Abstract

We consider a model homogenization problem for the Poisson equation in
a locally periodic perforated domain with the smooth exterior boundary, the
Fourier boundary condition being posed on the boundary of the holes. In the
paper we construct the leading terms of formal asymptotic expansion. Then,
we justify the asymptotics obtained and estimate the residual.
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In memory of Professor
Landis Evgeni Mikhailovich

Introduction.

Recent years many mathematical works were devoted to the asymptotic analysis of
problems in perforated domains. Various homogenization results have been achieved
for periodic, almost periodic and random structures. We mention here the general
frameworks [15], [16], [21], [24], [27], [28], where the detail bibliography can be found.

In the paper we consider perforated media with locally periodic microstructure in
the presence of a small dissipation at the boundary of the cavities. Corresponding
mathematical description involves the Fourier boundary condition with a small pa-
rameter €, characterizing the dissipation. The effective characteristics of the media
depend essentially on the value of a. Earlier, similar problems for purely periodic
structures were investigated in the works [6], [10], [11], [12], where the general con-
vergence results were obtained for various values of a; namely, the case -1 < a < 1
was considered in {10], the case a < —1 in [11] and the case & > 1 in [12]. The Stokes
and Navier-Stokes systems in perforated domains were studied in [13]. Also there is
an interesting work [14], devoted to the problem in domains with ”small” cavities. It
should be noted that the case of Neumann homogeneous boundary conditions were
primely studied in [9], [22], [30].

When studying a locally periodic perforation, we encounter an additional difficulty:
the fact that the geometry of the cavities is not fixed. One can apply the compensated
compactness method [23] or the two-scale convergence method [1] to obtain the limit
problem, but these methods do not allow to estimate the residual. Previously, locally
periodic perforated structures have been studied in [20}, [8], where, by means of the
two-scale convergence method, the homogenized problem has been constructed and
the weak convergence of solutions has been proved. In [26] another approach was used
for study the problems in perforated domains with an arbitrary density of cavities.
In the present paper we use the asymptotic expansion technique {2], [3] that requires
the regularity of data but gives the estimates of the rate of convergence.

In the section 1 we introduce necessary notation, construct the family of domains,
depending on a small positive parameter ¢ and pose the problem to be studied.

The sections 2 and 5 deal with a formal interior asymptotic expansion of the
solution for @ = 1 and a > 1, respectively.

The technical results obtained in the section 3, allow to justify the asymptotic
expansion and to estimate the discrepancy.

Theorem 1 proved in the section 4, states that for & = 1 two terms of the interior
asymptotic expansion provide the precision of order /¢ in H'-norm.

Theorem 2 proved in section 6, states that for & > 1 two terms of the interior
asymptotic expansion provide the precision of order max (1/2,e*"!) in H!-norm.

Theorem 3 from the last section states that in the case a < 1 the uniform estimate
of solution is of order max (y/¢,¢!'~*) in H*-norm.
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1 Statement of the problem.

First we define a perforated domain. Let Q C R% d > 2, be a smooth bounded
domain. Denote

Jo= ez dist(cf,00) > eV, as{gz—-;-<gj<%, j=1,....d}.

Given an 1-periodic in ¢ smooth function F(z,£) such that F(z, 6),5680 > const > 0,
F(z,0) = —1, V¢F # 0 as £ € O\{0}, we set

Q;={z€c(0+))|F(z,7) <0)

and introduce the perforated domain as follows:

=0\ @

JEJ*
We also use the following notation 5 = Q\ U (e(O + j)). Afterwards, we will
JEJ*

often interprete 1-periodic in ¢ functions as functions defined on d-dimensional torus
T = {€ : ¢ e RY/Z%).

According to the above construction the boundary 92° consists of 90 and the
boundary of the cavities S, C Q, S, = (00°) N Q.

We investigate the asymptotic behavior of solution u.(z) as £ — 0 of the following
boundary-value problem in the domain 0° :

—Au, = f(.’l,') in QE,
u =0 on on, 1)

O, +¢% (:c, _z_) ue =0 on Se,
on, €

where n, is the internal normal to the boundary of "holes”, g(z,€) is a sufficiently
smooth 1-periodic in ¢ function.

Definition 1 Function u, € H*(Q°,00) is a solution of problem (1), if the following
integral identity

Q[ V() Vo(z)dz +¢* [ g (z -:f) we(2)o(z) ds = Q/ f@v@)de ()

holds true for any function v € H*(Q°,90).

Here we use the standard notation H'(2¢,99) for the closure of the set of C({")-
functions vanishing in a neighborhood of 8, by the H*(Q2*) norm.

In what follows we show that & =1 is a critical value for problem (1); the dissi-
pation dominates if @ < 1 and is neglectable if & > 1.
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Part 1
The case a«a = 1.

2 The formal homogenization procedure.

In this section we construct the leading "locally periodic” terms of the formal asymp-
totic expansion and, then, find the limit problem. To this end we represent the
solution w.(z) to problem (1) in the form of asymptotic series

ue(z) = uo(x) + euy (:v, S) + e%uy (a:, -::i) + 3us <x, -::-> +... (3)
Substituting expression (3) in equation (1) and taking into account an evident
relation 8 5 18
T
3.5 0) = (554(-’6,5) + ECT)EC(m’O) |€=%a (4)

we obtain after simple transformations the formal equality

—f(2) = Ague(@) = Aguo(z) + € (Agua (2, €)) |€=§ +2(Va, Veu(2,6))|_, +

+2 (Ben(z,8) |,_, + & (@, O)|,_

+(Beus(2,0)|_, +° (Asus(z, ) |,_,+ (5)

¢=2

+2¢ (Ve Veua(®, )|, _, +

=Z
3

i
4

+26* (Ve Veus(2,6)) |,_, + (Aeus(®, ) | . + -

Similarily, substituting (3) in the boundary conditions in (1), we get the relation

0= gze + eq (1‘, :-L:) Ue = (Vﬂlo,ne) +¢eq ($7 g) U+ € (qul’ne) +

€
Z
+ (Vfull£=%, ne) +¢&%q (x, ;) uy + €2 (Vaug,ne) + ¢ (Vsuzlgzg,ns) + (6)

z
+53q <‘Ta ';E) ug + 53 (VIU3, n!) + 62 (VEU'Slg:%’ Tl,) + 54‘1 (l’, E) Uz + ...

to be satisfied on S,.
Note that the normal vector n, depends on z and £ in 2°. Considering, as usually,
z and ¢ = £ as independent variables, we represent n. in {° in the following form:

ne(e, 2) = (2, 8)|_, +eni(z.6) (7

¢=2’
where 7 is a normal to S(z) = {£| F(z,§) = 0},
n, =n' + O(e).
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It is obvious, that
£)= VxF(x,f) _ ( VeF(z,€) te V. F(z,§) :
el T | VaF(x, E)l  \IVeF(2,8)] T T [VeF(,§)]

(VzF(CE,f),VfF(-T,f)) 2
VeFoF T OE ))

ne(z

= eVeF(z,6)

e==2
_ VeF(z,
Consequently, #(z,{) = I_V—:_F—E_x_%l’

l; _ VZF(“:7€) _ z (VZF(x,f),VeF(.’E,E))
@02 WrEe O TN Emar

Collecting all the terms of order ¢! in (5) and of order ° in (6), we obtain the
following auxiliary problem (see Fig.1):

: Onw

1]
<

™

(TS &

T Nse)

|

Figure 1: Cell of periodicity

8

2B o (Vfwle)®) o S() ©

to be solved in the space of 1-periodic in £ functions; here z is a parameter, w := {¢ €
T?| F(z,€) > 0}. This is the standard "cell” problem appearing in case of Neumann

conditions on the boundary of holes. The solvability condition

[ (Veuol2), 7(8)) do =0

)

{ Aeuy (2,6) =0  in o,

for problem (8) is clearly satisfied, and its solution forms the first "internal” corrector
in (3).

At the next step we collect all the terms of order £° in (5) and of order ¢! in (6).
This yields

Agn (2,6) = —f(z)— Azuo(z) —2(Ve, Vour(z,¢)) in w,
u'za(,:”:’—s) = —(Vou(z,8),7) = (Veuy (2, €),n') — (©)

- (Vzuo(‘t)a n,) - CI(-’B, 6)”0(2?) on S(:E)
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The 1-periodic in ¢ solution of the latter problem is the second term of the internal

asymptotic expansion of u.(z).
It is natural to represent the solution ui(z,€) of problem (8) in the form:

wy(z,€) = (Vzuo(x)’ (9075)) ) (10)
where 1-periodic vector-function M(z,¢) = (Mi(z,§),. .., Ma(x,§)) solves the prob-

lem )
{ e M )
H x, — .
% = s on S(z).
Now, (9) can be rewritten as follows
4 Jug(z) OMi(z, £
A ) = — A -2
¢uz2 (,€) f(z) = Aguo(z ”Z_:I 9m0; 0F,
4. Quo(z) 0*Mi(z,§) .
_.2{%1 Bz, OF; Oz, in  w,
dug(z,€) _ d azuo(a:) Ouo(z) OMi(z, &) s
= T me 'Jz_:l e o, (12
2, Quo(z) IMi(2,§)
q(:t, )UO(IE) ‘.;1 oz; aEJ n
. Buo(z)
k —; Ba; on S(x)

Writing down the compatibility condition in the last problem, we get the following
equation:

?ug(z) OMi(z,€)
Dn/w (f(l‘) + Aguo(z) +2 ”ZI 52, 0z 3¢, +

Duo(z) 9*Mi(z, E) Buo

2 z ole) ZoeE))ag S/ ( > Sl Tl e it (19
duo(z) IMi(z, E) duo(z) OMi(z,§) ,
+;§=:1 Oz 63:, i.jz=1 Oz 9; KN
+ E auO n} + g(z, f)uo(.’lf)) do.
=1
;From (13) by the Stokes formula we derive the equation
*M;(z,§) Buo(:c)

|0 Nw|Azuo(z) + JZI< 9z, B, > Bz, (14)

d . Zu z 0

4,3=1
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to be the limit equation in Q. Here < - > means the integral over the set O N w,

Q(z) = [ a(e,) o, 2nd Ui(z) = [ (24280 4+ n1) do.

Let us study in detail the functions U;(z). Fortunatily, it is not necessary to
calculate U;(z). Instead, taking into account the selfadjointness of the operators of
the initial problems and the convergence of the corresponding belinear forms, we
obtain that the G-limit operator is necessary selfadjoint. Hence, the limit equation
(14) takes the form:

3 o ((a+ P2l 29 s o i) = Qayete) (1)

and, consequently,
(o O [OMi(z, &)\ [P Mi(x,6)
Ut(z)_j;a_fvj< 0¢; >—,§< 9z; 0¢; > (16)

Clearly <5,-j + %‘%ﬁ> is a smooth matrix, moreover, arguing like in [24] one can
verify that this matrix is positively defined.
So, we find the homogenized problem:

£ (29 5)-

—Q(z)uo(z) = —[ONw|f(z) in O,
uz) = 0 on 00

(17)

The integral identity for problem (17) takes the form:

[ (2 {5+ 228 ZoDBE , auson(e)) de= (19
& \ij=1 j : j

= [Ionw| f(z)v(a) s
Q

for any function v €H' ().

Remark 1 [t should be noted that M;(z,2) are not defined in the whole Q. Applying
the technique of the symmetric extension [19] allows to extend M(z, ) into the interior
of the holes” retaining the regularity of these functions. We keep the same notation
for the extended functions.

The limit behavior of the solution of problem (1) is described by the following
statement.
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Theorem 1 Suppose that f(z) € CY(R?) and that g(x,£) is smooth enough nonneg-
ative function. Then, for any sufficiently small € problem (1) has the unique solution
and the following estimate

||uo+€u1 —u,”;p(g:) < Km/g (19)

takes place, where uy and uy are solutions of problems (17) and (8) respectively, and
K does not depend on €.

Remark 2 In fact, in the formulation of Theorem 1 the condition g(z,€) > 0 can be
replaced by the weaker condition Q(z) > 0.

3 Preliminary lemmas.

This section is devoted to various technical assertions, which will be used in the further
analysis. Some of these assertions have been proved in [5], [7] (see also [4]). We omit
their proofs.

Lemma 1 Under the conditions of Theorem 1 the Friederichs type inequality

e
/|Vv|2d$ + E/Q(fvyg)vzds > Cillvllzn e 50
n‘

holds for any v € H*(Q°,09), where C1 does not depend on ¢.

The next assertion is, in fact, a modified version of Lemma 5 from [7].

Lemma 2 If
ONw 5

then the following tnequality

“-_-,_rl\' wld‘/Q(w)v(z) dz — e/q(m, S) v(z) ds| < Cael|v|lmae (21)

holds for any v(z) € H'(QF,00); the constant C3 does not depend on .
Proof. By (20) the problem
A¥(z,8) = g Qz) in w,
== o 22
5, = 4(:€) on

has 1-periodic in £ solution. Moreover, the solution is unique up to an additive
constant. Let us multiply the equation (22) by the function v(z) € H(9¢,9Q) and
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integrate it over the domain Q°. Integrating by parts the left-hand side of the obtained
formula gives

=’ / qul(z,f)lfzav(z) dz—
ad\q; ’

1 z
O m.u]n[ Q(z)v(z) dz - 55/ Q(v’ﬂ,g)v(z) ds

—E/q ds+|cm |/Q

=/ (v [Veu(s,0) ]—((vx,vf)wx,g))L:%) o(z) do—

n\ng

¢=t

< (23)

—e]q(:c,:-)v(z) ds + lE;—W'‘/Q(av)v(z)d:v
o

Se

<e| [ ((Veizo),_, Ver(a)) da| +

e\

ve| [ (Vo VU@, v(@) da| +

Qg

te / (Ve¥, N)v ds| + O)||v]l s e+
(a\ay)

+52|S/ ((Vf\ll(w,f))L:%,nL) v(z) ds

S CsE”U“Hl(Qc).

Here N is the unit normal to 8(Q\2%). The lemma is proved.

The following lemma allows to neglect the right-hand side of the equation (1) in
the thin layer £ without deterioration of the estimate. Proof of this lemma is similar
to the proof of Lemma 8 from [5].

Lemma 3 Suppose that y. is the solution of the problem

—Ay. = h%(z) in QF,
y.=0 on Q, (24)
Sue 4 gq(z, L)y =0 on G,

Ane

where h*(z) = f(z) for ¢ € Qf and 0 otherwise. Then

Nyell (o) < Cae. (25)
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The following assertion can be proved in the same way as Lemma 5 from [7].

Lemma 4 Suppose w®(z) € Loo(fY), and let TI° belong to {z € Q| dist (z,09) < Coe}.
Then the following inequality

L ()], _, Voro(®) v(z) dz| < Cse? flwl L@ lvlaear (26)

holds for any v(z) € H'(Q°,00); the constant Cs does not depend on .

4 The basic estimate.
Proof of Theorem 1. We are going to estimate the H'-norm of the residual:
”Uo +eu; — U3”H1(Q¢).

To this end we extend the functions M;(z,£) in the layer £ (see Remark 1 above)
and substitute the expression .

z(z, S) = uo(z) + exc(g)ul(x, -z-) ~ u(z)

in the equation (1). Here we denote by x*(£) a smooth cut-off function 0 < x*(£) <1,
such that x*(£) = 0 if ¢ € Qf and x*(%) = 1 if dist(z,Qf) > dist(S, ), moreover
[Vexe(€)] and |Agx*(€)| are uniformly bounded. This yields

A, (ze(w, ;)) = Asuo(e) + ex () Asur(z,€)|,_, +2 (X (O)V, Veu(s, E))'

z —z
L] €

¢

+2(Vata(2,), Vo (©)_, + (¢ (Ocn(e, )|+ (27)

=£
0

1 2
+= (s OB O], + Z(Vex“(€), Veu(@,0)|,_, — Asue(a).
Taking into account the relations
Agur(z,) =0 Ve '\, Ague(z)=—-f(z) in QF

(28)

d : 2
2(To (O, ) =20 3 e

O M;(z, &) Ouo(x)
0 Z 32‘, 8{, Bz;

1,5=1
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L T

=_ian‘f(z) in Qv

and

we can transform (27) in the domain Q°\Q] as follows:

d 0M 0
AV (Zs(l‘, g)) X*(§)Azui(z, €) =2 '*‘2”2_:1 3(; 4 8:062 '5__
?M;(z, &) Ouo(z)
2vx Wz, ’V 2 & Az — (30
+2(Vaus(2, ), Vex“(€))]._ +1§1 X 5 58 prr lemz +Ax0(@)= (30)
+ M2, ) \ Duo(z) 1
|Dﬂw} ‘JZI Oz; (< it 0¢; > Oz; ) + |o ﬂle(x)uO(x)+

(2,086, + (Ve (©), Veus(,0),,

0

Similarly, on S. we have:

B_B(TJ = — (Vaue(2),ne) + (Vouo(@),ne) +
+e (Vzul(m1€)‘§=z’ ) (V¢u1 g)ls 2" >=

z

= ¢eq(z, E)us(a:) + (Vguo(z),n.) + € (V,ul(a:, §)|£=%, n5> +

+’§__;1 Puoe) (2D (2,6)) |y + ¢ (Voo )

At last, on 9 we clearly have the trivial boundary condition:
z
(z,—)=0.
ze(x 8)

Now, multiplying the equation (30) by v(z) and integrating over 0, we get

/A (zs (z, —)) v(z) dz = e/x Azuq(z, f), v(z) dz+

B

+2[,§1 851 9z: 3:c] L:%v(m) dz+

d . 9
[ 3 v o

s i,5=1

() do Q/ Aguo(z)o(z) dz+  (31)
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[ e 98N], pode + [ HT (0 Fe )]y o=

Qt

|mnw; /; 3 e (< i+ aM(;(gf’f)>a%°f)) v(z) da+

1,7=1

|Dn"-’| / Q(z) uo(z) v(z) d:z:+/f z)dz+

vdz.

g=t

+ [(Taun(e,€), Vex'(6))
&

On the other hand, with the help of the Green formula one can transform the left-hand
side of (31) as follows

/A (zz ) z)dw-/a

= s/q(x,g-)u,,(:v) v(z) ds + / atg;x v(z) ds+
3. 5. ¢

/vz,w (z) dz =

v [ (To(a,0)],_yome) o(e) ds +e [ (Ven(e ) mifa,€) |, (o) do
8. Se
_I_/”ZI 61(1901‘ (0Ma(£ ,€) i (x, € )) - v(z) ds —ﬂ/eVz,(:c,S)Vv(m) dz. (32)

(From (31) and (32) we derive

/Vze(a:, i:—) Vu(z) dz = 6/(](.’1:, g)u,(x) v(z) ds + / &giw) v(z) ds+
e 5 5 ¢

ve [ (Vaun(e,&)]_oone) ol@) ds +¢ [ (Vewr(e,§), iz, ) |,_,v(z) dot

J ¢=2 J g==

+/£Z=1 auaoai z) (aMa(gf f), i, 5)) IEZ%v(w) ds— (33)
S,
d "o

—-e/x‘(f)A,ul(m, dz — _2/ 3 X(E aMaEfc ,€) gx ;x £v(:v) dz—

Qs Qe #i=1 J i H

P M;(z,£) Ou
‘2/ .;1 azj(aﬁf) aoz(.-z ) =g VB & _ﬂ[ Asta(a) ole) do=
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1 . 2 _
__d‘/*a'(ul(x,f)AEX (f))L:%vdz —/;(Vgx (f),Veul(x,f))L=%vdx+

&
o, S (o “@‘5’“> ) o e
—[_D—%T]n‘\/n‘ Q(z)uo(z) v(z) dz —/f v(z) dz.

In view of the evident relation

dive (a% (M(x,g)a%‘)))

e [ O _ Auo(z) B
£=%§—:-§le:: <5x_, (M'(I’O_—Bx; ) '5:5)

. d Ou
—ediv, (5;] (M.-(a:,f) 801(;5 )) - (34)
the Stokes formula gives
i . OMi(z,€) B®uo(z) = O?Mi(z,€) Buo(z) _
e .'§=:1X (§)< 9 Oz;9z;  Ox; 0§; Ox; )|‘=fv(w) de=
=& [ (Vewr(a,6)],_,ne) v() ds + O(E) ol ey (35)

13

here we also used the fact that all the integrals containing the derivatives of x¢, are of
order ¢. Now using (33) and the boundary condition in (17), we estimate the following
expression

L[Vz,(z, E)Vv(:c) dz +€g/q(.7:, S)zs(:v,g)v(x) ds| <

<e

E/q(z,g)ul(z,g)v(z) ds

Se

+

1

* EGr]

[ Q@uolz)v(a) do

ae\as

+

é:/q(a:, ;)uo(x) v(x) ds —
Se

+ + (36)

_/X Ayu(z s v(z) dz

| NP >

A f,7=1

+ L Azug(z)v(z) dzx
i

:) v(z) ds
=<




1e: 0o 4 January 2010

bowni oaded At:

228 G.A. CHECHKIN AND A L. PIATNITSKI

L bl 2 521

“\ag W=
s
¢ [ (Veus(a, ), ria,)) ] _, ole) | + L/f(z)v(w)dw +
Se € ;
+L | Soce- D (PURIAN)| o) de|+
Aqs Hi=1 J J i =

+

+ L/ é(ul(x,ﬁ)AeX’(f))la_%vdz + n/ %(Vex’(f)’ Veur(a, )|, v de

+O(Nvllm@y =L+ L+ Is+ I+ Is + Is + I + Is + Is + O(e) ||v]| 1 ¢)-

Let us estimate the term I;. According to Lemma 2, we have

e/q(z, g)uo(z) v(z) ds — TE%;—] / Q(z)uo(z) v(z) dzx

Se Qe\Qf

I = <

< Cse |luoll g o 1ol a1 ae)-
The terms I; and I, clearly satisfy the estimate
|11} + 14| £ Crellv||myae)-

The identity Is = 0 follows from the boundary condition of problem (8). Let us
estimate the integral Is. Considering (16) it is easy to verify that

/ 1 9 <5ij+ aM;(z,£)> _9 (51.]. _M)] dé—

o llBNw] dz; 0¢; Oz; 9;

~Ui(z) = 0.
Applying the technique of the proof of Lemma 2, one can show that the latter relation
implies the inequality

Pug(z)
—_— v 1(0¢) s
awia ; . “ ”H (Q2¢)s

|I| < Cse

here we used the C'-smoothness of f(z). By Lemma 3 one can assume that the
function f(z) is equal to 0 in the layer Q. Then I; = 0. The term I3 can obviously
be estimated as follows:

I3 < Cov/ellvllmaqy.
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Finally, due to the properties of x*(£) one can apply Lemma 4 in order to estimate [g
and Iy. This gives
\IS‘ + ”9‘ < Cll\/EHvHHI(Qs).

Substituting v = ug + ex®u1 — u. in (36) and taking into account all the estimates
above, Lemma 1 and the evident relation [leui(1 — x°)||lm1(aey £ Cr2v/E, we obtain
(19). The theorem is proved.

Part 11
The case o > 1.

5 The formal homogenization procedure.
This section deals with problem (1) in the case a > 1. Substituting the expression

us(m) = UO((l?) + (—:“"lul,_l (1‘, —:~> + EuO,l (.’E, g) + Eaul,o (.’L', g) + (37)

T T z
+€2u0,2(w, 'g) + €a+1U1,1(:c, E) +...+ €ka+luk,1(:l:, Z) +...

in equation (1) and taking into account an evident relation (4), we obtain after simple
transformations the following formal equality

—f(z) = Apu(z) =
= Aguo(e) + 7 (Aauna(2,8) |, + 2677 (Ve Veur,a(@.6) |, +

+€a_3 (Aful,—l(x, 5)) ‘5=£ +¢€ (Aa:uo,l(mv 5)) |e=£ +2 (V:m V{“O,l(ws 6)) ‘£=%+

+é (AEUO,I(zv f)) ,E=£ +e” (Arul,O(xv E)) in + 250{*1 (Vza vful,o(z, 5)) |€=%+
+e°77 (Aguao(®, ) |, +* (Aewoa(z,6)|,_, +62(Va, Veuoa(a, )| _, +

+ (38)

ala

+ (A{UO,Z(:IJ?'E)) 'E z + €a+1 (Azul_l(x, f))

-

|

+26% (Vo Veura(2,8) | _. + ¢ (Dewmale, )|, +---+

+e* ¥ (Deuri(a, €)) | _, + 264 (Ve Veuri(, )|+

+Eka+1—2 (A{uk,l(m’ €)) |E=£ +...
Similarily, on S, we get

e g St 0 () 4o ot

e
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z
+e° (chl 1|5—z,ne) + %7l (33, E) uy,-1 + € (Vazuoa,ne) +
z
(Veuo l‘f—iane) +e%*g (x, ;) up1 + &% (Vauro,ne) +
+671 (Veur olgassme) + (39)
2a E 2 v v a+2 E
+eq (e, < Jmote (Vauoz, ne) +& (Veuo, 2[5_1,71;) +e 7,7 | uoat
z
+€a+l (Vzum, n,) + ¥ (V{U]_Jlﬁ:_:_, Tl;) + 622+1q (.’E, g) U1,1 +... +

+eFH (Vaun, ne) + 2 (Veuptlees, ne) + ekt (-’v, g) Ut

Keeping in mind (7) and collecting all the terms with like powers of ¢ in (38) and
(39), we arrive at the following auxiliary problems:

By (20=0 »

{ tloo w s, )
Aguyp(2,8) = =2(Ve, Vour —1(z,€)) in w,

31”,;(;,5 = —(Vouy,-1(z,€),7) on S(z). (41)

and problem (8) for uo; (z,£), to be solved in the space of 1-periodic in £ functions.
It follows from (40) that uy,_; does not depend on £. In fact, for our purposes it
suffices to put uy,—1 = 0. Then u;0 = 0 solves (41).
At the next step we collect all the terms of order £° in (38) and of order ¢! in (39).
This yields

Aéuo,g (z,8) —f(z) = Azuo(z) — 2(Ve, Vouoa(z, €)) in w,
Ltz;(ﬁ?’_g) = —(Vsuoa(z,£), 1) — (Veuoa(, §),n') — (42)
— (Vguo(z),n') on S(z).

If we represent ug1(z,€) = (Vguo(z), M(x,£)), where 1-periodic vector-function
M(z,€) = (Mi(z,8),. .., Ma(z,£)) solves problem (11), then (42) takes the form

I

d 2
~f(@) = Asuof2) =2 ) gz A aMa(; 6

1,j=1
: Oug(z) P?M;(z,§€) )
22 on Og0n, @ @

I

f Aguoz (z,§)

{ d (1' f) ':;7—16221 (33) ou (z-) OM; (.’E f) (43)
Up,2 0 ,
—5e = —.';1 3z, 0z, E (@ R ”Zl ulel O1hLe
a aM d au ’
\ g::l 1;9035;) a(g 8 ; 80a£;) nt on S(2).
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Writing down the compatibility condition in the last problem, we get the following
equation:
Oug(z) IM;(z,€)
/ (f(x) + Batio() +2 Z Oz; Oz; a¢; +

ONw Hi=1
Quo(z) 8*M;(z,§) d 9 uo(x) .
+2 t]z"l 61’“ 65_7 ax] ) / (1]2"1 3:5, ,6)n1+ (44)

Ouo(z) OM;(z,¢€) 7+ Ouo(z) OM;(z §) duo(z)
E: dz; Oz, E: oz, 0% E: oz ') 7

In the same way as in Section 2 we find the homogenized problem:

RN el

4,5=1 1,j=1

The integral identity for problem (45) reads

/ p> <5='f+aM§(§’O> 2el) & a”(w / Dnwl f(=)v(e)de  (46)
q =1 ) i

for any function v €H! (Q).
The limit behavior of the solution of problem (1) is described by the following
statement.

Theorem 2 Suppose that f(z) € CHR?), and let q(z,£) be a smooth nonnegative
function. Then, for any sufficiently small € problem (1) has the unigue solution and
the following estimate

llu + o, — te|lgraey < K2 max(e°7?, ve) (47)

takes place, where ug and ug; are solutions of problems ({5) and (8) respectively, and
K, does not depend on ¢.

The proof is similar to that of Theorem 1 and relies on the following two simple
assertions:

Lemma 5 Under the conditions of Theorem 2 the inequality
x
/wwa+f/¢@?#¢zaﬁwﬁw)
Qe 5.

holds for any v € H(£2¢,00).
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Lemma 6 For any v € H(Q?)

S 014 6_1 ”uoqu(Q‘)”v“Hl(Q‘)-

L/ q(z, ;)uo(m) v(z) ds

We omit their proof.

Part III
The case a < 1.

6 The homogenization theorem.

In the case a < 1 the limit behavior of the solution of problem (1} is described by the
following statement.

Theorem 3 Suppose that f(z) € CY(R?) and that q(z,£) is smooth enough strictly
positive function. Then, for any sufficiently small ¢ problem (1) has the unique solu-
tion and the following estimate

luellza(e) < Ko max (7, VE) (48)
takes place, K3 being independent of ¢.
Proof of Theorem §. First let us note that Lemma 5 still holds under the conditions
of Theorem 3. Writing down the integral identity for problem (1), by the Cauchy-

Schwartz—Bunyakovskii inequality, we obtain the uniform boundedness of u.(z) in

H'(9¢). Indeed,

el < Cis L/ Vu(@)de + e [ (e, Dud(e) ds| =
€ Se

= L/ f(@)ue(z) dz| < || F(2))|za(0e) 1ue(z) | i (ae). (49)

Hence,
luellm ey < Cia. (50)
Let us recall the notation Q(z) = [ q{z,£) do. Under the assumptions of the theorem
5

the function Q)(z) is uniformly positive and the estimate holds

/uf dz < IDCF':Gw|Q/“Q(x)uz(z) dz = Cle{E/q(:c,-Z-)uf(x) ds+

Qe S
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+|DlTw|ﬁ‘/ Q(z)ul(z) dz —G/q(w,g)uf(x) ds} <

3

< Cls{e/q(x, ;)uZ(z) ds + E”'Us”ill(ﬂ‘)};

't

the last inequality here can be proved in the same way as Lemma 2. On the other
hand, from the integral identity we have

<

E/q(z, ;)Uf(x)ds
Se

=el™ L/f(x)us(x) dr - / [Vu(z)|? dz

e

SN F (@) La(ae) lue(@)liLa(ey + O 7).

Combining the preceeding estimates and keeping in mind (50), we immediatly get
(48). The theorem is proved.
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